117 research outputs found

    Survey of computer vision algorithms and applications for unmanned aerial vehicles

    Get PDF
    This paper presents a complete review of computer vision algorithms and vision-based intelligent applications, that are developed in the field of the Unmanned Aerial Vehicles (UAVs) in the latest decade. During this time, the evolution of relevant technologies for UAVs; such as component miniaturization, the increase of computational capabilities, and the evolution of computer vision techniques have allowed an important advance in the development of UAVs technologies and applications. Particularly, computer vision technologies integrated in UAVs allow to develop cutting-edge technologies to cope with aerial perception difficulties; such as visual navigation algorithms, obstacle detection and avoidance and aerial decision-making. All these expert technologies have developed a wide spectrum of application for UAVs, beyond the classic military and defense purposes. Unmanned Aerial Vehicles and Computer Vision are common topics in expert systems, so thanks to the recent advances in perception technologies, modern intelligent applications are developed to enhance autonomous UAV positioning, or automatic algorithms to avoid aerial collisions, among others. Then, the presented survey is based on artificial perception applications that represent important advances in the latest years in the expert system field related to the Unmanned Aerial Vehicles. In this paper, the most significant advances in this field are presented, able to solve fundamental technical limitations; such as visual odometry, obstacle detection, mapping and localization, et cetera. Besides, they have been analyzed based on their capabilities and potential utility. Moreover, the applications and UAVs are divided and categorized according to different criteria.This research is supported by the Spanish Government through the CICYT projects (TRA2015-63708-R and TRA2013-48314-C3-1-R)

    Fast, Autonomous Flight in GPS-Denied and Cluttered Environments

    Full text link
    One of the most challenging tasks for a flying robot is to autonomously navigate between target locations quickly and reliably while avoiding obstacles in its path, and with little to no a-priori knowledge of the operating environment. This challenge is addressed in the present paper. We describe the system design and software architecture of our proposed solution, and showcase how all the distinct components can be integrated to enable smooth robot operation. We provide critical insight on hardware and software component selection and development, and present results from extensive experimental testing in real-world warehouse environments. Experimental testing reveals that our proposed solution can deliver fast and robust aerial robot autonomous navigation in cluttered, GPS-denied environments.Comment: Pre-peer reviewed version of the article accepted in Journal of Field Robotic

    Transfer Learning-Based Crack Detection by Autonomous UAVs

    Full text link
    Unmanned Aerial Vehicles (UAVs) have recently shown great performance collecting visual data through autonomous exploration and mapping in building inspection. Yet, the number of studies is limited considering the post processing of the data and its integration with autonomous UAVs. These will enable huge steps onward into full automation of building inspection. In this regard, this work presents a decision making tool for revisiting tasks in visual building inspection by autonomous UAVs. The tool is an implementation of fine-tuning a pretrained Convolutional Neural Network (CNN) for surface crack detection. It offers an optional mechanism for task planning of revisiting pinpoint locations during inspection. It is integrated to a quadrotor UAV system that can autonomously navigate in GPS-denied environments. The UAV is equipped with onboard sensors and computers for autonomous localization, mapping and motion planning. The integrated system is tested through simulations and real-world experiments. The results show that the system achieves crack detection and autonomous navigation in GPS-denied environments for building inspection

    A novel distributed architecture for UAV indoor navigation

    Get PDF
    Abstract In the last decade, different indoor flight navigation systems for small Unmanned Aerial Vehicles (UAVs) have been investigated, with a special focus on different configurations and on sensor technologies. The main idea of this paper is to propose a distributed Guidance Navigation and Control (GNC) system architecture, based on Robotic Operation System (ROS) for light weight UAV autonomous indoor flight. The proposed framework is shown to be more robust and flexible than common configurations. A flight controller and companion computer running ROS for control and navigation are also included in the section. Both hardware and software diagrams are given to show the complete architecture. Further works will be based on the experimental validation of the proposed configuration by indoor flight tests

    Multi-robot Collaborative Visual Navigation with Micro Aerial Vehicles

    Get PDF
    Micro Aerial Vehicles (MAVs), particularly multi-rotor MAVs have gained significant popularity in the autonomous robotics research field. The small size and agility of these aircraft makes them safe to use in contained environments. As such MAVs have numerous applications with respect to both the commercial and research fields, such as Search and Rescue (SaR), surveillance, inspection and aerial mapping. In order for an autonomous MAV to safely and reliably navigate within a given environment the control system must be able to determine the state of the aircraft at any given moment. The state consists of a number of extrinsic variables such as the position, velocity and attitude of the MAV. The most common approach for outdoor operations is the Global Positioning System (GPS). While GPS has been widely used for long range navigation in open environments, its performance degrades significantly in constrained environments and is unusable indoors. As a result state estimation for MAVs in such constrained environments is a popular and exciting research area. Many successful solutions have been developed using laser-range finder sensors. These sensors provide very accurate measurements at the cost of increased power and weight requirements. Cameras offer an attractive alternative state estimation sensor; they offer high information content per image coupled with light weight and low power consumption. As a result much recent work has focused on state estimation on MAVs where a camera is the only exteroceptive sensor. Much of this recent work focuses on single MAVs, however it is the author's belief that the full potential and benefits of the MAV platform can only be realised when teams of MAVs are able to cooperatively perform tasks such as SaR or mapping. Therefore the work presented in this thesis focuses on the problem of vision-based navigation for MAVs from a multi-robot perspective. Multi-robot visual navigation presents a number of challenges, as not only must the MAVs be able to estimate their state from visual observations of the environment but they must also be able to share the information they gain about their environment with other members of the team in a meaningful fashion. The meaningful sharing of observations is achieved when the MAVs have a common frame of reference for both positioning and observations. Such meaningful information sharing is key to achieving cooperative multi-robot navigation. In this thesis two main ideas are explored to address these issues. Firstly the idea of appearance based (re)-localisation is explored as a means of establishing a common reference frame for multiple MAVs. This approach allows a team of MAVs to very easily establish a common frame of reference prior to starting their mission. The common reference frame allows all subsequent operations, such as surveillance or mapping, to proceed with direct cooperative between all MAVs. The second idea focuses on the structure and nature of the inter-robot communication with respect to visual navigation; the thesis explores how a partially distributed architecture can be used to vastly improve the scalability and robustness of a multi-MAV visual navigation framework. A navigation framework would not be complete without a means of control. In the multi-robot setting the control problem is complicated by the need for inter-robot collision avoidance. This thesis presents a MAV trajectory controller based on a combination of classical control theory and distributed Velocity Obstacle (VO) based collision avoidance. Once a means of control is established an autonomous multi-MAV team requires a mission. One such mission is the task of exploration; that is exploration of a previously unknown environment in order to produce a map and/or search for objects of interest. This thesis also addressed the problem of multi-robot exploration using only the sparse interest-point data collected from the visual navigation system. In a multi-MAV exploration scenario the problem of task allocation, assigning areas to each MAV to explore, can be a challenging one. An auction-based protocol is considered to address the task allocation problem. The two applications discussed, VO-based trajectory control and auction-based environment exploration, form two case studies which serve as the partial basis of the evaluation of the navigation solutions presented in this thesis. In summary the visual navigation systems presented in this thesis allow MAVs to cooperatively perform task such as collision avoidance and environment exploration in a robust and efficient manner, with large teams of MAVs. The work presented is a step in the direction of fully autonomous teams of MAVs performing complex, dangerous and useful tasks in the real world

    High-Performance Testbed for Vision-Aided Autonomous Navigation for Quadrotor UAVs in Cluttered Environments

    Get PDF
    This thesis presents the development of an aerial robotic testbed based on Robot Operating System (ROS). The purpose of this high-performance testbed is to develop a system capable of performing robust navigation tasks using vision tools such as a stereo camera. While ensuring the computation of robot odometery, the system is also capable of sensing the environment using the same stereo camera. Hence, all the navigation tasks are performed using a stereo camera and an inertial measurement unit (IMU) as the main sensor suite. ROS is used as a framework for software integration due to its capabilities to provide efficient communication and sensor interfaces. Moreover, it also allows us to use C++ which is efficient in performance especially on embedded platforms. Combining together ROS and C++ provides the necessary computation efficiency and tools to handle fast, real-time image processing and planning which are the vital parts of navigation and obstacle avoidance on such scale. The main application of this work revolves around proposing a real-time and efficient way to demonstrate vision-based navigation in UAVs. The proposed approach is developed for a quadrotor UAV which is capable of performing defensive maneuvers in case any obstacles are in its way, while constantly moving towards a user-defined final destination. Stereo depth computation adds a third axis to a two dimensional image coordinate frame. This can be referred to as the depth image space or depth image coordinate frame. The idea of planning in this frame of reference is utilized along with certain precomputed action primitives. The formulation of these action primitives leads to a hybrid control law for feasible trajectory generation. Further, a proof of stability of this system is also presented. The proposed approach keeps in view the fact that while performing fast maneuvers and obstacle avoidance simultaneously, many of the standard optimization approaches might not work in real-time on-board due to time and resource limitations. This leads to a need for the development of real-time techniques for vision-based autonomous navigation

    Vision-Based navigation system for unmanned aerial vehicles

    Get PDF
    Mención Internacional en el título de doctorThe main objective of this dissertation is to provide Unmanned Aerial Vehicles (UAVs) with a robust navigation system; in order to allow the UAVs to perform complex tasks autonomously and in real-time. The proposed algorithms deal with solving the navigation problem for outdoor as well as indoor environments, mainly based on visual information that is captured by monocular cameras. In addition, this dissertation presents the advantages of using the visual sensors as the main source of data, or complementing other sensors in providing useful information; in order to improve the accuracy and the robustness of the sensing purposes. The dissertation mainly covers several research topics based on computer vision techniques: (I) Pose Estimation, to provide a solution for estimating the 6D pose of the UAV. This algorithm is based on the combination of SIFT detector and FREAK descriptor; which maintains the performance of the feature points matching and decreases the computational time. Thereafter, the pose estimation problem is solved based on the decomposition of the world-to-frame and frame-to-frame homographies. (II) Obstacle Detection and Collision Avoidance, in which, the UAV is able to sense and detect the frontal obstacles that are situated in its path. The detection algorithm mimics the human behaviors for detecting the approaching obstacles; by analyzing the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. Then, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, the algorithm extracts the collision-free zones around the obstacle, and combining with the tracked waypoints, the UAV performs the avoidance maneuver. (III) Navigation Guidance, which generates the waypoints to determine the flight path based on environment and the situated obstacles. Then provide a strategy to follow the path segments and in an efficient way and perform the flight maneuver smoothly. (IV) Visual Servoing, to offer different control solutions (Fuzzy Logic Control (FLC) and PID), based on the obtained visual information; in order to achieve the flight stability as well as to perform the correct maneuver; to avoid the possible collisions and track the waypoints. All the proposed algorithms have been verified with real flights in both indoor and outdoor environments, taking into consideration the visual conditions; such as illumination and textures. The obtained results have been validated against other systems; such as VICON motion capture system, DGPS in the case of pose estimate algorithm. In addition, the proposed algorithms have been compared with several previous works in the state of the art, and are results proves the improvement in the accuracy and the robustness of the proposed algorithms. Finally, this dissertation concludes that the visual sensors have the advantages of lightweight and low consumption and provide reliable information, which is considered as a powerful tool in the navigation systems to increase the autonomy of the UAVs for real-world applications.El objetivo principal de esta tesis es proporcionar Vehiculos Aereos no Tripulados (UAVs) con un sistema de navegacion robusto, para permitir a los UAVs realizar tareas complejas de forma autonoma y en tiempo real. Los algoritmos propuestos tratan de resolver problemas de la navegacion tanto en ambientes interiores como al aire libre basandose principalmente en la informacion visual captada por las camaras monoculares. Ademas, esta tesis doctoral presenta la ventaja de usar sensores visuales bien como fuente principal de datos o complementando a otros sensores en el suministro de informacion util, con el fin de mejorar la precision y la robustez de los procesos de deteccion. La tesis cubre, principalmente, varios temas de investigacion basados en tecnicas de vision por computador: (I) Estimacion de la Posicion y la Orientacion (Pose), para proporcionar una solucion a la estimacion de la posicion y orientacion en 6D del UAV. Este algoritmo se basa en la combinacion del detector SIFT y el descriptor FREAK, que mantiene el desempeno del a funcion de puntos de coincidencia y disminuye el tiempo computacional. De esta manera, se soluciona el problema de la estimacion de la posicion basandose en la descomposicion de las homografias mundo a imagen e imagen a imagen. (II) Deteccion obstaculos y elusion colisiones, donde el UAV es capaz de percibir y detectar los obstaculos frontales que se encuentran en su camino. El algoritmo de deteccion imita comportamientos humanos para detectar los obstaculos que se acercan, mediante el analisis de la magnitud del cambio de los puntos caracteristicos detectados de referencia, combinado con los ratios de expansion de los contornos convexos construidos alrededor de los puntos caracteristicos detectados en frames consecutivos. A continuacion, comparando la proporcion del area del obstaculo y la posicion del UAV, el metodo decide si el obstaculo detectado puede provocar una colision. Por ultimo, el algoritmo extrae las zonas libres de colision alrededor del obstaculo y combinandolo con los puntos de referencia, elUAV realiza la maniobra de evasion. (III) Guiado de navegacion, que genera los puntos de referencia para determinar la trayectoria de vuelo basada en el entorno y en los obstaculos detectados que encuentra. Proporciona una estrategia para seguir los segmentos del trazado de una manera eficiente y realizar la maniobra de vuelo con suavidad. (IV) Guiado por Vision, para ofrecer soluciones de control diferentes (Control de Logica Fuzzy (FLC) y PID), basados en la informacion visual obtenida con el fin de lograr la estabilidad de vuelo, asi como realizar la maniobra correcta para evitar posibles colisiones y seguir los puntos de referencia. Todos los algoritmos propuestos han sido verificados con vuelos reales en ambientes exteriores e interiores, tomando en consideracion condiciones visuales como la iluminacion y las texturas. Los resultados obtenidos han sido validados con otros sistemas: como el sistema de captura de movimiento VICON y DGPS en el caso del algoritmo de estimacion de la posicion y orientacion. Ademas, los algoritmos propuestos han sido comparados con trabajos anteriores recogidos en el estado del arte con resultados que demuestran una mejora de la precision y la robustez de los algoritmos propuestos. Esta tesis doctoral concluye que los sensores visuales tienen las ventajes de tener un peso ligero y un bajo consumo y, proporcionar informacion fiable, lo cual lo hace una poderosa herramienta en los sistemas de navegacion para aumentar la autonomia de los UAVs en aplicaciones del mundo real.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlo Regazzoni.- Secretario: Fernando García Fernández.- Vocal: Pascual Campoy Cerver
    • …
    corecore