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Abstract

This thesis presents the development of an aerial robotic testbed based on Robot

Operating System (ROS). The purpose of this high-performance testbed is to de-

velop a system capable of performing robust navigation tasks using vision tools such

as a stereo camera. While ensuring the computation of robot odometry, the system

is also capable of sensing the environment using the same stereo camera. Hence, all

the navigation tasks are performed using a stereo camera and an inertial measure-

ment unit (IMU) as the main sensor suite. ROS is used as a framework for software

integration due to its capabilities to provide efficient communication and sensor in-

terfaces. Moreover, it also allows us to use C++ which is efficient in performance

especially on embedded platforms. Combining together ROS and C++ provides the

necessary computation efficiency and tools to handle fast, real-time image processing

and planning which are the vital parts of navigation and obstacle avoidance on such

scale.
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The main application of this work revolves around proposing a real-time and effi-

cient way to demonstrate vision-based navigation in UAVs. The proposed approach

is developed for a quadrotor UAV which is capable of performing defensive maneuvers

in case any obstacles are in its way, while constantly moving towards a user-defined

final destination. Stereo depth computation adds a third axis to a two dimensional

image coordinate frame. This can be referred to as the depth image space or depth

image coordinate frame. The idea of planning in this frame of reference is utilized

along with certain precomputed action primitives. The formulation of these action

primitives leads to a hybrid control law for feasible trajectory generation. Further,

a proof of stability of this system is also presented. The proposed approach keeps

in view the fact that while performing fast maneuvers and obstacle avoidance simul-

taneously, many of the standard optimization approaches do not work in real-time

on-board due to time and resource limitations.

Moreover, to verify the performance of the testbed, we developed an application

inspired by the autonomous drone racing competition held at the IEEE International

Conference on Intelligent Robots and Systems 2017. The goal was to design a nav-

igation strategy for a quadrotor UAV to pass through square targets. The targets’

positions were only approximately known so that we were unable to fully rely on

any predefined map. In addition, due to drift and noise in visual odometry pass-

ing through a target based on a predefined map becomes challenging. In order to

accommodate the on-board resources without compromising thrust to weight ratio,

a custom quadrotor platform was developed. This system integration helps getting

RGB images, depth map, 3D point cloud and 6-DOF position tracking data from

the stereo vision which were further processed to accomplish autonomous navigation

in obstacle populated environments.
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Chapter 1

Overview

1.1 Introduction

Our problem focuses on developing an approach using active perception and hybrid

control aspects for fast, vision-based navigation in cluttered environments. This can

also be referred to as a system which is ’flying like a bird’. Our approach is inspired

by the ’race the sun’ game in which the UAV has to go as fast as possible, saving

its energy and avoiding obstacles on its way. Our problem is derived from the fact

that a bird flies forward to reach a certain destination while changing its strategy

in case of any obstacles on the way followed by forward motion to reach its final

destination again. From a controls perspective this can be seen as a hybrid control

strategy assisted by a fast perception scheme. Moreover, since it is always moving

forward towards its destination, it is not required to keep memory, which is typically

stored in the form of an occupancy grid/3D map. Additionally, it is not required to

search the whole 3D space for feasible paths if the system can look for closer escapes

routes if obstacles hinder its way. For this purpose, we used the concept of collision

checking in disparity space similar to [14], [26], and [12]. However, in the former two

the single point query is performed while collision checking. The idea is to perform

C-space expansion on the depth image in all of the dimensions. This expansion is

1



Chapter 1. Overview

related to the safety radius of the quadrotor which is approximated by a sphere.

Although, it presents an easy single point query strategy for collision checking, the

expansion on the whole image takes a lot of computational resources while all the

image space is not being queried for collision checking. Our perception strategy is a

version of [12]. We adopted the idea of projecting the 2D vehicle image (at a certain

configuration to be queried for feasibility) in the depth space and comparing the

actual depth with the position of the 2D vehicle image. In addition, for planning the

trajectories we used precomputed action primitives as our set of hybrid controllers

with certain switching strategies. The first controller is responsible for taking the

system to a global goal while the second controller performs the diverting maneuver

in case of any obstacle.

1.2 Motivation

Quadrotor UAVs have recently been influencing many areas of research. They are

useful in various applications including agriculture, search and rescue, transporta-

tion, photography and others which require cooperative execution of tasks. Some of

them require outdoor navigation while some are concerned with indoor navigation

and sometimes mapping. Due to an increasing interest in their applications, the

autonomous navigation issue is gaining importance. Moreover, the system should

also be agile and able to recognize and avoid obstacles in its way. GPS is consid-

ered a ready-to-use option in outdoor environments. However, there are currently

many inevitable problems associated with GPS. While it does not guarantee reliable

communication with the necessary satellites, efforts are needed to ensure accurate

position tracking and navigation especially indoors. Moreover, GPS modules with

better resolution and accuracy are expensive and are only responsible for giving posi-

tion data. Motion Capture systems solve this problem to an extent by providing fast

and accurate pose information to a robot. However, a completely on-board source

2



Chapter 1. Overview

of feedback is still required for a number of tasks to make a robot independent of

external stationary sensors. In this kind of situation camera based navigation solves

these problems. Based on the processor speed, images can be used to receive pose

information. Moreover, they can be processed to help a quadrotor sense the environ-

ment better via depth maps, point clouds and other related information. In other

words, it is an all-in-one solution for autonomous navigation.

Figure 2.2 shows the test bed at Multi-agent Robotics and Heterogeneous Sys-

tems (MARHES) Laboratory at the University of New Mexico. The previous testbed

consisted of AscTech Hummingbird quadrotors at the lab which could only fly within

a VICON motion capture area. Due to various hardware constraints and limitations

the Hummingbird quadrotors could not be upgraded with vision tools. Therefore,

there was a need to develop a new architecture for experiments based on quadrotors

equipped with vision sensors and interfaces. For this purpose, a ROS-based architec-

ture exploiting the capabilities of a single stereo camera as a main position feedback

sensor is proposed. The architecture is then adopted by different revisions of quadro-

tors at the MARHES Lab to come up with a fully customizable light weight platform

for agile navigation. The new setup helped to introduce a fleet of quadrotors to a

family of three hummingbird quadrotors. These new quadrotors could not only fly in

the motion capture system but also made it possible to equip them with vision capa-

bilities as described in this document. The first version was fully built from scratch

to enable it to carry a Jetson TK1 single-board computer and required hardware for

camera and other interfaces. Jetson is a powerful processor made by NVIDIA. It is

one of the best embedded computers available so far for vision and artificial intel-

ligence applications for use on-board autonomous vehicles. TK1 is the first version

in the the Jetson series. This version of the quadrotor equipped with the required

hardware made it possible to fly indoors with visual-inertial odometry (VIO) to ac-

complish the desired tasks autonomously and independent of any external feedback

in real-time. The final revision was built utilizing a Luminier QAV250 frame. It was

3



Chapter 1. Overview

then customized to include a small sized supercomputer Jetson TX2 by NVIDIA and

a ZED mini stereo camera by Stereo Labs. This platform is lighter and faster which

enabled the implementation of agile navigation with real-time obstacle avoidance in

indoor cluttered environments. After building such an interesting platform, the ver-

satile capabilities of ROS and Ubuntu running on the on-baord supercomputer were

exploited for various applications discussed individually in the following chapters.

1.3 Literature Review

Vision-guided Quadrotor UAV navigation has been the focus of many researchers

for the past decade. From a practical standpoint, the real-time functionality of

the strategy is required along with adequate proofs of a system’s stability during

aggressive maneuvers. There has been a lot of improvements in the efficiency of

the algorithms proposed during this time in order to guarantee the real-time fast

execution speeds of these algorithms. These research advancements are also thankful

to advances in the computational efficiencies of more recent processing units. Among

the prominent works starting from the early 2000s include [6], which describes the

use of mixed-integer linear programming (MILP) to solve the non-convex obstacle

avoidance optimization problem. Similarly there a sensor path planning work by

Ferrari et al. [7] [8] [24]. This can be extended to involve the perception aspects

and the real-time performance of the system in cluttered environments. Moreover,

solving an MILP optimization problem in real-time might be slower and the number

of constraints may also increase with an increase of the number of obstacles. Finding

those constraints real-time using on-board perception adds another layer of expensive

computations. There had been a lot of progress in the methods to facilitate the

optimization and cost-function changes on-board as well. Some of the works include

[16], [15] and [13]. Some other works around this time include [3] and [4] which use the

concept of simultaneous localization and mapping (SLAM) for indoor flights in GPS-

4



Chapter 1. Overview

denied environments. Later, the works similar to Oishi’s and Tapia’s deal with the use

of stochastic reachability for collision avoidance [10] and [11]. This can be extended

to guarantee the real-time feasibility of their algorithms. Moreover, in a completely

unknown environment the perception techniques are of significant importance while

determining the efficiency of the algorithms along with the path planning techniques.

These works, however, either rely on on-board trajectory optimizations, mapping or

both.

On the other hand, there are methods developed for efficient perception for fast

UAV navigation like [5], [17], [18] and [19]. Authors of [5] claim to be the first one in

developing a system with complete on-board processing for way-point navigation in

complex environments. This lead to the development of various much efficient in this

area afterwards. It relies on calculating 3D maps of the environment on-board. [17]

presents a very efficient event-triggered approach to depth perception. The idea is

that the system performs the disparity checks when needed. However, they are using

sampling-based techniques to demonstrate the planning aspect of their problem.

[18] presents an approach to use different sensors to self-learn the distance on-board.

This approach can be extended for self-learning different environment parameters

using monocular cameras as a primary sensor. [19] highlights an approach to use

ego-centric cylinders for environment perception as a better approach to saving and

processing a complete environment map in memory. This requires some memory

to save temporary 360 degree views before they are forgotten which depends on a

forgetting factor.

Among the latest work more closely related to our problem is [22], [21] and [25].

The work by Barry, Florence and Tedrake ([22]) uses a library of seven precomputed

trajectories. The trajectories are then connected and executed on-board in real-time.

However, the stability gaurantee while switching between precomputed trajectories

is out of the scope of their work. Secondly, they considered all the trajectories start-

ing from a single state. This means that every time the trajectory has to start from

5



Chapter 1. Overview

a state which is not one of the starting states for the library trajectories, the system

slowly is brought closer to the trajectory using another controller. [21] describes

another way of approaching the problem of agile UAV navigation in cluttered envi-

ronments. They use an A* algorithm for path planning with local and global map

information. They are also performing trajectory optimization on-line. The work by

Richter and Roy ([27]) is also a great contribution which combines deep learning and

vision-guided navigation. It mostly scopes how to ensure safety in case of strange

input on which a machine learning network is not trained. Among other recent works

are [44] and [45].

1.4 Problem Formulation

The problem setup includes obstacles Oi ⊂ W , of unknown geometries and locations,

uniformly distributed in a workspace W ⊂ R3. Let FW be the reference frame

fixed with the workspace W . The workspace is assumed to be compact. Let q =

(x, y, z, θ) ∈ C be a point in configuration space C of the quadrotor. The workspace

quadrotorA(q) ⊂ W is expressed as a set of all the points occupied by the quad-rotor

while maintaining a certain state q. G(q) ⊂ W is expressed as a set of all the points

occupied by the cameras’ field of view while the quad-rotor maintains a certain state

q. The configuration for which the quad-rotor will collide with the obstacle is given

as Cobs = {q ∈ C : A(q) ∩ Oi 6= φ}. In order to ensure collision free maneuver, the

allowed configuration is Cfree = C\Cobs.

The problem is to find a trajectory qd(k) : [0 kf ] → Cfree such that qd(0) = q0

and qd(kf ) = qg, where kf is the final time and q0 and qg are the initial and goal

configurations respectively. The goal configuration forms a plane in y − z axis as

inspired by ’Race the sun’ game. This means that qg = (xg, y, z, θ). Here y, z, θ can

be any real number while xg defines the location of the destination plane. However,

our strategy can easily be extended to include a certain point as a destination.
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Chapter 1. Overview

Moreover, it is also assumed that the vehicle is facing towards its goal initially i.e.

FW coincides with the vehicle’s reference frame.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the simplified

quadrotor UAV model and an introduction to the hardware and software components

used in this thesis. Chapter 3 describes the stereo camera model and the perception

techniques used for obstacle avoidance. The control strategy is presented in Chapter

4 along with the required proves to confirm the hybrid controller stability. Chapter

5 goes through the experiments related to various applications related to vision-

based navigation in cluttered environments using the MARHES testbed. Moreover,

it also presents the comparison between the proposed hybrid trajectory generation

and artificial potential field approaches. The implementation and simulation results

are also shown. Lastly, Chapter 6 presents the conclusion and future work.
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Chapter 2

System Overview

2.1 Simplified Quadrotor UAV Dynamic Model

The quad-rotor model is inherently non-linear. The system has four inputs to facil-

itate the maneuver in 3-dimensional space. Inertial frame of reference corresponds

to the coordinate system with respect to the earth while the body frame of reference

corresponds to the coordinate system with respect to vehicle body. Roll, pitch and

yaw refers to the rotation of the quad-rotor around x,y and z axis respectively. φ,

θ and ψ denote these angles in the corresponding order. These angles are measured

with respect to the body frame. If a quad-rotor starts from rest to a certain point

in space, it has to undergo translations and rotations. The rotation matrix RB
E

transforms the coordinates from body fixed frame to inertial frame and is given as

RB
E =


cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ

cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ

−cφsθ sφ cφcθ

 , (2.1)

where c(.) and s(.)represent cos and sin functions respectively. In a quad-rotor UAV

each rotor generates its own thrust according to the revolution per minute (RPM)

of the motor and propeller profile. The following relations relate the thrust and

8
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moment generated by a rotor with its angular velocity.

Fi = kfω
2
i . (2.2)

Mi = kmω
2
i , (2.3)

where Fi, Mi and ωi are the thrust, moment and RPM of the ith rotor respectively

and kf and km are the constants depending on the propeller profile.

Four inputs to the system are the total thrust of all four rotors and rolling,

pitching and yawing torques.

Figure 2.1: A quadrotor UAV physical model.

Figure 2.1 shows a typical physical model of a quad-rotor UAV. The rolling and

pitching torques are generated through the angular momentum and thrust difference

between opposite rotors corresponding to each axis. Rotors 1 and 3 are responsible

for generating pitching torque and rotors 2 and 4 affect rolling torque. The four

9
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inputs can be written as follows:

u1 = ΣFi,

u2 = l(F2 − F4),

u3 = l(F1 − F3),

u4 = M1 −M2 +M3 −M4,

where Mi is the moment generated by the ith rotor perpendicular to its plane of

rotation.

As stated earlier, a quadrotor is an under-actuated system with four inputs. The

conventional inputs to a quadrotor system are

u =
[
u1 u2 u3 u4

]T
where u1 is the total thrust generated by all four rotors and u2, u3, u4 represent

the rolling, pitching and yawing torques respectively. The states and outputs for the

system are given as

xm =
[
x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇

]T
,

ym =
[
x y z ψ

]
,

where x, y and z represent position of the center of quadrotor with respect to the

inertial frame of reference {E} whereas φ, θ and ψ corresponds to roll, pitch and yaw

of the quadrotor body frame with respect to the inertial frame. The model derived

from Newton-Euler equations under simplified assumptions ([1]- [2]) can be derived
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as:

ΣFr = ma, (2.4)

RE
B


0

0

u1

−


0

0

mg

 = m


ẍ

ÿ

z̈

 , (2.5)

Στr = Iα, (2.6)
u2

u3

u4

−

p

q

r

× I

p

q

r

 = I


ṗ

q̇

ṙ

 , (2.7)

where p, q and r represent angular velocities in 3 dimensional body frame of reference

{B}. Fr and τr are the three dimensional forces and torques acting on the quadrotor

as a result of thrusts generated by the four rotors. RE
B is the rotation matrix from

body fixed frame to world frame. Z-X-Y convention is considered for this matrix. It

is generally useful to express the second set of equations in body frame. Moreover,

using the small angle assumption for linear systems the equations in state space form
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are :

ẋ1 = x7,

ẋ2 = x8,

ẋ3 = x9,

ẋ4 = x10,

ẋ5 = x11,

ẋ6 = x12,

ẋ7 = (cosψ sin θ + cos θ sinφ sinψ)U1/m,

ẋ8 = (sinψ sin θ − cos θ sinφ cosψ)U1/m,

ẋ9 = (cosφ cos θ)U1/m− g,

ẋ10 = x11x12(Iyy − Izz)/Ixx + U2/Ixx,

ẋ11 = x10x12(Izz − Ixx)/Iyy + U2/Iyy,

ẋ12 = x10x11(Ixx − Iyy)/Izz + U3/Izz.

(2.8)

The nonlinear model given by Equation (2.8) is linearized about the equilibrium

point,

x∗m =
[
x̄ ȳ z̄ 0 0 0 0 0 0 0 0 0

]T
.

where x̄, ȳ and z̄ are the coordinates in {E} at hover. A general form of linearized

system is given by

ẋm = Axm +Bu,

ym = Cxm +Du,
(2.9)
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where

A =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 gx∗6 g gx∗4 0 0 0 0 0 0

0 0 0 −g gx∗6 gx∗5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Ixx
∗
12 Ixx

∗
11

0 0 0 0 0 0 0 0 0 Iyx
∗
12 0 Iyx

∗
10

0 0 0 0 0 0 0 0 0 Izx
∗
11 Izx

∗
10 0



,

B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(x∗5 + x∗4x
∗
6)/m 0 0 0

(−x∗4 + x∗6x
∗
5)/m 0 0 0

1/m 0 0 0

0 1/Ixx 0 0

0 0 1/Iyy 0

0 0 0 1/Izz



,
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C =


1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

 ,
here

Ix =
Iyy − Izz
Ixx

,

Iy =
Izz − Ixx
Iyy

,

Iy =
Ixx − Iyy
Izz

.

2.2 Hardware

Figure 2.2: MARHES Aerial testbed

The MARHES aerial testbed consists of three AscTec Hummingbirds quadrotors

flying under vicon motion capture system. The network architecture being used is

shown in Figure 2.2. This setup is capable of proving highly accurate feedbacks upto
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millimeter accuracy at very fast speeds. However, there was a need for expansion

of this aerial testbed especially for robotic swarm and vision based navigation ap-

plications. Among the new additions to the testbed includes the new quad fleet of

quadrotors based on Luminer QAV250 frames and newly released Intel Aero drones.

This new family of quadrotors are equipped with vision capabilities to make them

independent of any external feedback sources. This makes them capable of flying

inside the motion capture system as well as outside. All the robots are ROS based.

This adds a whole set of new possibilities of system modifications. Moreover, it

provides more flexibility for a robotics software developer on such kind of systems.

Stereo camera is used as a primary vision sensor along-with the IMU to provide VIO

in real-time. However, the systems are capable of interfacing more vision sensors

such as downward facing monocular cameras for VIO on-board. The new quadrotors

have higher payload capacity to accommodate additional sensors. The low -level

attitude control system is provided by an open source firmware PX4 on all the sys-

tems. Different computers are used for high-level trajectory generation and image

processing keeping in view the computational power and efficiency required. Three

of those robots are described as follows

2.2.1 LoboDrone

Figure 2.3: SolidWorks model of an attached arm.
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Figure 2.4: Strain and stress measurements.

Figure 2.5: LoboDrone v1.0 quadrotor frame with actuators.

This quadrotor is built from scratch making it fully compatible with the required

sensors for perception and planning. The carbon fiber plates are cut to built the

frame according to the right size. The case on top carrying the cameras and a USB

3.0 hub is 3D printed. Figure 2.5 shows the picture of the assembled frame without

computer and camera.

The frame designed consists of a 4mm carbon fiber bottom plate, on which are

bolted four commercially available quadrotor arms. Stand-offs are used to add a

second platform, this time made of 2mm carbon fiber. The Jetson is mounted on

the bottom plate, and the PixRacer hangs from the top plate. This way, all onboard

computing and flight control devices are protected, and the top plate is free to

16



Chapter 2. System Overview

mount sensors like the ZED camera. The battery is strapped to the bottom of the

vehicle. The biggest concern with the custom platform is the joint between the

motor arms and the bottom plate, as this joint must carry the weight of the vehicle

and remain rigid amidst potentially high forces and torques. SolidWorks is used to

run a stress analysis at the joint [42]. To simulate the greatest stress, the bottom

plate is fixed and a force is applied to the motor equal to its maximum thrust of

2 kg. The analysis concluded with a maximum possible displacement of 0.103 mm,

stress of 1.860e−7N/m2 which we determined, should not pose any issue. Figures

2.3, 2.4, 2.5 show the model of an arm, stress and strain measurements, and physical

quadrotor respectively. Pixracer autopilot is used for low-level computational tasks

like attitude stabilization with Jetson TK1 for high level trajectory generation and

image processing. Both of them are described in the following subsections.

Tiger F80 1900kV motors are used for this platform carrying 6 inch propellers.

With this configuration it can carry approximately 100 grams of payload while having

a flight time of approximately 3 minutes with a 4s 3300 mAh battery. The airframe

itself is 350mm in length when measured from motor shaft to motor shaft diagonally.

The weight of this whole platform is approximately 1500 grams including battery

and all the electronics.

2.2.2 Lumenier QAV250

The newer version of LoboDrone includes a supercomputer with one of the most

advanced stereo camera technology on-board. The frame used is Lumenier QAV250

airframe [50]. The airframe weighs 170 grams and is 250mm in length when measured

diagonally from motor shaft to motor shaft.

This version is smaller, lighter and has better on-board computer than the first

version of LoboDrone. With a 4s 3300mAh battery the flight time is recorded as

approximately 10 minutes. The stereo camera used is Zed mini. This is the newest

version of Zed camera by Stereo Labs and is designed to be used for mixed-reality
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Figure 2.6: LoboDrone v2.0 quadrotor assembly.

applications. The weight of the whole system including the battery and all the elec-

tronics is approximately 900 grams. The actuators used are Lumenier 2204 2300kV

motors. The controllers used for these motors are Luminier BL Heli F390 30A

electronic speed controllers with autoshot/active braking capability. Oneshot serves

as a faster ESC protocol replacing the old pulse width modulation (PWM) proto-

col. With 5 inch propellers this setup can carry more payload as well i.e. ≈ 800

grams. Additionally, pixracer flight controller is responsible for performing the low

level computational tasks like attitude stabilization while NVIDIA Jetson TX2 is

the supercomputer on-board which is used for high level perception and planning

computations.
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2.2.3 Intel Aero

Intel R© Aero flight platform comes as a ready to fly drone kit which is a pre-assembled

quadrotor UAV ready to fly through an RC transmitter. Main sensors and computer

boards mounted on this platform are an aero compute board, a flight controller

with PX4 autopilot, and an Intel Realsense camera and other required peripherals

for flight. Its compute board is an Intel R© Atom TM x7-Z8750 processor with 4 GB

LPDDR3-1600 RAM and 32 GB eMMC memory. Attached to it are a forward facing

8MP RGB camera and a downward facing monochrome VGA camera. Moreover,

Intel Realsense is well known for its computational capabilities for depth maps. The

on-board version of this camera is R200 which is very old now but it can easily

be replaced by a newer one. It supports external USB3.0 devices as well. This

pre-assembled architecture serves as a good platform for development especially for

perception algorithms on-board. Similar to ARM processors, it can run Ubuntu and

ROS which can be easily installed on them. Figures 2.7 and 2.13 show the items in

an Intel Aero RTF kit and its compute board respectively.

Figure 2.7: Intel Aero Ready to Fly (RTF) kit.
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2.2.4 NVIDIA Jetson

NVIDIA took the computational power on robots especially on small autonomous

drones to the next level [48]. Jetson TK1 is the first one in the series with NVIDIA 4-

Plus-1 TM Quad-Core ARM R© Cortex TM -A15 CPU and NVIDIA Kepler GPU with

192 CUDA Cores. It has 16 GB internal eMMC memory. Its dimensions are 127mm

x 127mm. The newer ones are Jetson TX1 and TX2. They both are supercomputers

contained in small modules. Jetson TX1 is the first ever supercomputer on a module.

They run on NVIDIA Maxwell TM and Pascal TM GPUs respectively. They both

have 256 CUDA Cores and are 50 mm x 87 mm in size which is reasonably small

for a small scale quadrotor UAV. CUDA is a programming model and framework for

parallel computing. All of them have USB 3.0 and USB 2.0 devices compatibility, 1

Gigabit Ethernet, 802.11ac WLAN and Bluetooth. These features make them very

suitable for deep learning, vision and other GPU computing applications on small

scale robots. Figures 2.8 and 2.9 show how these modules look like. Jetson TK1 is

Figure 2.8: Jetson TK1.

used in the first prototype of LoboDrone. The main drawback of using it over the

other two is that its much larger in size and support Ubuntu 14.04 which does not

support the latest softwares like ZED camera SDKs for the newer cameras. Jetson

TX1/TX2 has support for Ubuntu 16.04 which solves these problems. Moreover,

it can also run ROS Kinetic, the latest stable version of ROS. However, Jetson
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Figure 2.9: Jetson TX1 and TX2 modules.

Figure 2.10: Orbitty carrier board on Jetson TX1.

TX1/TX2 cannot be mounted directly on a quadrotor since it does not provide easy

interface for the required peripherals. Figure 2.10 shows the orbitty carrier board

sold be Connect Tech Inc. It is a 87mm x 50mm lightweight board which provides

interface for gigabit ethernet, USB 3.0, USB 2.0, HDMI, MicroSD, 3.3V UART,

I2C, and GPIOs. This makes it easier to connect external devices to the Jetson

TX1/TX2 modules. This setup is used in the latest revision of LoboDrone using a

QAV250 airframe.
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Figure 2.11: ZED and ZED mini stereo cameras.

2.2.5 Stereo Labs ZED Camera

ZED camera being the world’s first 3D camera for motion tracking and depth sensing

is the state of the art in stereo vision to facilitate robot navigation [49]. There are

two versions of ZED cameras available commercially as shown in Figure 2.11. The

older standard ZED camera is a little bigger than the newer ZED mini. Both of them

weigh≈ 160 and≈ 63 respectively. Both are capable of 6-axis positional tracking and

stereo-inertial simultaneous localization and mapping (SLAM). However, the former

can compute depth at longer distances i.e. from 0.5 to 20 meters while the later is

capable of computing depth from 0.1 to 12 meters. They both have highly accurate

motion sensors like accelerometer and gyroscope with sampling rate of 500Hz. They

have a position and orientation accuracy of +/ − 1 mm and 0.1o respectively with

up to 100 Hz refresh rate. The standard ZED can go up to 2K resolution while ZED

mini can go up to 2.2K resolution also claiming to be the fastest depth cameras.

ZED mini is the first camera for mixed-reality applications. Stereo Labs provides

a ROS wrapper to provide an interface for use with ROS. For use with Jetson and

ROS on-board, the resolution and refresh rate options become limited accordingly.
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2.2.6 Autopilot PX4

PX4 is an open-source autopilot firmware mainly designed for hobbyist. Using any

hardware like pixhawk and its variants, makes it easier to design and test low level

control and high level planning algorithms. The main advantage of using such frame-

work is that it is compatible with ROS. It accepts commands in the form of ROS

topics from any computer running ROS. Since ubuntu and ROS can easily be in-

stalled on ARM based processors like Odroid and Jetson, PX4 is very ideally suited

as an autopilot for development and other customizations. There are a lot of differ-

ent variants of hardware supporting PX4 firmware. One of them is pixracer which

is used on both versions of LoboDrones. It has 180 MHz ARM Cortex R© M4 with

single-precision FPU and 256 KB SRAM. It has its own WiFi telemetry for getting

live data and for firmware upgrades. Moreover, it provides interfaces for the external

peripherals needed for flight like PPM input for Spektrum RC receiver, port for FrSky

telemetry, and PWM out port for ESCs, SD card slot for logging and safety switch

port and other connectors. Most essentially it has the sensors embedded in the mod-

ule for flight like barometer, magnetometer/compass, gyroscope and accelerometer.

Typically, an on-board computer is used to send trajectories in the form of position

set points to the autopilot running PX4 which is assumed to take care of low level

attitude stabilization while following the way-points. However, the autopilot-ROS

interface, as described in the software section, allows the computer to send low level

commands as well if needed. Figure 2.12 shows a pixracer hardware module which

can run PX4 autopilot firmware [51]. There are some other platforms which have the

autopilot and on-board computer embedded on a single chip. It eliminates the need

to buy and mount separate computer and autopilot modules on a robot. Intel Aero

is one of the platforms which have such an architecture. It has an intel aero compute

board mounted which provides all the computing required for a flight including the

PX4 autopilot firmware. Figure 2.13 shows a picture of an Intel aero compute board.
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Figure 2.12: A pixracer module

Figure 2.13: An aero compute board.

2.3 Software and Communication

2.3.1 ROS

Robot Operating System (ROS) provides the communication and low level framework

for the architecture used. It has a modulated structure where nodes (containing C++

or Python functions) talk to each other using pre-defined classes of packets called ros

messages. They can either use publish/subscribe model to route ros messages over

user defined topics or use service/client. The former one is ideally suited for many to
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many communication while the later is used for request/reply interactions. The whole

architecture however, provides support for inter and intra robot node communication.

Figure 2.14 shows a simplified version of such a system. Summarizing it, having a lot

more to it than just mentioned, ROS is well suited for many robotics applications.

It not only provides the communication framework but also software interfaces to

many peripherals widely used in robotics. Moreover, its vast open source community

adds a lot to the reuse-able software contributions by the developers.

Figure 2.14: Basic ROS concept.

2.3.2 MAVLink Protocol

MAVLink is a communication protocol usually used by the UAVs for the data transfer

to and from other devices. PX4 based autopilot modules typically use MAVLink

protocol for communication. The wrapper for this protocol for use with ROS is

mavros. It converts the MAVLink messages to and from ROS messages on the on-

board computer running ROS while the autopilot being connected to any USB port

on the computer.

2.3.3 Jetson Setup

As mentioned earlier NVIDIA Jetson is used on most of the vision equipped robots at

the MARHES testbed. These Jetson board accompany JetPack which is a software

that is used to flash the board with customized versions of Linux, opencv, CUDA
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toolkit and many other vision and deep learning software libraries. Its latest release is

JetPack 3.2 which comes with Linux for Tegra (L4T) 28.2, which is a lighter Ubuntu

16.04 adapted to use with Jetson TX1, TX2/TX2i. It also comes with CUDA 9.0

which is required by ZED mini software development kit (SDK) and ROS-wrapper.

It requires a host PC running Ubuntu 14.04 or 16.04 to flash the board. Once the

JetPack installation is complete, ROS and can easily be installed and its packages

can be developed. Similar procedure can be used to setup TK1 but it only supports

the outdated versions of these softwares which makes the development more difficult.

2.3.4 ZED Camera Setup

A ZED camera comes with its own SDK for developers. However, by using ros-

wrapper for a particular SDK, the development environment can be changed to ROS

which provides necessary messages and topics to subscribe from and publish to. The

latest version of ZED SDK is 2.4 which is supported by Jetson TX1 and TX2. It

works with JetPack 3.2 and CUDA 9.0. As mentioned earlier when SDK is used with

ROS-wrapper it publishes the odometry, the coordinate frames transformations, the

rectified and raw image topics for all the cameras and depth and the point cloud in

the form of ROS messages.
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Perception

3.1 Stereo Camera Model

Stereo camera is used to compute depth of the scene. A stereo camera takes ad-

vantage of two cameras to calculate the disparity through triangulation. This is

governed by epipolar geometry.

3.1.1 Epipolar Geometry

Epipolar geometry can be visualized in Figures 3.1 and 3.2. Figure 3.1 shows two

camera planes at some angle. OL and OR represent the optical centers of the two

cameras. An optical center is a point from where all the projection lines of a camera

must pass. This is also known as camera center. Stereo vision set up includes two

epipoles, one for each camera. They are labeled as eL and eR respectively. The

epipole eL refers to the point where the projection line from the optical center of

the right camera intersects the image plane of right camera. In other words it is the

image of the right camera’s optical center as seen by the left camera. The opposite

applies to the epipole eR. Consider a point P in space. The line joining the optical

center of left image OL and the point P is projected to a point pL in the left image
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Figure 3.1: Epipolar geometry with non-parallel camera frames.

Figure 3.2: Epipolar geometry with parallel camera planes.

plane. The projection of this line in the right image plane is known as epipolar line.

The point P and both OL and OR lie in one plane called epipolar plane. The epipolar

plane intersects the image planes at the epipolar lines.
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Any point projected in the left image plane can be the projection of one of the

points on line POL, in the right image plane. Therefore, the point pL must appear on

the epipolar line pReR. This is called epipolar constraint. Once that point is found

depth is calculated through triangulation. In case of cameras with parallel image

planes, the epipolar line will become a horizontal line as shown in Figure 3.2 and the

point pL can be found by matching it with the pixels on this line.

3.1.2 Pinhole Camera Model and Triangulation

Figure 3.3: Triangulation geometry.

A pinhole camera model for both the cameras can be used to calculate the depth

from disparity by a process called triangulation. Let f be the focal length of the

camera. It is defined as the distance from the optical center of a camera to its

image plane. b is the stereo baseline which refers to the distance between two optical

centers. The stereo vision setup is shown in Figure 3.3. If we know the pixel values

of the projection of point P we know the projection lines and hence we can utilize
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some principles from geometry. From similar triangles,
z

f
=

x

xl
,

z

f
=
x− b
xr

,

z

f
=

y

yr
=

y

yl
.

The depth can be calculated from triangulation:

z = f × b/(xl − xr) = f × b/d,

x = xl × z/f = (b+ xr)× z/f,

y = yl × z/f = yr × z/f.

It can be noted that the disparity d is inversely proportional to depth of a pixel. A

pinhole camera model is considered for depth space collision checking.

3.1.3 Calibration Parameters

The calibration of a stereo camera yields two set of parameters for each of the two

cameras. They are known as intrinsic and extrinsic parameters. The former refers to

the parameters such as focal length, the location of the optical center in an image (in

pixels) while the later contains parameters such as relative rotation and translation

between the two cameras. Since the camera is modeled based on pinhole model, the

conversion from homogeneous camera to homogeneous image coordinates is governed

by the following projection equations:

r ∼ ICP =


fsx 0 cx 0

0 fsy cy 0

0 0 1 0



x

y

z

1

 .
If we want to write the projection equations from the homogeneous robot to homo-

geneous image coordinates we have to include the rotation and translation of the

camera frame with respect to the robot frame and ultimately the world (or inertial

frame). The camera frame is attached to the robot frame and all the computations
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are done in the world coordinates. The above equation can be written as [12]:

r ∼


fsx 0 cx 0

0 fsy cy 0

0 0 1 0


RC

I T

0 1



x

y

z

1

 . (3.1)

Here r is the pixel coordinate corresponding to point P . sx and sy are the pixel

dimensions and cx and cy are the image frame coordinates of the location of camera

optical axis.

3.2 Perception Strategy

Figure 3.4: Computation of the artificial shields and their transformations and pro-
jections in the depth image space.

While solving for path planning and collision avoidance problems in real-time,

the need for an algorithm for efficient collision checking is inevitable. One way to do

this is to make a 3-D occupancy grid and update it continuously in real-time using

local vision data. However, this requires slightly more computation than necessary.

A lot of work has been done using this idea of mapping the local subsets of the
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whole configuration space. However, by performing the collision checking directly in

depth-image space proved to be much faster. It is also more effective in the presence

of image noise. This can also be called planning in perception space. The perception

problem can be formulated as following.

Let the discrete trajectory generated by the controller to be qs(x0, li, n) ⊂ C

where x0 is the initial state, li is the current mode and 0 < n < (Th + Tsafety)/Ts

is the local time of the generated potential trajectory. This trajectory has to be

checked for collision before appending it in the final set of desired trajectories qd(k).

Here k is the global trajectory time since the start of the system. For simplicity

the potential patch of the trajectory to be checked for collision and the final desired

trajectory will be referred to as qns and qkd respectively. The perception problem

is to find the function P : C → CState where CState = {0, 1, 2} represents the

collision state of the configuration. 0 and 1 collision states mean that qns ∈ Cfree and

qns ∈ Cobs respectively, while 2 means that the configuration is out of the field of view

at a particular time when the check is performed i.e. qns /∈ G(q(kc)). Here q(kc) is

the current configuration of the quadrotor when the check is performed.

The collision detection is performed purely in depth space by exploiting the pro-

jection equations and the stereo camera model as described above. The motion

planner generates a discrete trajectory in the form of set of points through the con-

figuration space. Given a point in the configuration space, it can be checked whether

it is in collision by projecting the robot in depth space. The quadrotor projection in

depth space can be simplified as a projection of set of all points contained in a square.

This square can be considered as a ’shield’ for a quadrotor. The size of this square

is assumed to be slightly larger than the longest dimension of the quadrotor while

its position is such that its placed at some distance ψx in front of the the quadrotor

in FW . This is a pessimistic version of the strategy presented in [12] which considers

the projections of the surface normals of a quadrotor as a shield. This shield keeps

on changing shape depending on the configuration. However, we considered the con-
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stant size of this square corresponding to the maximum size as of that proposed by

the above reference.

The idea is that given a query point qns in FW , a corresponding artificial square

shield is generated (Figure 3.4). This square refers to the set s(qns ) = {q : qns (1) −

ψy < q(1) < qns (1)+ψy & qns (2)−ψz < q(2) < qns (2)+ψz & q(0) = qns (0)+ψx},

where ψx, ψy and ψz are the safety margins in corresponding directions. After the

computation of set s(qns ) for the query point qns , all the points contained in the

set are first transformed in the vehicle body coordinate system and ultimately the

camera coordinate system depending on the current quadrotor pose at time instant

kc and the pose of the attached stereo camera with respect to the vehicle body. This

transformation is followed by a projection of s(qns ) on the depth image. Combining

these expressions we get Equation (3.1). Here RC
I refers to the rotation from world

(or inertial) frame to camera coordinate frame.

RC
I = RC

B ×RB
I . (3.2)

where RC
B = Ry(−π/2) × Rx(π/2) is the rotation matrix from body to camera

coordinate system and RB
I is the ZXY rotation matrix corresponding to the current

orientation of the robot.

The query trajectory point qns is assumed to be collision free if all the points

contained in the corresponding set s(qns ) are collision free. It is outside the field of

view if any point on the set does not correspond to a valid image point. Similarly,

it is in collision if any point in that set is under collision. Given any point C ⊃

q = (x, y, z, θ) in world frame, it is transformed to a corresponding point C ⊃ qT =

(xT , yT , zT , θ) in camera coordinates and projected to pixel r on the depth image.
xT

yT

zT

1

 =

RC
I T

0 1



x

y

z

1

 .
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Formally,

P (q) = 0 if D(r) > zT ∀ q ∈ s(qns ),

P (q) = 1 otherwise,

It can be noted here that rotation in place (θ) for the query trajectory points will

not affect the collision detection because the quadrotor geometry is approximated by

a rectangular ’shield’ with safety margins in FW . Function D(r) refers to the depth

of a pixel r.

3.3 Escape Strategy

Figure 3.5: Escape point computation by querying potential points in 4 directions.

In the event P (qns ) = 1, i.e. if the predicted trajectory experiences collision, the

vehicle has to be deviated to the safe location. This location is referred to as escape

point, the corresponding configuration and state vector is qesc and xesc respectively,
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considering θ and the final velocities as 0. Let any trajectory point qns be in potential

collision, the image space in the neighborhood of this point in y−z plane is searched

for the high depth areas. Since searching the whole depth image in a continuous

way is computationally expensive and time consuming, the search is performed in 4

different directions with discrete intervals. This quadrotor is projected in the depth

space some distance dl away from qns in up, down, left and right directions and

checked for collisions. This process is repeated with more projections at distance dl

from previously checked points, until a collision free point is found. This point is the

escape point. To prevent the planner from getting stuck at a place in case of another

obstacle suddenly appearing after the first one, the projections are performed in an

y− z plane a little way from the plane associated with qns . Figure 3.5 shows how the

escape point check is performed in depth image space.
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Control Strategy

4.1 Trajectory Generation

The trajectory generation is performed in 3-D, utilizing a pre-computed set of control

laws. While the first feedback law ua tries to take the system to a global goal, the

other feedback law ub is responsible to divert the system from possible collisions.

The state vector in continuous time can be written as,

x =
[
x ẋ y ẏ z ż

]T
.

It is assumed that the vehicle’s frame always coincide with FW and a low level

controller takes care of maintaining the heading. A double integrator model is used

where:

ẍ = u1, (4.1)

ÿ = u2, (4.2)

z̈ = u3. (4.3)

The differential equations are discretized with a sampling time of Ts to obtain discrete

system matrices.

x(k + 1) = Adx(k) +Bdu(k), (4.4)

y(k) = Cx(k) +Du(k). (4.5)
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The two control laws are given as,

ua = Kax, (4.6)

ub = Kbx. (4.7)

Trajectories are generated in a receding horizon way with the time horizon of Th.

In order to ensure real-time flight speeds the trajectory planning and execution are

performed in parallel using multi-threading in Robot Operating System (ROS). First

thread subscribes to the depth image data whenever it arrives, queries the next patch

of trajectory from the controller according to the current mode, checks each point in

the trajectory for collisions, and appends the valid or an empty trajectory at the end

of desired trajectory qkd . Each patch qns appended is of time Th. While this thread

keeps on appending the trajectories irrespective of where the vehicle is, the other

thread keeps sending the way-points from the trajectory qkd after every Ts. While

querying a potential patch of trajectory qns for collision, if any point is in collision

the trajectory is discarded and the system enters the obstacle-avoid mode, while in

case of a collision free predicted trajectory it is kept. However, if any point is out

of the field of view its simply discarded without any mode change so the planner

can keep on querying, in a hope that the trajectory will get into the field of view

while the quadrotor maneuvers result in changes of position and orientation of the

attached camera.

To improve functionality of the algorithm the potential patch of trajectory sent

by the controller is slightly longer than time Th. This is done to ensure that the

collision-free trajectory being appended does not take the quadrotor very close to

any obstacle from where getting out becomes impossible under camera’s field of view

and other vehicle dynamics limitations. This trajectory is therefore generated for

Th + Tsafety and queried for collisions. In case of no collisions the first half of the

trajectory for time Th is kept and appended. This ensures that while the vehicle

maintains a particular mode the collision is detected and planned to be avoided

before Th to Tsafety seconds. Here Tsafety is the the safety time and is set smaller
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than the time horizon Th.

4.2 Hybrid System Perspective

Figure 4.1: Hybrid automaton.

The hybrid automaton H is a collection H = (L,X, Init,f , Inv,E, G,R) [30],

where

1. L is a set of discrete variables (or modes)

2. X ∈ R6 is a set of state variables for a quad-rotor dynamical system
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3. Init ⊆ L×X is a set of initial states

4. f = {f1, f2, f3} is a set of vector fields or systems dynamics for each l ∈ L

5. Inv assigns to each l ∈ L an invariant set i.e. Inv(l) ⊂ x

6. E is the collection of discrete transitions

7. G assigns to each e = (l, l′) ∈ E a guard

8. R assigns to each e = (l, l′) ∈ E and x ∈X a reset condition

The system undergoes two different types of manuevers defined by the motion prim-

itives at each state x(k) depending on the current discrete mode lk. [31] Let the

allowed motion primitives for any state x(k) be a set Up(x(k)) = {ua,ub}. For each

sampling time interval (i.e. from x(k) to x(k + 1)) the system experiences an input

u ∈ Up related to the state x(k) by Equation 4.6. The hybrid automaton comprises

of 2 modes.

Mode 0

Mode 0 (l0) is responsible for taking the quad-rotor to the goal position with an

objective to minimize the state error as well as the energy. In other words, the

controller for this mode is defined as:

ua = {u : minu
∑

(xTQx+ uTRu)},
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where

Q =



1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.1 0 0

0 0 0 0 1 0

0 0 0 0 0 0.1


,

R =


3 0 0

0 3 0

0 0 3

 .
Two of the guard associated with this mode are G(l0, l1), G(l0, l2). G(l0, l1) is enabled

when a collision is detected in trajectory qns for any 0 < n < (Th + Tsafety)/Ts i.e.

the collision in some future time becomes inevitable if the quadrotor stays in this

mode. G(l0, l2) is enabled when the quadrotor reaches goal configuration qgoal at 0

velocity in all three dimensions as mentioned in Section 1.4. This final goal state

xgoal corresponds to the qgoal given the velocities in three dimensions. Therefore,

there is an easy mapping between a state x and the configuration at that state q.

Hence, the objective of controller in this mode is to take the quadrotor to its

destination y − z plane with zero final velocity while minimizing the energy/fuel

consumption. However, in case of an obstacle on the way, the system goes to mode

2 where the objective is primarily to deviate quickly without caring much about the

energy minimization.

Mode 1

Mode 1 (l1) is responsible for taking the quad-rotor to the temporary escape config-

uration with an objective to minimize more the state error rather than the energy.

In other words, the controller for this mode is defined as:

ub = {u : minu
∑

(xTQx+ uTRu)},
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where

Q =



1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.1 0 0

0 0 0 0 1 0

0 0 0 0 0 0.1


,

R =


0.1 0 0

0 0.1 0

0 0 0.1

 .
Two of the guard associated with this mode are G(l0, l1), G(l1, l0). G(l0, l1) is ex-

plained in the above section. G(l1, l0) is enabled when the quadrotor reaches escape

configuration qesc at 0 velocity in all three dimensions. The perception algorithm

makes sure that before switching to this mode from mode 0, it performs the check

in four predefined directions from the predicted collision point and tries to find a

collision free point in 3D that is closest to the collision point in y − z plane corre-

sponding to the collision point. The given 3D point corresponds to the configuration

in C because θ is assumed to be 0. This configuration can be easily converted to

state vector x by appending 0s for the velocity terms.

Hence, the objective of controller in this mode is to take the quadrotor to an

escape point with zero final velocity to have a clearer view of what is beyond the

obstacle. Less weights on the energy is inspired from the fact that in case of a sudden

interruption in vechicle’s way, it must take measures to quickly maneuver away to a

point from where it can potentially see its destination clearly.
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4.3 Proof of Hybrid System’s Stability

Since the trajectory generation follows either of the two pre-computed LQR feedback

laws, the concern of system’s stability while mode switching is of great importance.

As mentioned before the first feedback law ua tries to take the system to a global goal

while the second feedback law ub takes the system to a temporary escape point as

mentioned in Equations 4.6. Two different controls objectives leads to two Lyapunov

functions. Figures 4.2 and 4.3 show these set of Lyapunov functions for a particular

case. Here xref and xesc are the equilibrium points of first and second Lyapunov

functions respectively.

An interesting fact about combining real-time perception and hybrid control the-

ory is that even though the first Lyapunov function remains the same for the whole

maneuver, the second Lyapunov function changes its location i.e. it slides relative

to the first Lyapunov function based on where the obstacle is encountered. Every

time the obstacle is encountered at a different location the overlapping regions of

the two Lyapunov functions change. Therefore, we will prove that under certain

assumptions on the regions in Lyapunov functions the switching is always stable.

These assumptions include that the obstacle is always closer than the global goal

and that the switching occurs before the quadrotor reaches obstacle location. For

instance, in a particular case of Figure 4.3, Ri
e, i ∈ {1, 2} refers to the region where

the system cannot enter practically while staying in the corresponding mode. Since

the obstacle is located at 4m, the system is assumed to enter mode 1, before entering

region R2
e.

Lets take the second order subsystem for x dimension,

x = [x(k) x(k + 1)]T .

The corresponding Lyapunov functions for each control law are given as:

V1(x) = (x− xref )TP1(x− xref ), (4.8)

V2(x) = (x− xesc)TP2(x− xesc). (4.9)
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Figure 4.2: Lyapunov function For xref = [10 0] and xesc = [4 0].

Figure 4.3: Lyapunov function (Zoomed-In) For xref = [10 0] and xesc = [4 0].

Here xref ∈ x and xesc ∈ x are the global reference state and the obstacle state in x

dimension respectively. P1 and P2 are found by solving the Lyapunov equation for
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discrete time systems:

ATPiA− Pi +Q = 0 i ∈ 0, 1. (4.10)

According to Rayleigh-Ritz inequality for symmetric matrices,

λ1(min)||x− xref || ≤ V1(x) ≤ λ1(max)||x− xref ||, (4.11)

λ2(min)||x− xesc|| ≤ V2(x) ≤ λ2(max)||x− xesc||. (4.12)

The system is undergoing stable switching if ([47])

V1(xs)− V2(xs) > 0, (4.13)

or

λ1||xs − xref || − λ2||xs − xesc|| > 0, (4.14)

where xs is any state at which switching occurs [29] [30]. The domain Ds : R2 → R2

of x where the switching is possible to occur is given as:

Ds(x) = {x | x(0) < xesc(0) < xref (0)}. (4.15)

It can be noted that our system has repeated eigen values for both modes, i.e.

λ1(min) = λ1(max) = λ1 = 3.3781 and λ2(min) = λ2(max) = λ2 = 1.6640. We have to

find out that within our domain of xs, whether the switching is stable. Expanding

Equation 4.14,

(λ1 − λ2)||xs||+ λ1||xref || − λ2||xesc||

−2λ1(xs(0)xref (0) + xs(1)xref (1))

+2λ2(xs(0)xesc(0) + xs(1)xesc(1)) > 0.

Since the two optimas have zero velocity, we can put them equal to zero,

(λ1 − λ2)||xs||+ λ1xref (0)2 − λ2xesc(0)2

−2λ1xs(0)xref (0) + 2λ2xs(0)xesc(0) > 0.

Adding and subtracting λ1xs(0)2 − λ2xs(0)2 on both sides:

(λ1 − λ2)||xs||+ λ1(xref (0)2 − 2xs(0)xref (0) + xs(0)2)

−λ2(xesc(0)2 − 2xs(0)xesc(0) + xs(0)2)

−(λ1xs(0)2 − λ2xs(0)2) > 0.
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Simplifying further leads to:

(λ1 − λ2)xs(1)2 + λ1(xref (0)− xs(0))2 − λ2(xesc(0)− xs(0))2 > 0.

It should be noted that λ1 > λ2. Consequently, the first term is always greater

than 0. The second and the third terms are also always greater than 0 if xref (0) >

xesc(0) > xs(0) (i.e. if xs ∈ Ds(x)). Therefore, the hybrid system’s stability is

guaranteed in x-axis.
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Verification and Applications

5.1 Tracking Results

The experiments could not be performed in the VICON testbed because of the scale of

these experiments. Exploiting the system’s capabilities of computing visual-inertial

odometry (VIO) from the on-board sensors provides a viable solution. We are using

a single forward-facing camera for all vision related tasks. Before moving further

with the experiments, the trajectory tracking capabilities have to be evaluated. This

is done based on its performance to track a figure eight trajectory which can be a

difficult trajectory to track if the system is unstable. The system is first evaluated

in the motion capture system before moving on to using VIO. The trajectory is

generated utilizing the concept of the lissajous figures. Combination of sine waves

are used to compute the figure eight trajectory. Figure 5.1 (left) shows the results

of figure eight trajectory tracking inside the VICON motion capture system. The

performance seems better in this setup for obvious reasons but ZED camera brings

the state-of-the-art stereo SLAM technology which makes the trajectory tracking

stable even though the camera is mounted in the forward facing manner which seems

quite reasonable. Figure 5.1 (right) shows the trajectory tracking in on-board vision

setup.
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Figure 5.1: Figure eight trajectory tracking with motion capture (left) and
VIO(right).

5.2 Flight Performance Through Square Targets

Initial project for the performance verification of this platform was inspired by the

problem statement of a drone racing competition held at IEEE Conference on Intel-

ligent Robot Systems (IROS) 2017.

5.2.1 Overview

In recent years, several efforts are made to address the problem of vision-based

navigation. [33] describes an approach to solve this problem using RGB-D camera

in the presence of some known markers. This paper considers low light conditions

but does not take care of the problem if there are no markers in the environment.

Some authors describe the development of test bed for vision based navigation in

GPS denied environment like [2]. Computing odometry using vision tools is one of

the main aspect in camera based navigation. Among the good contributions in this

area are [37] [38] which demonstrate the use of visual and inertial measurement tools

for localization and scene reconstruction. [35] also describes an approach to obtain

visual odometry in such an environment. Moreover, [36] uses vision based approach

in an interesting way to navigate along the forest trails by using deep learning on
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the monocular images. The problem is to build a platform that has the ability

to maneuver aggressively while passing through targets autonomously. While the

existing literature and experimentation serve as good contributions in vision based

navigation, there is a need to develop a comprehensive platform for the execution of a

complete autonomous flight in such a scenario. It can, however, be extended for other

vision based navigation problems. A similar approach, to the one that is adopted,

is presented in [46]. The example problem is inspired by the fact that in usual

situations of fire and rescue, there is a need for a platform that can navigate quickly

passing through the targets or avoiding any obstacles on its way. The problem is

formulated as follows. Let q ∈ C be a point in configuration space C of the Quadrotor.

O ⊂ W refers to the workspace obstacle, whereW ∈ R3×i for any integer i > 0. The

workspace Quadrotor A(q) ⊂ W is expressed as a set of all the points occupied by

the quadrotor while maintaining a certain state q. The configuration for which the

quadrotor will collide with the obstacle is given as Cobs = {q ∈ C|A(q) ∩O 6= φ}. In

order to ensure collision free maneuver, the allowed configuration is Cfree = C\Cobs.

The problem statement can be divided into path planning and following problems.

Former is to come up with a mapping m : [0, 1]→ Cfree such that m(.) = p ∈ Cfree at

some input in [0, 1), where p is the center of the target. Further, a position controller

is responsible for efficient path following. Moreover, it is assumed that the locations

of the targets are not completely known so the paths to take the quadrotor from the

target’s center cannot be computed offline.

The quadrotor is assumed to be able to follow the desired waypoints generated

by the software. It essentially follows a path to reach a point n ∈ Cfree at which

it can see the full target in front of it. Since this path is considered obstacle-free,

the quadrotor does not have to avoid any obstacle to reach there. Once it reaches

the point n, it recognizes the target, and its center point using ZED stereo camera

images. Using this information, it aligns itself in front of the center point, to complete

its maneuver through the target.
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5.2.2 Results

Processing in depth space is performed in order to fully visualize the square targets

within a certain range. Waypoints are generated based on the location of the esti-

mated center of the target in depth space. The perception function takes over when

the quadrotor reaches the vicinity of the target from where the stereo camera can

see the square target. The quadrotor is assumed to stop to see the target so that

no transformation is required from inertial to image coordinates. Also, the camera

image plane is assumed to be parallel to the target before the perception function

takes over. Moreover, the waypoints are generated in the vehicle body coordinates.

The depth image is first thresholded for a certain range in front of the camera in

which the obstacle is supposed to appear. This results in a binary image. However,

the image appears to be a bit noisy. Certain techniques are then used exploiting

OpenCV functions in C++ to overcome the noise issue. Two very famous morpho-

logical operations are performed. Pixel dilation is first used to fill small holes in

the noisy image followed by erosion to remove background false ones or noise. After

performing such operations the binary image is then checked for contours particu-

larly forming rectangles in the image. opencv apps is a ROS package which typically

performs similar operations in the ROS framework for convenience. It takes a binary

image in the form of ROS message for images i.e. of type sensor msgs/Image and

outputs a message on the topic opencv apps/RotatedRectArrayStamped. This out-

put message contains information about all the rotated rectangles in the image from

where it is easy to identify the rectangle corresponding to the target in view. The

estimated location of the center point of the target in the image is then calculated

based on the information from the opencv apps output message. This output mes-

sage contains information about all the rotated rectangles in the image from where it

is easy to identify the rectangle corresponding to the target in view. The estimated

location of the center point of the target in the image is then calculated based on

the information from the opencv apps output message. A proportional controller in
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the image space is used to generate motions in four directions. The image center

being the reference, the distance error in the image pixel coordinates generated in the

Y-axis of the image commands up-down movements while the side-ways movements

are caused by the pixel distance error in X-axis of the image. The quadrotor keeps on

performing such maneuvers until the camera image center aligns with the estimated

center point of the target with some success radius ∆. At this point the quadrotor

performs forward maneuver to pass through the target. Figure 5.2 shows the flow

diagram of the working of the system Figure 5.3 shows one instance of a maneuver.

Figure 5.2: Flow diagram of the algorithm.

The quadrotor flies from the start configuration to a stationary configuration from

where it can see the target. The proportional controller then performs maneuvers to

align the image center with the center of the target in view to pass through.
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Figure 5.3: Snapshots to show one instance of manuever through a square target.

5.3 Simulation

The simulation of the set up was performed in Gazebo. Gazebo is a physics

simulator which is good in simulating the real world parameters. Gazebo is fully

compatible with ROS providing a functional package for ROS plugins. Besides sim-

ulating real-world environment Gazebo can easily interface and talk to ROS through

publisher/subscriber or service/client protocol. Gazebo models are stored in urdf

or sdf file formats which are popular formats for physics models. RotorS [32] is a

ROS package providing models for Iris, AscTech Hummingbird, Pelican, Firefly and

many other quadrotor UAVs. The algorithm is simulated on Iris quadrotor with a

forward facing depth camera. Gazebo provides the flexibility to create custom en-

vironment models as well as customize the existing ones. Several different types of

obstacles can be placed at our desired locations according to the problem. The setup

includes the RotorsS package as a UAV simulator for Gazebo interacting with the

ROS nodes programmed in C++ as described in the previous sections. These ROS

nodes subscribe (receive) information about the environment and robot states and
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Figure 5.4: Snapshots to show one instance of manuever in an example workspace
in Gazebo.

publish (send) the desired commands to the quadrotor like a real setup. Figure 5.8

shows how the functions are setup to talk to each other. A ROS node is written as an

interface to communicate with sensors and the autopilot. C++ functions are setup

to take those images and odometry messages to manipulate and form trajectories.

traj gen function is responsible for taking the trajectories from the LQR controller

and send each point for collision check. waypoint2collision is setup to check a group

of waypoints for collision by projecting the artificial shield associated with them in

the depth space and checking them for collision as mentioned in the previous chap-

ters. If collision is detected an escape point is found using find escape function. The

waypoints from the final trajectory are sent to the autopilot at the sampling time of

Ts.

Different types of obstacles are placed at random locations to introduce different
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scenarios for the quadrotor. Figure 5.4 shows one instance of such a setup where the
robot has to avoid two different kinds of obstacles randomly placed in the workspace.
Figure 5.5 and 5.6 shows the step by step process of trajectory generation. These
results are derived from the Gazebo simulation. Each figure shows the trajectory
sent by the LQR function for a fixed horizon as described in Section 4.1. In case of
no collision the first half of the trajectory is kept while the second part is discarded to
prevent the robot getting too close to any potential obstacle appearing immediately
in front of the generated trajectory. However, in case of an obstacle the trajectory
generated is discarded and an escape is found in four directions i.e. up, down, right
and left. The closest escape is then chosen and the controller objective is changed to
favor fast avoidance of the obstacle rather than saving energy. Similar process goes
on with the required switching according to the scenario until the quadrotor escapes
and reaches its final destination. The complete final trajectory commanded to the
quadrotor to follow is shown in Figure 5.7.
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Figure 5.5: Trajectory generation (a).
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Figure 5.6: Trajectory generation (b).

5.4 Implementation Results

The experiments are performed on a real quadrotor made out of Luminier QAV 250

frame, labeled as LoboDrone v2.0 as shown in Figure 2.6. The first set of experiments

are performed in a 5x5 feet area with a single obstacle each time. Two different types
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Figure 5.7: Final trajectory setpoints (Simulation).

Figure 5.8: Simplified flow chart of the algorithm (Hybrid trajectory control ap-
proach).

of obstacles are placed in its way to observe the maneuvers in different scenarios.

Figure 5.9 shows the plots for the two scenarios. In the first scenario the quadrotor
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is expected to pass around the obstacle due to its thin structure while in the second

one it is supposed to pass over an obstacle because of its low height. The setup

was then tested for two consecutive obstacles in a larger workspace. Figure 5.10

shows the desired trajectory similar to what is presented for the Gazebo simulations

(Figure 5.7). The algorithm worked well in the practical implementation following

the expectations from the simulations.

Figure 5.9: Trajectory plot for low height and tall obstacles (Implementation).

5.5 Artificial Potential Fields (APF) Approach

The experiments are also performed for obstacle avoidance using similar hardware

to LoboDrone v1.0 to demonstrate the strengths and weaknesses of the proposed

approaches. These experiments are done as a part of an undergraduate senior design

project [42] at the MARHES Laboratory. Artificial potential fields method serve as

a ’reactive’ approach to avoid obstacles. The obstacle is simulated as a collection of

point charges adding a repulsive force on the robot. Moreover, the final goal adds a

positive vanishing potential to the robot. As a result the quadrotor is able to fly with

the flow of potentials. It is treated as a point particle under the influence of the net

charge. The main goal is to go towards the region of lowest net charge which causes

the quadrotor to maneuver towards the goal. The attractive force vanishes close to
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Figure 5.10: Final trajectory setpoints (Implementation).

the goal. This forms the parabolic well as an attractor. This attractive potential is

given as :

Uatt =
1

2
ζ||q − qgoal||.

The force exerted on the quadrotor is represented as a negative gradient of potential

as follows:

Fatt(q) = −∆U(q),

Fatt(q) = −ζ(q − qgoal).

The obstacle, however exerts a similar but repulsive force on the point particle. This

repulsive potential is only assumed to exert a force when the quadrotor is within

its neighborhood. The force goes to ∞ at the edges of the obstacle. This can be
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summed up as:

Urep(q) =


1
2
η( 1
‖q−qobs‖

− 1
ρ0

)2, if ‖q − qobs‖ < ρ0.

0, otherwise.

And,

Frep(q) =

η( 1
‖q−qobs‖

− 1
ρ0

)( 1
‖q−qobs‖

)2 q−qobs
‖q−qobs‖

, if ‖q − qobs‖ < ρ0.

0, otherwise.

While having the same limited environment knowledge as with the previous experi-

ments, artificial potential field method is implemented in real-time. The quadrotor

only knows the goal position prior to flight. During flight the position estimate is

provided through a ZED stereo camera and an IMU. The waypoints are updated at

2Hz to be sent to the low level controller to follow. In other words, given a resultant

potential at a particular position, the waypoints are generated in a particular direc-

tion until they are updated again after 0.5 seconds. This process is shown in Figure

5.11. Small trajectory sections show the path anticipated from a particular position.

Updating them at 2 Hz forms a complete desired trajectory. Figure 5.12 shows the

desired and followed trajectories for the quadrotor.

Figure 5.11: Formation of desired 3D trajectory (Artificial potential fields approach).
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Figure 5.12: Complete 3D trajectory (Artificial potential fields approach).

5.6 Comparison Between APF and Hybrid Tra-

jectory Generation Approaches

Artificial potential fields is a very old method but is established for many robotics

path planning applications. This method outperforms many methods and is still

considered a competitive method depending on the nature of applications. However,

every method have some pros and cons associated with them. They are summarized

in Table 5.6. Both the methods in comparison are not complete. Artificial potential

fields have inherent drawback of the robot getting stuck in local minima if it encoun-

ters one. In that case a global solution may exists but the algorithm is unable to

identify it. A similar problem is experienced by the proposed strategy. However, it

is because of two reasons i.e. limited field of view and limited number of motion

primitives. The quadrotor gets stuck if it gets so close to the obstacle that it is un-

able to find a collision free trajectory within its field of view. This problem with the

limited field of view is quite straightforward to relate but it cannot be solved with

both the techniques because of the hardware resource limitations. Figure 5.13 shows
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how the limited number of motion primitives affect the maneuver. The quadrotor

might encounter a situation where none of the motion primitives is able to form a

collision free trajectory to the escape point. In other words speed of the algorithm is

compromised with completeness. This is referred to as restricted reachability space

in the table because the reachability space depends on the allowed maneuvers at a

particular configuration. Rapidly-exploring random trees (RRT) is another famous

motion planning algorithm. It guarantees resolution completeness but it might take

longer time to find collision free paths in a depth map because it explores in random

directions. Moreover, it also involves more collision checks because the search for

escape is completely random. This makes it computationally more expensive. As

described above, the presence of a forward facing stereo camera pose a limited field

of view problem to RRT method as well.

Another advantage common to both the hybrid control and artificial potential

fields methods is that the trajectories are dynamically feasible. Most of these differ-

ences can be inferred by comparing Figures 5.12 and 5.9. While the hybrid controller

tends to form trajectories that are closer to the obstacle, the potential fields favors

trajectories far away from the obstacle depending upon the attractor and repellor

gains. It also takes more time to reach the goal than the hybrid control approach in

which we have full control over the speed of individual maneuvers. Moreover, one of

the main drawbacks of using potential field approach is that it requires to estimate

the obstacle location and distance to quantify the charge on the robot. The sampling

based methods and the hybrid trajectory control method however, solves this prob-

lem by performing collision checks in depth space and re-planning the trajectories

in future when necessary. Also, the potential fields method requires to take into

consideration all the workspace obstacles or atleast the obstacles in the field of view

to compute the net charges on the robot. In contrast the hybrid trajectory approach

can perform checks on a limited set of workspace and does not need to know the

location of all the obstacles unless they intercept the projected trajectory.

61



Chapter 5. Verification and Applications

Figure 5.13: One instance of quadrotor getting stuck due to limited motion primitives
(Hybrid trajectory control approach)

Potential
fields method

Hybrid con-
trol approach

Dynamically feasible trajectories 3 3

Unrestricted reachability space 3 7

Completeness 7 7

Fast 7 3

Does not require estimating the obsta-
cles geometries

7 3

Can work in limited environment
knowledge (Does not need to know ev-
ery obstacle around)

7 3

Table 5.1: Comparison.

62



Chapter 6

Conclusion

The thesis explained the development of a platform capable of vision-based au-

tonomous navigation in cluttered environments. The development of this platform

involves a lot of steps. There was a need for hardware and software platforms and

algorithms to accomplish on-board processing, on-board sensing, agility and finally

the autonomy of a quadrotor UAV platform. In the work supported under Army

Research Lab’s Micro Autonomous Systems and Technology Collaborative Alliance

(ARL-MAST) and Sandia National Labs’ Aerial Suppression of Airborne Platforms

(ASAP), the MARHES testbed procured quadrotor UAVs capable of on-board sens-

ing. In the MAST project, quadrotor aerial and bio-inspired crawling ground robots

were used to interact with each other for exploration and mapping. The ground

robots were capable of taking pictures from different position and orientations. Due

to limited space on the computer attached to the crawling robots, the quadrotor UAV

was used to hover over them turn-by-turn to fetch those pictures over a wireless link.

Once collected, the pose-stamped pictures were dumped to a server to create a map.

On-board processing was thoroughly used on all the robots. In the ASAP project

([43]) the concept of forward stochastic reachability was used in the famous pursuit-

evasion problem. In both these instances the locations of all the concerned hardware

were provided through VICON motion capture system.
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After contributing and getting motivated by these projects, I worked towards real-

time and on-board sensing techniques mainly for the obstacle avoidance problem.

This problem typically requires the need for on-board sensing if the environment

is partially or fully unknown. Major upgrades in hardware include the addition of

a stereo camera (Stereo Labs ZED) and a better computer (NVIDIA Jetson) on-

board. A quadrotor UAV was custom developed using carbon fiber plates to form

a frame to carry a Jetson TK1 computer, a ZED stereo camera and other flight

modules to accomplish the task of on-board sensing. The platform was tested in a

project in which the quadrotor UAV was set-up to pass through the square targets

when their positions were not fully known. It was capable of detecting the targets

and getting its own odometery using its stereo camera on-board. However, the

platform was heavy and less agile for many applications. Mainly due to its weight,

its flight time was quite restricted. A more efficient platform was developed to

accomplish agile obstacle-avoidance tasks by combining the good properties of the

existing platforms and upgrading the computer and camera on-board with a Jetson

TX2 and a ZED mini respectively. Through studying existing perception and control

techniques the algorithm for agile obstacle avoidance was developed. The stereo

camera model was studied to get insight about stereo vision. Inspired from some

existing techniques ([12], [14]), the obstacle detection was performed in real-time

by processing the depth images from the on-board stereo camera and projecting the

UAV into the future. The projected UAV was then checked for collisions in the depth

image frame. LQR controllers were used to generate dynamically feasible trajectories.

A thorough study of hybrid controls was performed to analyze trajectories generated

from different control laws. The hybrid trajectory generation technique was combined

with the obstacle detection strategy in a receding horizon fashion. The simulation

and experimental results were used to validate the theoretical concepts.

Moving forward, I am motivated to exploit artificial intelligence in the obsta-

cle avoidance application. I am trying to combine the current obstacle detection
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technique with deep q-learning under the ROS framework. This will guarantee

safety while the robot performs exploration. The obstacle detection function (way-

points2collision) is already written in C++. For the machine learning part the

library ’Keras’ for Python is used. ROS service-client protocol is used to wrap C++

functions in a Python script. While the Python node subscribes to the features ex-

tracted from the depth image and suggest an action under ε greedy policy, the C++

node provides the service to execute that action and return the reward. Collision

checks are to be performed within the C++ node to assign a reward for each action.

However, this is still a work to be done in future.

Figure 6.1: Current MARHES aerial testbed
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