303 research outputs found

    Optimal Ventilation Control in Complex Urban Tunnels with Multi-Point Pollutant Discharge

    Get PDF
    We propose an optimal ventilation control model for complex urban vehicular tunnels with distributed pollutant discharge points. The control problem is formulated as a nonlinear integer program that aims to minimize ventilation energy cost while meeting multiple air quality control requirements inside the tunnel and at discharge points. Based on the steady-state solutions to tunnel aerodynamics equations, we propose a reduced form model for air velocities as explicit functions of ventilation decision variables and traffic density. A compact parameterization of this model helps to show that tunnel airflows can be estimated using standard linear regression techniques. The steady-state pollutant dispersion model is then incorporated for the derivation of optimal pollutant discharge control strategies. A case study of a new urban tunnel in Hangzhou, China demonstrates that the scheduling of fan operations based on the proposed optimization model can effectively achieve different air quality control objectives under varying traffic intensity.U.S. Department of Transportation 69A355174711

    Examining Wind Flow's Impact on Multi-Storey Buildings:A Quest for Quality Improvement

    Get PDF
    This scientific article delves into the intricacies of wind flow's impact on multi-storey buildings, presenting results from a series of experimental investigations. The research encompasses an examination of wind interactions with buildings of varying heights and geometric profiles. Furthermore, it unveils the effects of tall structures on the natural ventilation and smoke evacuation systems of shorter edifices, considering different wind flow directions. The study leverages specialized wind tunnel and measurement techniques for a comprehensive analysis of wind-induced loads on buildings. The acquired insights furnish crucial input for the design of single-story temporary modular constructions within densely populated urban areas, subject to wind-induced stresses. Additionally, they hold potential applicability in the advancement of energy-efficient technologies and strategies within the realm of construction. The acquired dataset underscores the criticality of scrutinizing wind flow's impact on structures of varied typologies and dimensions and will allow to significantly improve the quality and efficiency of modern buildings in the future

    Optimization of Natural Ventilation Design in Hot and Humid Climates Using Building Energy Simulation

    Get PDF
    This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended.This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended.This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended.This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended.This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended.This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended.This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended.This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended.This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended.This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended.This research aims to propose and explore natural ventilation schemes for the design of high-performance, non-residential buildings in hot and humid climates. Three such schemes were applied toward retrofitting the existing Hawai‘i Institute of Geophysics buildings on University of Hawai‘i at Mānoa (UHM) campus in Honolulu. The results were investigated by using parametric study and Airflow Network (AN) model, coupled with thermal model in EnergyPlus. Meanwhile, the number of discomfort hours, during the time the buildings are occupied and based on the adaptive thermal comfort, was used as a quantitative index for the performance of the natural ventilation design schemes. The results revealed that pure cross-ventilation is not a feasible mode to deliver adequate thermal comfort to the occupants, per an acceptable number of discomfort hours. However, with the supplementation of vertical ventilation ducts (shafts), the performance of natural ventilation design schemes significantly improved. In these cases, it was found that either ventilation ducts or ventilation windows can be completely closed, thus eliminating the need of one or the other in natural ventilation designs and therefore mitigating the potential for outdoor noise traveling into spaces through ventilation ducts and/or ventilation windows’ openings. This research presents my preliminary investigation toward finding the optimal scheme for natural ventilation design. After the scheme is chosen, the actual geometry of the ventilation ducts and ventilation windows, appropriate louvers and duct fittings, as well as their optimal aspect ratios, should be taken into consideration. For future research to be able to extend to incorporate a wider range of climate conditions, a hybrid ventilation approach integrating both mechanical and natural ventilation should be carried out. Moreover, further study of ventilation effectiveness, as per Computational Fluid Dynamics (CFD), is also recommended

    Cold-Arid Deserts: Global Vernacular Framework for Passive Architectural Design

    Get PDF
    Among the most unforgiving climates, cold-arid deserts have inspired a myriad of solutions towards passive architecture. Developed over hundreds of years, lessons from vernacular architecture can be the key to challenges of the future. “Since antiquity, man has reacted to his environment, using his faculties to develop techniques and technologies, in such a psychological balance with nature that humanity historically lived attuned to the environment” (Fathy 1986) As concerns for the future of our planet steadily increase pertaining to the depletion of resources, energy consumption, and globalization, alternative solutions can improve the impact we have on our environment, as well as provide the ideal environment for us. The provision of housing for the rapidly growing population continually keeps architects and developers seeking ways to provide the most economically friendly, site specific design that can also be sustainable. Design solutions do not have to be costly or in-corporate complicated modern technology to be sustainable and energy efficient. However, technological advancements continue to dictate the relationship between man and comfort. Can a blended principle of past solutions and modern technologies work together to improve the effects of climate on human environment? This dissertation is meant to gather vernacular lessons to develop a valid framework, in order to create environmentally and culturally sustainable residential prototypes. Through a global analysis, a framework is extrapolated from existing vernacular case studies and modeled to test their relationships and possible improvements to prove their validity today within a single site, the Chihuahua Desert in North America

    Natural air conditioning, traditions and trends : high performance of sustainable indoor ventilation in a hot and dry climate

    Get PDF
    De nos jours, l'utilisation accrue de combustibles à base de fossiles et l'électricité met en péril l'environnement naturel à cause des niveaux élevés de pollution. Il est donc plausible de prévoir des économies d'énergie significatives grâce à la climatisation dite «naturelle»». En accord avec les objectifs acceptés à l'échelle internationale d'une architecture «verte» et durable, l'utilisation de cours intérieures associées aux capteurs de vent, aux murs-Trombe et à d'autres systèmes de climatisation naturelle (aussi bien traditionnels que nouveaux), paraît prometteuse. Ce mémoire propose une analyse de nouvelles approches à la climatisation naturelle et à la production d'air frais avec une consommation minimale d'énergie, eu égard aux traditions et aux tendances, en particulier dans les zones climatiques chaudes et sèches comme l'Iran. Dans ce contexte, regarder l'architecture de l'Islam et la discipline du Qur'an paraissent offrir un guide pour comprendre l'approche musulmane aux processus de décision en design. Nous regardons donc les traditions et les tendances en ce qui concerne la climatisation naturelle à travers l'élément le plus important du contexte islamique, à savoir le Qur'an. C'est pourquoi, à l'intérieur du thème de la tradition, nous avons pris en compte quelques considérations concernant l'influence de l'Islam, et en particulier le respect de la nature associé à un équilibre entre l'harmonie et l'individualité. Ce sont autant de facteurs qui influencent la prise de décisions visant à résoudre des problèmes scientifiques majeurs selon la philosophie et les méthodes islamiques ; ils nous permettent de faire quelques recommandations. La description des principes sous-jacents aux capteurs à vent et des antécédents trouvés dans la nature tels que les colonies de termites, est présentée également. Sous la rubrique tendances, nous avons introduit l'utilisation de matériaux et de principes de design nouveaux. Regarder simultanément ces matériaux nouveaux et l'analogie des colonies de termites suggère de bonnes approches à la conception d'abris pour les victimes de tremblements de terre dans les régions sisimques. Bam, une ville iranienne, peut être considérée comme un exemple spécifique illustrant où les principes exposés dans ce mémoire peuvent s'appliquer le plus adéquatement.Nowadays due to the increased use of fossil fuels and electricity, the natural environment is in danger because of high levels of pollution. Hence by creating natural air conditioning, we may save a significant amount of energy. In line with the global objective of sustainable and green architecture, the use of patios to save energy and natural ventilation coupled with wind- catchers, Trombe walls and other natural air conditioning systems (both traditional and emerging architectural elements) seems pertinent. This thesis analyzes designs to produce natural air conditioning and cooler air with the minimum amount of energy, with regard to the tradition and the trends, especially in hot and dry climate regions like Iran. In this context, looking to Islamic Architecture and the Qur’anic discipline of thought are considered as a guide to the way Muslims approach the design-decision making process. We therefore look to the traditions and the trends of natural air conditioning through the most important element of the Islamic context (the Qur’an). So, within the theme of "tradition", we have introduced some thinking about the influence of Islam and particularly the respect of nature while providing for a balance between harmony and individuality, such as proposing one special kind of decision-making process to solve the main scientific problems according to the Islamic philosophy and the accompanying methods, suggesting some recommendations. Descriptions of (a) the principles of wind-catchers and (b) antecedents in nature such as the termite hills are pursued as well. Under "trends", we have introduced the use of novel materials and novel design principles. Looking at the new materials and simultaneously at the analogy of the termite mounds suggests one good sample of design of a shelter for people in earthquake-prone regions. Bam, an Iranian city, can be considered to be a specific context in which the general considerations expressed in this thesis can be most usefully applied

    CEPC Technical Design Report -- Accelerator (v2)

    Full text link
    The Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s.Comment: 1106 page

    Procedures and Methodologies for the Control and Improvement of Energy-Environmental Quality in Construction

    Get PDF
    This Special Issue aims at providing the state-of-the-art on procedures and methodologies developed to improve energy and environmental performance through building renovation. We are greatly thankful to our colleagues building physics experts, building technology researchers, and urban environment scholars who contributed to this Special Issue, for sharing their original works in the field
    corecore