275 research outputs found

    AUTOMATED TELEHEALTH SYSTEM FOR FETAL GROWTH DETECTION AND APPROXIMATION OF ULTRASOUND IMAGES

    Full text link

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Med-e-Tel 2016

    Get PDF

    Compression and Multi-Spectral Sensing for Video Based Physiological Monitoring

    Get PDF
    Remote physiological monitoring is an active area of research that extends monitoring capabilities traditionally found in a clinical setting towards the home, telehealth, and beyond. In particular, there is interest in leveraging consumer electronic devices for sensing physiological characteristics such as heart rate, heart rate variability, and blood oxygen saturation. This thesis focuses on enhancing the understanding and usage of the sensing component for these applications to improve the performance and quality of cardio-physiological monitoring. First, a close relationship between the color spaces used for video compression and the color projection planes commonly used for heart rate estimation is identified. % that results in higher compression of the physiological signal. The study demonstrates the impact of this observation on real and synthetic data to provide a foundation to guide future video coding to optimize its configurations to better preserve the heart rate signal for health related applications. Second, an investigation with a commercial-off-the-shelf (COTS) multi-spectral sensor is presented with key observations related to the sampling rate, exposure settings, and multi-channel processing. These observations will enable better usage of the sensor for future studies and data collections that leverage the more precise spectral measurements from the multi-spectral sensor compared to standard RGB cameras

    Optimization of medical image steganography using n-decomposition genetic algorithm

    Get PDF
    Protecting patients' confidential information is a critical concern in medical image steganography. The Least Significant Bits (LSB) technique has been widely used for secure communication. However, it is susceptible to imperceptibility and security risks due to the direct manipulation of pixels, and ASCII patterns present limitations. Consequently, sensitive medical information is subject to loss or alteration. Despite attempts to optimize LSB, these issues persist due to (1) the formulation of the optimization suffering from non-valid implicit constraints, causing inflexibility in reaching optimal embedding, (2) lacking convergence in the searching process, where the message length significantly affects the size of the solution space, and (3) issues of application customizability where different data require more flexibility in controlling the embedding process. To overcome these limitations, this study proposes a technique known as an n-decomposition genetic algorithm. This algorithm uses a variable-length search to identify the best location to embed the secret message by incorporating constraints to avoid local minimum traps. The methodology consists of five main phases: (1) initial investigation, (2) formulating an embedding scheme, (3) constructing a decomposition scheme, (4) integrating the schemes' design into the proposed technique, and (5) evaluating the proposed technique's performance based on parameters using medical datasets from kaggle.com. The proposed technique showed resistance to statistical analysis evaluated using Reversible Statistical (RS) analysis and histogram. It also demonstrated its superiority in imperceptibility and security measured by MSE and PSNR to Chest and Retina datasets (0.0557, 0.0550) and (60.6696, 60.7287), respectively. Still, compared to the results obtained by the proposed technique, the benchmark outperforms the Brain dataset due to the homogeneous nature of the images and the extensive black background. This research has contributed to genetic-based decomposition in medical image steganography and provides a technique that offers improved security without compromising efficiency and convergence. However, further validation is required to determine its effectiveness in real-world applications

    Design and evaluation of echocardiograms codification and transmission for Teleradiology systems

    Get PDF
    Las enfermedades cardiovasculares son la mayor causa de muerte en el mundo. Aunque la mayoría de muertes por cardiopatías se puede evitar, si las medidas preventivas no son las adecuadas el paciente puede fallecer. Es por esto, que el seguimiento y diagnóstico de pacientes con cardiopatías es muy importante. Numerosos son las pruebas médicas para el diagnostico y seguimiento de enfermedades cardiovasculares, siendo los ecocardiogramas una de las técnicas más ampliamente utilizada. Un ecocardiograma consiste en la adquisición de imágenes del corazón mediante ultrasonidos. Presenta varias ventajas con respecto otras pruebas de imagen: no es invasiva, no produce radiación ionizante y es barata. Por otra parte, los sistemas de telemedicina han crecido rápidamente ya que ofrecen beneficios de acceso a los servicios médicos, una reducción del coste y una mejora de la calidad de los servicios. La telemedicina proporciona servicios médicos a distancia. Estos servicios son de especial ayuda en casos de emergencia médica y para áreas aisladas donde los hospitales y centros de salud están alejados. Los sistemas de tele-cardiología pueden ser clasificados de acuerdo al tipo de pruebas. En esta Tesis nos hemos centrado en los sistemas de tele-ecocardiografia, ya que los ecocardiogramas son ampliamente usados y presentan el mayor reto al ser la prueba médica con mayor flujo de datos. Los mayores retos en los sistemas de tele-ecocardiografia son la compresión y la transmisión garantizando que el mismo diagnóstico es posible tanto en el ecocardiograma original como en el reproducido tras la compresión y transmisión. Los ecocardiogramas deben ser comprimidos tanto para su almacenamiento como para su transmisión ya que estos presentan un enorme flujo de datos que desbordaría el espacio de almacenamiento y no se podría transmitir eficientemente por las redes actuales. Sin embargo, la compresión produce pérdidas que pueden llevar a un diagnostico erróneo de los ecocardiogramas comprimidos. En el caso de que las pruebas ecocardiograficas quieran ser guardadas, una compresión clínica puede ser aplicada previa al almacenamiento. Esta compresión clínica consiste en guardar las partes del ecocardiograma que son importantes para el diagnóstico, es decir, ciertas imágenes y pequeños vídeos del corazón en movimiento que contienen de 1 a 3 ciclos cardiacos. Esta compresión clínica no puede ser aplicada en el caso de transmisión en tiempo real, ya que es el cardiólogo especialista quien debe realizar la compresión clínica y éste se encuentra en recepción, visualizando el echocardiograma transmitido. En cuanto a la transmisión, las redes sin cables presentan un mayor reto que las redes cableadas. Las redes sin cables tienen un ancho de banda limitado, son propensas a errores y son variantes en tiempo lo que puede resultar problemático cuando el ecocardiograma quiere ser transmitido en tiempo real. Además, las redes sin cables han experimentado un gran desarrollo gracias a que permiten un mejor acceso y movilidad, por lo que pueden ofrecer un mayor servicio que las redes cableadas. Dos tipos de sistemas se pueden distinguir acorde a los retos que presenta cada uno de ellos: los sistemas de almacenamiento y reenvió y los sistemas de tiempo real. Los sistemas de almacenamiento y reenvió consisten en la adquisición, almacenamiento y el posterior envió del ecocardiograma sin requerimientos temporales. Una compresión clínica puede ser llevada a cabo previa al almacenamiento. Además de la compresión clínica, una compresión con pérdidas es recomendada para reducir el espacio de almacenamiento y el tiempo de envío, pero sin perder l ainformación diagnóstica de la prueba. En cuanto a la transmisión, al no haber requerimientos temporales, la transmisión no presenta ninguna dificultad. Cualquier protocolo de transmisión fiable puede ser usado para no perder calidad en la imagen debido a la transmisión. Por lo tanto, para estos sistemas sólo nos hemos centrado en la codificación de los ecocardiogramas. Los sistemas de tiempo real consisten en la transmisión del ecocardiograma al mismo tiempo que éste es adquirido. Dado que el envío de video clínico es una de las aplicaciones con mayor demanda de ancho de banda, la compresión para la transmisión es requerida, pero manteniendo la calidad diagnóstica de la imagen. La transmisión en canales sin cables puede ser afectada por errores que distorsionan la calidad del ecocardiograma reconstruido en recepción. Por lo tanto, métodos de control de errores son requeridos para minimizar los errores de transmisión y el retardo introducido. Sin embargo, aunque el ecocardiograma sea visualizado con errores debido a la transmisión, esto no implica que el diagnóstico no sea posible. Dados los retos previamente descritos, las siguientes soluciones para la evaluación clínica, compresión y transmisión han sido propuestas: - Para garantizar que el ecocardiograma es visualizado sin perder información diagnóstica 2 tests han sido diseñados. El primer test define recomendaciones para la compresión de los ecocardiogramas. Consiste en dos fases para un ahorro en el tiempo de realización, pero sin perder por ello exactitud en el proceso de evaluación. Gracias a este test el ecocardiograma puede ser comprimido al máximo sin perder calidad diagnóstica y utilizando así más eficientemente los recursos. El segundo test define recomendaciones para la visualización del ecocardiograma. Este test define rangos de tiempo en los que el ecocardiograma puede ser visualizado con inferior calidad a la establecida en el primer test. Gracias a este test se puede saber si el ecocardiograma es visualizado sin pérdida de calidad diagnóstica cuando se introducen errores en la visualización, sin la necesidad de realizar una evaluación para cada video transmitido o diferentes condiciones de canal. Además, esta metodología puede ser aplicada para la evaluación de otras técnicas de diagnóstico por imagen. - Para la compresión de ecocardiogramas dos métodos de compresión han sido diseñados, uno para el almacenamiento y otro para la transmisión. Diferentes propuestas son diseñadas, ya que los ecocardiogramas para los dos propósitos tienen características diferentes. Para ambos propósitos un método de compresión en la que las facilidades que incorporan los dispositivos de segmentar la imagen y en la que las características de visualización de los ecocardiogramas han sido tenidas en cuenta ha sido diseñado. Para la compresión del ecocardiograma con el propósito de almacenarlo un formato de almacenamiento fácilmente integrable con DICOM basado en regiones y en el que el tipo de datos y la importancia clínica de cada región es tenido en cuenta ha sido diseñado. DICOM es el formato para el almacenamiento y transmisión de imágenes más ampliamente utilizado actualmente. El formato de compresión propuesto supone un ahorra de hasta el 75 % del espacio de almacenamiento con respecto a la compresión con JPEG 2000, actualmente soportado por DICOM, sin perder calidad diagnostica de la imagen. Los ratios de compresión para el formato propuesto dependen de la distribución de la imagen, pero para una base de datos de 105 ecocardiogramas correspondientes a 4 ecógrafos los ratios obtenidos están comprendidos entre 19 y 41. Para la compresión del ecocardiograma con el propósito de la transmisión en tiempo real un método de compresión basado en regiones en el que el tipo de dato y el modo de visualización han sido tenidos en cuenta se ha diseñado. Dos modos de visualización son distinguidos para la compresión de la región con mayor importancia clínica (ultrasonido), los modos de barrido y los modos 2-D. La evaluación clínica diseñada para las recomendaciones de compresión fue llevada a cabo por 3 cardiologos, 9 ecocardiogramas correspondientes a diferentes pacientes y 3 diferentes ecógrafos. Los ratios de transmisión recomendados fueron de 200 kbps para los modos 2-D y de 40 kbps para los modos de barrido. Si se comparan estos resultados con previas soluciones en la literatura un ahorro mínimo de entre 5 % y el 78 % es obtenido dependiendo del modo. - Para la transmisión en tiempo real de ecocardiogramas un protocolo extremo a extremo basada en el método de compresión por regiones ha sido diseñado. Este protocolo llamado ETP de las siglas en inglés Echocardiogram Transmssion Protocol está diseñado para la compresión y transmisión de las regiones por separado, pudiendo así ofrecer diferentes ratios de compresión y protección de errores para las diferentes regiones de acuerdo a su importancia diagnostica. Por lo tanto, con ETP el ratio de transmisión mínimo recomendado para el método de compresión propuesto puede ser utilizado, usando así eficientemente el ancho de banda y siendo menos sensible a los errores introducidos por la red. ETP puede ser usado en cualquier red, sin embargo, en el caso de que la red introduzca errores se ha diseñado un método de corrección de errores llamado SECM, de las siglas en inglés State Error Control Method. SECM se adapta a las condiciones de canal usando más protección cuando las condiciones empeoran y usando así el ancho de banda eficientemente. Además, la evaluación clínica diseñada para las recomendaciones de visualización ha sido llevada a cabo con la base de datos de la evaluación previa. De esta forma se puede saber si el ecocardiograma es visualizado sin pérdida diagnostica aunque se produzcan errores de transmisión. En esta tesis, por lo tanto, se ha ofrecido una solución para la transmisión en tiempo real y el almacenamiento de ecocardiogramas preservando la información diagnóstica y usando eficientemente los recursos (disco de almacenamiento y ratio de transmisión). Especial soporte se da para la transmisión en redes sin cables, dando soluciones a las limitaciones que estas introducen. Además, las soluciones propuestas han sido probadas y comparadas con otras técnicas con una red de acceso móvil WiMAX, demostrando que el ancho de banda es eficientemente utilizado y que el ecocardiograma es correctamente visualizado de acuerdo con las recomendaciones de visualización dadas por la evaluación clínica

    Usability analysis of contending electronic health record systems

    Get PDF
    In this paper, we report measured usability of two leading EHR systems during procurement. A total of 18 users participated in paired-usability testing of three scenarios: ordering and managing medications by an outpatient physician, medicine administration by an inpatient nurse and scheduling of appointments by nursing staff. Data for audio, screen capture, satisfaction rating, task success and errors made was collected during testing. We found a clear difference between the systems for percentage of successfully completed tasks, two different satisfaction measures and perceived learnability when looking at the results over all scenarios. We conclude that usability should be evaluated during procurement and the difference in usability between systems could be revealed even with fewer measures than were used in our study. © 2019 American Psychological Association Inc. All rights reserved.Peer reviewe
    corecore