2,707 research outputs found

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    Separable Implementation of L2-Orthogonal STC CPM with Fast Decoding

    Get PDF
    In this paper we present an alternative separable implementation of L2-orthogonal space-time codes (STC) for continuous phase modulation (CPM). In this approach, we split the STC CPM transmitter into a single conventional CPM modulator and a correction filter bank. While the CPM modulator is common to all transmit antennas, the correction filter bank applies different correction units to each antenna. Thereby desirable code properties as orthogonality and full diversity are achievable with just a slightly larger bandwidth demand. This new representation has three main advantages. First, it allows to easily generalize the orthogonality condition to any arbitrary number of transmit antennas. Second, for a quite general set of correction functions that we detail, it can be proved that full diversity is achieved. Third, by separating the modulation and correction steps inside the receiver, a simpler receiver can be designed as a bank of data independent inverse correction filters followed by a single CPM demodulator. Therefore, in this implementation, only one correlation filter bank for the detection of all transmitted signals is necessary. The decoding effort grows only linearly with the number of transmit antennas

    Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Get PDF
    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case

    L2 OSTC-CPM: Theory and design

    Get PDF
    The combination of space-time coding (STC) and continuous phase modulation (CPM) is an attractive field of research because both STC and CPM bring many advantages for wireless communications. Zhang and Fitz [1] were the first to apply this idea by constructing a trellis based scheme. But for these codes the decoding effort grows exponentially with the number of transmitting antennas. This was circumvented by orthogonal codes introduced by Wang and Xia [2]. Unfortunately, based on Alamouti code [3], this design is restricted to two antennas. However, by relaxing the orthogonality condition, we prove here that it is possible to design L2-orthogonal space-time codes which achieve full rate and full diversity with low decoding effort. In part one, we generalize the two-antenna code proposed by Wang and Xia [2] from pointwise to L2-orthogonality and in part two we present the first L2-orthogonal code for CPM with three antennas. In this report, we detail these results and focus on the properties of these codes. Of special interest is the optimization of the bit error rate which depends on the initial phase of the system. Our simulation results illustrate the systemic behavior of these conditions

    Space Station communications and tracking systems modeling and RF link simulation

    Get PDF
    In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort

    Synchronization Techniques for Burst-Mode Continuous Phase Modulation

    Get PDF
    Synchronization is a critical operation in digital communication systems, which establishes and maintains an operational link between transmitter and the receiver. As the advancement of digital modulation and coding schemes continues, the synchronization task becomes more and more challenging since the new standards require high-throughput functionality at low signal-to-noise ratios (SNRs). In this work, we address feedforward synchronization of continuous phase modulations (CPMs) using data-aided (DA) methods, which are best suited for burst-mode communications. In our transmission model, a known training sequence is appended to the beginning of each burst, which is then affected by additive white Gaussian noise (AWGN), and unknown frequency, phase, and timing offsets. Based on our transmission model, we derive the Cramer-Rao bound (CRB) for DA joint estimation of synchronization parameters. Using the CRB expressions, the optimum training sequence for CPM signals is proposed. It is shown that the proposed sequence minimizes the CRB for all three synchronization parameters asymptotically, and can be applied to the entire CPM family. We take advantage of the simple structure of the optimized training sequence in order to design a practical synchronization algorithm based on the maximum likelihood (ML) principles. The proposed DA algorithm jointly estimates frequency offset, carrier phase and symbol timing in a feedforward manner. The frequency offset estimate is first found by means of maximizing a one dimensional function. It is then followed by symbol timing and carrier phase estimation, which are carried out using simple closed-form expressions. We show that the proposed algorithm attains the theoretical CRBs for all synchronization parameters for moderate training sequence lengths and all SNR regions. Moreover, a frame synchronization algorithm is developed, which detects the training sequence boundaries in burst-mode CPM signals. The proposed training sequence and synchronization algorithm are extended to shaped-offset quadrature phase-shift keying (SOQPSK) modulation, which is considered for next generation aeronautical telemetry systems. Here, it is shown that the optimized training sequence outperforms the one that is defined in the draft telemetry standard as long as estimation error variances are considered. The overall bit error rate (BER) plots suggest that the optimized preamble with a shorter length can be utilized such that the performance loss is less than 0.5 dB of an ideal synchronization scenario

    Nouvelle forme d'onde et récepteur avancé pour la télémesure des futurs lanceurs

    Get PDF
    Les modulations à phase continue (CPMs) sont des méthodes de modulations robuste à la noncohérence du canal de propagation. Dans un contexte spatial, les CPM sont utilisées dans la chaîne de transmission de télémesure de la fusée. Depuis les années 70, la modulation la plus usitée dans les systèmes de télémesures est la modulation CPFSK continuous phase frequency shift keying filtrée. Historiquement, ce type de modulation est concaténée avec un code ReedSolomon (RS) afin d'améliorer le processus de décodage. Côté récepteur, les séquences CPM non-cohérentes sont démodulées par un détecteur Viterbi à sortie dure et un décodeur RS. Néanmoins, le gain du code RS n'est pas aussi satisfaisant que des techniques de codage moderne capables d'atteindre la limite de Shannon. Actualiser la chaîne de communication avec des codes atteignant la limite de Shannon tels que les codes en graphe creux, implique deremanier l’architecture du récepteur usuel pour un détecteur à sortie souple. Ainsi, on propose dans cette étude d' élaborer un détecteur treillis à sortie souple pour démoduler les séquences CPM non-cohérentes. Dans un deuxième temps, on concevra des schémas de pré-codages améliorant le comportement asymptotique du récepteur non-cohérent et dans une dernière étape on élabora des codes de parité à faible densité (LDPC) approchant la limite de Shannon

    Sparse graph-based coding schemes for continuous phase modulations

    Get PDF
    The use of the continuous phase modulation (CPM) is interesting when the channel represents a strong non-linearity and in the case of limited spectral support; particularly for the uplink, where the satellite holds an amplifier per carrier, and for downlinks where the terminal equipment works very close to the saturation region. Numerous studies have been conducted on this issue but the proposed solutions use iterative CPM demodulation/decoding concatenated with convolutional or block error correcting codes. The use of LDPC codes has not yet been introduced. Particularly, no works, to our knowledge, have been done on the optimization of sparse graph-based codes adapted for the context described here. In this study, we propose to perform the asymptotic analysis and the design of turbo-CPM systems based on the optimization of sparse graph-based codes. Moreover, an analysis on the corresponding receiver will be done

    Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    Get PDF
    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications
    corecore