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most efficient procedure on Gaussian chai, pcls and affords 4 dB of gain

for 4 -state trellises and soft -decision demodulation, relative to an

uncoded signal having equal bandwidth. With parallel processing

available in LSI form, such decoders can operate above 100 Mbps,

although we have not yet undertaken an implementation study.

From a fabrication perspective, we have concentrated on the use of

GaAs device technology in implementing a modem-on-a- chip (s), of the

dual-mode type described above. We have performed a detailed survey of

current device developments in linear RF components and switching logic

with the reault being that such integration is technically feasible and

GaAs FET technology is currently available for all functions (RF

amplification, mixing, modulators, threshold comparators, video

amplifiers, logic, etc.). Many of the necessary building blocks have

been demonstrated in laboratories of MMIC manufacturers, indicating that

a fully - integrated modem is a reasonable undertaking.

The report is organized as follows, with references and figures

numbered by chapter:

Chapter 2 summarizes the work on communications techniques, both

modulation and coding, and provides a description of the dual-modem

technique. Synchronization procedures are also described.

Chapter 3 provides an assessment of GaAs technology as applied to

the more specific problem of a modem development activity.

Chapter 4 summarizes our conclusions and recommendations for

further work.
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1. INTRODUCTION

This report summarizes work in support of advanced communication

technology development at NASA. Our investigation has merged current

development- in communications theory and practice, with state-of-the-

art technology in IC fabrication, especially monolithic GaAs technology,

to examine the general feasibility of a number of advanced technology

digital transmission systems. The principal motivation of this work is

toward producing satellite-channel modems with (1) superior throughput,

perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power

and spectrum efficiency. These attributes are of course sought in many

communication applications, and we foresee the work described here as

important to terrestrial digital radio as well.

The investigation began with a survey of transmission techniques

generally applicable to this problem, those possessing reasonably simple

architectures capable of monolithic fabrication at high speeds. This

included a review of amplitude/phase shift keying (APSK) techniques and

the continuous-phase-modulation (CPM) methods, of which MSK represents

the simplest case. Our feeling is that while CPM provides constant-

envelope modulation designs with very attractive power and spectrum

features, the ones which do so are presently too difficult to implement

at speeds above 100 Mbps, particularly ir_ any highly-integrated form. A

possible exception is the use of MSK-type receivers for binary, h = 1/2

CPM schemes, for which good spectral sidelobes are afforded with only

fractional dB loss in energy efficiency. On the other hand, for lesser

throughput applications, e.g. 56 kbps low-rate satellite links, we feel
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CPM has high potential, though still more complicated than simpler APSK

methods.

The modulation study evolved into definition of a dual-technique,

capable cf performing either QPSK or 16 -QASK with simple mode switches.

These techniques are highly compatible in that 16-QASK is realizable as

a super-position of two QPSK signals, one 6 dB weaker in power than the

other. The two choices provide a range of power/bandwidth efficiencies.

QPSK is the most energy efficient among uncoded transmission schemes,

while QASK has twice the spectral efficiency at a sacrifice of about 4

dB in required average Eb/No . A modem to implement either technique

is not substantially more difficult than that to implement eit'ier alone,

and provides the added system flexibility. In addition to its favorable

modulation attributes, QPSK /QASK provides a convenient signal base for

convolutional coding.

We studied the application of coding for high-speed channels with

the principle concern beirg decoder complexity. Convolutional codes

were treated from the perspective of interfacing with the QPSK /QASK

modulation technique. The simplest decoding technique is that of

threshold decoding, which generally operates on hard-decision demod-

ulator outputs with logic gates to do error correction. Rate one-half

codes of reasonable complexity can gain several dB in exchange for a

doubling of bandwidth per information bit. On the other hand, the use

of similar techniques for r = 3/4 coding onto QASK does not seem to have

any utility; basically, the code is not able to correct enough errors to

overcome loss in energy per code symbol, and an energy loss ensues, at

least for short codes. Maximum likelihood (Viterbi) decoding is the

2
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most efficient procedure on Gaussian cha;wcls and affords 4 dB of gain

for 4-state trellises and soft-decision demodulation, relative to an

encoded signal having equal bandwidth. With parallel processing

available in LSI form, such decoders can operate above 100 Mbps,

although we have not yet undertaken an implementation study.

From a fabrication perspective, we have concentrated on the use of

GaAs device technology in implementing a modem-on-a-chip(s), of the

dual-mode type described above. We have performed a detailed survey of

current device developments in linear RF components and switching logic

with tha result being that such integration is technically feasible and

GaAs FET technology is currently available for -all functions (RF

amplification, mixing, modulators, threshold comparators, video

amplifiers, logic, etc.). Many of the necessary building blocks have

been demonstrated in laboratories of MMIC manufacturers, indicating that

a fully-integrated modem is a reasonable undertaking.

The report is organized as follows, with references and figures

numbered by chapter:

Chapter 2 summarizes the work on communications techniques, both
F

modulation and coding, and provides a description of the dual-modem

technique. Synchronization procedures are also described.

Chapter 3 provides an assessment of GaAs technology as applied to

the more specific problem of a modem development activity.

Chapter 4 summarizes our conclusions and recommendations for

further work.
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A bibliography compiled during the course of our investigation is

included in the Appendix. Articles pertain principally to high-speed

devices, especially in GaAs.

d

C



2. MODULATION AND CODING EVALUATION

This section summarizes investigation of communications techniques

appropriate for an "advanced performance" modem, meaning high-speed (> 1

Gbps), low-cost (capable of monolithic integration), and good energy and

spectral properties. We begin with the modulation study.

2.1 MODULATION

Quadrature-modulation techniques are well-known approaches for

achieving good spectral/energy efficiencies with simple hardware... The

best known example of this class is QPSK (quadrature phase-shift-

keying), which amounts to two BPSK concerns in phase-quadrature. The

energy efficiency (Eb/No needed) equals that of BPSK, but spectral

efficiency is twice as high.

The signals in general are represented as

S i lt) = a i cos ioct + b i sin wct	 i = 0, 1, ... M-1

where (a i , b i ) represents the 2-D coordinate of the ith signal.

' The set of all such points is known as the signal constellation, and

several cases of interest are shown in Figure 2.1 for M = 4, 8, 16, and

32. All but the PSK sets have rectangular geometry such that data

decisions are effected by quadrature demodulation, filtering, sampling,

and threshold detection. For 8-PSK and 16-PSK, the I and Q samples must

be combined linearly to make data decisions.

The probability of bit error versus Eb/No for these techniques

is illustrated in Figure 2.2. These are actually asymptotic expressions

in most cases which are most accurate below P b = 10 -4 . As expected,

I
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QPSK is the most energy efficient, with 16-PSK requiring about 8 dB more

Eb/No (average). Several of the schemes have amplitude modulation,

and the energy per symbol varies. We have thus plotted performance

versus average energy rather than peak energy.

Relative bandwidth of these schemes is easily obtained by observing

that if the same quadrature wave::hapes are used at the modulator, then

the relative bandwidths go as 1/log 2M. For NRZ modulation, the

spectra are sin 2 (x)/x2 in form with null-to-null bandwidths given

below, with R designating the bit rate.

Bn-n

QPSK	 R

8-PSK, 8 AMPM	 (2/3)R

16-QASK, 16 PSK	 R/2

32 -QASK	 (2/5)R

Post-modulation filtering would typically be used to remove spec-

tral sidelobes since the sidelobes diminish only as If-fcl-2.

Pulse-shaping can be used to improve the spectral efficiency. In

QPSK systems, spectral raised-cosine shaping with roll-off of 50 1% is

commonly used to provide (ideally) bandlimited signals. In this case

the bandwidths are

B

QPSK (3/4)R

8-PSK, 8 AMPM (1/2)R

16-QASK,	 16-PSK (3/8)R

32 -QASK (3/10)R
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Such shaping is more difficult to implement at high speeds and intro-

duces amplitude-variation into schemes which are ordinarily constant-

envelope with NRZ, viz, QPSK and 8-PSK.

Figure 2.3 depicts the general modulator,'demodulator diagram for

quadrature-modulation s:hemes, with the necessary synchronization

circuitry not shown. It is sometimes advantageous to use staggered

modulation whereby the Q channel transitions occur a half-interval

displaced from those in the I channel. 'Phis improves spectral behavior

for NRZ/QPSK on nonlinear channels; for the other schemes staggering has

less benefit, as quasi-linear operation is as` limed by definition for say

16-QASK.

QORC (quadrature-overlapped raised-cosine) modulation [1] is a

related technique which uses staggered raised-cosf.ne pulses lasting two

intervals in the I/Q channels. This gives a spectrum with essentially

no significant sidelobes and mainlobe comparable to that of NRZ/QPSK. A

mild intersymbol interference results however, penalizing the detection

efficiency by about 1 dB. The envelope ripple for this scheme is held

to 3 dB. The same modem structure may be used as in Figure 2.3 with

appropriate change of pulse shapes or data filters.

A second general class of modulation L the continuous-phase

modulation (CPM) family. These signals are constant-envelope by defini-

tion and thus attractive for satellite channels. By smoothly modulating

the phase of the carrier, very attractive spectra can be obtained with

no post-modulation filtering. These schemes are described

by

S(t) = A cos(W r t + ®(t,d)),	 nT 5 t 5 (n+1)T,

10
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where
n-1

a(t,d) = I d hi 9(t-nT),
j=1 i

d is the data sequence, h is the modulation index, and 6( • ) is the phase

shaping pulse lasting IT seconds. Examples are shown in Figure 2.4 for

CPFSK and 3-RC.

The intrinsic memory present in the modulator suggests that a

demodulator could exploit this "coding" to improve energy efficiency

over a single-interval demodulator. Further, when h is a rational

number, the signal may , be described by a finite-state trellis, and the

Viterbi-demodulator applied to do bit detection.. In general cases, this

receiver is probably too complex to implement at the rates assumed here,

as 16 to 64-state trellises coupled to a correlator bank are typical.

In the special case of binary transmission with h = 1/2, however, we are

able to utilize rather simple re,;eivers. This is because the quadrature

components of the phase modulated signal exhibit , an eye-pattern opening

every 2T seconds; this has been known for some time for MSK, which is

binary CPFSK with h = 1/2. A "parallel" MSK receiver .s shown in Figure

2.5a, with a "serial" version shown in Figure 2.5b. Aulin et al. [2]

have shown that the use of the MSK receiver may be used on other binary

h = 1/2 CPM schemes, e.g. 2-RC and 3-RC. The detection loss due to ISI

is amazingly ` low:' '-0.1 and 0.7 ' dB relative" to the Viterbi-receiver,

respectively. When coupled with the constant-envelope and low

sidelobes, this represents a potentially attractive high-speed

technique. An MSK receiver has been synthesized at 760 Mbps using SAW

devices and microstrip techniques previously ['j. The serial version of

12
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the receiver uses two different filters and a single sampler/comparator.

Its complexity is comparable to that of the parallel version but it

exhibits high robustness to phase error [4]. The eye pattern remains

rather wide-open for phase offsets up to 30 0 , provided the sampling time

is adjusted to compensate.

Tamed FM (TFM) [5] is a partial-response FM scheme designed for

ultra-low spectral sidelobes, the name derived from the fact that the

modulating signal is a tamed (less wild) version of better known cases.

Reference [5] shows a quadrature-type receiver which operates.about 1 dB

degraded from QPSK efficiency. The pulse shaping necessary to attain

the desired spectrum is rather precise, however, and further study is

required to assess TFM's utility at very high bit rates.

Figure 2.6a and 2.6b show the power spectral densities of QORC,

MSK, 2-RC (h=1/2), 3-RC (h=1/2), and tamed FM versus normalized

frequency. As the modulating pulse becomes smoother, we see a dramatic

drop in sidelobe levels, with no appreciable change in mainlobe

bandwidth.

In summary, the quadrature modulations are simplest to instrument

and offer a range of energy and spectral efficiencies. CPM has many

attractive properties for bandwidth efficient modulation, but is saddled

by complex receivers in tae general case. For a special case of binary,

h = 1/2, receivers are rather simple and if the energy/spectrum objec-

tives match this case, then CPM provides a good solution. In this case,

one perspective on the signal is that it is a partial -response- like

quadrature modulation, hence the simpler receivers
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strictly correct due to the cos( e ) and sin (•) nonlinearity, but

sufficiently close that quadrature receivers work well.

2.2 CODING

Forward error control coding is the general technique of inserting

redundancy and memory into the transmitted signal, which when exploited

by the decoder, will general_; provide "coding g:in," a savings in

Eb/No required to achieve a given probability of error. This is in

exchange for bandwidth expansion (relative to uncoded transmission with

the same modulator) and for increased receiver complexity.

We have focused upon convolutional codes for out study (versus

block codes) as being more flexible, since no..blocklength need be

assumed, and because they are widely regarded as being more powerful for

a given complexity level than block.codes. Part .of.this advantage is

the ease of doing soft-decision decoding.

Among the ways of decoding convolutional -codes,_ the threshold

decoding and Viterbi decoding methods represent the simplest and most

complicated methods. We describe the- performance• ,_ of these next as

applied to the present investigation.

2.2.1 Convolutional coding with threshold decoding

Threshold decoding [6] represents a simple decoding procedure

for decoding of convolutional codes. The technique utilizes systematic

codes, with syndrome bits formed by comparing regenerated parity bits

with those actually received. When a certain number of syndrome bits

exceed a threshold, the decoder infers an error has occurred and cor-

rects the bits about 'to emerge from a temporary buffer. Since only

shift registers and simple gates are needed and the architecture is

18



pipelined, the decoder can operate as fast as the logic devices permit.

Consequently, we briefly investigated application of threshold decoding

for very-high-throughput channels.

Normally, the encoded bit stream is used to binary-modulate

the carrier, with binary detection at the receiver. This implies a

bandwidth expansion of n where the rate is 1/n. In the special case of

r = 1/2 coding onto QPSK, we have bandwidth the same as that of uncoded

BPSK, and with gray-coding, the detection performance is the same as

with binary signalling. Performance for the r = 1/2, QPSK case is shown

in Figure 2.7 for several different codes. RJ is the number of ortho-

gonal syndrome checks employed. As a measure of complexity, the shift

registers of the encoders and decoders are of length 6, 17, 35, and 55

bits for RJ = 4, 6, 8, and 10, respectively. The results show that the

coding gains are rather small at 10 -5 , between 1 and 2 dB. The

results shown are for "definite" decoding; feedback decoding, which

removes the effect of "corrected" bit errors from the syndrome register,

gains about 0.5 dB more at a slight loss in speed due to feedback

requirements.

We also evaluated threshold decoding for r = 2/3 coding onto

8-PSK, with hard-decision decoding assumed. (The usual viewpoint would

be to use three serial binary transmissions.) The results were

surprisingly pcjr, however. The qualitative understanding is that by

introducing coding, we have diminished greatly the minimum distance

between signals (BPSK versus QPSK), giving a sharp increase in symbol

error rate.	 The redundancy built into reasonable codes is not

sufficient to overcome this loss, and a net coding logs is found for

19
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codes with up to 10 syndrome checks. (This is measured against uncoded

QPSK, having the same bandwidth; the technique does gain 2-3 dB over

uncoded 8-PSK however.)

It _s possible to perform a soft-decision variation of

threshold decoding, providing a gain of nearly 2 dB over hard-decision

decoding. This complicates the decoder significantly however, requiring

arithmetic operations. At this level of complexity, maximum likelihood

(trellis) decoding is probably preferable.

To summarize, threshold decoding gives modest gains for QPSK,

but does not mate well with bandwidth efficient modulations such as

QASK. Although we have not specifically evaluated the technique with

r = 3/4 coding onto QASK, the above effect is even worse than for 8-PSK.

2.2.2 Maximum likelihood decoding

Use of the Viterbi algorithm for decoding of convolutional

codes is a well-known technique for attaining energy savings on space

channels. The complexity of the algorithm depends exponentially on the

number of delay or memory cells in the convolutional encoder. We

describe 4-state encoder/decoder structures for both QPSK. and QASK

modulation, a compromise between achievable speed/ complexity and coding

gain. With 4-states, we can attain about 4 dB improvement in both cases

relative to an uncoded modulation having the same bandwidth.

With QPSK modulation, the optimal Hamming distance codes

provide the optimal codes in signal space by virtue of the simple

antipodal modulation in each quadrature channel. The optimal 4-state

(constraint length 3) QPSK code is shown in Figure 2.8a with its

associated trellis diagram. The asymptotic probability of bit error
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this case is

5E
Pb — Q(/

5
Nb)

0
which represents a 10 log (2.5) = 4 dB gain over binary PSK, a scheme

which has the same bandwidth. (Q(x) denotes the Gaussian integral,

sometimes denoted erfc(x).)

For QASK, Ungerboeck (7] produced - optimal r - n/n41 codes,

from which the 4-state code is selected for Figure 2.8b. Note we are

coding three information bits onto four code symbols, and treat these as

a 16-ary symbol. This scheme has the same bandwidth as uncoded 8-PSK,

but a coding gain of 4 dB. The trellis labeling of Figure 2.8b pertains

to the signal indexing shown in the 16-ary constellation. The ML

processor must now score eight paths entering each state, and three-bit

wide path maps must also be stored for each state.

Of special interest is the unusual similarity between the

encoders and trellis structures for the QPSK and QASK codes. We see

that in the r = 3/4 coded case, two c.f the data bits merely modulate the

high-level of a two-level QPSK arrangement, while the third bit is

encoded into the low-level in exactly the same fashion that ;.t was in

the coded r = 1/2 case. Thus no changes are required to tht encoder

logic in switching between these- modes. 	 Furthermore, the Viterbi

decoder architecture is remarkably similar in both cases. By observing

that in the coded QASK case that paths enter the states in QPSK groups,

we note that a "hard" QPSK decision can be made among each group, and

the metric of the winner used to accumulate with previous metrics.

23
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We have not undertaken a detailed configuration of the Viterbi

decoder in an IC, framework, but note that single chip decoders have been

constructed for r - 1/2 coded QPSK (or MSK) under NASA sponsorship 18].

These chips operate presently in the 10 Mbps throughput range, and by

paralleling, can attain a 200 Mbps throughput. Silicon NPiOS technology

was used for this development. The constraint length was 5 bits,

implying a 16-state dec-)der; this is roughly a factor of four more

complex than the codes described above. We also believe that "analog"

Viterbi decoding [9] has merit for further study, especially at high

speeds and for shorter codes. Metrics are stored as voltage on a

capacitor in this technique, and voltage comparators provide metric

comparisons. In addition, no high-speed A/D converter between receiver

and decoder is needed.

2.3 A MILLIMETER-WAVE GaAs MONOLITHIC DUAL MODEM

We describe a high-speed dual-mode modula-or/demodulator architec-

ture for digital satellite communications capable of being fabricated

entirely in monolithic gallium-arsenide technology. The technique is

referred to av "dual-mode" as it is capable of selectively performing

QPSK (quadriphase shift keying) cr QASK (4uadrature amplitude shift

keying), providing a flexibility to meet varying communications require-

ments with a high-degree of zommonality of hardware. We have configured

the modem around a nominal throughput. of 2 Gbps. us?.ng.carriers in the

20-30 GHz region, with applications to satellite TDMA trunks or to

terrestrial digital radio. These choices are rather flexible however,

and the technique could provide a low-cost solution for modems operating

at lower rates, e.g. the 1.544 Mbps T1 rate.

G
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4..G te=a LU.2.Yuc to be described has two principle attributes. First,

it exhibits a natural marriage of two popular communications techniques

which provide a choice of power and spectral efficiencies with essen-

tially common circuitry; this is by virtue of the factthat QASK can be

treated as a layered or superposed QPSK modulation. Second, we have

emphasized the ability to implement the technique in GaAs monolithic

circuit form, and find that all functional blocks are certainly capable

of being so fabricated, or in some cases already have been in various

research laboratories.

By referring to Figure 2.1, we may see that the 16 -QASK signal

constellation may be realized in two steps: first, travel from the

origin to a location centered in one of the four quadrants ; then make

another 45 degree travel from that point to one of the 16 signal loca-

tions. This process is forming the sum of two QPSK signals, one being

half the amplitude or one-foi.rth the power of the other. This technique

has been tailed superposed modulation, or layered modulation. Because

of this property, QASK can be synthesized using two identical QPSK

modulators, and QPSK and QASK are highly compatible modulation formats.

It is further possible to synthesize 64-QASK using three levels of QPSK

in this manner, but this is not of interest here.

This simple property led us to study the details of a dual-modem

implementation, one capable of performing either modulation with minor

reconfiguration. The basic diagram of the modulator is shown in Figure

2.9, where input serial bits are converted to 2- or 4-bit bytes and fed

to two QPSK modulators. If one desires QPSK transmission, the output of

the second modulator is merely attenuated by a large amount. Though
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this small amount of power is wasted (modulation is at a low level) the

bits are not lost because the serial-to-parallel converter outputs bits

every two bit times. Alternatively, fc:r QASK transmission, the second

modulator is attenuated by 6 dB and added to the first modulator output.

It is important that this power balance be reasonably accurate, and that

the two modulator outputs be combined with the correct phase. More

performance detail is given in Chapter 3.

We assume the modulator operates at a fixed symbol rate in either

mode, as opposed to a fixed bit rate. This is for reasons of receiver

simplification. For example, if we specify a symbol rate of 500 lisps,

then the bit rates are 1 Gbps for QPSK and 2-Gbps for QASK. This also

means the transmitted signal maintains fixed bandwidth in either mode,

and because of the 4 dB difference in energy efficiency shown earlier,

in going to QASK we must assume a link capable of providing 7 dB better

SNR than that used for QPSK.

The receiver is a standard_guAcLrature demodulator, with two-level

r
decisions in each channel for QPSK and four-level decisions for QASK.

Figure 2.10 illustrates this receiver in two parts, first showing the

RF-to-baseband conversion process, then the more intricate detection and

synchronization circuitry. (This partition is partly conceptual, but

also a logical partition should one implement the demod in 'locks

(chips).) Though not indicated, differential encoding and decoding is

necessary to resolve a phase ambiguity occurring in the carrier

synchronization loop. We describe the synchronization method(s) in more

detail in the following section.

28
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Ideal data detection, assuming a non-distorting channel, is per-

formed by a matched filter in each channel, followed by a sampler/

quantitizer. For the case of NRZ pulse shapes, the integrate-and-dump

filter is ideal, but difficult to realize at high speeds; suboptimum

passive filters will perform quite near ideal if the bandwidths are

chosen appropriately. For pulse-shaped transmission, such as use of

raised-cosine (in frequency) pulses, the receiver filter also should

have the same response. Again realization of the desired response for

high data rates is a design challenge.

F % -,
	 In Tables 2.1 and 2.2,. we specify the general performance require-

ments of the 'various elements of the - modulator and demodulator as

general inputs to a detailed implementation study.

2.4 SYNCHRONIZATION FOR DUAL-MODE RECEIVER

Carrier phase and symbol timing must be extracted from the received

modulated carrier signal. It is important that these parameters be

estimated accurately to avoid significant energy degradation, yet with

simple algorithms to provide ease of implementation. Commonality of

techniques for the two modes is also crucial.

2.4.1 Carrier synchronization techniques for dual-mode receiver

Decision-feedback synchronizers are assumed because of their

better - performance in noise (lower phase jitter) and the technique

generalizes to a variety of quadrature modulation techniques, QPSK and

QASK among them. Essentially, the receiver estimates the data and

.remodulates pr removes its effect from a delayed replica to obtain an

error signal proportional to phase offset, but not dependent on the

data. This process is convergent; if carrier phase error is initially

31



TABLE 2.1. Modulator Performance Parameters

•

	

	 500 M symbols/sec, corresponding to 1 Gbps for QPSK, 2 Gbps
for QASK

•	 interface logic capable of 3 GHz clock rate

•	 center frequency: selectable in 10-30 GHz range

•

	

	 frequency stability of oscillator: A f/f < 5 x 10 -6 or 100

KHz at 30 GHz

•	 power output: 0 dBm into 50 n, VSWR < 1.5:1

•

	

	 quadrature phase accuracy to within t2°; amplitude balance
within 0.5 dB

•	 2nd layer modulation 6 dB t 0.5 dB lower in power

•

	

	 NRZ modulation, bandpass filtering at RF assumed to lower
spectral sidelobes, if necessary

•

	

	 entire modulator on chip; possible off-chip dielectric resonator
for FET local oscillator

E
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TAKE 2.2. Demodulator Performance Parameters, MMIC #1

LNA:	 f  = 10 to 30 GHz (TBD)

noise figure: 2 to 4 dB, dependent on frequency
gain: 25 dB, 3 stages

BPF:	 f : TBD
C

bandwidth: 2 GHz
insertion loss over passband: < 2 dB

Power Splitter:	 power split within ±0.5 dB
phase equality within ±20

Dual-Gate Mixer:	 conversion gain: +3 dB

FET Video Amp:	 bandwidth: 10 KHz - 2 GHz, ±1 dB
gain: 50 dB

Quadrature Hybrid: power split within ±0.5 dB
quadrature phase within t20

FET Local Oscillator:
f  (TBD, at designed carrier frequency)

voltage tuning range: ±10 MHz, roughly 0.05; of f 

power output: +10 dBm into 50 Ohms
phase noise: -90 dBe 10 MHz from f 

frequency stability: A f/f < 10 -5 over 0-500C
VCO sensitivity: 1 MHz/volt

Demodulator Performance Parameters, MMIC #2

General:

	

	 Circuit uses decision-feedback synchronization for
carrier with 2-level or 4-level detection in each
quadrature arm as appropriate.	 for additional

information on the synchronization technique, see
Simon and Smith [ 10] .

Delay Lines:

	

	 Bulk delay of one symbol interval, e.g. 2 nsec;
delay should be "constant" over 1 MHz to 1 GHz.

Detection Filters: For NRZ transmission, would ideally be integrate-
and-dump, but at high speeds, distributed-circuit
low-pass filters with B — 1/T s may be used.

33	 1



TABLE 2.2 (Continued)

Voltage Comparators:
Binary or 4-level flash converters using biased FET
comparators; conversion-time on order of (1/2) Ts.

Outputs are decoded and latched, then serialized for
data bus.

Multipliers: Several alternatives are under study. A true analog
multiplier is generally shown, but it is possible
that one or both of the inputs can be binary quan-
tized, allowing use of logic gates to form the error
signal.

Loop Filter:	 Active filter providing F(s) _ (s+a)/(s+b), b << a,
response. The constant a, along with loop d.c.
gain, determines the loop bandwidth, typically on
order of 10 MHz.
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i say 300 , the temporary error rate is quite high but on the average

corrections are in a direction to reduce phase error, which in turn

improves the symbol error rate.

A decision feedback receiver for QPSK/QASK is shown in Figure

2.11 110]. To analyze performance, we first assume the _q SK case, and

write the received signal as

r(t) = 32(d I (t) cos w 
c 
t + d2 (t) sin wct) + n(t)

with d 1 (t) and d2 (t) = t A. For future use, the received symbol

power is 2A2 . We assume n(t) is bandpass Gaussian noise with two-

sided spectral density No/2 w/Hz. Using the bandpass representation:

n(t) = 32(nc (t) cos w 
c 
t + nq (t) sin wct)

where nc (t) and nq (t) are low-pass independent Gaussian processes

with spectral density No/2 also.

The signal at (1) in Figure 2.11a is d 1 (t)sinm + d2 (t)cosm +

nc (t)sinm + nq (t)cosm which indicates some crosstalk when m, the phase

error, is nonzero. Likewise the signal at (2) is -d 1 (t)cosO +

d2 (t)sin® - nc (t)cosO + nq(t)sinm.

Now assume in each channel we make polarity decisions by

comparing with zero volts. In the I channel we decide d 2 correctly

with probability 1 - P e and likewise d l is decided in channel 2. At

(3) we have

e3(t) = d 1 (t) a1 sin 0 + d2 (t) d 1 cos 0 +

nc (t) d 1 sin 0 + nq (t) dl cos 0

At (4)

351
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Clock

Figure 2.11a Decision-Feedback Carrier Synchronizer

for Quadrature Modulation

neq (t)

Figure 2.11b Equivalent Linear Model

for Phase Tracking
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e (t) _ -d (t) d cos 0 + d (t) d sin 0 -4 	 1	 2	 2	 2

nc (t) E2 cos 0 + nq( t ) cT2 sin 0

At (5) letting d1 = sgn d 1 , d2 = sgn d2

a5 (t) 2 2 (d1 sgud 1 + d2 sgnd2 ) sin 0 +
r

cos 0 [ nq (t) d1 - nc (t) d2] + sin 0 [ d1 nc (t) +

d2 nq(t)]

If we define

neq(t) = d1 nq ( t ) - d2 nc(t)

then neq (t) has spectral density N o . Also since . sin 0 << cos 0 for

	

normal tracking, the second	 noise term is negligible. 	 Also,

d 1 sgnd 1 + d2 sgnd2 = 2A for QPSK. Thus

e5 (t) 2f 2A 0 + neq(t)

A linearized model of the loop is shown in Figure 2.10b.

Defining BL as the one-sided equivalent noise bandwidth of

the loop, we may show the phase error variance o02 is

	

2	 No(2BL)

	

^0	 4A2

Since the average power in the input signal is 2A2,

0 2 = ^cBL rad2

	

0	 F

which is the result for tracking a pure carrier in additive noise. The

decision feedback loop, assuming linearized analysis and correct deci-

sions, performs as well as an unmodulated signal PLL. It may be shown

37
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that the effect of decisinn eirors is to re3uce the loop gain by (1 -

2 Pe), and for all other parameters squal, increases the phase error

variance by 1/(1 - 2 Pe ) 2 . However, if we assume the system is

designed to PAtimate the data to better than 1 error per 100 bits, this

effect is a negligible degradation to performance.

On the basis of the above, we may give rough design parameters

for the loop.	 Suppose we wish P	 2 10 -5 . Then Eb/No

	

L	 10 dB

for QPSK. This means P Tb/No = 10 or P/No = 10R. To maintain a

3o phase error of 9° (adequate for QPSK degradation to be a fraction of

a dB), then o ze 3 0 . From the above result.

3 2 
N 

o 
B 
L BL

(57) __ P = 1OR

Thus the loop bandwidth should be

2
BL 2 R(57 ) x 10 = .03R

or the loop bandwidth should be less than R/30. For R = 1 Gbps, the

loop bandwidth can be as large as 30 MHz on SNR considerations alone.

Synchronization and frequency trac'.:ing constraints may imply a different

loop bandwidth however.

It may be shown that the decision-feedback loop has a four-

fold phase ambiguity, i.e. there are stable lock points at nit/2, n = 0,

1. 2, 3. This necessitates either insertion of a known data pattern

periodically to resolve this ambiguity or use of differential coding.

The latter roughly doubles the error rate but is the preferred alterna-

tive.

38
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We now turn to the problem of estimating phase for a modulated

BASK system. A first question is whether the above QPSK receiver can

adequately perform *his task. One has an intuitive feeling it may since

the QASK signal is -9 sum of QPSK signal with another 6 dB weaker QPSK

signal. Indeed this is how we analyze the performance.

We write th; received signal as

r(t) = 32 [d 1 (t) cos wct + d2 sin wct] +

32 [d 
3(t)cos 

wct + d4 (t) sin wct] + n(t)

where again d l , ... d4 are t A.

At (1) and (2 ) the signals now are:

e 1 (t) = d
1
 (t)sin 0 + d

2
 (t) cos 0 + 2 d

3
 (t)sin 4

+ 2 d4 (t)sin 0 + n c (t) sin 0 + nq (t) cos 0

e2 (t) = -d 1 (t) cos 0 + d 2 (i) sin 0 + - 2 d3 (t) cos 0

+ 2 d4 (t)sin 0 - nc (t) cos 0 + nq (t) sin 0

Again, we decide d 2 in the I channel and d i in the Q channel, and call

these d1 and d2 , both of size 1. At (3) and (4) we now have

e 3 (t) = d
1 (t)d

1 sin 0 + d2
 (t)d1 cos 0 + ? d3 (t) d1 sin 0

+ 2 d
4
 (t)d1 cos 0 + nc (t) d1 sin 0 + nq (t) d1 cos 0

e4 (t) = -d 1 (t) d2 cos 0 + d2 (t) d2 sin 0 - 2 d 3 (t) d2 cos 0

+ 2 d4 (t) d2 sin 0 - n c (t) d 2 cos 0 + nq (t) d2 sin 0

9
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Then e5 (t), assuming now m is small and that d l = sgn d l , d2 = sgn d2 , is

e5 (t) = 2A sin ¢ + 2 (sgn(d3 (t) d l ) + sgn(d4 (t) d2 )) sin 0

+ 2 (sgn(d4 (t) d l ) - d3 (t) d2 ) cos 0 + [nc (t) dl

+ nq (t) d2 ]sin 0 + [nq (t) dl - nc (t) d21 cos ¢

= 2A m + [ 2 d'(t)] + neq(t)

e
where d'(t) = d4

 
( c) dl - d

3
 (t)d2 which is a zero mean ternary

random sequence E (2, 0, -2) at the symbol rate Ts . This middle term

has a power spectrum which is sin 2 ( • )/( • ) 2 in form, with average

power A2/4 [1/4 (22) + 1/4 (22) + 1/4 ( 0 2)1 = A2/2. The

one-sided noise spectral density of this process at the origin S(0) =

A2Ts/2. As before the process neq (t) has spectral density No . Thus

spectrally-speaking we have a loop jitter process n'(t) having the sum

of these spectra, illustrated below:

-T	 T	 f
Note that the received signal power is 	

s

Pave = A
2 [1.5 2 + 1.5 2 + 2(1.5 2 + . 5 2 ) + (. 5 2 + . 5) 2 ]/4 = A2[2.51

and E  = 
Pave T  ' Pave/Rb

For P& = lu -5 with QASK we reed Eb/No = 14 dB or

E

i
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which says	
Pave / oR

b - 25

2.5A2/oRb = 25 or A2/NoRb = 10

Now since	 Rb = 4Rs , then Ts = 4Tb and A2Ts/2 = 2A2/Tb.

Thus the ratio of spectral densities at the origin above is

2A2Tb 	A2
= 10

	N o 	No b

at typical performance levels.-

Thus we find the data pattern noise due to the second-level of

QPSK dominates the additive thermal noise in its effect on loop phase

jitter. Assuming the thermal noise level is negligible, we can treat

the self-noise, or pattern noise as a wideband noise term, and as above

the loop phase error variance is:

a 2 = S(0)2BL = 
(A2Ts/2)2BL 

= B L 
T 
s = B T

	

4A2 	4A2	 4	 L b

This result says we now need to keep B L quite small to keep

a® = 3
0 . Specifically

2	 B

	

2 = 3	 _ L
0

	

c	 (57) = BLTb - 
Rb

or BL = .003 Rb . This is roughly one-tenth the value when only QPSK

modulation was present. Note also that increasing the SNR does not

decrease phase jitter as it usually does; instead we have a residual

i

pattern noise which remains of constant relative intensity. Nonethe-

less, we can make its effect small if B L is sufficiently small rela-

tive to the data rate.

41



Thus, we can say the same loop structure will work for both

QPSK and QASK, provided the loop bandwidth is sufficiently small to

average out pattern jitter.

If this is not acceptable performance the structure of Figure

2.11a will remove the effect of this pattern noise, provided 4-level

decisions are made for the I and Q channels. In fact the only

difference between the QPSK and QASK versions is how many decision

levels are involved and how many levels are fed back. The only real

issue is whether a binary-input multiplier suffices (in lieu of an

analog multiplier), and whether one wishes to have mode switches for the

carrier loop. When full 4-level feedback is used we may again show

2 
N 

o 
B 
L

00 =

P

where P is the average power. Since P will be larger for QASK than for

QPSK by about 7 dB at a fixed symbol rate to maintain constant P E , then

the phase error variance will be smaller by a factor of 5, as it must be

due to the closer packing of signals.

Using a more refined analysis which calculates the error

probability dependence on R/B L , and Eb/No , Simon and Smith [101

show that for R/BL > 10, that the effective SNR loss is less than 0.5

dB. This is consistent with our approximate calculation above..

2.4.2 Symbol timing for QPSK/QASK

To obtain symbol timing directly from the received sygnal, a

number of synchronizer structures have been analyzed, ranging from those

motivated by optimal estimation theory to very intuitive approaches

which nonetheless work well if signal to noise ratio is adequate. Some

42
t



structures, such as the early-gate/late-gate or digital transition

tracking loop [11] assume a timing reference as part of their operation,

and are somewhat more complicated to impl-went, especially at high data

rates. We describe two structures which are compatible with both QPSK

and QASK and operate without any timing e-timate supplied.

Delay-and-Multiply. The delay-&id-multiply synchronizer is

shown in Figure 2.12 for a QPSK/QASK receiver. The average of the

summer output can be shown to have a Fourier series periodic in T, whose

fundamental can be extracted with a rerrowband filter, perhaps a PLL.

For rectangular pulse modulation, 	 delay of T/2 maximizes the strength

of this fundamental, while fr.r 	 -'ull spectral raised-cosine pulse

shape, the maximizing delay is :approximately 0.2T [11].

The same circuit works for QASK, which amounts to four level

modulation in each I/Q arm. The strength of the fundamental component

depends on the average received power, but the maximizing delays are as

for QPSK.

Simplifications of this circuit for high-speed operation may

be possible. If binary quantization (sign detection) of the LPF outputs

is performed, then the multiplication indicated can be reduced to an

exclusive or gate. The SNR performance of the synchronizer will be

slightly degraded but can be made adequately high if .the filter

bandwidth of the post-filters is sufficiently narrow. Roughly speaking,

this filter will have a bandwidth about one percent of the symbol rate.

Envelope-derived synchronizer. Another timing technique is

that of Lyon [12], also appropriate for both QPSK and QASK. The

structure is shown in Figure 2.13. Here we do not require delay lines
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r(t)	
LPF	 DELAY

r
sin wct	 +	 SINUSOIDAL

CLOCK
BPF

----,	 ±	
OUTPUT

r	 fc =1 / T 
LPF	 DELAY

T
Cos wit

Figure 2.12 Delay and Multiply Synchronizer

fc=1/T
r(t)	

BPF

sin wit

fc=1/T

BPF

Cos wct

I
	 fc=2/T	 fc=2/T SINUSOIDAL
 CLOCK+	 BPF

EH
BPF -►

J	 ^	 OUTPUT

900 PHASE
SHIFT

Figure 2.13 Envelope-Derived Symbol Synchronizer
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nor multipliers, but substitute bandpass filters and full-wave

rectifiers. The filters must be carefully tuned to have even amplitude

and odd phase functions about the center frequency, e.g. a single-tuned

circuit at fc = 1/T, and a typical Q would be 20-100. This presents

the most difficult design challenge, although a narrow-band PLL could be

used to replace the post-combiner filter/phase shifter/limiter

combination.

Both synchronizers are quite compatible with the basic

architecture of the data demodulator and phase tracking loop. The

quadrature._demodulation is— common to all three functions, and the

LPF/delay line/multiplier is a structure required in the decision-

feedback carrier synchronizer, albeit with different parameters.

As with most synchronizers, lack of data transitions causes

the symbol synchronizer to lose lock, and a pseudo-random scrambling of

the data stream may be required to induce a sufficient density of

transitions during long runs of 1's or O's  in the data.
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3. GaAs DEVICE TECHNOLOGY

The second principal component of this study has been an

exploration of the use of gallium arsenide (GaAs) monolithic circuit

technology for implementing an advanced performance modem on a "chip,"

or several chips. GaAs has attracted widespread attention in the last

decade for very high speed logic circuitry, and for low-noise microwave

amplifiers. Silicon technology, though much further developed, cannot

attain the performance levels of GaAs devices, principally due to the

much higher electron mobility and peak velocity of GaAs.

The GaAs MESFET is the basic building block of most GaAs circuits,

and can function as a low-noise, small signal amplifier up to 30 GHz

region, or in a switching mode to implement logic gates and simple

digital functions at clock speeds of 5 GHz. Other functions performed

by MESFETs are active mixing, particularly with dual-gate FETs, and

oscillators, again past 30 GHz. Power amplifier FET's are also under

widespread development, but are not a concern for this study.

As mentioned, GaAs technology lags well behind silicon technology

in terms of large scale integrated circuits and certainly in terms of

commercial development. This is mainly due to earlier difficulties in

achieving adequate semi-insulating GaAs crystalline materials, and the

fact that silicon technology was formerly adequate for nearly all

electronic applications. Lately, the situation is rapidly changing,

spurred on by superior device performances reported by research

laboratories, and by increased support from government sources for

integration of	 functions	 in GaAs.	 Commercially,	 most major

'i
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semiconductor firms have active research programs in GaAs circuitry, or

are starting pilot lines for simple devices.

We have undertaken the general characterization of a monolithic

integrated circuit on GaAs around the framework of the dual-modem

state-of-the-art

communications technology, and we felt at the outset that circuit

integration of the modem was technically within reach. Many of the

functional elements have been demonstrated at or beyond the performance

levels we seek, but integration and process compatibility, chip

complexity, size, and power remained unexamined.

The potential for such a GaAs modem is discussed below in several

basic functional headings:	 transmission lines on GaAs; logic;

small-signal amplifiers, mixers, oscillators, and A/D converters.

3.1 COMPONENT DISCUSSIONS

3.1.1 Transmission Lines

In RF signal. processing, transmission line techniques are used

in microwave integrated circuits to do impedance matching, filtering,

and hybrid combining. The theory for such distributed circuits is

well-developed, and the only reason for discussing lines here is to

point out that semi-insulating GaAs substrates are dielectrics (Eeff

9) with low loss tangent (b = 5x10 -4 ), and all the normal functions

can be implemented on GaAs together with the active devices in one

medium. It is interesting to note that the simplest passive RF devices,

such as branchline 3-dB hybrids, are larger consumers of substrate area

compared to electronic devices. This is because the transmission line



lengths are on the order of a/4, and for say 20 GHz operation, a/4

represents a physical length of about 1 mm in GaAs.

Fifty ohm lines are standard designs in microwave IC's

(impedances cai. run from 20 to 200 ohms as well). Assuming a 200 Um

thick GaAs substrate above a metallic plane, a 50 ohm line will be about

200 Um wide. Of course, the substrate thickness can be varied some to

suit but physical and processing constraints are more important than the

effect on impedance.

3.1.2 GaAs Digital Logic

The logic types investigated in this study include enhancement

mode FET (E-MESFET), enhancement-depletion FET (E/D-MESFET), low pinch

off voltage FET logic (LPFL), Schottky diode FET logic (SDFL) and

buffered FET logic (BFL). 1 Basic circuit configurations are shown in

Figure 3.1 through 3.4. The propagation delays, clock frequencies, and

maximum gate count are 'compared in Table 3.1. For these devices,

switching speeds are roughly inversely proportional to the gate length

to roughly L = 0.3 Um (111, p. 661) whereas the gate power is roughly

proportional to the gate length. A tentative goal for the modem design

is for the lcgic to operate at 3 GHz. This does not serve as a limi-

tation with 0.5 Um technology since all of the logic types operate at

this frequency.

1JFETs have not been considered since the technology lags that of other
devices. Development is impeded by lack of a suitable p-type dopant
implant, increased complexity and difficulty in fabrication ((11, p.
598).
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Figure 3.1 Inverter Gate, with Aaahed FET Indicating NOR Geometry
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Figure 3.2 LDFT, Inverter Gate.Boxes are Typically Resistors but may be active

'-'8T) devices. Note similarity to buffered and direct coupled

logic diagrams
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Figure 3.3 Direct Coupled Inverter Logic Gate with Enhancement ?Mode
Iuput FET and Active (depletion FET) Load. Active load
may be replaced by a resistor. Dashed enhancement FET
shows NOR gate geometry.
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Figure 3.4 Schottky Diode Inverter Logic Gate where dashed diode

shows NOR geometry
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TABLE 3.1. Comparison of Logic Types

Direct Coupled Low Pinch off Schottky Diode Buffered FET
FET Operation enhancement mode quasi normally depletion mode depletion mode

normally off off normally on normally on

Pinchoff
voltage (V) 0 to +0.1 0 -1.0 -1 to -2.5

Pinchoff
tolerance very tight tolerant tolerant most tolerant

Voltage
supplies (V) -1 to -1.5 +2.5 +2,	 -1.5 +3 to +4,

-1.5 to -3.5

Voltage
swing (V) 0.5 0.8 0.5 to 2 .. 2.5

Power per
Gate (mW) 0.01 to 1 0.5 to 2 0.5 to 2 2 to 40

Propagation
Delay (ps) 100 to 50P 100 to 150 70 to 120 60 to 100

Packing density
(gates/mm') 1000 400 400 200

achieved LSI achieved LSI
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In development of a monolithic chip containing both digital

logic and microwave FETs, considerations of both feasibility and fabri-

cation compatibility are important. The logic must function near 2 GHz,

while the amplification, mixing and detection functions occur 0-4 GHz

for IF and 20-30 GHz for RF. While the devices for logic and microwave

functions are widely different, the materials, geometry, and doping

profile must be similar and compatible if the design is to be realized

as a monolithic chip. In determining compatibility of the various

device types for monolithic IC realization, complexity and difficulty in

fabrication are recognized and an important restriction. With this

consideration "compatible" will be partially defined as the ability to

restrict the design to having two channel types, i.e., channels of two

heights or two doping profiles.

The operating characteristics of the various logic types are

presented and examined for performance compatibility and current

achievements. Discussion is based on < 0.5 um technology needed for

high frequency LNA fabrication [2].

3.1.2.1 Buffered FET Logic. BFL has the distinct advantage

of offering the fastest switching speed and the easiest to control

fabrication of all the logic types. The relative ease in fabrication

stems from the large and less rigid control required for the pinchoff

voltage. This relatively large voltage swing of = 2.5 V also results in

good noise immunity. BFL is fabricated with a minimum pinchoff voltage

of approximately -1.5 volts, which is roughly the maximum V  expected

for the high frequency 20 GHz) low noise amplifier. This difference

in pinchoff voltage is somewhat incompatible with the low noise

}
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amplifier and would require different conductive layers for the logic

and amplifier sections of the design. The low "on" state resistance of

BFL is compatible with switching FETs possibly needed in path length

modulators.

The very high speed capabilities of BFL have been shown in

Liechti et al. ([23], p. 998). A 5 Gbps (up to 6.5 Gbps) 8:1 parallel

to serial converter was constructed with 600 active devices (400 MESFET

and 230 diodes), utilizing the full available power budget of 2W per

chip. Channels 0.25 um deep with n-<_ 2.5 x 10 17 cm-3 were formed with

500 KeV Se implants at 6 x !0 12 cm
-2
 through a 0.8 um thick Al mask. To

lower the channel and diode resistances, n+ regions were implanted with

500 KeV Si to 1 x 10 13 cm-2 dose, then annealed in Si3N4 encapsulation

at 850°C for 15 minutes. Ohmic contacts were formed by evaporation of

NiCr, Ge and Au, and recessed, 1.0 um, Cr-Pt-Au gates using liftoff and

Si02 capping were employed. Second layer interconnects were formed with

1 um Ti-Pt-Au delineated by argon ion milling. Driver MESFETs used

+4.5V and -3.5V supply voltages, 10 mW power, 60 ps propagation delay

(unity fan in and fan out) with 2.5 V logic swings. This example shows

the very high speed and high power consumption of BFL.

The primary disadvantage of BFL, relative to this modem appli-

cation, is the high power consumption which limits the gate density to

about 10 3 gates/chip. This is about the expected density of the modem

design (vicinity of 1000 to 2000 gates). The minimum power dissipation

of BFL is at the point of exceeding the maximum of the allowable power

dissipation (- 2 watts) on the chip ( [ 11 , p. 599; [ 21 , p. 379) .
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3.1.2.2 Low Pinchoff FET Logic, Schottky Diode FET Logic.

The main motivation behind the development of LPFL was to avoid the

fabrication problems of direct coupled FET logic (DCFL) by allowing

twice the flexibility in the range of VP control ([19], p. 574) and yet

maintain nearly the same simple circuit approach as DCFL. After

investigating LPFL, little advantage can be found over SDFL. SDFL is

roughly 25% faster ([3], p. 294; [11], p. 293) and offers a more

flexible design and fabrication scheme. The gates may be designed to

operate at very low pinchoff voltages and logic swings (i.e. VP0.5,

AV=0.5) or by adding a level shift diode higher pinchoff voltages and

higher logic swings may be used ([1], p. 673). This would increase

noise immunity and speed at the expense of increased power. SDFL

requires more VP control than LPFL for a given design. The range of VP

in LPFL is = 0.0 ± 0.2 volts.

Another important disadvantage of LPFL is the apparent lack of

compatibility with line switching MESFETs of the phase modulators and

with LNAs. Based on a survey of the channel characteristics of these

devices, LPFL will have too small a pinchoff voltage for low channel

resistance line switches and LNAs. The channel requirements will be

investigated in more detail with MESFET computer models. Since the

technology available for tighter VP control is developing rapidly, and

since VP control in SDFL is not a paramount problem, LPFL is not as

popular as DCFL or SDFL and does not seem a likely choice in. selection

of a logic type.

3.1.2.3 Direct Coupled FET Logic: Enhancement MESFET,

Enhancement/Depletion MESFET.	 Enhancement and enhanccmea ►t/depletion



A

MESFET logic offer the convenience of requiring only one power supply

(1-2 volts). Also, both have similar circuit configurations which are

the simplest of all the other logic types (see Figure 3.4). The main

difference between the two is that the load in E/D-MESFET logic consists

of a depletion FET while in E-MESFET logic the load consists of an

ohmic, usually epitaxial, resistor. This FET load gives E/D-MESFET

logic increased speed and a much sharper output voltage swing than the

resistor load since its pull-up characteristics are parabolic (constant

current), and thus stronger ([I], p. 644; [2], p. 377). Both logic

types require very precise control of the pinchoff voltage for the

switching FET, i.e. t.03 to ±.05 volts ([1], 615).. This requires

controlling the channel thickness to within ±208 ([11, p. 587), a

current technological challenge. From compatibility with LNA

fabrication considerations, no advantage is obtained with E-MESFET since

the additional channel for the depletion mode %NA is necessary anyway.

E/D MESFET logic requires two different channel configurations. The

depletion FET channel V P has a wide range; VP = -0.85 to -1.5 [4,5]

and is con.y.. ible with the depletion mode LNA. This flexibility stems

from the D-MESFET's application as a constant current source. Within a

wide range of VP , the channel width is adjusted to give the required

current needed to balance the gate's rise and fall times. Thus E/D

MESFET logic is chosen over E-MESFET logic.

The highest level of integration of E/D MESFET logic found is

a 1 kb static RAM reported by Ino et al. [22]. The FETs employed highly

doped, n+Si ion implanted layers close to the gate, in order to in-

crease the speed by decreasing channel resistances. Gate lengths for
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both FETs are 1 um and the driver, transfer, and depletion FETs widths

are 9, 4 and 4 um, respectively. Supply voltage is 0.7 to 1.5 volts and

logic swing - 0.6 volts. The n+ - n+ spacing is 1.5 um. Annealing was

performed with Si3N4 encapsulation. SiO2 deposition and gate-liftoff

were employed. This chip contains a total of 7084 FETs (4811 E-FETs and

2273 D-FETs).

Another example of LSI with E/D MESFET logic is presented by

Fujitsu Laboratories ([41 p. 6). The chip is a 6.4 ps., 6 x.6 bit multi-

plier with_408 NOR gates comprising 1284--enhancement and depletion FETs

dissipating 173 mW at V s = 1.5 volts. Propagation delay-per gate is 210

to 260 ps, dissipating. 0.35 mW/gate at V s = 1.5 volts. Fabrication

techniques included a self-aligned gate 2 um long. The FETs were

fabricated with Si+ ion implantation at 59 KeV with a dosage of

1.1 x 10 12 cm-2 for the enhancement FETs and 2.1 x 10 19 cm-2 for the

depletion FETs. Self-aligned n+ regions were formed with Si implan-

tation at 175 KeV and a dosage of 1.7 x 10 23 cm - 2 . Annealing was

performed with 0.1 um SiO 2 encapsulation. Gates and first level inter-

connects were delineated via TiW sputtering and reactive ion etching.

Au-Ge-Au ohmic contacts were formed by liftoff and Ti-Au was used as a

second level interconnect. This example shows the low power-high

integration level and speed (= 2 Gpbs) capabilities of E/D-MESFET logic.

3.1.2.4 Comparison of E/D MESFET and SDFL. Further con-

sideration of E/D MESFET and SDFL is necessary to determine applic-

ability and compatibility with the system proposed. The switching

diodes and the D-MESFET (V P = -1.0, ((1), p. 588)), of SDFL do not

require, but usually use, two different doping profiles to optimize the
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speed of the switching diodes. Selective ion implantation is usually

used to accomplish this optimization ([i], p. 680; [2], p. 373). Al-

though SDFL requires careful pinchoff control to obtain a low V P ([1],

p. 598; [2], p. 373) and balanced driving capability, V P does not have

to be controlled as carefully as in DCFL (±30 to ±50 mV) SDFL tolerates

a VP deviation three times greater, respectively ([121, p. 574). For

this reason DCFL development has lagged behind SDFL technologies.

However, both have recently achieved LSI. DCFL stands to gain the most

from technological achievements in V P control expected in the near

future.

Another advantage of SDFL is higher noise immunity due to

larger voltage swings (0.5-*1.4 V) ([31, p. 294). The primary

disadvantage is that SDFL uses 5 to 10 times the power of E/D logic

([11, p. 588). Doping concentrations used for both the LNAs and logic

circuits are in the "typical" range of 1.2 x 10 17 cm
-3
 to 2.5 x 1017

cm-3 . Both logic types have pinchoff voltages that would allow

fabrication of channels with acceptably low "on" resistances needed for

parallel "reflected" line switches as well as :hannel characteristics

compatible with LNAs. The technologies involved in fabricating DCFL and

LNA circuits have been closely paralleled, exchanging techniques to

obtain similar characteristics. In particular the techniques involving

Vp controls, channel resistances, contact resistances and gate size,

have been shared ([71, p. 88). This is considered ar, important

advantage for the compatibility of the logic types (particularly

E/D-logic) and LNAs. In conclusion both SDFL and E/D-MESFET logic

'..
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should be strongly considered as compatible logic types for this modem

development.

3.1.3 High Frequency GaAs Low Noise Amplifiers (LNA)

The preliminary receiver modem design consists of an RF (20-30

GHz) amplification stage, followed by quadrature detection processes. A

high gain, low noise RF amplification stage is necessary to minimize

noise contributions from the mixing and baseband amplification.

Typical low noise amplifiers have a channel doping N  = 1-3 x 1017

cm
-3
 and a height of 1000-2000A ([1], p. 177). Noise reaches a minimum

around 2.5 x 10 17 cm-3 , whereas gain begins to saturate near 3 x 1017

cm-3 for a gate length of 0.5 Um.

The largest noise sources are the source and gate resistances.

Source resistance may be decreased by recessing the gate (increase S-G

channel height), increasing the doping of the source and drain region

(ion implantation of contacts), or decreasing the source-gate

separation. Device geometry can be optimized to minimize these

parasitics ([10], p. 181) and thus minimize the noise ([7], p: 87; [8],

p. 944) without changing the channel height.

The most outstanding performance of GaAs LNAs noted to date

has been reported by Watkins and Schellenberg ([241 p. 145). This

1/4 x 30 um interdigitated MESFET demonstrates 5.0 dB gain at 52 to 62

GHz with a 7.1 db NF at 60 GHz. The best performance at 30 GHz is 2.6

dB noise figure with 8.3 dB gain. These devices were formed by either

ion implantation or VPE techniques with VPE showing both superior gain

and noise figure performance.
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For integrated microwave amplification, E. Watkins, J. M.

Schellenberg and H. Yamasaki [25] have reported a 27.5 to 30 GHz GaAs

FET amplifier with 4.6 dB NF and 17.5 dB gain. Three stages of

amplification were used. The first and .3econd stages consist of

0.25 x 75 um FETs with total periphery of 150 um. The third stage

consists of 0.5 x 50 um FETs with total periphery of 100 um. The gates

were delineated by direct electron beam lithography. These amplifiers

are employed in a receiver containing a 25-30 GHz dual gate FET mixer

with a 10 dB NF and a dielectrically stabilized FET oscillator. This

concept of RF amplification and establishment of the noise figure,

followed by demodulation, appears to be the most suitable process for

the receiver modem.

From the description of FET geometry for logic and microwave

applications, it is noted that in all cases, the geometry is extremely

similar with the exception of channel heights and widths. Low noise

amplifiers typically have wider gates for smaller source-gate

resistance. The implanted channel dopant is usually Si, occasionally

Se, while S often is used for deep n + contact, implants [12).

Preliminary investigations into the design and compatibility

of GaAs FET devices has begun through the included computer generated

performance curves. Tre important design parameters, pinchoff voltage,

gain, and carrier concentration have been compared for variations in

each. The curves are based on a recessed gate structure (Figure 3.14)

with ion implanted source and drain contact doping of 10 18 cm-3 , a

layer thickness of 0.25 um, source-gate spacing of 0.5 um and

gate-contact implant spacing of 0.03 um. The design also assumes

I
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heavily doped (ion implanted) source and drain contacts, and considers

surface depletion effects on the channel.

Figures 3.5 through 3.9 show the dependency of available gain,

noise figure, optimum source impedance, and pinchoff voltage on device

parameters such as gate length, gate width and channel doping. As an

example of application of these curves in preliminary design, choose

0.3 um gate length PET with doping of 10 17 cm' 3 . Figure 3.5 indi-

cates the noise figure when properly matched will be about 1.6 dB for 50

um finger widths, with a pinchoff voltage of about 0.75 volts. To

achieve this pinchoff voltage, Figure 3.6 indicates a channel height of

0.14 um is required. From Figure 3.7, the maximum available gain per

stage is about 8 dB for 50 um gate widths with V  = 0.75 and gate

length = 0.3 um. The optimum source resistance and reactance are 5 ohms

and -3 ohms, respectively.

3.1.4 Mixers

Active mixers having conversion gain can be readily fabricated

using GaAs dual-gate MESFETs (2J. The local oscillator signal is

relatively strong compared to the RF signal to be mixed to a lower

frequency, and when applied to one of the gates, controls the small

signal transconductance, gm , in periodic manner, thus giving the desired

product operation. By careful tuning of the match at input and output,

conversion gains of 10 dB can be obtained (compared to the 6 dB loss

typical of Schottky diode mixers), even with L.O. levels on the order of

0 dB or less.

Figure 3.10 illustrates the basic circuit of the dual-gate

mixer; device geometries are important in establishing good conversion
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efficiency when operated at 30 GHz; however the sub-micron gate length

technology achieved for low-noise amplifiers at these high frequencies

are adequate to afford proper mixing.

In the modem block diagram shown in Chapter 2 we assumed

direct-conversion to baseband in the receiver, meaning the L.O. is at

the desired RF carrier frequency. This has the obvious advantage of

avoiding IF stages and additional mixers, oscillators, etc., and

eliminates the image noise problem as well. This homodyne detection has

usually been avoided in other receivers for several reasons: (1) 1/f

noise of diode mixers predominates at low frequencies, requiring

considerable RF gain to overcome this noise source; (2) it is difficult

to achieve any channel selectivity at RF (would require tunable narrow-

band filters) and adjacent channel signals must be extracted at baseband

at the mixer output; and (3) frequency-tuning and bandpass filtering is

more easily done at an IF frequency. We believe these concerns are not

so important for the case at hand because the signal is rather wideband

(- 1 GHz) making it necessary that the IF be probably 3 GHz or higher

anyway, and we believe channel tuning and selectivity can also be

handled, due to the wide bandwidths involved. Direct conversion does

argue for large RF gain to overcome 1/f noise and to help the problem of

I and Q charnels needing equal gain. In monolithic form, this extra RF

gain required over a heterodyne receiver is a relatively cheap

commodity.

3.1.5 Oscillators

"Microwave-frequency signal sources have traditionally been

obtained by frequency-multiplying of a low-frequency (-- 100 MHz) crystal
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source, or by Gunn-effect devices. The former approach is complex

circuit-wise, needing filters to extract the proper harmonic and is

inefficient as well. Gunn oscillators are also inefficient (DC-to-RF)

and have rather poor phase noise characteristics. Recently GaAs MESFETs

have become popular at high frequencies, particularly when stabilized

with a high resonator in the feedback loop. This resonator is typically

a dielect-ric "pill" placed adjacent to a transmission line, to which

coupling is very good at a desired frequency. The resonator is

basically a resonant cavity whose size determines its resonant

frequency, hence the oscillation frequency of the circuit. Earlier

materials had poor temperature stability, causing the frequency to shift

with temperature. Barium titanate is a preferred dielectric now which

has greatly reduced the temperature sensitivity.

As was the case for the transmission line devices, the

resonator itself makes the oscillator relatively large. Figure 3.11

shows a schematic diagram for a dielectric resonator oscillator.

An oscillator stability of about 5 ppm (5 x 10 -6) at the

transmitter, on a 20 GHz carrier, gives a frequency uncertainty of 100

KHz. This is small considering the channel bandwidth of at least 1 GHz,

and the fact that the receiver phase lock loop will synchronize to

carrier offsets of perhaps 10 MHz. The stability above can, be relaxed

somewhat if difficult to achieve.

The local oscillator of the receiver can perhaps avoid the

resonator-stabilization and use transmission line coupling for the

feedback condition.	 We, in fact, desire this oscillator to be

voltage-tunable over ±10 MHz, obtained typically by d.c. biasing a
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varactor diode to achieve a variable capacitor. The long-term stability

of the receive oscillator must only be good enough to allow

synchronization to the transmitted signal.

3.1.6 Comparators, or A/D Converters

In the digital detection portion of the receiver, a filtered I

or Q channel signal must be compared with zero in the QPSK case, or with

a three-level set of thresholds in the QASK case. In A/D converter

parlance we need a 1-bit or 2-bit converter, respectively. The

conversion time must be a fraction of the symbol time (2 nsecs), assumed

to be 0.5 nsec. The flash-comparator structure is not complex due to

the small number of thresholds. Upadhyayula et al. [27] recently

reported a GaAs MESFET 3-bit converter capable of conversion in 0.2 nsec

with power consumption of about 400 mwatts for 2-bit conversion. The

circuit of Figure 3.12 shows their comparator circuit. in the QASK case

these would be three such comparators, whose outputs are decoded by

simple gates to 2-bits per sample and latched. The voltage thresholds

are determined by the ratio of the width of the load FET to that of the

switch FET, parameters which can be tightly controlled. FET pinchoff

voltages of 5-6 volts were used, assuming a 2 vol_ input signal. Doping

was 10 17 cm -3 , with 1 um gate lengths employed.

3.2 GaAs IC FABRICATION PROCESSES

Conductive channel formation on GaAs is accomplished through two

basic methods: epitaxial layer growth or ion-implantation. Epitaxial

layers have been used on a variety of discrete GaAs devices since the

late 1960's including the optical devices (lasers, photodetectors anH

LED's) and the microwave (FET, IMPATT and Gunn) devices. A large
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fabrication technology base has been accumulated for device processing.

Ion implantation technology in GaAs has only advanced in the past five

years with the availability of high quality semi-insulating CZochralski

grown GaAs. The advantage of round wafers allows automated processing

whereas the previously available Bridgman grown substrates were "D"

shaped and somewhat irregular.

3.2.1 Epitaxial processes

A variety of epitaxial processes have been used in FET fabri-

cation namely: liquid phase epitaxy, chemical vapor deposition, and

molecular beam epitaxy.

Liquid Phase Epitaxy (LPE) is used for discrete microwave FET

fabrication because it is simple and a much less expensive process.

Layer thickness control and variation is extremely difficult to maintain

and precise etching is usually required to achieve the correct layer

thickness. It is not easily used for IC fabrication because of the

large variation of layer thickness over a wafer, and also is typically a

single wafer process. Scaling the process for throughput of multiple

wafers has been achieved but not with the precise layer doping and

thickness control necessary for IC fabrication.

Chemical Vapor Deposition (CVD) or Vapor Phase Epitaxy (VPE)

has been the method of choice for large area GaAs substrates because of

the very uniform layer doping and thickness. Also, the system is easily

scaled so that multiple wafers may he processed in a single run. A wide

range of doping concentrations are achievable and thin layers (< 10009)

are possible using computer controlled gas flow systems. Three differ-

ent transport systems are typically used: AsC1 3 , AsH3 , and metal
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organic (MOCVD), all of which have been shown to achieve similar results

in terms of uniformity, layer thickness control, and device performance.

The AsC1 3 process has a slight advantage in crystal quality and repeat-

ability ((1), p. 96) but that advantage may be overshadowed by the

excellent thickness control (±100 A) available in MOCVD.

Molecular Beam Epitaxy (MBE) exhibits very good layer thick-

ness and doping control (±few percent), easily variable doping and

extremely abrupt layer interfaces. Heterojunctions are easily

accomplished as are varying doping profiles. Until recently MBE was

only used for research but machines with 2 inch substrate capability are

now available. The system is quite expensive (> $500,000) and although

MBE is a single wafer at a time process, a few wafers per hour may be

fabricated in a single machine. MBE offers potential advantages where

extremely thin layers or multiple layers of varying doping are

necessary.

3.2.2 Ion Implantation

Ion implantation (II) allows precise control of thickness and

doping of the active channel. Through recent improvements in annealing

cycles, extremely high activation (-90%) and channel thickness control

are achieved. Multiple dose and energy implants may be used to fabri-

cate conducting pathways of differing resistivity, and also to tailor

the channel layer profile somewhat. Abrupt changes in carrier profile

are not feasible. The important advantages of ion-implantation are the

ability to control the pinchoff voltage, the relative ease of fabrica-

tion, and allowance for processing of multiple three or four inch

diameter wafers in a single run. Also, ion implantation allows a
i
4
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self-aligned gate process where the gate metalization acts as the mask

for source and drain contacts, thereby neglecting the need for careful

mask reregistration in the gate area. Self-alignment is particularly

important in IC fabrication where gate spacing and positional accuracy

must be maintained over a large area (> 1= 2) and a large number of

devices (> 1000).

IC's may be fabricated by ion- implantation di:ectly into a

semi-insulating GaAs substrate, or into az epitaxial layer. Initial

work utilized implantation into epitaxial_ layers to arhieve the high

crystal quality 'ano low defect' structure'of epitaxial matari.al and the

doping control of implantation. Direct implantation into a GaAs

substrates has become a viable process with recent improvements in

crystal defects and thermal stability of LEC GaAs substrates. In

addition, a totally ion implanted process has fewer processing steps and

therefore is simpler and has potential to be a higher yield and less
f	 _
1	 expensive process.

3.2.3 Self-Aligned Gate Process

The self-aligned gate process has recently been exploited for

remedying the problems of precise mask alignment for channel doping and

ga`e delineation. Two critical factors limiting MESFET performances and

yield in conventional IC processing are the precise gate recess etch

used in VP control and the precise gate alignment relative to existing

channel regions for reducing the source resistance. Ions are often

implanted under the source and drain contacts to reduce the contact

resistances, and between the gate and the source and drain to reduce the

channel resistances. The spacing between the n+ region and the gate is
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typically between 500A to 20008. Shorter spacings give higher capaci-

tances and longer spacings yield high channel resistances. The self-

aligned gate process avoids the problem of needing critical mask align-

ment in forming these small spacings by using the gate metal (buried

contact technique) or the gate metal resist (T-gate technique) as an n+

ion mask.

In the buried contact technique, the gate metal is delineated,

its resist removed, and n+ ions are implanted with the gate metal as a

mask. This results in zero spacing between the n+ region and the gate

metal, thus causing increased capacitance. In the T-gate technique the

gate is delineated by a plasma etch that results in a gate length

shorter than the overhanging gate resist. Next, ions are implanted,

resulting in an n+ region-gate spacing of length equal to the length of

the resist overhang. With proper resist overhang length, the gate

capacitance is not increased and the increased channel resistance is

negligible.

3.2.4 Process Assessment and Conclusions

Direct ion-implantation into a semi-insulating GaAs substrate

has been shown capable of producing both digital logic and low noise

amplifier structures necessary for this modem development. Pinchoff

voltage control is easily achieved and self-alignment of the gate offers

less restrictive processing tolerances. Large area substrates may be

used, thereby decreasing the cost per chip and potentially increasing

yield and uniformity. Epitaxial IC processes are also reported in the

literature but the advantages of precise V P control, the ability to use
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multiple implantations, and the continual improvement in the implants-

tion process give ion-implantation the distinct advantage.
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4. CONCLUSIONS

Advanced communications techniques have been studied for

application to future communication satellite needs, with the assumption

of roughly 1-2 Gbps channel throughputs. This assumption led us to

focus on quadrature modulation techniques and simple continuous phase

modulation techniques as power and bandwidth efficient methods which are

relatively easy to realize in hardware. Out of this study has come the

definition of a dual-mode (QPSK/QASK) technique which affords a

high-level of system flexibility with very, little hardware

reconfiguration. We believe this technique is a good candidate for

circuit integration in monolithic form to produce a several chip modem

handling Gbps rate.

In parallel we have investigated current GaAs technclogy as it

applies to such a modem development. No significant technical barriers

seem in the way, with integration and compatability issues remaining

foremost. The GaAs MESFET provides a building block capable of

performing all of the various linear and nonlinear device functions of

amplification, phase modulation, mixing, threshold detection, etc.

Our recommendations for further work are:

(1) Further analyze the dual-modem technique, especially the

synchronization and data filters, to be able to clearly define

the performance requirements; some of this work is cur-,-.- . oy

being studied with aid of a lower speed (l Mbps) prototype

modem operating at a 10 MHz carrier frequency.
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(2) Study the binary CPM, h = 1/2 schemes with regard to very

high-speed implementation with quadrature-type receivers;

synchronization circuitry is a key item here as well.

(3) Characterize sc the chip level the functional design of the

modem in GaAs monolithic circuit forms. This will produce a

more detailed picture of the chip area required, its gate

complexity, and the power requirements. Recommendations on

device geometry and processing techniques will also be pro-

duced.



APPENDIX

Other papers found to be relevant to the work

reported earlier are listed below by general

category.
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