1,411 research outputs found

    Health and Care Infrastructure Research and Innovation Centre final report 2014

    Get PDF
    Improving healthcare, while containing costs, demands sophisticated understanding of three core elements in healthcare systems: infrastructure, technology and services. Their tripartite relationship is extremely complex, not least because the pace of change for each is different. That creates considerable challenges in planning for future needs and makes the management of innovation and change difficult. [Continues.

    Design and decision making to improve healthcare infrastructure

    Get PDF
    This report presents summary and key findings of research projects undertaken within the Health and Care Infrastructure Research and Innovation Centre (HaCIRIC)by Loughborough University. These projects develop new knowledge and theory on how the built environment adds value to the healthcare delivery process and mainly relate to: ‘Theme 3, Innovative Design and onstruction’ undertaken during HaCIRIC Phase 1; and provide an excellent foundation for the work to be undertaken within the Optimising Healthcare Infrastructure Value (OHIV)project during HaCIRIC Phase 2

    A Strategic Digital Transformation for the Water Industry

    Get PDF
    This book is a compilation of the knowledge shared and generated so far in the IWA Digital Water Programme. It is an insightful collection of white papers covering best practices, linking academic and industrial studies/insights with applications to give real-world examples of digital transformation. These White Papers are designed to help utilities, water professionals and all those interested in water management and stewardship issues to better understand the opportunities of digital technologies. This book covers a plethora of topics including: Instrumentation and data generation Artificial intelligence and digital twins The digital transformation and public health Mapping the digital transformation journey into the future With these topics, the aim is to present an all-encompassing reference for practitioners to use in their day-to-day activities. Through the Digital Water Programme, the IWA leverages its worldwide member expertise to guide a new generation of water and wastewater utilities on their digital journey towards the uptake of digital technologies and their integration into water services

    Incorporating declared capacity uncertainty in optimizing airport slot allocation

    Get PDF
    Slot allocation is the mechanism used to allocate capacity at congested airports. A number of models have been introduced in the literature aiming to produce airport schedules that optimize the allocation of slot requests to the available airport capacity. A critical parameter affecting the outcome of the slot allocation process is the airport’s declared capacity. Existing airport slot allocation models treat declared capacity as an exogenously defined deterministic parameter. In this presentation we propose a new robust optimization formulation based on the concept of stability radius. The proposed formulation considers endogenously the airport’s declared capacity and expresses it as a function of its throughput. We present results from the application of the proposed approach to a congested airport and we discuss the trade-off between the declared capacity of the airport and the efficiency of the slot allocation process

    A Strategic Digital Transformation for the Water Industry

    Get PDF
    This book is a compilation of the knowledge shared and generated so far in the IWA Digital Water Programme. It is an insightful collection of white papers covering best practices, linking academic and industrial studies/insights with applications to give real-world examples of digital transformation. These White Papers are designed to help utilities, water professionals and all those interested in water management and stewardship issues to better understand the opportunities of digital technologies. This book covers a plethora of topics including: Instrumentation and data generation Artificial intelligence and digital twins The digital transformation and public health Mapping the digital transformation journey into the future With these topics, the aim is to present an all-encompassing reference for practitioners to use in their day-to-day activities. Through the Digital Water Programme, the IWA leverages its worldwide member expertise to guide a new generation of water and wastewater utilities on their digital journey towards the uptake of digital technologies and their integration into water services

    Book of abstracts of the ICIEOM-CIO-IIIE International Conference 2015

    Get PDF
    BOOK OF ABSTRACTS OF THE ICIEOM-CIO-IIIE INTERNATIONAL CONFERENCE 2015: ENGINEERING SYSTEMS AND NETWORKS: The way ahead for industrial engineering and operations managemen

    Circular economy design visioning: exploring industrial and urban symbiosis in South African cities.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Cities of tomorrow will be at the coalface of the complex challenges posed by climate change, e.g. resource scarcity. Climate change adaptation strategies will include circular economy (CE) practices (e.g. industrial and urban symbiosis) to increase the rate of recycling technical nutrients, in turn improving the resource efficiency of cities. The study investigates industrial and urban symbiosis in South Africa. In doing so, exploring technology enabled (i.e. cyber-physical-social ecosystems) CE solutions to designing out waste in South African cities. One of the key contributions of the research is the comprehensive synthesis and testing of an iterative problem structuring, theory building and design visioning (problem-theory-design) continuum to inform CE experimentation. A mixed methods design visioning approach is developed through an experiential and iterative design practice nested in a network of interdisciplinary theoretical constructs: 1) philosophical construct – Ecological Literacy (systems thinking), 2) techno-economic construct – Third Industrial Revolution (internet-of-things enabled general purpose technology platform), and Circular Economy (industrial and urban symbiosis), and 3) design construct – properties of Ecodesign derived from the dynamic renewable design of natural ecosystems. The research argues that to construct a meaningful CE transition experiment, a logical starting point is to distil key findings from a theoretically embedded case study to inform the design of a virtual experiment and simulation sketch. Through an embedded multiple case study approach the research investigates complex resource recovery dynamics in two key waste economy sub-sectors; industrial waste management and urban informal recycling sectors in the province of KwaZulu-Natal (KZN). The case studies provide an integrated method (i.e. synthesising quantitative and qualitative knowledge) for holistic and high-resolution problem structuring. From a systems thinking perspective, key leverage points (i.e. data, information sharing and infrastructure) are identified for potential policy and technology intervention. Learnings from the case studies inform policy recommendations and CE innovation. The findings from the industrial symbiosis (IS) case study illustrate that firms and supply chain networks recognise the environmental importance of improving industrial waste management practices, however they are locked-in to end-of-pipe solutions. Firms highlighted regulation, price sensitivity, customer pressure and top management as key drivers of pro-environmental behaviour change (e.g. waste beneficiation). The findings highlight the unrealised IS potential in the South vi Durban Basin. In addition, revealing significant barriers to IS, i.e. lack of information sharing between firms and a weak regulatory environment. To increase the detection, matching and emergence of IS relationships will command the dynamic co-production of codified resource flow data; herein a big data analytics approach can be employed to construct open source platforms for interfirm information (e.g. residual resource flows) sharing and knowledge production – an industrial commons internet. The urban symbiosis case study explores the informal recycling sector in KZN analysing the instrumental role of waste pickers as primary looping agents in recovering recyclable materials from post-consumer waste and increasing the supply of recyclable materials (e.g. cardboard, paper, plastic and metal) in the secondary resources economy. Waste pickers are an important link in recycling value chains; sorting, gathering and manually transporting recyclable materials to buy-back-centres and informal collection pick up points. The case study investigates how their efficiency can be improved to stimulate greater positive environmental impacts, create decent employment opportunities, and reduce waste management costs for municipalities. The findings from the case study on waste pickers are extrapolated in a CE design visioning exercise. From a systems level perspective, the research culminates in the sketch of a virtual circular city experiment; a cyber-physical social ecosystem (CPSE) designed to increase recycling rates in cities by addressing the infrastructural needs of waste pickers. The hardware, software and social ecosystem is built out of an internet-of-things (IoT) platform. Firstly, the IoT enabled infrastructural system improves material recovery efficiencies (of post-consumer recyclable materials) by increasing connectivity between waste pickers and waste collectors. Increased connectivity allows for looping and aggregating material stock and flow data. Secondly, the integrated hardware and software infrastructure provides an automated, digitised and decentralised buy-back-transfer service – delivered through connected and solar-powered collection nodes strategically distributed throughout the city in a mesh network configuration. Thirdly, the digital platform aggregates big data and employs advanced analytics to generate actionable residual resource intelligence, consequently enabling evidence-based decision making by key stakeholders, e.g. government agencies, industry associations, recyclers and material reprocessors. To further the research agenda, the next step is structuring a real-world transition experiment based on the virtual circular city design experiment, defined as, the internet-of-waste pickers (IoWP)

    Challenges and Opportunities in Applied System Innovation

    Get PDF
    This book introduces and provides solutions to a variety of problems faced by society, companies and individuals in a quickly changing and technology-dependent world. The wide acceptance of artificial intelligence, the upcoming fourth industrial revolution and newly designed 6G technologies are seen as the main enablers and game changers in this environment. The book considers these issues not only from a technological viewpoint but also on how society, labor and the economy are affected, leading to a circular economy that affects the way people design, function and deploy complex systems
    • …
    corecore