3,977 research outputs found

    Rigorous Design of Complex Distillation Columns Using Process Simulators and the Particle Swarm Optimization Algorithm

    Get PDF
    We present a derivative-free optimization algorithm coupled with a chemical process simulator for the optimal design of individual and complex distillation processes using a rigorous tray-by-tray model. The proposed approach serves as an alternative tool to the various models based on nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP) . This is accomplished by combining the advantages of using a commercial process simulator (Aspen Hysys), including especially suited numerical methods developed for the convergence of distillation columns, with the benefits of the particle swarm optimization (PSO) metaheuristic algorithm, which does not require gradient information and has the ability to escape from local optima. Our method inherits the superstructure developed in Yeomans, H.; Grossmann, I. E.Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res.2000, 39 (11), 4326–4335, in which the nonexisting trays are considered as simple bypasses of liquid and vapor flows. The implemented tool provides the optimal configuration of distillation column systems, which includes continuous and discrete variables, through the minimization of the total annual cost (TAC). The robustness and flexibility of the method is proven through the successful design and synthesis of three distillation systems of increasing complexity.The authors would like to acknowledge financial support from the Spanish “Ministerio de Ciencia e Innovación” (CTQ2009-14420-C02-02 and CTQ2012-37039-C02-02)

    Heterogeneous Batch Distillation Processes: Real System Optimisation

    Get PDF
    In this paper, optimisation of batch distillation processes is considered. It deals with real systems with rigorous simulation of the processes through the resolution full MESH differential algebraic equations. Specific software architecture is developed, based on the BatchColumn® simulator and on both SQP and GA numerical algorithms, and is able to optimise sequential batch columns as long as the column transitions are set. The efficiency of the proposed optimisation tool is illustrated by two case studies. The first one concerns heterogeneous batch solvent recovery in a single distillation column and shows that significant economical gains are obtained along with improved process conditions. Case two concerns the optimisation of two sequential homogeneous batch distillation columns and demonstrates the capacity to optimize several sequential dynamic different processes. For such multiobjective complex problems, GA is preferred to SQP that is able to improve specific GA solutions

    Logic hybrid simulation-optimization algorithm for distillation design

    Get PDF
    In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues related to the convergence of distillation columns (or column sections) are also maintained in the simulation environment. The model is formulated as a Generalized Disjunctive Programming (GDP) problem and solved using the logic based outer approximation algorithm without MINLP reformulation. Some examples involving from a single column to thermally coupled sequence or extractive distillation shows the performance of the new algorithm.Spanish Ministry of Science and Innovation (CTQ2012-37039-C02-02)

    Rigorous design of distillation columns using surrogate models based on Kriging interpolation

    Get PDF
    The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by superstructure approaches. However, these methods have not been widely used because they lead to mixed-integer nonlinear programs that are hard to solve, and require complex initialization procedures. In this article, we propose to address this challenging problem by substituting the distillation columns by Kriging-based surrogate models generated via state of the art distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate Kriging-based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical noise-free models. For distillation columns (slightly noisy systems), Karush–Kuhn–Tucker optimality conditions cannot be tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that contains the actual local minimum.The authors gratefully acknowledge the financial support of the Ministry of Economy and Competitiveness of Spain, under the project CTQ2012-37039-C02-02

    Synthesis and design of integrated reaction-separation systems with complex configurations and rigorous models

    Get PDF
    Chemical engineering, and specially process design, synthesis and intensification, are well positioned to support both society and industry in overcoming present global challenges of environment degradation, energy supply, water scarcity and food supply. These challenges have been translated into industrial problems that involve the design of chemical processes with decreased water and energy consumption, and improved efficiencies. In this context the present study focuses on the simultaneous synthesis and design of reaction-separation systems including complex configuration distillation columns and using rigorous models. The study is considered a further step in this research area, as previous works have usually focused on the synthesis of sub-networks and have used shortcut models. Additionally, among complex configuration, thermally coupled distillation columns are reported to present significant savings in terms of the total annualised cost of the system. Among the available approaches to synthesis and design, a superstructure optimisation approach is used. The procedure involves the construction of a superstructure that includes a reaction superstructure, taken from Ma et al. (Ma et al. 2019) and a separation superstructure, proposed by Sargent and Gaminibandara (Sargent and K. Gaminibandara 1976). The modelling is performed using generalised disjunctive programming (GDP) to produce a logic-based model. This model is then reformulated into a mixed-integer nonlinear programming (MINLP) optimisation problem, where the objective is to minimise the total annualised cost of the process. For the reformulation convex hull and bypass efficiency methods are used. A modified version of the solving strategy presented by Ma et al. (Ma et al. 2019) is used, which involves using the solver SBB in General Algebraic Modelling System (GAMS). The proposed framework is applied to a case study previously addressed by Zhang et al. (Zhang et al. 2018) and Ma et al. (Ma et al. 2019). Economic models and assumptions made in those studies are maintained in order to evaluate the benefits of including complex configuration columns in the design possibilities. Results present a flowsheet with one PFR reactor and complex configuration distillation columns that are partially thermally coupled. The total annualised cost of the process is 5.85x105 $/yr, which is 6.3% and 4.7% less than the value achieved by Zhang et al. (Zhang et al. 2018)and Ma et al., respectively. Results show that it is both possible and beneficial to consider complex configuration distillation columns, including thermally coupled ones, in the simultaneous synthesis and design of reaction-separation systems using rigorous models.Chevening AwardsAgencia Nacional de Investigación e Innovació

    Synthesis and design of integrated reaction-separation systems with complex configurations and rigorous models

    Get PDF
    Chemical engineering, and specially process design, synthesis and intensification, are well positioned to support both society and industry in overcoming present global challenges of environment degradation, energy supply, water scarcity and food supply. These challenges have been translated into industrial problems that involve the design of chemical processes with decreased water and energy consumption, and improved efficiencies. In this context the present study focuses on the simultaneous synthesis and design of reaction-separation systems including complex configuration distillation columns and using rigorous models. The study is considered a further step in this research area, as previous works have usually focused on the synthesis of sub-networks and have used shortcut models. Additionally, among complex configuration, thermally coupled distillation columns are reported to present significant savings in terms of the total annualised cost of the system. Among the available approaches to synthesis and design, a superstructure optimisation approach is used. The procedure involves the construction of a superstructure that includes a reaction superstructure, taken from Ma et al. (Ma et al. 2019) and a separation superstructure, proposed by Sargent and Gaminibandara (Sargent and K. Gaminibandara 1976). The modelling is performed using generalised disjunctive programming (GDP) to produce a logic-based model. This model is then reformulated into a mixed-integer nonlinear programming (MINLP) optimisation problem, where the objective is to minimise the total annualised cost of the process. For the reformulation convex hull and bypass efficiency methods are used. A modified version of the solving strategy presented by Ma et al. (Ma et al. 2019) is used, which involves using the solver SBB in General Algebraic Modelling System (GAMS). The proposed framework is applied to a case study previously addressed by Zhang et al. (Zhang et al. 2018) and Ma et al. (Ma et al. 2019). Economic models and assumptions made in those studies are maintained in order to evaluate the benefits of including complex configuration columns in the design possibilities. Results present a flowsheet with one PFR reactor and complex configuration distillation columns that are partially thermally coupled. The total annualised cost of the process is 5.85x105 $/yr, which is 6.3% and 4.7% less than the value achieved by Zhang et al. (Zhang et al. 2018)and Ma et al., respectively. Results show that it is both possible and beneficial to consider complex configuration distillation columns, including thermally coupled ones, in the simultaneous synthesis and design of reaction-separation systems using rigorous models.Chevening AwardsAgencia Nacional de Investigación e Innovació

    Infinite/infinite analysis as a tool for an early oriented synthesis of a reactive pressure swing distillation

    Get PDF
    The study contributes to the characterization of an original reactive pressure swing distillation system. The methyl acetate (MeAc) transesterification with ethanol (EtOH) to produce methanol (MeOH) and ethyl acetate (EtAc) is shown as illustrative example. The streams outside the units are evaluated by the ∞/∞ analysis to provide insights on the process behavior. Two simpler systems with recycling stream are also presented.The ∞/∞ analysis allows checking the interrelation of the system streams without any column design consideration. Unfeasible regions, low limit values, multiplicity regions, discontinuities, control difficulties, recommendable operation conditions and column profile combinations are predicted and discussed. All these information are useful to establish an early and suitable system design strategy
    corecore