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Abstract 

The economic design of a distillation column or distillation sequences is a challenging problem that has been addressed by 

superstructure approaches. However, these methods have not been widely used because they lead to mixed-integer nonlinear 

programs that are hard to solve, and require complex initialization procedures. In this paper, we propose to address this 

challenging problem by substituting the distillation columns by kriging-based surrogate models generated via state of the art 

distillation models. We study different columns with increasing difficulty, and show that it is possible to get accurate kriging 

based surrogate models. The optimization strategy ensures that convergence to a local optimum is guaranteed for numerical 

noise-free models. For distillation columns (slightly noisy systems), Karush-Kuhn-Tucker optimality conditions cannot be 

tested directly on the actual model, but still we can guarantee a local minimum in a trust region of the surrogate model that 

contains the actual local minimum. 

 

Topical Heading: Process System Engineering. 

Keywords: simulation, optimization, design (distillation columns), kriging algorithm, mathematical modeling. 

 
Introduction 

In recent decades, there has been increasing demand for computationally efficient process models in many engineering 

applications. In general, the process modeler has to tradeoff model accuracy against computational efficiency. This is 

especially true when we want to use the models for optimization. Most of these models have a modular structure to which 

users have limited internal access and they can only see them as “grey or black box models”. Some of these models need a 

notable CPU computational time and/or their derivatives cannot be accurately estimated because they introduce numerical 

noise. 

As the trend in process systems engineering goes towards integrating optimization models with different origins (from home 

made to complex computer fluid dynamics) involving multiple levels of decision (integration of planning and scheduling or 

real-time optimization), there is a demand for computationally efficient surrogate models1 that at the same time ensure an 

acceptable degree of accuracy.2 

Biegler et al.,3 classified surrogate modeling into two categories: model order reduction and data driven modeling. Model 

order reduction reduces the complexity of a high fidelity model while, at the same time, retaining most of the structure of the 

original equations. Data driven modeling only uses data which comes from complex models or experiments, but it does not 

make use of the explicit formulation of any model. This paper focuses on this second approach. The use of simulation data to 
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build models for individual parts of a large system can also be viewed as a multi-scale modeling approach,4 which is widely 

used in modeling-simulation of complex systems. 

Data driven surrogate models have become popular due to their wide applicability.5-7 In the context of optimization data 

driven surrogate models – for simplicity «surrogate models» hereinafter – they can be used in the following situations: (1) A 

mathematical model of the process does not exist but we can draw data from the actual process. (2) There is a model but it is 

too complex and cannot be reduced to the desired degree by using model order reduction techniques. (3) The model can be 

used for simulation but cannot be included in an optimization environment.  

There are different reasons why a simulation model cannot be included in an optimization environment.7-9 If the user has 

access to the explicit model formulation the only reason for using surrogate models is that the model is too complex to be 

directly included in an optimization environment (for example computer fluid dynamic models). If the user does not have 

access to the explicit simulation model it might be possible to use the simulation model in an optimization environment as an 

'implicit' model; in fact, IPOPT10 has been used to optimize ASPEN-based simulations.11 However, this is only possible 

under some conditions: 

� The simulation model requires short execution times. Note that eventually the number of evaluations of the 

simulation model might be very large, especially if derivative information is obtained from perturbations of 

independent variables. In this case, the total execution time might eventually become prohibitive. 

� The simulation model must not generate numerical noise. Noisy models require large perturbations when 

calculating derivative information. As a consequence, the «quality» of the Jacobian matrix is compromised, the 

behavior of the optimization solver becomes erratic7, 12 and the optimality conditions are difficult (or impossible) to 

verify. 

� The simulation model always converges, or alternatively we have a specialized algorithm designed to recover from 

simulation convergence failures. 

Alternatively, derivative-free optimization (DFO) is a class of algorithms designed to solve optimization problems when 

derivatives are unavailable, unreliable or prohibitively expensive to evaluate13-15. These solvers try to locate an optimal point 

using a limited number of black-box function calls. Although DFO algorithms can be used in models with costly and/or noisy 

function evaluations, these methods are often constrained to models in which the number of degrees of freedom does not 

exceed about 10.13 

According to the framework of application,  a single model of the objective function is usually approximated before 

optimization; in a few cases, the constraint set is modeled as well but in these cases precautions must be taken to avoid the 

small but accumulated errors in active constraints and objective function rendering feasible solutions in the surrogate model 

that could eventually be infeasible in the actual model.7 

Additionally, instead of considering all the simulation as a black box, some existing techniques disaggregate the simulation 

model into different blocks and model each block separately before optimization, ensuring that all relevant connectivity 

variables are modeled.15 In this way, by disaggregating the process, smaller and more robust models are generated. Moreover, 
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if part of the actual model can be used in its original form (it is fast, reliable and noise free) the number of surrogate models 

can be reduced and efficiency increased. These disaggregated process units can be linked via connectivity variables to 

formulate complex mixed-integer optimization models. 15 

It is worth remarking that not all approximating model approaches have the same accuracy when their parameters are 

estimated using a reduced number of data sets.16 Polynomial17 and kriging1 metamodels are often generated from small data 

sets. Regression by splines18 usually requires moderately sized data sets, while neural networks19 typically require quite large 

data sets. In this context, the work of Cozad and Sahinidis deserves special mention.15 These authors, using a database of 

possible basic functions, are able to find the best set of basic functions that accurately reproduces the original model while, at 

the same time, using a reduced number of sampling points. Overfitting or the use of unnecessary terms is avoided by 

combining optimization techniques and statistical methods, in particular the Akaike information criteria.20 

In this paper we focus on kriging metamodels because they combine computational efficiency with relatively small sampling 

data. Typically, Kriging models are fitted to data that are obtained for larger experimental areas than the areas used in low 

order polynomial regression; i.e., Kriging models are global (rather than local). These models have been used for both, 

sensitivity analysis and optimization.21 

Significant work has been done with kriging models using the full system approach9, 16, 22 or by disaggregating parts of the 

model.7 Palmer and Realff16 studied the optimization of steady-state simulators using kriging surrogate models. David and 

Ierapetritou9 used complete process kriging models to locate global model solutions and refine them using local response 

surfaces around the optima. Huang et al.,22 used kriging models on the complete processes to address uncertainty in black-

box systems. Caballero and Grossmann7 investigated disaggregated (modular) flow sheet optimization using kriging models 

to represent process units with low-level noise. Henao and Maravelias8 used disaggregated models for each unit in a 

flowsheet using artificial neural networks. An interesting review of kriging applications in simulation can be found.21 

The rigorous design of a distillation column or a column sequence is a challenging problem in chemical process engineering 

because it involves the simultaneous optimization of continuous decisions related to the operational conditions, and discrete 

decisions related to the number of trays in each column section; and in the case of column sequences, to column connectivity 

(i.e. a given column exists or not in the final design). One of the major challenges is to perform a tray by tray optimization in 

models assuming phase equilibrium. 

One of the first approaches to designing a distillation column using mathematical programming was developed by Sargent 

and Gaminibandara.23 Here the objective was to locate the optimal feed location to a column with a fixed number of trays; to 

this end the column was modeled using the MESH equations (Mass balances, phase Equilibrium, molar fraction Summation 

equals one in all phases, and Enthalpy balances). 

However, the first model that considers the simultaneous optimization of the feed tray position and total number of trays was 

that of Viswanathan and Grossmann.24, 25 The model takes the form of a Mixed Integer NonLinear Programming (MINLP) 

Problem and also relies on the MESH equations. A major difficulty with this model is related with non-existing trays, which 

could produce numerical problems due to the lack of convergence of equilibrium equations with zero value in the flow of one 

Page 3 of 58

AIChE Journal

AIChE Journal

This article is protected by copyright. All rights reserved.



of the phases. To avoid numerical problems related to the MINLP formulation, Yeomans and Grossmann26, 27 proposed a 

model based on Generalized Disjunctive Programming (GDP). The advantage of the disjunctive approach is that the MESH 

equations of the non-existing trays do not have to be converged, and therefore, flows in the column are not forced to take 

values of zero. Consequently, the convergence of the optimization procedure is more reliable.  

Barttfeld et al.,28 performed a comparative study of MINLP and GDP formulations concluding that GDP formulations are 

numerically more robust and require less solution time, but are more sensitive to initial values and bounds. In order to 

provide a good feasible initial design and good initial values for the rigorous optimization, Barttfeld and Aguirre29, 30 

proposed a reversible distillation model that involves minimum reflux as well as minimum entropy generation; but this 

approach is limited to the so called 'preferred separation'.  

Alternatively, Kraemer et al.,31 proposed a successive relaxed MINLP (SR-MINLP) which reformulates the MINLP or GDP 

problems as pure continuous problems with big-M constraints, where all discrete decisions are represented by continuous 

variables. The discrete decisions are enforced by non-convex constraints that make the continuous variables take discrete 

values. Harward and Marquardt32 proposed a multistage procedure in which the results of a stage are used as initial values of 

the following stage. It starts by calculating the minimum energy demand and the concentration profile based on pinch points, 

then they solve a simplified model that comprises only component mass balances and equilibrium relations, but not enthalpy 

balances, then the energy balance is added and the final solution is obtained using an SR-MINLP approach. 

Even with all these difficulties, complex problems have been successfully solved, for example Dunnebier and Pantelides33 

solved complex sequences of thermally coupled distillation columns. The synthesis of azeotropic sequences has been 

addressed by Bauer and Stichlmair,34, 35 or Barttfeld et al.36, and the reactive distillation was studied by Ciric and Gu,37 and 

Jackson and Grossmann;38 among others. 

While the optimal design of distillation columns using mathematical programming approaches is still an open field of 

research, the simulation of distillation columns is a mature technology that is robust, reliable and used every day by people 

ranging from students to experienced professionals. However, distillation columns in commercial process simulators are 

input-output and slightly noisy black box models. Their use as a systematic design tool is a challenging problem, because 

some variables cannot be accessed or modified directly by the user; which sometimes introduces non-differentiability. 

Lang and Biegler39 proposed a Distributed Stream-Tray Optimization method (DSTO) in which the feed flow and the reflux 

rates can be distributed to a set of candidate trays. To this end they proposed a Differentiable Distribution Function (DDF) 

with which the location to the feed, reflux and other side streams can be treated as continuous instead of integer variables.  

Caballero et al.,40 proposed a GDP model, reformulated as an MINLP. The model iterates between an NLP model, which 

basically corresponds to a column with a fixed number of trays that was optimized with state of the art NLP solvers 

interacting with the Aspen-Hysys process simulator; and a tailored MILP master problem that was modified by adding to the 

objective function and to the constraints an extra term that reflects the contributions due to the addition or deletion of trays to 

each section of the column. The approach proved to be robust; however, the major drawback is the necessity of a tailored 

master problem, which prevents (or at least complicates) the inclusion of the model in a general flowsheet. Caballero,41 
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proposed a new GDP model, solved using a logic based algorithm that avoids the necessity of a modified master problem. In 

that work it was assumed that a distillation column can be formed by selecting, for each column section, from a set of column 

sections with a different number of trays. A feasible selection of column sections results in a distillation column (or column 

sequence) that can be optimized using standard NLP algorithms and the master problems are generated in the usual way. 

The above approaches have three major drawbacks. The first is that distillation column models tend to introduce some 

numerical noise. Consequently it is necessary tighten the convergence parameters (i.e. mass and energy balances) as much as 

possible and at the same time relax the optimality criteria in the NLP solver. Second, the derivative information must be 

obtained by perturbations, the perturbation parameter must be adjusted to ensure an accurate derivative and simultaneously 

reduce the effect of the numerical noise, which could be a very time consuming activity, even with fast convergence of the 

simulator. And third, lack of convergence of a simulation during the optimization makes the whole procedure fail. 

In this paper we study the possibility of substituting distillation columns (single columns or complex arrangements) by 

surrogate models based on kriging interpolation, involving both continuous and discrete variables, generated from rigorous 

models, and using these surrogates to design the distillation columns. In this way we maintain the rigor of state of the art 

simulation models, remove most of the numerical problems and increase the reliability of the synthesis algorithms. 

In the rest of the paper we first show a brief overview of kriging interpolation. Then we discuss some aspects of the practical 

implementation, sampling points and the optimization algorithm. Finally we perform a comprehensive discussion through a 

set of case studies: the rigorous design of conventional distillation columns; both with fixed trays, and variable number of 

trays; a divided wall column; an extractive distillation system; we show the results integrating the models in a superstructure 

for a non-sharp separation; and finally, we study a demethanizer column. 

 

An overview of kriging interpolation 

Kriging was originally developed in geostatistics (also known as spatial statistics) by the South African mining engineer 

Daniel G. Krige in his Master Thesis.42  

The kriging fitting is composed of two parts: a polynomial expression and a deviation from that polynomial: 

( ) ( ) ( )y x f x Z x= +   (1) 

where Z(x) is a stochastic Gaussian process that represents the uncertainty about the mean of y(x) with expected value zero. 

The covariance for two points xi and xj is given by a scale factor σ2 that can be fitted to the data and by a spatial correlation 

function R(xi,xj). Three popular types of correlation functions, for a single input are: 

( ), max 1 ( ),0i j i jR x x x xθ = − −    Linear correlation function 

( ) ( ), exp ( )i j i jR x x x xθ= − −   Exponential correlation 

( ) ( )2, exp ( )i j i jR x x x xθ= − −   Gaussian correlation 

where 0θ ≥  is an adjustable parameter. 
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However, the most common alternative for the spatial correlation function in kriging models is to use the extended 

exponential that appears in the influential article by Sacks et al.43  

( ) ( ), . , .

1 1

, exp ( ) exp ( )l l

dd
P P

i j l i l j l l i l j l

l l

R x x x x x xθ θ
= =

 
= − − = − − 

 
∑ ∏   (2) 

where θl ≥ 0 and 0 ≤ Pl ≤ 2 are adjustable parameters. The value of θl shows how fast the correlation goes to zero as we move 

in a lth coordinate direction. The parameter Pl determines the smoothness of the function which is usually fixed to 2 

(Gaussian kriging) in all coordinates. 

An important advantage of kriging models is that the degree of the polynomial f(x) does not significantly affect the fit quality 

because Z(x) captures the most significant behavior of the function.1 A constant term µ (Ordinary kriging) usually suffices in 

practice.14, 21 

To estimate the values of the parameters σ2, θl, Pl and µ, it is possible to maximize the likelihood of the obtained data y. 

( )

1

( /2) 2(1/2)2

1 ( 1 ) ( 1 )
( , , ) exp

22

T

n

y R y
L x

R

µ µ
σ µ

σπσ

− − − −
=  

 
  (3) 

where y is the vector of obtained responses (n x 1), 1 is a vector of ones (n x 1) and n is the number of sampled points. 

Instead of maximizing the likelihood of the data y, it is better to maximize the logarithm of the likelihood function. 

 ( ) ( )
1

2

2

1 ( 1 ) ( 1 )
log( ) ln(2 ) ln ln

2 2 2 2

Tn n y R y
L R

µ µ
π σ

σ

− − − −
= − − − −  

 
  (4) 

The optimal values for µ and σ2 are obtained by differentiating Eq. 4 with respect to σ2 and µ, and equating it to zero. After 

some algebra we get: 

1

1

1
ˆ

1 1

T

T

R y

R
µ

−

−
=   (5) 

1
2 ˆ ˆ( 1 ) ( 1 )

ˆ
Ty R y

n

µ µ
σ

−− −
=   (6) 

If we want to interpolate a new point xnew, we have to add the point (xnew, ynew) to the data and compute the augmented 

likelihood function keeping all the parameters at the previously calculated values. With all the parameters constant, the 

logarithm of the likelihood function is only a function of ynew. Consequently, the predicted value for ynew will be the value that 

maximizes the augmented likelihood function. The following equation gives the final predictor of the kriging method. A 

detailed derivation can be found in Sasena.44 

( ) ( )1ˆ ˆ ˆ1T

newy x r R yµ µ−= + −   (7) 

where r (n x 1) is the vector of correlations R(xnew,xi) between the sample design points and the point to be correlated. 

We can estimate the accuracy of the method with the correlation of the errors. To this end, we can use a full derivation43 of 

the formula for the mean-squared error. 
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( )
( )2

1

2 2 1

1

1
ˆ 1

1 1

T

T

new T

r R r
s x r R r

R
σ

−

−
−

 −
 = − +
 
 

  (8) 

In this expression the term –rTR-1r represents the reduction in prediction error due to the fact that xnew is correlated with the 

sampled points. The term (–rTR-1r)2/1TR-11 represents the uncertainty derived from our lack of knowledge of the exact value 

of µ. A good review of kriging interpolation in simulation can be found.21 

 

Using kriging in distillation design 

Even though all the considerations for a simulation model also apply to distillation systems, there are some particular details 

in the implementation that deserve a detailed description. 

Jones45 presented a review of a set of seven different methods for global optimization using kriging surrogates. In these 

methods, the search starts with a limited number of sampling points, the kriging is adjusted and then the minimum of the 

kriging interpolator is located. The algorithms differ on how the new sampling points in the next iterations are selected 

(minimizing a lower bounding function, maximizing the probability of improvement, maximizing the expected improvement, 

etc.). However, some of these alternatives involve a spatial branch and bound search at each major iteration, which could 

become numerically expensive. Instead, we focus on algorithms that guarantee a local minimum (Method 2 in Jones’ 

taxonomy).45  

The algorithm implementation is as follows: 

a. Sample N points (see comments further) using a pre-specified space-filling design. The sampled points must be 

separated enough to ensure that the noise generated by the simulation does not significantly affect the kriging 

model. 

b. Fit a kriging model to the I/O simulation data. Because kriging does not incorporate cross-correlation between the 

different simulation outputs, univariate kriging models are fitted.21 

c. Using cross-validation14 for a set of test simulations, validate the accuracy of the model. If the error is small enough 

the kriging model can be used to substitute the actual one without further considerations. However, in general this 

is not the case. 

d. Substitute the actual model by the kriging surrogate and perform the (MI)NLP optimization. If the kriging model is 

considered a good approximation of the actual model then finish. Otherwise continue with the next point (e). 

e. Add the optimal point obtained in the previous step to the set of sampled points. Update kriging and re-optimize. If 

in two consecutive iterations there is no improvement then test for optimality by going to step (f). 

In ‘well behaved’ simulation models like those for distillation columns, we can finish in step (e). However, Jones45 

pointed out that in the algorithm presented above the stopping criterion should be selected carefully. In particular, if 

this criterion were «stop when the minimum of the surface is within a distance ε>0 of a sampled point» the 

algorithm cannot guarantee a local minimum. Instead, we can sample in a small neighborhood of the tentative 
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solution to force the gradient of the surface to agree with the gradient of the true function. Adding ‘gradient 

matching’ whenever the minimum of the surface is near a sampled point certainly makes the algorithm more robust. 

However, even using gradient matching sampling cannot guarantee a local minimum if the stopping rule is based 

on small improvement in two successive iterations. Instead, local convergence can be ensured by combining 

gradient matching with a trust region approach.7, 46 With this approach to get the next iterate, the surface is 

optimized within a trust region around the incumbent solution. If there is no improvement then the region is 

contracted. Alexandrov et al.,46 proved that this approach converges to a critical point. Therefore the next step 

should be: 

f. Contract the feasible search region within a trust region around the incumbent solution and repeat steps d to f. In a 

completely free of error simulation system, this approach can be repeated until we can guarantee that the error in 

the gradient is below a given tolerance and test the Karush-Kuhn-Tucker optimality conditions. In a noisy system it 

is not possible to follow this approach, and we must finish with the non-improvement criterion in a small but large 

enough region.  

As previously noted, the simulation columns produce slightly noisy models. In these systems the gradient matching 

approach must be done carefully. The sampled points should be near enough to get an accurate representation of the 

gradient, but at the same time should be separate enough to avoid ‘adjust the noise’ (separation should be at least 

one order of magnitude larger than the magnitude of the noise). Also, if it is possible to get tight bounds of the 

independent variables, and if the number of points is large enough to guarantee that the whole region is 

approximated by the kriging model inside some ‘acceptable error’, then we can directly substitute the distillation 

column by the kriging interpolator without further iterations.  

If we are interested in a good kriging model with reduced initial error, in order to avoid resampling and recalibrating the 

kriging parameters as much as possible, a correct distribution of sampling points is mandatory. A correct sample must cover 

all the space defined by the independent variables. Simple random (Monte Carlo) methods result in large confidence intervals 

and variance. Hence, the randomness for approximating a distribution is not critical,47 but the error of approximating a 

function with a finite set of points depends more on the uniformity of the distribution than on its randomness. Therefore, the 

sampling must be done to preserve uniformity and avoid correlation. Variation reduction techniques like Latin Hypercube 

Sampling48, 49 , Hammersley50 , Halton or Sobol sequences51 or infill sampling procedures, are better choices.  

In this paper we select an a priori infill procedure: the maxmin approach; maximize the minimum distance between two 

sample points. However, instead of distributing N points following the maxmin approach, we fix 2D points to the D-

dimensional vertex of the hypercube that forms the feasible space (i.e. we sample in the bounds of all the independent 

variables) and then we distribute the other (N-2D) points following the maxmin approach. In this way we ensure that kriging 

does not perform ‘extrapolations’ near the corners of the feasible region. 
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Examples 

Five study cases are presented to verify the effectiveness of the method. The first example consists of the rigorous design of 

conventional distillation columns, first, a column with a fixed number of trays, and then a column in which we also determine 

the optimum number of trays. The second example consists of a divided wall column. The third example is an extractive 

distillation system. We show the results for a superstructure for a non-sharp separation in fourth example. Finally, the fifth 

example consists of a demethanizer column. In all cases, we enumerate the column trays from the top of the column to the 

bottom. All the examples were solved on a computer with a 2.60 GHz Pentium® Dual-Core Processor and 4 GB of RAM 

under Windows 7. 

The common data used in the examples are shown in Table 1. 

Table 1. Common data for examples. 

 

Objective function 

The objective function, common to all the examples, consists of minimizing the total annualized cost (TAC) of a chemical 

process. The objective includes the capital cost of the main items (column shell, trays and heat exchangers) and the most 

important operating costs (cooling water and vapor steam). The estimations of the capital costs are calculated using the 

correlations given by Turton et al.52 Operating costs are calculated from the heat loads of the reboiler and condenser, through 

the steam and cooling utility costs. The objective function is determined by the following expression: 

$
min ·op capTAC C F C

year

 
= + 

 
  (9) 

where Cop is the operating cost per year, F is an annualization factor and Ccap is the capital cost of the equipment, both 

updated by the global CEPCI cost index of 2013. The annualization factor is calculated by the following equation, 

recommended by Smith.53  

(1 )

(1 ) 1

n

n

i i
F

i

+
=

+ −
  (10) 

where i is the fractional interest rate per year and n is the horizon time. In this work, we use a fixed interest rate of 10% and a 

horizon time of 5 years.  

 

Example 1. Conventional Distillation Column 

This example is presented to illustrate the behavior of a modular process simulator and the general procedure followed in 

more complex examples. Consider that we want to determine the optimal configuration and operating conditions that 

minimize the total annualized cost (TAC) of a distillation column for separating a mixture of benzene, toluene and p-xylene 

(molar fractions: 0.35, 0.35 and 0.30, respectively), simulated in ASPEN-HYSYS™.54 We want to recover at least 98.5% of 

the benzene fed with at least 0.999 in molar fraction.  

The data for the problem are shown in Table 2. 

Page 9 of 58

AIChE Journal

AIChE Journal

This article is protected by copyright. All rights reserved.



Table 2. Data for Example 1. 

 

Case a. Distillation column (fixed trays) 

In this case, we want to determine the optimal operating conditions (reflux ratio and boilup ratio) to minimize the total 

annualized cost (TAC) of a distillation column with 30 theoretical trays (feed fixed in tray 15).  

If we assume that the nominal pressure in the column remains constant at 101.3 Pa there are two degrees of freedom. It would 

be possible to select as degrees of freedom the purity and molar flow of the benzene in distillate, and we would not need 

optimization at all, but as a general rule it is better to choose a set of independent variables that facilitates the convergence as 

much as possible (reflux ratio and boilup ratio are «easy to converge» specifications). In this small test problem, even though 

we have no convergence problems, we follow the general approach in order to illustrate the procedure. 

So the model we want to solve can be conceptually written as follows: 

 

( )
min :

. . , , , , ,

0.999

0.985

 0,5 5,0

 0,5 5,0

Distillate Distillate

Benzene Benzene reb Cond

Distillate

Benzene

Distillate Feed

Benzene Benzene

f TAC

s t x D Q Q D Kr RR BR

x

F F

RR

BR

=

  = 

≥

≥

≤ ≤

≤ ≤

  (11) 

Where 
Distillate

Benzenex  refers to the molar fraction of benzene in distillate, and F refers to molar flows, QReb and QCond are the heat 

flows and D is the column diameter. The function Kr refers to the kriging interpolators. RR and BR are the reflux ratio and 

boilup ratio, which are used as degrees of freedom. 

Using 100 sampling points, we calibrate the kriging parameters with the values of dependent variables for each simulation. 

Next, the column is replaced by the surrogate model and, using state-of-the-art optimizers (CONOPT,55 SNOPT56) available 

in TOMLAB-MATLAB,57 the column can be optimized. 

The solution to this problem is x = [2.7353, 1.7818] (reflux and boilup ratios, respectively) and the objective function is 

0.5538 M$/year. In Table 3 the total annualized cost is summarized. 

Table 3. Minimum cost for example 1.a. 

 

To validate the effectiveness of the kriging metamodel we have to evaluate the error of the surrogate model. To this end, we 

use a set of extra random simulations and compare the results of the simulation with the results obtained with kriging. 

In Figure 1 a comparison of the reboiler heat flow in the simulated points (surface) with the calculated points through the 

kriging metamodel (random points) is shown. 
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Figure 1. Comparison of actual and interpolated values. 

The kriging metamodel is adequate in the entire interval. In Figure 2 we can see, with more accuracy, the relative error in the 

sampled points. 

 

Figure 2. Relative errors in the sampled points. 

The largest relative error is around 3%. Therefore, we can replace the entire column by the kriging metamodel obtaining good 

results. 

The results obtained with the kriging metamodel and the optimal values substituted in the simulator are shown in Table 4. As 

we can see, the results obtained with the kriging metamodel are equal to the data obtained with the simulator, inside the 

uncertainty produced by the numerical noise.  

Table 4. Summary of Optimal Solution obtained with different Methods for Example 1.a 

 

The total CPU time used in the optimization (including sampling, kriging calibration and model optimization) was around 19 

s. 

 

Case b. Distillation column (variable number of trays) 

In this case we are interested in determining the optimal configuration (total number of trays and feed location) besides the 

operating conditions, to minimize the total annualized cost of a distillation column for separating the same mixture. With the 

nominal pressure fixed (P = 101.3 kPa) there are four degrees of freedom. We choose two more independent variables for the 

rigorous design of the conventional distillation column: number of trays in the rectifying section and number of trays in the 

stripping section. 

The model can be conceptually written as follows: 
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  (12) 

The previous problem is a non-convex MINLP problem. 

The solution to this problem is x = [1.80, 1.35, 22, 17] (Reflux ratio, Boilup ratio, number of trays in the rectifying section 

and number of trays in the stripping section, respectively) and the objective function is 0.4397 M$/year. Figure 3 shows the 

optimal solution for example 1.b. 

 

Figure 3. Optimal solution for example 1.b. 
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Costs to the optimal solution are shown in Table 5. 

Table 5. Minimum Cost for Example 1.b 

 

The results obtained with the kriging metamodel and the simulator are shown in Table 6. Again the errors are inside the noise 

of the model generated by the process simulator. 

Table 6. Summary of Optimal Solution obtained with different Methods for Example 1.b 

 

The total CPU time used in the optimization (including sampling, kriging optimization and model optimization) was around 

27 s. 

In previous examples, kriging models were used in an implicit form. In other words, the equations of the kriging are not 

directly accessed by the solver. The kriging interpolation is maintained as an external function in Matlab that receives from 

the optimization solver the point to be interpolated and returns the interpolated value. From the point of view of the 

optimization solver it is a black box model. In this way we get a small MINLP model and at the same time take advantage of 

the effective matrix manipulation of MATLABTM,58 –where kriging was interpolated-. The price we have to pay is that we 

can only ensure a local optimum. Alternatively if the kriging surrogate is an accurate representation of the model, we can 

explicitly introduce the kriging equations in a deterministic global optimizer like BARON59 –we used the GAMS-BARON 

modeling system60-. With this approach the optimization solver “can see” explicitly the interpolation equations and we can 

ensure a global optimum. Of course, it is the global optimum of the surrogate model, but if the surrogate model accurately 

reproduces the actual model, then we can expect that the solution is also the global optimum of the actual model. 

Explicitly include the equations is only practical for systems involving a reduced number of kriging models with a relatively 

low number of sampling points to avoid very large matrices. However, for a single distillation column it is a feasible 

approach. 

Therefore, we repeat example 1b, explicitly introducing the equations in the solver. The global optimal solution was the same 

as with the implicit model, confirming that we obtained the global optimal solution. Some statistics of this approach are 

shown in Table 7. 

Table 7. Summary of Optimal Solution obtained with Implicit and Explicit Method for Example 1.b  

 

 

Example 2. Divided wall column 

In this example we want to optimize a Divided Wall Column (DWC) for separating a mixture of benzene, toluene and xylene 

(molar fractions: 0.35, 0.35 and 0.30, respectively). 

Fully (or partially) thermally coupled distillations are gaining more acceptance due to their lower energy consumption 

compared with conventional distillation column sequences.61-65 For an N-component mixture, a fully thermally coupled 
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configuration (Petlyuk66 in a three component mixture) needs N-1 columns with a single reboiler and a single condenser.67-74 

For a ternary separation, we need two columns to obtain the separation with three pure products. 

It is possible to simulate a fully three thermally component distillation system by using three conventional columns (see 

Figure  4). The configurations in Figure  4 a, b, c and d are equivalent.75, 76 

 

Figure  4. Equivalent configurations. (a) The thermal couple can be substituted by a superheated stream (distillation section) 

or subcooled stream (stripping section),75 (b) or by a saturated stream and a heat stream,76 with negligible error. (c) Petlyuk 

configuration. (d) Thermodynamically equivalent divided wall column. 

The condenser and the reboiler of the first column (I) are replaced by a thermal couple. The vapor from the top of the first 

column is transferred to the second column (II) and the liquid required by the first column is supplied by the second column. 

The liquid from the bottom of the first column is transferred to the third column (III) and the vapor required by the first 

column is supplied by the third column, as illustrated in Figure  4a. 

Carlberg and Westerberg75 showed that in the Petlyuk configuration, in columns II and III it is necessary to adjust the heat 

supplied in the reboiler and the heat removed in the condenser to match the flows at the extraction point of the component of 

intermediate volatility. Therefore, the Petlyuk configuration only uses one condenser and one reboiler, with the 

corresponding savings in investment costs.77 If we remove the condenser and the reboiler associated with component B, and 

these two columns are merged into a single column, Petlyuk configuration is generated (Figure  4c.). It is possible to go a 

step further, and put both columns in a single shell, the resulting configuration is a divided wall column. It has a vertical 

partition that divides the column shell into a pre-fractionator and a side draw section (Figure  4d). The first divided wall 

column which was studied is found in a Wright’s patent.78 

Several authors have carried out studies of the design methods and the optimal operating conditions of the divided wall 

column.79-82  

We can rigorously simulate the divided wall column using two conventional distillation columns connected by a combination 

of material and energy streams.76 In the rectifying section, the energy stream is equivalent to the energy removed if we 

include a partial condenser which provides reflux to the first column and the material stream is vapor at its dew point. In the 

stripping section, the energy stream is equivalent to the energy added if we include a reboiler which provides vapor to the 

first column and the material stream is liquid at its bubble point (Figure  4b).  

We want to determine the optimal configuration (total number of trays and feed location of the three columns) to minimize 

the total annualized cost of the divided wall column. With the nominal pressure fixed (P = 101.3 kPa) there are six degrees of 

freedom. As design specification we fix the recovery of each component to be at least at least 99.9% of the component fed. 

The independent variables chosen for the rigorous design of the conventional distillation column are the number of trays in 

the rectifying section and number of trays in the stripping section for each column. 

Conceptually the model can be written as follows: 
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  (13) 

Although we simulate two columns separately, all the column sections are actually located inside a single shell. For this, in 

the mathematical model we force the number of trays in the stripping section of the column II plus the number of trays in the 

rectifying section of the column III to equal the number of trays of the first column. 

The equivalent divided wall column is obtained by integrating the two columns of the Petlyuk configuration in a single shell. 

The divided wall column has an interior wall that divides the column shell. At the top of the column, the number of trays 

corresponds with the number of trays in the rectifying section of column II. At the bottom of the column, the number of trays 

corresponds with the number of trays in the stripping section of column III. Furthermore, on one side of the divided area the 

number of trays corresponds with the number of trays of the first column and, on the other side of the divided area the 

number of trays corresponds with the sum of the number of trays in the stripping section of column II and the number of trays 

in the rectifying section of column III. Figure 5 shows the optimal solution. 

 

Figure 5. Optimal solution. (a) Simulation of the column Petlyuk. (b) Divided wall column. 

The minimum objective function (TAC = 0.6893 M$/year) is obtained with a column of 76 trays, with the feed on the 40th 

tray. Benzene and p-xylene are extracted on the top and the bottom of the column, respectively, and toluene is extracted on 

the 29th tray. The costs of the optimal solution are shown in Table 8. 

Table 8. Minimum Cost for Example 2 

 

The results obtained with the kriging metamodel and the simulator are shown in Table 9. As we can see, the results obtained 

with the kriging metamodel only have a 5% error with respect to the data obtained with the simulator. As expected, it is 

larger than in the first example due to the larger number of independent variables but it is still a good result.  

Table 9. Summary of Optimal Solution obtained with different Methods for Example 2 

 

The total CPU time used in the optimization (including sampling, kriging optimization and model optimization) was around 8 

min. 
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Example 3. Extractive distillation system 

The fundamental principle of the distillation process is the difference in volatility of the components forming the mixture. 

However, there are cases in which mixtures of components have close-boiling points or homogeneous azeotropes. When this 

occurs, conventional distillation may not be able to promote a separation with the desired degree of purity. Extractive 

distillation is considered as an alternative distillation process in these cases. 

Therefore, the third example studied was the optimization of an extractive distillation system. This kind of distillation is used 

to separate mixtures by the addition of an entrainer, a component with a high boiling point. 

The study case is adapted from Luyben.83 The objective is the separation of an isomolar mixture of methanol and acetone 

using dimethyl sulfur oxide (DMSO) as the entrainer. 

The extractive distillation system consists of two distillation columns. The first column -extractive column- has two feeds, 

the mixture to be separated and the entrainer. The entrainer is fed above the mixture. In this column, one of the components is 

obtained at the top of the column, while the other is extracted together with the entrainer at the bottom of the column. The 

second column -recovery column- is fed with the bottom of the extractive column. In this column, the entrainer is separated 

from the component. Finally, the entrainer can be recirculated to the first column. 

Assume we want to recover acetone at the top of the first column with at least 0.9995 in molar fraction, methanol at the top of 

the second column with at least 0.9995 in molar fraction and the entrainer with at least 0.9999 in molar fraction at the bottom 

of the second column. We want to determine the optimal configuration (total number of trays and feed location of the two 

columns) to minimize the total annualized cost of the system. If we fix the nominal pressure (P = 101.3 kPa) and all the 

recoveries in both columns (equivalent to fix the compositions) then there are seven degrees of freedom (the number of trays 

in each column section and the entrainer molar flow). The data for this example are shown in Table 10. 

Table 10. Data for Example 3 

 

Conceptually the model can be written as follows: 
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  (14) 

The flow of entrainer has both upper and lower bounds for feasible separations;83 therefore, a priori sensitivity analysis was 

performed to determine feasible values. Conservative bounds were used in the optimization in order to avoid convergence 
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problems in the sampling step. As the optimal value was not at its bound no further action was required, however, if the 

optimal value had lain at a bound, it would have been necessary to re-sample to ensure we got the optimal solution. 

In Figure 6 the optimal solution of the extractive distillation system studied is shown. 

 

Figure 6. Optimal solution for example 3. 

The minimum objective function (TAC = 5.056 M$/year) is obtained with an extractive column of 55 trays, with the 

entrainer on the 3rd tray and the feed on the 36th tray, and a recovery column of 11 trays, with the feed on the 5th tray. The 

costs of the optimal solution are shown in Table 11. 

Table 11. Minimum Cost for Example 3 

 

The results obtained with the kriging metamodel and the simulator are shown in Table 12. As we can see, the results obtained 

with the kriging metamodel are very close to the data obtained with the simulator.  

Table 12. Summary of Optimal Solution obtained with different Methods for Example 3 

 

The total CPU time used in the optimization (including sampling, kriging optimization and model optimization) was around 3 

min 5 s. 

 

Example 4. Distillation sequences. Nonsharp separations 

In this example, we want to separate a given multicomponent feed stream into several desired multicomponent product 

streams. The superstructure is proposed by Aggarwal and Floudas84 and contains all possible alternatives to get the desired 

products (Figure 7). Consider that we want to determine the optimal configuration (sequence and number of trays of the 

columns) to minimize the total annualized cost (TAC) for separating an iso-molar mixture of benzene, toluene and p-xylene. 

 

Figure 7. Superstructure for a three-component system. 

In the original problem Aggarwal and Floudas84 indicated that the lower bounds on key component recoveries to avoid the 

distribution of non-key components must be fixed no lower than 0.85. So that is the value we use as the lower bound. 

Data for this example are shown in Table 13. Assume that the pressure is fixed (P = 101.3 kPa). The independent variables 

chosen for the rigorous design of the conventional distillation columns are the number of trays in the rectifying section, 

number of trays in the stripping section, and the recoveries of key components for each column. 

Table 13. Data for Example 4 

 

The model can be written as follows: 

The objective function consists of minimizing the total annualized cost. It is composed of the operational and fixed costs of 

both columns. Mixers and splitters costs are neglected. 
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 1 2min : Column ColumnTAC TAC TAC= +   (15) 

Mass balance in the inlet (feed) splitter. The index ‘i’ refers to components: 
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In previous equations ‘z’ refers to the feed molar fraction, which is known and therefore all those equations are linear. 

Mass balance in mixers 1, 2 and final products P1 and P2: 
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Mass balances in splitters 1, 2, 3 and 4: 
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Disjunctions related with the existence or not of a given distillation column: 
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Y1 and Y2 are Boolean variables that take the value of True if the corresponding column is selected and False otherwise. The 

symbol ‘f’’ refers to the key components recoveries. 

Product specifications: 

1 30 / ;   1 50 / ;   1 30 /

2 70 / ;   2 50 / ;   2 70 /

Benzene Toluene p Xylene

Benzene Toluene p Xylene

P kmol h P kmol h P kmol h
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−

−

= = =

= = =
  

The problem can be solved as an MINLP by reformulating the disjunctions using a Big-M approach.85  

 

Figure 8 shows the optimal solution of the system studied. 

 

Figure 8. Optimal solution for example 4. 

The minimum objective function (TAC = 0.3137 M$/year) is obtained with the sequence shown (Figure 8). Column 1 has 26 

trays and it is fed on the 14th tray. Column 2 has 31 trays and it is fed on the 15th tray.  

The costs of the optimal solution are shown in Table 14. 

Table 14. Minimun Cost for Example 4 

 

A summary of results obtained for example 4 is shown in Table 15. In this case the initial kriging is not accurate enough to 

ensure that the optimal solution obtained by the kriging matches the actual model. Therefore, we continue with the algorithm 

previously described by adding to the kriging metamodel the optimal point obtained in the previous stage, and repeat this 

procedure until there is no improvement. As noted before, this point is not necessarily the optimum. It is necessary to contract 

the dominion around the best obtained solution, re-sampling and recalibrating the kriging. We performed a contraction step 

around the optimal solution (10% around the optimal point). The contraction step confirmed that we are in an optimal 

solution. 

Table 15. Summary of Results obtained for Example 4 
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A summary for all the streams obtained is shown in Table 16. 

Table 16. Summary of Optimal Solution obtained for Example 4 

 

Example 5. Demethanizer column 

In this example a demethanizer column is optimized. The process to recovery the valuable heavier hydrocarbons from natural 

gas is carried out in a series of distillation columns. The first column of the process is the demethanizer column. This is a 

cryogenic high-pressure column in which the methane is separated overhead and the ethane and the others heavier 

hydrocarbons are taken as a bottom (NGL). The demethanizer flowsheet is proposed by Luyben.86 

In order to save energy the feed is pre-cooled, before entering the column, by a complex heat exchanger network that 

includes external heat exchangers and two trays in the distillation column (See Figure  9). A fraction of the feed is condensed 

and used as reflux load in the column. The design of the heat exchanger network is out of the scope of this paper so we 

maintain the topology of the heat exchanger network and the distillation column and optimize the operating conditions. 

We want to minimize the total annualized cost of a demethanizer column for separating a mixture of methane, ethane, 

propane and i-butane (molar fractions: 0.783, 0.134, 0.056 and 0.027, respectively) to recover at least 99.8% of the methane 

fed with at least 0.96 in molar fraction. This includes the cold and hot utility costs that are the main costs in the system and 

the investment cost. Data for this example are shown in Table 17. 

Table 17. Data for Example 5 

 

Assume that the pressure in the column varies between 2533 kPa (reboiler) and 2543 kPa (condenser).. In this example we 

suppose that the feed enters into the column in the trays specified by Luyben.86 The objective in this case is not to optimize 

the feed tray position, but we want to determine the optimal heat exchanged to precool the feed and the flux that is sent 

overhead. The model we want to solve can be conceptually written as follows: 
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Where D is the diameter of the column, Qcooler is the heat flow removed by the refrigerant and TAC is the total annualized 

cost. The function Kr makes reference to the kriging interpolators. In this example, the degrees of freedom used are the 

following: MF makes reference to the flow that is sent overhead, Q1 and Q2 are the heat flows used to precool the fed. 

We calibrate the kriging parameters with the values of dependent variables for each simulation and then, we replace the 

demethanizer column by the surrogate model. The column is optimized using CONOPT.55 

The solution to this problem is x = [1310.863, 1927.165, 1585.490] (Molar flow sent overhead, Q1 and Q2, respectively) and 

the objective function is 0.9269 M$/year. In Table 18 the total annualized cost is summarized.  
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Table 18. Minimum Cost for Example 5 

 

The results obtained with the kriging metamodel and the simulator are shown in Table 19. 

Table 19. Summary of Optimal Solution obtained for Example 5 

 

The total CPU time used in the optimization (including sampling, kriging optimization and model optimization) was around 

110 s. The results obtained with the kriging metamodel have an error below 5% in comparison to the data obtained with the 

simulator. Although we have an error, as in other examples, we can expect a good result. Figure 9 shows the optimal solution 

of the demethanizer column. 

 

Figure 9. Optimal solution for example 5. 

 

Conclusions 

In this work, an algorithm for constrained optimization including continuous and discrete values was presented and 

specifically applied to the rigorous design of distillation columns or distillation sequences. This optimization contains 

implicit black box functions which are substituted by kriging metamodels. The surrogate model presented has proved to be 

robust, reliable and also allows a fast interpolation of new values. 

It is interesting to remark that even though the final model includes discrete variables (number of trays in a given section) the 

kriging surrogate can be generated without taking this into account. Of course we must ensure that the sampling points 

always correspond with integer values. But we have checked that this is not a major problem. The possible correlation that is 

included in the sampling due to forcing some of the variables to only take integer values has no numerical effects, maybe 

because in the final optimization these variables must also be integer. 

The different examples, with increasing difficulty, showed that a global approach is usually good enough and further 

contraction steps simply confirm that we got an optimal solution. But it is worth pointing out that we can only ensure a 

critical point if either the surrogate model accurately reproduces the model in all the points of the domain or we use 

contraction step(s) within a trust region.  

A critical issue is the stopping criterion. The ideal situation would be to be able to evaluate the derivatives, from the actual 

model, in the optimal point obtained from the kriging interpolator and test the Karush-Kuhn-Tucker optimality conditions. 

However, this is not possible in noisy systems. Alternatively, the non-improving criterion in two successive iterations with 

contraction of the feasible domain in a trust region, with the objective of obtaining a set of sampling points that accurately 

reproduce both the actual function and its derivative could also eventually guarantee a local optimum. But the contraction and 

separation of sampling points is limited by the noise of the system, i.e. sampling points must be separated enough to avoid 

adjusting for noise.  
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The implementation presented in this paper only guarantees a local optimum. However, for the particular case of a single 

distillation column, where the surrogate models accurately reproduce the actual column model and the number of sampling 

points is relatively small –the number of basis functions is not too large- it is possible to explicitly include the equations in a 

deterministic global optimizer (we used GAMS-BARON) to obtain the global optimal solution. It is worth remarking that we 

are obtaining the global solution of the surrogate model and not of the actual model. The “quality” of that optimum will 

depend on how accurately the surrogate model represents the actual model. The location of the global optimum in complex 

flowsheets using surrogate models is under current research. 

In the case of distillation columns and column sequences of different complexity we have checked that it is possible to get 

accurate global surrogate models with up to 7 degrees of freedom, at the expense of increasing the number of sampling 

points. There is a tradeoff between the number of sampling points and the iterations in the optimization algorithm, i.e. with 

large sets of sampling points it could be possible to get an accurate model that globally reproduces the actual model, but at 

the price of large CPU times for calibrating the kriging. A reduced set of sampling points reduces the CPU time for 

calibrating the kriging and interpolation, but it is likely that we would need more contraction and resampling (and 

recalibrating) stages.  
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Figure Captions 

Figure 1. Comparison of actual and interpolated values. 

Figure 2. Relative errors in the sampled points. 

Figure 3. Optimal solution for example 1.b. 

Figure 4. Equivalent configurations. (a) The thermal couple can be substituted by a superheated stream 

(distillation section) or subcooled stream (stripping section),75 (b) or by a saturated stream and a heat stream,76 

with negligible error. (c) Petlyuk configuration. (d) Thermodynamically equivalent divided wall column. 

Figure 5. Optimal solution. (a) Simulation of the column Petlyuk. (b) Divided wall column. 

Figure 6. Optimal solution for example 3. 

Figure 7. Superstructure for a three-component system. 

Figure 8. Optimal solution for example 4. 

Figure 9. Optimal solution for example 5. 
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     Table 1 Common data for examples. 

Distillation Column 

Material of construction Carbon steel (sieves and tower) 
Tray spacing Ht (m) = 0.6096 
Column height H (m) = 3 + N·Ht 

Heat Exchangers 

Condenser U (W/(m2 K) = 800  
Reboiler U (W/(m2 K) = 820 
Material of construction Carbon steel (shell and tubes) 

Utility costs 

Low pressure steam (500 kPa, 433 K) 14.05 $/GJ 
High pressure steam (4100 kPa, 527 K) 17.70 $/GJ 
Cooling water (303-318 ºC) 0.354 $/GJ 
CEPCI cost index 2001 394.3 
CEPCI cost index 2013 567.3 
(Calculation based on 8000 h/year of operation) 
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Table 2. Data for Example 1. 

Conventional distillation column (30 trays [Feed in tray 15]) 

Feed 100 kmol/h 

Composition (mole fraction)  

benzene 0.35 

toluene 0.35 

p-xylene 0.30 

Pressure 101.3 kPa 

Thermodynamics (fluid package) Peng-Robinson 

Specifications  

Molar recovery of benzene in distillate ≥ 98.5 % 

Molar fraction benzene in distillate ≥ 0.999 
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Table 3. Minimum cost for example 1.a. 

Optimal solution (distillation column (30 trays [Feed in tray 15])) 

TAC (M$/year) 0.5538 

Operating Cost (M$/year) 0.4685 
Capital Cost (M$/year) 0.0853 
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Table 4. Summary of optimal solution obtained with different methods for example 1.a. 

 

 Reflux Ratio Boilup Ratio 
Condenser Heat 

Flow (kW) 
Reboiler Heat 
Flow (kW) 

Diameter 
(m) 

TAC 

(M$/year) 

KRIGING 2.7353 1.7818 1092.7 1130.3 1.0059 0.5538 
HYSYS 2.7353 1.7818 1092.9 1130.5 1.0060 0.5539 

Number of sampled points = 100 
CPU time sampling = 9.37 s 
CPU optimization kriging parameters = 8.28 s 
CPU optimization model = 1.12 s 
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Table 5. Minimum cost for example 1.b. 

Optimal solution (distillation column (40 trays [Feed in tray 23])) 

TAC (M$/year) 0.4397 

Operating Cost (M$/year) 0.3553 

Capital Cost (M$/year) 0.0844 
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Table 6. Summary of optimal solution obtained with different methods for example 1.b.  

 

 
Number of Trays 
Rectifying Section 

Number of Trays 
Stripping Section 

Condenser Heat 
Flow (kW) 

Reboiler Heat 
Flow (kW) 

Diameter 
(m) 

TAC 
(M$/year) 

KRIGING 22 17 819.80 857.38 0.8679 0.4397 
HYSYS 22 17 819.82 857.38 0.8679 0.4397 

Number of sampled points = 100 
CPU time sampling = 14.17 s 
CPU optimization kriging parameters = 11.61 s 
CPU optimization model = 1.19 s 
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Table 7. Summary of optimal solution obtained with implicit and explicit method for example 1.b. 

 

 
Number of Trays 
Rectifying Section 

Number of Trays 
Stripping Section 

Condenser Heat 
Flow (kW) 

Reboiler Heat 
Flow (kW) 

Diameter 
(m) 

TAC 

(M$/year) 

Implicit 22 17 819.80 857.38 0.8679 0.4397 
Explicit 22 17 819.80 857.38 0.8679 0.4397 

Number of sampled points = 100 
CPU time sampling = 14.17 s 
CPU optimization kriging parameters = 11.61 s 
CPU optimization model = 369 s 
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Table 8. Minimum cost for example 2. 

Optimal solution (divided wall column) 

TAC (M$/year) 0.6894 

Operating Cost (M$/year) 0.5093 
Capital Cost (M$/year) 0.1801 
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Table 9. Summary of optimal solution obtained with different methods for example 2. 

 

 Condenser 
Heat Flow 

(kW) 

Reboiler Heat 
Flow (kW) 

Diameter 
Column I (m) 

Diameter 
Column II (m) 

TAC 

(M$/year) 

KRIGING 1177.2 1228.9 0.7597 1.0452 0.6893 
HYSYS 1162.3 1227.8 0.7595 1.0439 0.6941 

Number of sampled points = 191 
CPU time sampling = 300.58 s 
CPU optimization kriging parameters = 176.80 s 
CPU optimization model = 3.62 s 
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Table 10. Data for example 3. 

Extractive distillation system 

Feed 540 kmol/h 

Composition (mol fraction)  

        Acetone 0.5 

        Methanol 0.5 

Entrainer  

        DMSO (mol fraction) 1.0 

Pressure 101.3 kPa 

Thermodynamics (fluid package) UNIQUAC 

Specifications   

Recovery of components  

Component fraction distillate (Acetone) 0.9995 

Component fraction distillate (Methanol) 0.9995 

Component fraction bottom (DMSO) 1.0000 
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Table 11. Minimum cost for example 3. 

Optimal solution (Extractive Distillation System) 

TAC (M$/year) 5.056 

Operating Cost (M$/year) 4.698 
Capital Cost (M$/year) 0.358 
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Table 12. Summary of optimal solution obtained with different methods for example 3. 

 Extractive Column Recovery Column  

 Condenser 
Heat Flow 

(kW) 

Reboiler 
Heat Flow 

(kW) 

Diameter 
(m) 

Condenser 
Heat Flow 

(kW) 

Reboiler 
Heat Flow 

(kW) 

Diameter 
(m) 

TAC 

(M$/year) 

KRIGING 4935.2 6287.6 1.9943 2891.6 4067.7 1.7019 5.056 
HYSYS 4989.1 6302.9 2.0021 2896.0 4083.4 1.7053 5.071 

Extractive Column: 
        Number of sampled points = 196 
        Sampling time = 118.33 s 
        CPU optimization kriging parameters = 33.51 s 

Recovery Column: 
        Number of sampled points = 99 
        Sampling time = 23.90 s 
        CPU optimization kriging parameters = 5.55 s 

CPU optimization model = 3.76 s 
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Table 13. Data for example 4. 

Distillation sequence. Nonsharp separation 

Feed 300 kmol/h 

Composition (Molar Flow)  
        Benzene 100 kmol/h 
        Toluene 100 kmol/h 
        p-Xylene 100 kmol/h 

Pressure 101.3 kPa 

Thermodynamics (fluid package) Peng-Robinson 
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Table 14. Minimun cost for example 4. 

Optimal solution (Distillation sequence) 

 Column 1 Column 2 Total 

TAC (M$/year) 0.1493 0.1634 0.3127 

Operating Cost (M$/year) 0.0888 0.1000 0.1888 
Capital Cost (M$/year) 0.0605 0.0634 0.1239 
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Table 15. Summary of results obtained for example 4. 

Iteration 1    

Number of sampled points, Column 1 = 200 
Sampling time = 32.61 s 
CPU optimization kriging parameters = 22.47 s 

Number of sampled points, Column 2 = 200 
Sampling time = 33.11 s 
CPU optimization kriging parameters = 22.96 s 

TAC = 0.2592 M$/year  
Optimal values 

F5,benzene (kmol/h)   13.1490 F13,benzene (kmol/h)     4.3396 
F5,toluene (kmol/h)   11.4914 F13,toluene (kmol/h)     9.5000 
F5,p-Xyene (kmol/h)     3.1538 F13,p-Xyene (kmol/h)   11.1760 
Number of trays in the 

rectifying section, Column 1   17 

Number of trays in the 

rectifying section, Column 2   14 
Number of trays in the 
stripping section, Column 1   17 

Number of trays in the 
stripping section, Column 2   16 

Recovery(LK, Column 1)     0.8500 Recovery(LK, Column 2)     0.8740 

Recovery(HK, Column 1)     0.8500 Recovery(HK, Column 2)     0.8500 

 
Iteration 2 

   

Number of sampled points, Column 1 = 201 Number of sampled points, Column 2 = 201 
TAC = 0.3002 M$/year  

Optimal values 

F5,benzene (kmol/h)   13.1490 F13,benzene (kmol/h)     4.6010 
F5,toluene (kmol/h)   11.5476 F13,toluene (kmol/h)   10.0828 
F5,p-Xyene (kmol/h)     2.8603 F13,p-Xyene (kmol/h)   11.1760 
Number of trays in the 

rectifying section, Column 1   17 

Number of trays in the 

rectifying section, Column 2   15 
Number of trays in the 
stripping section, Column 1   17 

Number of trays in the 
stripping section, Column 2   18 

Recovery(LK, Column 1)     0.8500 Recovery(LK, Column 2)     0.8740 

Recovery(HK, Column 1)     0.8500 Recovery(HK, Column 2)     0.8509 

 
Iteration 3 

   

Number of sampled points, Column 1 = 202 Number of sampled points, Column 2 = 202 
TAC = 0.2640 M$/year  

Optimal values 

F5,benzene (kmol/h)   13.1490 F13,benzene (kmol/h)     1.7978 
F5,toluene (kmol/h)   12.0738 F13,toluene (kmol/h)     9.5000 
F5,p-Xyene (kmol/h)     2.3910 F13,p-Xyene (kmol/h)   11.1760 
Number of trays in the 
rectifying section, Column 1   17 

Number of trays in the 
rectifying section, Column 2   8 

Number of trays in the 
stripping section, Column 1   17 

Number of trays in the 
stripping section, Column 2   20 

Recovery(LK, Column 1)     0.8500 Recovery(LK, Column 2)     0.8740 

Recovery(HK, Column 1)     0.8500 Recovery(HK, Column 2)     0.8500 

 
Iteration 4 

   

Number of sampled points, Column 1 = 203 Number of sampled points, Column 2 = 203 
TAC = 0.2790 M$/year  

Optimal values 

F5,benzene (kmol/h)   13.1490 F13,benzene (kmol/h)     1.9723 
F5,toluene (kmol/h)   11.1760 F13,toluene (kmol/h)     9.5621 
F5,p-Xyene (kmol/h)     2.8603 F13,p-Xyene (kmol/h)   11.1760 
Number of trays in the 

rectifying section, Column 1   17 

Number of trays in the 

rectifying section, Column 2   8 
Number of trays in the 
stripping section, Column 1   17 

Number of trays in the 
stripping section, Column 2   17 

Recovery(LK, Column 1)     0.8500 Recovery(LK, Column 2)     0.8500 

Recovery(HK, Column 1)     0.8500 Recovery(HK, Column 2)     0.8500 
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Table 15. (Continued). 

 

Iteration 5    
Number of sampled points, Column 1 = 204 Number of sampled points, Column 2 = 204 
TAC = 0.3245 M$/year  

Optimal values 

F5,benzene (kmol/h)   13.1490 F13,benzene (kmol/h)     4.5828 
F5,toluene (kmol/h)   12.4471 F13,toluene (kmol/h)   10.6642 
F5,p-Xyene (kmol/h)     2.5016 F13,p-Xyene (kmol/h)   11.1760 
Number of trays in the 
rectifying section, Column 1   18 

Number of trays in the 
rectifying section, Column 2   16 

Number of trays in the 
stripping section, Column 1   19 

Number of trays in the 
stripping section, Column 2   18 

Recovery(LK, Column 1)     0.8500 Recovery(LK, Column 2)     0.8775 
Recovery(HK, Column 1)     0.8500 Recovery(HK, Column 2)     0.8760 

 

Iteration 6 

   

Number of sampled points, Column 1 = 205 Number of sampled points, Column 2 = 205 
TAC = 0.3195 M$/year  

Optimal values 

F5,benzene (kmol/h)   13.1490 F13,benzene (kmol/h)     4.8304 

F5,toluene (kmol/h)   13.1271 F13,toluene (kmol/h)   11.2046 
F5,p-Xyene (kmol/h)     2.4929 F13,p-Xyene (kmol/h)   11.1760 
Number of trays in the 
rectifying section, Column 1   18 

Number of trays in the 
rectifying section, Column 2   16 

Number of trays in the 
stripping section, Column 1   19 

Number of trays in the 
stripping section, Column 2   18 

Recovery(LK, Column 1)     0.8500 Recovery(LK, Column 2)     0.8740 
Recovery(HK, Column 1)     0.8500 Recovery(HK, Column 2)     0.8500 

 

Iteration 7 

   

Number of sampled points, Column 1 = 200 
Sampling time = 26.40 s 
CPU optimization kriging parameters = 19.53 s 

Number of sampled points, Column 2 = 200 
Sampling time = 26.35 s 
CPU optimization kriging parameters = 50.91 s 

TAC = 0.3064 M$/year  
Optimal values (after refining stage) 

F5,benzene (kmol/h)   13.1490 F13,benzene (kmol/h)     3.6504 
F5,toluene (kmol/h)   11.1760 F13,toluene (kmol/h)     9.5000 
F5,p-Xyene (kmol/h)     3.4128 F13,p-Xyene (kmol/h)   12.6595 
Number of trays in the 
rectifying section, Column 1   12 

Number of trays in the 
rectifying section, Column 2   12 

Number of trays in the 
stripping section, Column 1   12 

Number of trays in the 
stripping section, Column 2   16 

Recovery(LK, Column 1)     0.8740 Recovery(LK, Column 2)     0.8903 
Recovery(HK, Column 1)     0.8505 Recovery(HK, Column 2)     0.8500 

 
Iteration 8 

   

Number of sampled points, Column 1 = 201 Number of sampled points, Column 2 = 201 

TAC = 0.3237 M$/year  
Optimal values (after refining stage) 

F5,benzene (kmol/h)   13.1490 F13,benzene (kmol/h)     3.6504 
F5,toluene (kmol/h)   11.2809 F13,toluene (kmol/h)     9.5000 
F5,p-Xyene (kmol/h)     3.4167 F13,p-Xyene (kmol/h)   12.6594 

Number of trays in the 
rectifying section, Column 1   13 

Number of trays in the 
rectifying section, Column 2   14 

Number of trays in the 
stripping section, Column 1   12 

Number of trays in the 
stripping section, Column 2   16 

Recovery(LK, Column 1)     0.8880 Recovery(LK, Column 2)     0.8903 
Recovery(HK, Column 1)     0.8512 Recovery(HK, Column 2)     0.8500 
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Table15. (Continued). 

 

Iteration 9    
Number of sampled points, Column 1 = 202 Number of sampled points, Column 2 = 202 
TAC = 0.3129 M$/year  

Optimal values (after refining stage) 

F5,benzene (kmol/h)   13.1490 F13,benzene (kmol/h)     3.6504 
F5,toluene (kmol/h)   11.2260 F13,toluene (kmol/h)     9.5000 
F5,p-Xyene (kmol/h)     3.4158 F13,p-Xyene (kmol/h)   12.6589 
Number of trays in the 
rectifying section, Column 1   13 

Number of trays in the 
rectifying section, Column 2   14 

Number of trays in the 
stripping section, Column 1   12 

Number of trays in the 
stripping section, Column 2   16 

Recovery(LK, Column 1)     0.8878 Recovery(LK, Column 2)     0.8903 
Recovery(HK, Column 1)     0.8513 Recovery(HK, Column 2)     0.8500 
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Table 16. Summary of optimal solution obtained for example 4. 

Optimal values (kmol/h) 

F1,benzene 9.4986  F11,benzene 0.0005 

F1,toluene 2.7683  F11,toluene 0.0031 

F1,p-Xyene 1.5170  F11,p-Xyene 0.0011 

F2,benzene 2.1833  F12,benzene 0.0083 

F2,toluene 0.0002  F12,toluene 0.0537 

F2,p-Xyene 9.2634  F12,p-Xyene 0.0192 

F3,benzene 24.1064  F13,benzene 3.6504 

F3,toluene 48.8044  F13,toluene 9.5000 

F3,p-Xyene 24.4424  F13,p-Xyene 12.6589 

F4,benzene 64.2117  F14,benzene 3.6504 

F4,toluene 48.4271  F14,toluene 8.4577 

F4,p-Xyene 64.7772  F14,p-Xyene 1.8988 

F5,benzene 13.1490  F15,benzene 3.6504 

F5,toluene 11.2260  F15,toluene 8.4577 

F5,p-Xyene 3.4158  F15,p-Xyene 1.8988 

F6,benzene 11.6732  F16,benzene 0.0000 

F6,toluene 1.6694  F16,toluene 0.0000 

F6,p-Xyene 0.0000  F16,p-Xyene 0.0000 

F7,benzene 6.0931  F17,benzene 0.0000 

F7,toluene 0.8714  F17,toluene 0.0000 

F7,p-Xyene 0.0000  F17,p-Xyene 0.0000 

F8,benzene 5.5800  F18,benzene 1.0423 

F8,toluene 0.7980  F18,toluene 10.7601 

F8,p-Xyene 0.0000  F18,p-Xyene 0.0000 

F9,benzene 1.4758  F19,benzene 0.5212 

F9,toluene 9.5566  F19,toluene 5.3800 

F9,p-Xyene 3.4158  F19,p-Xyene 0.0000 

F10,benzene 1.4671  F20,benzene 0.5212 

F10,toluene 9.4998  F20,toluene 5.3800 

F10,p-Xyene 3.3955  F20,p-Xyene 0.0000 
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Table 17. Data for example 5. 

Demethanizer column 

Feed 5269 kmol/h 

Composition (mole fraction)  

methane 0.783 

ethane 0.134 

propane 0.056 

i-butane 0.027 

Pressure 5978,175 kPa 

Thermodynamics (fluid package) Peng-Robinson 
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Table 18. Minimum cost for example 5. 

Optimal solution (demethanizer column) 

TAC (M$/year) 0.9269 

Operating Cost (M$/year) 0.8387 
Capital Cost (M$/year) 0.0882 
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Table 19. Summary of optimal solution obtained for example 5. 

 Cooler 

Heat Flow 

(kW) 

Reboiler 

Heat Flow 

(kW) 

Distillate 

(kmol/h) 

Bottom 

(kmol/h) 

Diameter 

Column (m) 

TAC
 

(M$/year) 

KRIGING 2703.79 0.044 4291.48 977.52 1.8954 0.9269 

HYSYS 2857.19 0.045 4314.54 954.46 1.8966 0.9745 

Number of sampled points = 78 

CPU time sampling = 84.36 s 

CPU optimization kriging parameters = 19.63 s 

CPU optimization model = 6.99 s 
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Figure 1. Comparison of actual and interpolated values.  
239x160mm (96 x 96 DPI)  

 

 

Page 50 of 58

AIChE Journal

AIChE Journal

This article is protected by copyright. All rights reserved.



  

 

 

Figure 2. Relative errors in the sampled points.  

239x160mm (96 x 96 DPI)  
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Figure 3. Optimal solution for example 1.b.  
200x139mm (96 x 96 DPI)  
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Figure 4. Equivalent configurations. (a) The thermal couple can be substituted by a superheated stream 
(distillation section) or subcooled stream (stripping section),75 (b) or by a saturated stream and a heat 
stream,76 with negligible error. (c) Petlyuk configuration. (d) Thermodynamically equivalent divided wall 

column.  
256x101mm (96 x 96 DPI)  
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Figure 5. Optimal solution. (a) Simulation of the column Petlyuk. (b) Divided wall column.  
215x124mm (96 x 96 DPI)  
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Figure 6. Optimal solution for example 3.  
64x36mm (300 x 300 DPI)  
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Figure 7. Superstructure for a three-component system.  
70x40mm (300 x 300 DPI)  
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Figure 8. Optimal solution for example 4.  
70x40mm (300 x 300 DPI)  
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Figure 9. Optimal solution for example 5.  
174x155mm (96 x 96 DPI)  
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