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ABSTRACT 

We present a derivative-free optimization algorithm coupled 

with a chemical process simulator for the optimal design of 

individual and complex distillation processes using a rigorous 

tray-by-tray model. The optimal synthesis of complex distillation 

columns is a non-trivial problem due to the discrete nature of the 

tray-by-tray column model, and also because of the high degree of 

non-linearity and non-convexity of the underlying MESH equations 

(mass balances, equilibrium, summation of molar fractions in both 

phases equal to 1 and heat balances). The proposed approach 

serves as an alternative tool to the various models based on 

nonlinear programming (NLP) or mixed-integer nonlinear 

programming (MINLP). This is accomplished by combining the 

advantages of using a commercial process simulator (Aspen 

Hysys), including especially suited numerical methods developed 

for the convergence of distillation columns, with the benefits 

of the particle swarm optimization (PSO) metaheuristic 

algorithm, which does not require gradient information and has 

the ability to escape from local optima. The method developed 

herein is based on the superstructure developed by Yeomans and 

Grossmann (2000), in which the non–existing trays are considered 

as simple bypasses of liquid and vapor flows. The implemented 

tool provides the optimal configuration of distillation column 

systems, which includes continuous and discrete variables, 

through the minimization of the total annual cost (TAC). The 

robustness and flexibility of the method is proven through the 

successful design and synthesis of three distillation systems of 

increasing complexity. 
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1 INTRODUCTION 

The costs of a chemical process are often dominated by the 

costs for the separation and purification of the products. 

Between the different separation techniques, distillation is one 

of the most important and commonly used in all chemical and 

petrochemical industries, even though these equipment units have 

very low energy efficiency – provides heat in the reboiler, to 

cool down afterwards in the condenser –. In fact, about 90% of 

all separation and purification operations in the United States 

are distillations, which represented around 3% of the total US 

energy consumption in 2002, that is, 91 GW or 54 million tons of 

crude oil (Soave & Feliu, 2002). It is therefore desirable to 

dispose robust and reliable tools to design optimal distillation 

processes, to reduce the investment and operating costs of these 

units (specifically the energy consumption, which has a large 

economic and environmental impact). 

The economic optimization of complex distillation columns 

is a nontrivial problem, and continues to be a major challenge 

in the design of chemical processes due to the discrete nature 

of the tray-by-tray column model, and also because of the high 

degree of non-linearity and non-convexity of the underlying MESH 

equations (mass, equilibrium, summation and energy). In the 

optimization, discrete decisions are related to the calculation 

of the number of trays, feed and side product streams location, 

whereas continuous variables are related to the operating 

conditions (e.g. reflux ratio, boilup ratio, distillate to feed 

ratio…). 

A number of different approaches, based on mathematical 

programming have been developed in the past decades in order to 

provide reliable rigorous try-by-tray optimization models. Most 

of these methods are formulated as a Mixer Integer Non-Linear 

Programming problems (MINLP), where the distillation column is 

modeled as a superstructure with variable column ends (reflux 

and reboil location, or even both), or as a Generalized 

Disjunctive Programing (GDP) representation, where the column is 
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modeled as a superstructure in which the non–existing trays are 

considered as bypasses of liquid and vapor flows. 

Methods that have addressed the solution of MINLP problems, 

include the branch and bound (BB)  (Gupta & Ravindran, 1985; 

Nabar & Schrage, 1991; Borchers & Mitchell, 1994; Stubbs & 

Mehrotra, 1999; Leyffer, 2001), Generalized Benders 

Decomposition (GBD) (Benders, 1962; Geofrion, 1972) Outer 

Approximation (OA) (Duran & Grossmann, 1986; Yuan et al. 1988; 

Fletcher & Leyffer, 1994) among others. But, all these methods 

assume convexity to guarantee convergence to the global optimum. 

A significant advance in the modeling and solution of 

design problems was the introduction of Disjunctive Programming 

(Raman and Grossmann, 1994; Lee and Grossmann, 2000) both from a 

point of view of modeling, and solution. The logical part of a 

model can be represented by a set of disjunctions that allow the 

researcher focusing on the model itself decoupling, at least 

partially, the model formulation from the solution. The solution 

then can be performed either by an automatic reformulation to an 

MI(N)LP problem (i.e. using a convex hull or a big M approach or 

using directly a logic-based algorithm i.e. (Türkay and 

Grossmann, 1996). However, there are no many public 

implementations of logic algorithms and there is a large open 

field for researching. 

For more information about these methods we recommend the 

lecture of the analysis of the current framework for MI(N)LP and 

GDP formulation by Grossmann and Ruiz (2009) . 

The first successful MINLP model to optimize simultaneously 

the number of trays and feed location for a specified 

separation, was published by Viswanathan and Grossmann (1993). 

These authors proposed a superstructure with multiple feed 

locations for the reflux and boilup flows and assigned binary 

variables to the existence of each of those potential streams, 

see Figure 1.1a. 
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Figure 1.1 a) Superstructure of Viswanathan & Grossmann for the optimal feed location, total number of trays and 
optimal operation conditions. b) Inactive trays in the Viswanathan & Grossmann model. 

A major difficulty of the resulting model is the fact that 

the vapor-liquid equilibrium conditions are enforced in all 

trays of the column; even in the case of inactive trays (see 

Figure 1.1b) where no mass transfer takes place. In these trays 

there is a zero liquid flow in the rectifying section or a zero 

vapor flow in the stripping section, which can produce numerical 

problems due to the convergence of the equilibrium equations 

(which are high non-linear expressions) with a zero value in the 

flow of one of the two phases (Barttfeld et al., 2003). 

Despite these drawbacks, the model of Viswanathan and 

Grossmann has been successfully applied by different research 

groups for optimizing individual columns and superstructures. 

For example, Ciric and Gu (1994) used the MINLP approach for the 

optimization of a reactive distillation column. Bauer and 

Stichlmair (1998) applied the MINLP approach to the synthesis of 

sequences of azeotropic columns, and Dünnebier and Pantelides 

(1999) used the model to generate sequences of thermally coupled 

distillation columns, to name some of them. 

In order to overcome some of the difficulties in MINLP 

models, Yeomans and Grossmann (2000) proposed a Generalized 

Disjunctive Programming (GDP), in which the non-existing trays 

are considered as simple bypasses of vapor and liquid flows 

without mass transfer. Therefore, mass and energy balances are 
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trivially satisfied, and the only difference with active trays 

is in the application of the equilibrium equations (see Figure 

1.2). 

  
Figure 1.2 Superstructure of Yeomans and Grossmann for the optimal feed location, total number of trays and 

optimal operation conditions.  

Barttfeld et al., (2003) showed that multiple 

representations for the optimization of a single distillation 

column are possible when it is solved with a GDP formulation. 

However, the computational results showed that the most 

effective alternative was the original configuration proposed by 

Yeomans and Grossmann. 

All previous models were developed in an equation based 

environment, and required sophisticated initialization 

techniques to get a feasible solution. In addition, because of 

the non-convexity of the problem, only local optima are 

guarantee by these algorithms and the quality of the solution 

strongly depend on the initialization point of the search. As 

consequence of these difficulties, the resulting optimization 

tools are very complex, and so, only persons skilled in the art 

are able to utilize and adapt to their own needs. An alternative 

for handling these very difficult or even unsolvable problems, 

preserving the mathematical programming approach, is to 
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substitute the rigorous models by simplified ones. Nevertheless, 

this procedure can entail the loss of good solutions Gross et 

al., (1998). 

Caballero et al., (2005) proposed an algorithm that 

integrates a process simulator in a Generalized Disjunctive 

Programming formulation. In this way, all numerical aspects 

related to the convergence of a distillation column are solved 

at the level of the process simulator. Therefore, taking 

advantage of the tailored numerical techniques specially 

developed to converge distillation columns included in the 

process simulators, the difficulties related with the 

initialization are overcome. 

However, some important difficulties arises with this 

approach due to the modular architecture of the process 

simulators, in which the different blocks (processing units) are 

“black box” models for the users, and usually there is no access 

to the original code and derivative information is not 

available. 

This fact may be significant because base gradient 

algorithms for solving MINLP, as the mentioned before, require 

accurate derivative information; and when a process simulator is 

used, derivatives for the design variables can only be obtained 

by perturbation, which introduces the following two important 

drawbacks: 

 the perturbation of a variable requires solving all the 

flowsheet each time a variable is perturbed, resulting in 

a significant increase in the CPU computation time, and 

 unit operations in process simulators (“black boxes”) 

introduce numerical noise preventing the calculation of 

accurate derivatives.  

This numerical noise is due to low sensitivities of some 

variables to the convergence criteria used by the model. For 

example, in a distillation column the mass and energy balance 

are checked and closed with strict tolerance criteria. However, 

reboiler and condenser heat flows can change in orders of 

magnitude larger than the mass or energy tolerances. This is not 
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relevant from the point of view of simulation – the conditioning 

of the system is low enough to assure accurate values – but this 

could produce catastrophic effects if the derivatives must be 

calculated using perturbations. 

This can be check with the following numerical experiment 

using a process simulator (Caballero & Grossmann, 2008): 

1. Converge the distillation column shown in Figure 1.3 with 

fixed values of the reflux and boilup ratios, and read 

the heat load in reboiler. 

2. Randomly select new values of the reflux and boilup 

ratios and converge the column again. 

3. Recover the values for step one and repeat 

The reboiler duty should be the same for the same fixed 

reflux and boilup rations, but there is a small dispersion in 

the values (see Figure 1.4a). This noise is usually negligible 

for practical purposes (cost estimations), but introduce a 

significant error in the derivatives (see Figure 1.4b). 

Therefore when a process simulator is used derivative 

information is expensive to obtain and also somewhat noisy. 

 
Figure 1.3 Distillation column flowsheet. 
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Figure 1.4 a)Effect of the numerical noise in the Reboiler duty and b) in the derivative with respect the reflux ratio. 

It is possible to reduce this noise increasing the 

perturbation parameter (~0.01), and/or tightening the 

convergence tolerances in the process simulator (equilibrium and 

heat error ≤ 10-6). However, this makes difficult to converge the 

flowsheet, especially for complex systems with recycle streams 

and sequences of distillation columns. 

These difficulties can be overcome by derivative–free 

optimization algorithm. Metaheuristic algorithms coordinate an 

interaction between local improvement procedures and higher 

level strategies to create a process capable of escaping from 

local optima. There are a wide variety of metaheuristics. We may 

cite, among others, simulated annealing (SA), tabu search (TS), 

variable neighborhood search (VNS), scatter search, ant colony 

optimization (ACO), iterated local search (ILS), particle swarm 

optimization21 (PSO), and genetic algorithms (GAs). 

Many free-derivative search algorithms are population-based 

procedures, where an individual represents a particular solution 
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to the optimization problem and a population is a set of 

individuals competing with each other with respect to their 

objective function values. Since these algorithms do not require 

gradient information, it is possible to treat the objective 

function as a black-box. This black-box evaluation can be 

performed by any simulation software if an interface between 

process simulator and optimizer is given. Although metaheuristic 

algorithms are not able to guarantee the optimality of the 

solutions found, gradient-based methods (which theoretically can 

provide such a certification) are often incapable of finding 

solutions whose quality is close to that obtained by the 

metaheuristics.22 This is especially true for real-world 

problems, which exhibit high levels of complexity. Perhaps the 

most serious disadvantages of metaheuristic algorithms are that 

the number of function evaluations to converge could be large, 

and as well as they exhibit poor performance in highly 

constrained systems. However, the last problem, is easily solved 

when a process simulator is used, since all mass and energy 

balances are solved at the level of process simulator. 
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2 OBJECTIVE 

With the above in mind, the purpose of this paper is to 

develop an optimization tool for designing complex distillation 

processes that combines the advantages of using a process 

simulator (Aspen Hysys) with the benefits of the PSO 

metaheuristic algorithm, which is implemented in Matlab code. 

Thus, all numerical aspects related to the convergence of 

distillation columns, including the selection of thermodynamic 

models, are specified at the level of the process simulator; and 

the external PSO optimizer (Matlab) is interfaced with the 

simulator in order to solve the optimization problem. Everything 

is controlled by an external executive program.  

The rest of the work is organized as follows. In the next 

section we introduce an overview of the Particle Swarm 

Optimization algorithm, for then describing the basis of our 

methodology applied to the optimization of a single conventional 

distillation column. Next, we illustrate the application of the 

proposed methodology with three case studies, which show how to 

develop different superstructures based on the model of the 

single column. Finally, we discuss the conclusions that can be 

drawn from this work. 
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3 THE ORIGINAL PARTICLE SWARM OPTIMIZATION ALGORITHM 

The PSO algorithm is a stochastic population-based method 

for solving global optimization problems, first proposed by 

Kennedy and Eberhart in 1995 (Kennedy, J. & Eberhart, R., 1995). 

The original algorithm was inspired by social behavior of bird 

flocking, fish schooling and swarm theory.  

The algorithm maintains a population of particles that can 

move in the  

D-dimensional search space, and where each particle represents a 

potential solution to an optimization problem. Figure 3.1 shows 

a basic flowchart depicting the general PSO algorithm. One of 

the reasons that make PSO so attractive is that there are few 

parameters to adjust, and it is easy to implement. 

The system is initialized with a population of random 

particles i, distributed in the search space. Each of those 

�� and velocity ��, and its personal best position �� (the best 

position that the particle has visited since the beginning of 

the algorithm). For a minimization task, a position yielding the 

smaller function value is regarded as the best position of 

particle i. The personal best position is updated according to 

the equation (3.1), with the dependence on the time step k. 

( ) ( )
( ) ( )

[ ]
1

1
1

1,
i i i
k k ki

k i i i
k k k

p if f x f p
p i s

x if f x f p

+
+

+

 ≥= ∈
<

K   (3.1) 

�� is updated according to equation (3.2): 

1 1
i i i
k k kx x v+ += +

 
(3.2) 

where 1
i
kv + is the particle’s new velocity vector. Stand out that 

the new velocity vector is calculated according to its previous 

��� from the best position found by itself ���  (cognitive 

�������� (social term), see equation (3.3). In other words, all 

the particles are accelerated in the direction of the best 

particle, but also in the direction of their own best 

experience.  
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( ) ( )1 1 1 2 2
i i i i global i
k k k k k k kv w v c r p x c r p x+ = + - + -  (3.3) 

�� is the inertia weight, which is employed to control the 

impact of the previous velocities on the current one (scaling 

factor associated with the previous velocities); r1 and r2 are 

two uniform random vectors, whose elements are between 0 and 1, 

which gives the stochastic nature of the algorithm and c1 and c2 

are two positive acceleration coefficients, called the cognitive 

and social parameter, respectively, and they influence the 

maximum size of the step that a particle can take in a single 

iteration. 

According to the interaction scheme between the particles, 

two main versions of the PSO exist. In the first version, called 

gbest, every individual particle is attracted to the best 

���−������. This structure then is equivalent to a fully 

connected social network. In the second one, called lbest (g and 

l stand for “global” and “local”), each individual particle is 

���−������. For instance, if z = 2, then each individual 

particle i will be influenced by the best performance among a 

group made up of particles i −1, i, and i +1.  

gbest Model 

The gbest model offers a faster rate of convergence 

(Eberhart, P. et al., 1996) at the expense of robustness. This 

model maintains only a single best solution, called the global 

best particle, across all the particles in the swarm. Thus, this 

particle acts as a sole attractor, accelerating all the 

particles towards it. The main disadvantage of the gbest 

topology is that it is unable to explore multiple optimal 

���−������ is therefore  

{ } ( )
( ) ( ) ( ){ }

1 2

1 1

, , ,
min , , ,

G global s G global
k k k k k

s
k k k

p p p p f p
f p f p f p

- -Î
=

K
K

 (3.4) 

and the new  velocity vector is obtained according to equation 

(3.5). 

( ) ( )1 1 1 2 2
i i i i G global i
k k k k k k kv w v c r p x c r p x-

+ = + - + -  (3.5) 
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lbest Model 

The lbest model tries to prevent premature convergence by 

maintaining multiple attractors. A subset of particles is 

��,��−������, is then selected. Assuming that the particle 

indices wrap around at s (s is the size of the swarm), which 

means that the first and last particles are connected, the lbest 

update equation for a neighborhood of size z is given by 

equations (3.6) and (3.7). 

( ){ }1 1 1 1, , , , , , , ,i zi z i i i i i z
j k k k k k k kN p p p p p p p- +- - + - += K K  (3.6) 

( ) ( ){ }, , min ,L best j L best j
k j k jp N f p f N- -Î = W " WÎ

 (3.7) 

and the new  velocity vector is therefore calculated  according 

to equation (3.8). 

( ) ( ),
1 1 1 2 2

i i i i L global j i
k k k k k k kv w v c r p x c r p x-

+ = + - + -  (3.8) 

Note that the gbest model is actually a special case of the 

lbest model with z= s. 
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Figure 3.1 Basic scheme of the gbest PSO algorithm for continuous and discrete variables  

The Binary PSO 

In the discrete binary version of PSO (Kennedy, J. & 

��, that contains the binary variables associated with particle 

, is updated according to: 

( )
( )

3, ,
,

3, ,

0
1

i
l l ki

l k i
l l k

i f r sig v
y

if r sig v

ìï £ï= íï >ïî
 (3.9) 

where r3 is an uniform random vector, whose elements are between 

��,�� is the sigmoid function: 
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( ) ( ),
,

1

1
i
l k

i
l k v

sig v
e -

=
+

 (3.10) 

The main body of the algorithm consists of successive 

repeat of the velocity and position update equations. The Figure 

3.2 illustrated the pseudocode for the basic PSO algorithm.  

 
Create and initialize a D-dimensional PSO with s particles 
Initialize the velocities of all particles 
Initialize the personal best position of the particle i, pi 
Initialize the global best position, pg (gbest model) 
  
repeat  
    Update velocity for continuous and binary variables 
    Update position for continuous and binary variables 
  
    for i = 1 to number of individuals particles 
        if f(xi)<f(pi) then do    % update personal best position 
            pi = xi 
        end 
        if f(pi)<f(pg) then do    % update global best position 
            pg = pi 
        end 
    end 
until stopping criterion satisfied 

 

Figure 3.2 Basic pseudocode for the PSO algorithm 

The stopping criterion depends on the type of problem being 

solved. Usually the algorithm is run for a fixed number of 

function evaluations or until a specified error bound is 

reached.  
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4 SOLUTION APPROACH. SINGLE DISTILLATION COLUMN 

DESIGN 

The first stage in a mathematical programming synthesis 

approach consists on developing a superstructure that includes 

all the alternatives of interest. In this work, the 

superstructure used for the column design is based on the 

superstructure developed by Yeomans and Grossmann (2000), in 

which the non–existing trays are considered as simple bypasses 

of liquid and vapor flows. 

4.1 Problem Statement 

For the sake of simplicity, but without loss of generality, 

let us consider the optimization of a single conventional 

distillation column, with one feed and two products streams, the 

distillate and bottom. Thus, the problem can be stated as 

follows: given a feed with known composition, determine the 

optimal configuration (feed location and total number of trays), 

and the optimal operating conditions (e.g. distillate flow rate, 

molar ratio of distillate to feed, reflux ratio, boilup ratio,…) 

for separating the feed into two product streams within given 

specifications to minimize the total annualized cost of 

equipment and utilities. In next section, we will extend the 

method to more complex systems. 

It is worth nothing that not all of the operating 

conditions are independent and it is only necessary to select as 

many design specifications as degrees of freedom the systems 

have. 

4.2 Objective Function: Total Annualized Cost (TAC). 

As stated previously, the objective function to minimize 

comprises the annualized investment cost, or capital cost of the 

main items (column shell, trays and heat exchangers) and the 

most relevant operating cost (vapor steam and cooling water). 

The estimation of the capital costs, which depends on the column 

diameter, total number of trays and heat exchanger areas, where 

obtained by means of the nonlinear cost correlations given by 
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Turton, R. et al. (2002). Detailed data about this model can be 

found in Appendix A. On the other hand, the operating costs 

reflected in the objective function where calculated from the 

corresponding heat loads of the reboiler and condenser, using 

the steam and cooling utility costs given by Turton, R., (see 

Appendix A).Thus, the objective function can be stated as: 

( )min $/ yr. op capTAC C F C= + ×  (4.1) 

where Cop is the operation cost and Ccap is the total cost of 

installed equipment, both updated by the CEPCI cost index (see 

Appendix A). The annualization factor of the capital cost F was 

calculated by the equation (4.2) recommended by Smith, R., 

(2005), and takes into account the fractional interest rate per 

year (i) and the years over which the capital is to be 

annualized (n). Typical values are a fixed rate of interest of 

10% and an annualization period of 5 years. It is worth 

mentioning that changing the annualization period can lead to 

different optimal column configurations due to the trade-off 

between the capital and operation costs. 

( )
( )

1

1 1

n

n

i i
F

i

+
=

+ -
 (4.2) 

4.3 Single Distillation Column Superstructure 

The basic idea is to consider a conventional distillation 

column as a set of permanent trays among them are the feed tray, 

the condenser and the reboiler; and a set of conditional trays 

above and below the feed that can either exist or not (see 

superstructure proposed by Yeomans and Grossmann (2000) 

presented above, and repeated here for the sake of clarity, 

Figure 4.1).  
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Figure 4.1 Superstructure of Yeomans and Grossmann for the optimal feed location, total number of trays and 

optimal operation conditions.  

For a desired separation the number and distribution of the 

trays above and below the feed (rectification and striping 

sections, respectively) is a function of the relative 

volatilities and composition of the feed. Therefore, initially 

the number of conditional trays in rectification and striping 

sections must be larger than the minimum needed to ensure the 

desired purity of the products, with a view to provide an upper 

bound to the optimal number of trays. After the optimization, 

the optimal number of trays and feed location will be defined by 

the number of active trays in each section. 

In a process simulator like Aspen Hysys, it is possible to 

generate the previously described superstructure using a built-

in distillation column module, which includes tailored numerical 

methods developed for the convergence of these units. The 

existence or non-existence of the conditional trays (equilibrium 

stages) can be performed by forcing the trays to behave as a 

simple bypass of liquid and vapor flows, without mass or heat 

transfer, simply by fixing the Murphree tray efficiency to zero 
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for the inactive trays (Caballero et al., 2005). As can be seen 

in equation (4.3), the Murphree efficiency is calculated from 

the vapor mole fraction of the vapors leaving tray n  and 1n + , 

ny  and 1ny +  respectively; and the composition of vapor in 

equilibrium with the liquid leaving the tray n, *
ny . 

1
*

1

0 1n n
MV MV

n n

y y
E E

y y
+

+

-
= £ £

-
 (4.3) 

Note that equilibrium equations are trivially satisfied in those 

trays in which the efficiency is set to zero ( )*
n ny y= . 

To avoid equivalent solutions in each section of the column 

the active trays should be consecutive. Therefore, to prevent 

“empty spaces” between active trays in the superstructure, we 

will follow the next criteria: in the rectification section, if 

a given tray exists, then all trays below it, until the feed 

tray must exist. And in the stripping section, if a given tray 

exists, then all trays above it must exist (see Figure 4.2). The 

index of the existing top ends in the rectification and striping 

sections are defined by the following two integer variables: NR 

and NS, respectively, where 1 NR NR≤ ≤  and NS NS NT≤ ≤  (NT is the 

total trays of the column). Therefore, in the optimization 

process, the PSO will only have to handle these two integer 

variables to vary the total number of trays and feed tray 

location of the column. 
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Figure 4.2 Scheme of the proposed criteria to avoid equivalent solutions  

4.4 Design and Process Specifications 

On the other hand, once the superstructure is defined, and 

all the basic design decisions required by the distillation 

column module are selected in the simulator environment (i.e. 

selection of the thermodynamic model, feed specification and 

column pressures), there are different ways for managing the 

remaining degrees of freedom of the column, that corresponds to 

the design/operation variables (continuous variables). 

Hysys allows us to select as many operating conditions as 

degrees of freedom in the column taken from a large list of 

“column specifications”. It is worth to nothing that for the 

case of a conventional distillation column, with a known feed 

and two products streams, once the operating pressure is fixed 

there are only two degrees of freedom. 

If we define as design variables the purity specification 

or recovery of the key components required in the product flows, 

the problem will be completely defined. Therefore, it is not 

necessary to include any external restriction of purity or 

recovery. In any other case, if two operating conditions from 

the column are selected, as the reflux ratio and boilup ratio, 

it will be necessary to add other extra constraints that 

consider the specifications of pureness or recovery initially 

imposed to the product flows.  

This can be performed in the simulator environment using an 

Adjust Operator that, for example, varies the value of the 

reflux ratio (independent variable) to meet the required value 

of purity of the light key component (dependent variable) in the 

distillate; and another one, that varies the value of the boilup 

ratio to meet the required purity of the heavy key component in 

the bottom product. 

Another alternative would be including these constraints in 

the PSO. However, although the PSO technique has proven to be 

efficient for solving non-convex optimization problems (Kennedy, 

J. & Eberhart, R., 1995), the original PSO it is not so 
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successful in solving constrained problems, because the 

algorithm handles the constrains penalizing infeasible 

solutions. Therefore, it would be necessary to modify the 

objective function by adding a penalty term which considers the 

deviation between the desired purity or recovery specifications 

in the product streams, Xspc, i, and the obtained value on every 

iteration of the process xi. So that, when a constraint is 

violated it will appear positive contribution in the objective 

function, as it is shown in equation (4.4). 

( ),min op year c cap i spc i i
i

TAC C t f C w X x= ⋅ + ⋅ + −∑  (4.4) 

where iw  is a positive penalty parameter of the same magnitude 

as the costs. 

That is why it is advisable, whenever possible, to select 

as design variables the specifications of purity or recovery 

required in the distillate and bottoms products. In this way, 

the PSO does not have to handle the continuous variables, and we 

do not have to introduce any penalty term in the objective 

function. However, that is not always possible. In some systems 

of distillation columns with recycle streams, which convergence 

by itself (without the optimization process) is quite 

complicated, it is better to select design variables that result 

in more robust flowhseets, such as the reflux and boilup ratio, 

with the aim of making an optimization stage easier. If we need 

to add any other constraint, such as temperature bounds for 

security or stability reasons for example, a  penalty terms in 

the objective function should be used. 

It is worth remarking that we are using an exact penalty 

function. In that way we ensure that the solution of the 

original problem (without penalties) and the reformulated 

problem is the same if the penalty term is large enough, and at 

the same time the magnitude of the penalty is not too large 

(larger than or equal to the Lagrange multiplier related to the 

constraint). 
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4.5 Optimization Algorithm with Embedded Process Simulator 

A scheme of the proposed approach is shown in Figure 4.3. 

The external solver (PSO), as well as the objective function and 

all other auxiliary files were implemented in Matlab. An 

executive  program controls all these files and established the 

connection with the process simulator, Aspen Hysys. We use the 

binary-interface standard component object model (COM), by 

Microsoft, to interact with Aspen Hysys through the objects 

exposed by the developers of the process simulators. We utilize 

Matlab as an automation client to access these objects and 

interact with Aspen Hysys, which works as an automation server. 

The next step of the proposed algorithm is the 

initialization of the PSO parameters. Then, the values of the 

indices of the top active trays of each column section (NR and 

NS) are converted in the Matlab environment to a vector of ones 

and zeros according to the existence or not of the trays, 

respectively. This information is sent to the built-in 

distillation column module as a vector of Murphree efficiencies. 

At this point, the distillation column is automatically updated 

and converged, and the process simulator returns all the 

dependent variables needed for calculating the total annual cost 

(TAC). Usually, the algorithm runs until a specified stopping 

criterion is reached for instance, until the objective function 

of all the particles in the PSO has collapsed under a specified 

tolerance or for a fixed number of function evaluations. 
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Figure 4.3 Scheme of the proposed algorithm. 
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5 NUMERICAL EXAMPLES 

Three case studies are presented to illustrate the 

methodology and how to proceed with the proposed method. The 

first example is the optimization of the single distillation 

column; afterward, two more complex examples are constructed 

based on the first example. For all the cases, the first stage 

in our methodology involves developing a superstructure that 

covers all the interesting alternatives. In this work, we use 

the superstructure developed by Yeomans and Grossmann, in which 

the nonexisting trays are considered as simple bypasses of 

liquid and vapor flows. We use a population size of 20 particles 

for all the examples. This key PSO parameter was tuned after a 

set of computational experiments varying the population size 

from 5 to 200 particles to show the trade-off between the 

objective function value and CPU time. The results show that a 

population size higher than 20 increases considerably the 

computational time but only yields a negligible improvement of 

the optimum value.  

All the examples were solved on a computer with a 1.66 GHz 

Intel Core Duo processor and 1 GB of RAM. 

5.1 Single Distillation Column 

Let us consider the optimization of a single conventional 

distillation column, with one feed and two products streams: the 

distillate and bottom. The problem can be stated as follows: 

given a feed of known composition, determine the optimal 

configuration (feed location and total number of trays) and the 

optimal operating conditions (e.g., distillate flow rate, molar 

ratio of distillate to feed, reflux ratio, boilup ratio, ...) 

for separating the feed into two product streams within given 

specifications and needed to minimize the total annualized cost 

of equipment and utilities. The feed for this example is a multi-

component mixture of hydrocarbons from c-4 to c-6, and the 

objective is to obtain the c-4 hydrocarbons as top products with 

the minimum Total Annual Cost (TAC). The molar flow rate and 

composition of the feed, and other data for the problem are 
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shown in Table 5.1. We assume that the maximum heavy impurity in 

the top product stream leaving the column (isopentane) must be 

0.5 mol%, and that the light impurity in the residue 

(cyclobutane) must also be 0.5 mol%. These constrains can be 

treated as specifications, design (independent) variables, in 

the process simulator or as external constraints as mentioned in 

Section 4. In that last case, two new column specifications must 

be chosen, for instance, the reflux ration (RR) and the boilup 

ratio (BR), which the process simulator will attempt to adjust 

in such a way that the desired purities (added as external 

constraints) are achieved. Bear in mind that a conventional 

distillation column has two degrees of freedom once the feed, 

feed tray location, pressure and number of trays have been 

fixed. 

In this example and the following, unless otherwise stated, 

the product specifications are treated as column specifications 

in the simulator environment. 

A superstructure with an upper bound of 60 trays is 

initially considered (condenser and reboiler are not included). 

The feed tray is placed in the tray 30 numbering from the top to 

bottom. The number of conditional trays in each column section 

was 25, as shown in Figure 5.1. We have also specified a minimum 

number of 10 permanent trays in the middle of the column 

(including the feed tray). Although this is not strictly 

necessary, it helps in the optimization search procedure 

reducing the number of alternatives. For the case where the 

optimal solution lies at one of these limits, the upper bound of 

trays is increased or the minimum number of permanent trays is 

decreased, or even both.  
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Figure 5.1 Single Distillation Column Superstructure 
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Table 5.1 Data for Examples 

Heat Exchangers  Distillation Columns  

Condenser: U = 800 W/(m2 K)  

Kettle reboiler U = 820 W/(m2 K)  

Material of construction: carbon steel 

(shell and tubes) 

 

 

 Calculation based on sieve tray (one pass) 

Material of construction: carbon steel 

(sieves and tower) 

Tray spacing, d,  0.609 m 

Column height H(m) = 3 + NT · d 

Tray Sizing based on design limit: 

flooding (85%) 

 

Utility Costs    

Low pressure steam (5 barg, 160 ºC) 

Medium pressure steam (10 barg, 184 ºC) 

High pressure steam (41 barg, 254 ºC) 

Cooling water (30 to 45 ºC) 

Electricity 

(Calculation based on 8000 h/yr. of 

operation) 

7.78 $/GJ 

8.22 $/GJ 

9,83 $/GJ 

0.354 $/GJ 

60.0 $/MWh 

  

 
 

 

Example 1  Example 2  

Feed 

Composition (mole fraction) 

i-butane 

n-butane 

cyclobutane 

i-pentane 

n-pentane 

cyclopentane 

2-methyl pentane (isohexane) 

n-hexane 

cyclohexane 

pressure 

thermodynamics (fluid package) 

specifications 

molar fraction isopentane (heavy key 

comp) in distillate 

molar fraction cyclobutane (light key 

comp) in bottoms 

 

1000 kmol/h (85 

ºC) 

 

0.17 

0.12 

0.06 

0.13 

0.09 

0.07 

0.09 

0.15 

0.12 

600 kPa 

Soave-Redlich-

Kwong  

 

 

≤ 0.005 

 

≤ 0.005 

Feed 

Composition (mole fraction) 

Acetone 

Methanol 

thermodynamics (fluid package) 

specifications 

Extractive Column 

pressure 

molar fraction acetone in distillate 

acetone recovery 

Entrainer-Recovery Column 

Pressure 

molar fraction methanol in distillate 

molar fraction DMSO in bottoms 

 

540  kmol/h (47 

ºC) 

 

0.50 

0.50 

UNIQUAC 

 

 

101 kPa 

≥ 0.9999 

≥ 99.95 % 

 

101 kPa 

≥ 0.9995 

≥ 0.9999 

Example 3    

Feed 

Composition (mole fraction) 

Benzene 

Toluene 

p-Xylene 

thermodynamics (fluid package) 

specifications 

Prefractionator Column 

pressure 

benzene recovery 

p-xylene recovery 

Main Column 

Pressure 

molar fraction benzene in distillate 

molar fraction toluene in side stream 

molar fraction p-xylene in bottoms 

 

500 kmol/h (111 

ºC) 

 

0.30 

0.40 

0.30 

Soave-Redlich-

Kwong  

 

 

120 kPa 

≥ 99.95 % 

≥ 99.95 % 

 

101 kPa 

≥ 0.999 

≥ 0.999 

≥ 0.999 
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When presenting the optimization results, it must be taken 

into account that the Particle Swarm Optimization algorithm is a 

stochastic optimization method, and hence the convergence to the 

same solution is not always guaranteed. In addition, although 

usually the distillation columns have a single global optimal 

solution, there may be several solutions near the best one (e.g. 

given a distillation column with n trays, a similar structure 

but with some trays more – which means a greater capital cost –, 

can result in a similar objective function, since the energy 

consumption is decreased. Here the annualization factor, F, has 

an important effect (see Equation 4.1)). For that reason, one 

way to prove the performance of the proposed optimization 

approach is to run the algorithm for a certain number of times 

and analyze the number of times that the algorithm converge to 

the best solution founded in all executions. 

The main results of twenty consecutive executions of the 

optimization algorithm are summarized in Table 5.2. As can be 

seen, there are four different configurations of the 

distillation column. All of them are very close not only in the 

structure, but also in the value of the objective function. 

Between them, the configuration with the best objective 

function, and also the most repeated (70 %) is the distillation 

column with 45 trays and  feed tray in 21 (NR = 10, NS = 54). It 

is worth to mention that for a given solution, the small 

differences in the value of the objective function (TAC) are 

consequence of the intrinsic numerical noise of the process 

simulator. 

Table 5.2 Results of 20 consecutive executions of the PSO algorithm – Example 1 

Execution Total 
Trays 

Feed Tray NR NS TAC 
(k$/yr.) 

CPU time 
(s) 

Stopping 
Criterion 

1 45 21 10 54 1803.391 30 
Criterion 

2 

2 45 21 10 54 1802.743 25 
Criterion 

2 

3 46 21 10 55 1803.329 38 Criterion 
2 

4 45 21 10 54 1802.750 22 Criterion 
2 

5 45 21 10 54 1802.743 63 Criterion 
2 

6 45 21 10 54 1802.744 25 Criterion 
2 

7 44 20 11 54 1803.074 30 Criterion 
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2 

8 46 21 10 55 1803.414 41 Criterion 
2 

9 45 21 10 54 1802.737 23 Criterion 
2 

10 45 21 10 54 1803.458 17 Criterion 
2 

11 45 21 10 54 1803.261 25 Criterion 
2 

12 45 21 10 54 1803.304 25 Criterion 
2 

13 47 22 9 55 1802.981 68 Criterion 
2 

14 45 21 10 54 1803.194 20 Criterion 
2 

15 45 21 10 54 1802.742 59 
Criterion 

2 

16 45 21 10 54 1802.743 31 
Criterion 

2 

17 45 21 10 54 1803.459 28 
Criterion 

2 

18 45 21 10 54 1803.457 17 
Criterion 

2 

19 44 20 11 54 1802.864 18 
Criterion 

2 

20 46 21 10 55 1803.405 28 
Criterion 

2 

Stopping Criterion 1: stop due to maximum number of iterations is reached (50 

major iterations). 

Stopping Criterion 2: the tolerance between best and worse particle is under 

specification (1·10-5). 

The optimal design characteristics and computational 

results for the best configuration found by the algorithm are 

shown in Figure 5.2 and Table 5.3. 

 
Figure 5.2 Best Solution of Example 1 
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Table 5.3 Computational Results for Best Solution Example 1 

PSO Description 

Number of Particles 20 

Major Iterations 18 

Function Evaluations 380 

Discrete Variables 2 

Stopping Criterion 
The tolerance between best and 
worse particles is under 
specification 

CPU Time (s) 23 

Optimal Solution 

TAC (k$/yr.) 1802.74 

Capital Cost (k$) 1150.3 

Operating Cost (k$/yr.) 1499.3 

 

5.2 Extractive Distillation System 

The second case study involves the optimization of an 

extractive distillation process. This sort of assisted 

distillation is commonly used to separate close boiling or 

homogenous binary azeotropes by adding a higher-boiling 

component, the so-called entrainer. This new component 

facilitates the separation by interacting with the original 

mixture and attracting one of the components. The proposed case 

study is illustrated with the separation of an isomolar mixture 

of acetone and methanol, using dimethyl sulfur oxide (DMSO) as 

entrainer. For more detailed data about extractive distillation 

and entrainer selection see Doherty & Malone (2001) and Kossack 

et al. (2008). 

This system has the following properties: the 

acetone/methanol mixture has a binary homogeneous azeotrope with 

a composition of 77.6 mol% acetone at atmospheric pressure, as 

shown in Figure 5.4a. The normal boiling points of acetone and 

methanol are 329 and 338 K, respectively; and the normal boiling 

point of the entrainer DMSO is 464 K. DMSO is much higher 

boiling than either acetone or methanol, and it is a very 

effective solvent. So it is possible to attain high product 

purities. Figure 5.3b gives the Txy diagrams for acetone/DMSO 

and methanol/DMSO and shows that both of these separations 

should be easy. 
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The classical extractive distillation system comprises a 

set of two distillation columns: the extractive column, which 

has two feeds, and the entrainer-recovery column, represented in 

Figure 5.4. The entrainer is fed into the extractive column 

above the process feed. One of the original components, the 

acetone, is obtained at the top of the extractive column, while 

the methanol, together with the entrainer (DMSO), forms the 

bottoms product. In the second column, the entrainer is 

separated from the methanol and recycled back to the first 

column. It is worth mentioning that different entrainers have 

different effects on the azeotropic mixture. For example, the 

chlorobenzene entrainer (Tb = 404 K) drives the methanol 

overhead in the extractive column. 

 

 
Figure 5.3 a) T-xy diagram for Acetone/Methanol. b) T-xy diagrams for Methanol/DMSO and Acetone/DMSO 

Figure 5.4 shows the representation of the proposed 

superstructure for the optimization of the acetone/methanol 

extractive distillation process with DMSO. As can be seen, the 

extractive column has two different feeds that divide the column 

in three different sections with conditional trays. Note that in 
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this case the relative position of both feeds are fixed (the 

feed rich in the entrainer is above the acetone/methanol feed). 

On the other hand, the solvent-recovery column is a conventional 

column, and the superstructure is basically the same as in the 

previous example.  

In the optimization of this system we must take into 

account that the entrainer flowrate it is also a variable to 

optimize that has a direct influence on the reflux. In addition 

the recycle stream poses an even more difficult challenge. 

The upper bound for the number of trays of each column, and 

the conditional trays of all the columns sections are shown in 

Figure 5.4. As in the previous examples we have also specified a 

minimum number of permanent trays in addition to the feed trays, 

condensers and reboilers. The molar fraction required for the 

acetone is ≥0.9995 in the overhead of the first column for a 

minimum recovery of 99.95 %. The methanol molar fraction, top 

product of the second column, must be greater than 0.9995, and 

the entrainer must be recovered with a minimum purity of 99.99%. 

These constraints are stated in the simulator environment as the 

column specifications. The remaining data for example 2 are 

shown in Table 5.1. 

 
Figure 5.4 Acetone/Methanol Extractive Distillation with DMSO Solvent Superstructure 
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In Table 5.4 are summarized the big numbers of twenty 

consecutive executions of the proposed approach. Notice that 

there are four different configurations of the extractive column 

(one with 45 trays, two with 46 and one with 47 trays), and only 

one configuration of the entrainer–recovery column with a total 

number of 12 trays. The minimal objective function (TAC = 

3042.170 k$/yr.) corresponds to one of the configurations with 

46 trays in the extractive column. All configurations and 

objective function values are very close. In Figure 5.5 and 

Table 5.5 are presented the design and computational results of 

the best solution founded by the algorithm which is also the 

most repeated (75%). 
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Figure 5.5 Best solution of Example 2 

Table 5.5 Computational Results for Best Solution Example 2 

PSO Description 

Number of Particles 20 

Major Iterations 49 

Function Evaluations 1000 

Discrete variables 5 

Continuous variables  1 

Stopping Criterion 
The tolerance between best and 
worse particles is under 
specification 

CPU Time (s) 91 

Optimal Solution 

TAC (k$/yr.) 3042.17 

Capital Cost (k$) 1217.0 

Operating Cost (k$/yr.) 2721.1 

5.3 Divided Wall Column 

The objective of this example is to optimize a fully 

thermally coupled distillation system, or Petlyuk column 

(Petlyuk, F. B., et al., 1965), for separating a three component 

mixture. 

The design of thermally coupled distillation systems has 

been considered with special interest in recent years because of 
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their potential energy savings with respect to the use of 

conventional distillation sequences. Thermally coupled 

structures are developed by substituting vapor-liquid 

interconnections between two columns for a condenser or a 

reboiler of one of the columns as it is represented in Figure 

5.6. 

 
Figure 5.6 a) Direct sequence. B) Thermally coupled direct sequence (side-rectifier arrangement) 

In this example the reboiler of the first column is 

replaced by a thermal couple. As can be seen, the liquid from 

the bottom of the first column is transferred to the second as 

before, but now the vapor required by the first column is 

supplied by the second column, instead of a reboiler on the 

first column.  

To introduce the basis of the Petlyuk configuration it is 

interesting to make a short review of the different separation 

systems for obtain three fractions from an initial 

multicomponent mixture. For the sake of clarity, if we consider 

a total separation (or close to the total separation within 

specifications) of certain key components, we do not lose any 

generality if we consider that the objective is to separate a 

three-component mixture in three streams composed by each of the 

pure components.  

If there is a three-component mixture (without azeotropes) 

to be separated into three relatively pure products (A-B-C, with 

A being the most volatile) and conventional columns (a single 
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feed, two product streams, condenser and reboiler) are employed, 

then there are only two different alternatives, as represented 

in Figure 5.7. However, these sequences suffer from an inherent 

inefficiency, caused by the thermodynamic irreversibility 

associated with stream mixing at the feed, top, and bottom of 

the column (Petlyuk, F. B., et al., 1965). This inefficiency is 

intrinsic to any separation that involves an intermediate 

boiling component. 

 
Figure 5.7 a) Direct and b) indirect sequences of conventional distillation columns for a three component separation 

In conventional columns, see Figure 5.8, the composition of 

B (product of intermediate volatility) in the first column 

increases below the feed as the more volatile component A 

decreases. However, moving further down the column, the 

composition of B decreases again when the composition of the 

less-volatile component C increases. Therefore, the composition 

of B reaches a peak only to be remixed. This remixing is a 

source of inefficiency in the separation. 
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Figure 5.8 Typical composition profile for the intermediate volatility component in the distillation columns of the 

direct sequence 

Another alternative is to consider the separation of the 

three components as in Figure 5.9a in which the lightest and 

heaviest components are chosen to be the key components, so that 

the intermediate volatility component is distributed in both 

products. This separation system is known as distributed 

distillation or sloppy distillation and needs one more 

distillation column than the direct/indirect sequences shown 

previously in Figure 5.7 to produce the three pure products. 

However, if the second and third columns in Figure 5.9a are 

operated at the same pressure, then the second and third columns 

could simply be connected and the middle product taken as a 

sidestream as shown in Figure 5.9b. This system is known as a 

prefractionator arrangement.  
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Figure 5.9 a) Distributed distillation. b) Prefractionator arrangement  

At first sight, the systems in Figure 5.6 seem to be 

inefficient in the use of equipment. However, comparing the 

sloppy distillation and the prefractionator system with the 

conventional separation sequences shown in Figure 5.4, the 

distributed and prefractionator systems typically require 10 to 

30% (Fidkowski and Krolikowski, 1987) less energy than 

conventional arrangements for the same separation. The reason 

for this difference is none other than the fact that the 

distributed distillation and prefractionator systems are 

fundamentally thermodynamically more efficient than a 

conventional sequence. As for the direct sequence, the 

composition profile for the component B is shown in Figure 5.10. 

As can be seen, the component B is distributed between the top 

and bottom of the column, so it is possible to achieve that the 

middle product (B) does not pass through a maximum, but is 

distributed smoothly across the column. In this way, the 

remixing effects that are a feature of both simple column 

sequences are avoided. 
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Figure 5.10 Typical Composition profile for the component B in the prefractionator system. 

Furthermore, the contribution of the remixing due to the 

condenser and reboilers can be mitigated considering the thermal 

coupling of the prefractionator system. If the condenser of the 

first column is replaced by thermal coupling, the liquid reflux 

is obtained by a liquid side stream of the second column 

(usually from the same stage at which arrives the vapor stream 

from the first column, see Figure 5.11a). In the same way, if 

the reboiler is removed, the vapor required by the first column 

is supplied by the second one by means of a vapor side stream. 

This configuration is named the Petlyuk column, in honor of 

F. Petlyuk (Petlyuk et al., 1965). 

The Petlyuk structure only includes two heat exchangers 

(one condenser and one reboiler) compared with the four heat 

exchangers of the direct/indirect sequence. Thus, it is possible 

to obtain savings in the investment costs. It is possible even 

go one step beyond, and integrate the two columns of the Petlyuk 

configuration in a single shell, divided by an internal wall.. 

This configuration is known as Dividing Wall Column (DWC), as it 

is shown in Figure 5.11. The configurations in Figure 5.11a and 

5.11b are thermodynamically equivalents if there is no heat 

transfer across the partition wall. 
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Figure 5.11 a) Fully thermally couple distillation system or Petlyuk configuration (1965). b) Divided Wall Column 
system  

The simulation of a divided wall column using a process 

simulator is far from straightforward because of the liquid-

vapor side streams connecting the two columns produce a 

flowsheet with a large number of recycle streams. Therefore, at 

each major iteration both columns must be converged with two 

undesirable side effects: a) the computation time for a single 

simulation considerably increases and, b) it is relatively easy 

that the system becomes prone to errors. In any case, if we try 

to use the PSO optimization algorithm, the systems should be 

robust and easy to converge, and this condition is completely 

lost when a large number of recycles are introduced. 

To facilitate an easier simulation of the dividing wall 

column, we make use of the novel strategy for the simulation of 

thermally coupled distillation sequences developed by Navarro, 

M. A. et al., (2012) from the Institute of Chemical Process 

System Engineering of the University of Alicante. For detailed 

data about this methodology see the Appendix B. Just mention 

herein that in order to avoid the recycle structure that appears 

in thermally coupled distillation columns it is possible to use 

two conventional distillation column modules replacing the 

material recycle streams by a combination of a material and 

energy streams. 
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Figure 5.12 shows the superstructure proposed for the 

optimization of a dividing wall column for separating a mixture 

of benzene, toluene and p-xylene in pure components (≥ 99.95 

mol%). The upper bound for the number of trays of the first 

distillation column, that corresponds with sections I and II of 

the divided wall column was set in 70, and for the second column 

122 (sections III to VI). The conditional and permanent trays of 

each column section, as well as the feed trays and the remaining 

parameters of the superstructure can be deduced from the 

Figure 5.12. All the required specifications of the divided wall 

column are listed in Table 5.1. 

 
Figure 5.12 Divided Wall Column Superstructure (Acyclic System for simulation) 

It should be noted that, although in the process simulator 

the divided wall column is performed by means of two columns, in 

fact all the column sections are in a single shell. Thus, in the 

mathematical model of the superstructure we force the number of 

active trays in sections [I & IV] and [II & V] to be equal, 

respectively. Therefore, between the active trays of the 

mentioned sections, ATj, where j is the set of column sections, 

1 6j≤ ≤ , (which are obtained by means of the integer variables 

assigned to the top ends of each column section) we choose the 

greatest of each pair of sections, [ ]( )max ,I IVAT AT and [ ]( )max ,II VAT AT
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, in order to ensure that the required separation is achieved in 

both sides of the wall. Actually this is not strictly necessary, 

because in each side of the wall it is possible to use different 

number of trays with different tray spacing, as well as 

different types of trays or packing. However, as the total 

height of the divided wall column is given by the most difficult 

separations, we can assert that the proposed superstructure is a 

good approach. In addition, consider that the number of active 

trays in sections [I & IV] and [II & V] are respectively the 

same, makes easier the mechanic design of the column, being able 

to use conventional sieve trays of double pass, adapted for 

locating the intern wall. In any case, using the same number of 

trays in both sides of the wall will make easier the 

installation of the fixing rings. Of course, one of the sides of 

the wall will be executing an over-separation from the initial 

specifications, due to the extra amount of trays, which is, in 

any case, always a benefit for the separation.  

As in the previous examples, in Table 5.6 are summarized 

the main results of twenty consecutive executions of the 

algorithm. 

Table 5.6 Results of 20 consecutive executions of the PSO algorithm – Example 3 

Executio
n 

Tota
l 

Tray
s 

Feed 
Tray CSI 

CSI

I 
CSII

I 
CSI

V 
CSV 

CSV

I 

TAC 
(k$/yr.

) 

CPU 
time(s

) 

Stopping 
Criterio

n 

1 86 32 10 61 16 45 91 115 
2131,09

9 613 
Criterio

n 1 

2 86 33 7 54 18 35 88 117 
2130,07

1 687 
Criterio

n 1 

3 85 28 11 55 19 39 91 118 
2126,81

9 632 
Criterio

n 1 

4 85 29 11 65 18 48 81 117 2126,62
6 632 Criterio

n 1 

5 85 31 9 55 18 44 91 115 
2127,59

3 623 
Criterio

n 1 

6 84 29 11 64 18 45 71 117 2128,34
6 

610 Criterio
n 1 

7 85 29 11 65 18 48 81 117 2126,62
6 

668 Criterio
n 1 

8 85 31 9 55 18 44 91 115 2127,59
3 

626 Criterio
n 1 

9 86 32 10 61 16 45 91 115 2131,09
9 

617 Criterio
n 1 

10 85 29 10 63 19 41 69 119 2126,93
4 

661 Criterio
n 1 

11 85 29 8 51 19 36 89 117 2127,40
4 

648 Criterio
n 1 

12 85 28 11 55 19 39 91 118 2126,81
9 630 Criterio

n 1 
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13 86 34 8 57 16 35 89 115 
2131,03

0 625 
Criterio

n 1 

14 85 31 10 66 17 38 76 114 
2127,85

3 635 
Criterio

n 1 

15 86 32 7 63 19 37 89 117 
2132,87

2 658 
Criterio

n 1 

16 86 32 10 61 16 45 91 115 
2131,09

9 880 
Criterio

n 1 

17 85 29 11 65 18 48 81 117 
2126,62

6 660 
Criterio

n 1 

18 85 29 11 65 18 48 81 117 
2126,62

6 637 
Criterio

n 1 

19 85 32 10 63 19 41 69 119 2126,93
4 

626 Criterio
n 1 

20 85 31 8 51 19 36 89 117 2127,40
4 

665 Criterio
n 1 

Stopping Criterion 1: stop due to maximum number of iterations is reached (150 

major iterations). 

Stopping Criterion 2: the tolerance between best and worse particle is under 

specification (1·10-5). 

An interesting characteristic of thermally coupled systems 

in general or a Divided Wall Column (DWC) in particular is that 

exist a relatively large number of different configurations 

(similar number of total trays but with different arrangements 

in sections) with very similar total costs. This effect can be 

observed in the 20 consecutive executions where different 

solutions are obtained but all of them very close each other in 

terms of total cost and structure. Curiously, this fact gives 

the designer an extra degree of freedom to consider other 

aspects like the controllability, hydrodynamics, etc. to select 

the most adequate tray distribution. 

 

Notice that there are two main configurations with 85 and 86 

trays and the mean value of the objective function of this 

configurations are 2127 and 2130 k$/yr., respectively. 

Configuration with 85 trays has the lowest TAC value and was 

obtained the 65% of the times. All the structures can be 

considered as good solutions, but the solution number 4 is the 

best one between the solutions with 85 trays. The computational 

and design results for the mentioned solution are summarized in 

Figure 5.13 and Table 5.7. 



 University of Alicante – Juan Javaloyes (2013)  

Institute of Chemical Process System Engineering – University of Alicante  

47 

 
Figure 5.13 Best Solution of Example 3 

Table 5.7 Computational Results for Best Solution Example 3 

PSO Description 

Number of Particles 20 

Major Iterations 150 

Function Evaluations 3020 

Discrete Variables 6 

Stopping Criterion Stop due to maximum number of 
iterations is reached  

CPU Time (s) 668 

Optimal Solution 

TAC (k$/yr.) 2126.63 

Capital Cost (k$) 1754.4 

Operating Cost (k$/yr.) 1540.0 
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6 CONCLUSIONS 

In this work we have provided a general review of the area 

of optimal design and synthesis of distillation columns. We have 

shown that the rigorous optimization of complex distillation 

processes represents a challenging problem due to the large 

impact on the investment and operating costs involved. In the 

literature there are wide array of different approaches, most of 

them based on the mathematical programming embodied in MI(N)LP 

or GDP representations. However, these models suffer from 

important difficulties because of the high degree of 

nonlinearity and nonconvexity of the equations describing the 

separations units. This restricts the initial guess to one that 

has to be very close to a realistic simulation result, and 

strongly affects the quality of the solution. As a consequence, 

the resulting optimization models are far from being 

straightforward, and so, only those skilled in the art are able 

to utilize and adapt them to their own needs.  

In order to overcome the main difficulties that arise in 

the MI(N)LP and GDP approaches, we have proposed a systematic 

method that takes advantage of the process simulators and the 

free derivative optimization algorithm PSO (Particle Swarm 

Optimization algorithm) for solving global optimization 

problems: the method simultaneously optimizes the operating 

parameters of the distillation columns (reflux and reboiler 

rations, recoveries, ...), as well as the discrete design 

decisions of the feed and product location, and obtains the 

optimal number of trays. Three numerical examples were solved to 

illustrate how to build different superstructures using the 

process simulator and to assess the robustness and performance 

of the implemented method. In addition, this approach can be 

extended to other separation processes. To that end, our future 

work will be extended to sharp and nonsharp distillation 

sequences, as well as to thermally coupled distillation 

sequences. 
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APPENDIX A: Utility and Capital Costs 

The role of the process economics it is important to 

evaluate the different superstructures proposed in the numerical 

examples and carry out the process optimization approach 

described in this work. For this reason, it is essential to 

define the utility costs used to calculate the different 

operating costs described in the examples, as well as the 

nonlinear cost model used to estimate the capital cost of the 

distillation columns, heat exchangers and compressors.  

Utility Costs 

The utilities used for the calculation of the operating 

costs of the proposed flowhseets are cooling water, vapor steam 

for boilers and electricity. The reported cost of these 

utilities given by Turton, R. et al. (2002)., are shown in Table 

A.1.  

Table A.1 Utility Costs 

Utility Description 

Cost 

($/GJ) 

Cost 

($/ Common 
Unit) 

Steam from 
boilers 

a. Low pressure (5 barg, 160 
ºC) 

7.78 16.22 $/1000 
kg 

 b. Medium pressure (10 barg, 
184 ºC) 

8.22 16.40 $/1000 
kg 

 c. High pressure (41 barg, 
254 ºC) 9.83 16.64 $/1000 

kg 

Cooling water 
Process cooling water: 30ºC 
to 45 ºC 0.354 14.8 $/1000 m3 

Electricity 
Electric distribution (110, 
220, 440 V) 16.8 60.0 $/MWh 

All the operating cost are annualized ($/year) so we 

consider that the processes operate for 8000 hours per year.  

Capital Cost 

The estimation of the capital cost for a chemical plant or 

a single unit operation, as the distillation columns or heat 

exchangers, must take into consideration many costs, besides the 

purchase cost of the equipment. These costs can be classified in 

direct costs (the equipment free on board cost, materials 
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required for installation and labor to install) and indirect 

costs (freight, insurance and taxes, construction overhead and 

contractor engineering expenses). 

This topic has been covered extensively in the literature. 

However, the Module Costing Technique, introduced by Guthrie, K. 

M., 1969/1974, it is generally accepted as the best one for 

making preliminary cost estimates (Turton, R. et al., 2003) and 

is adopted in this work. 

 

In this approach the equation (A.1) is used to calculate 

the sum of the direct and indirect costs mentioned above for 

each piece of equipment (the bare module cost)  

0
BM p BMC C F=  (A.1) 

were: 

CBM is the bare module equipment cost that represents the sum of 

direct and indirect costs. 

FBM is the bare module cost factor: multiplication factor to 

account for the specific materials of construction and 

operating pressure. 

CP
0 is the purchase cost for base conditions (carbon steel 

construction and ambient pressure). 

The purchase cost of the equipment can be estimated with 

the following correlation 

( ) ( ) 20
10 1 2 3 10log logPC K K A K Aé ù= + + ë û  (A.2) 

were A is the capacity or size parameter for the equipment. The 

data for the constants Ki, along with the maximum and minimum 

values of the size parameter used in the correlation for each 

piece of equipment used in this work are given in Table A.2. 

Table A.2 Equipment cost data for compressors 

Equipment Type K1 K2 K3 A (capacity, Units) Min Size Max Size 

Compressors 2.2897 1.3604 -0.1027 fluid power, kW 450 3000 

Heat exchangers 4.3247 -0.3030 0.1634 area, m2 10 1000 

Towers 3.4974 0.4485 0.1074 volume, m3 0.3 520 
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Sieve Trays 2.9949 0.4465 0.3961 area, m2 0.07 12.30 

It is important to notice that the purchase cost of 

equipment was obtained from a survey of equipment manufactures 

performed in 2001, so an average value of the CEPCI (Chemical 

Engineering Plant Cost Index) of 397 should be used in the 

account of the inflation (Turton R. et al., 2003). The value of 

the Annual CEPCI index for 2011 is 585.7 (Chemical Engineering 

Journal, May 2012). Therefore, the update bare module equipment 

cost is given by equation (A.3) 

(2011)0
(2011)

(2001)
p p

CEPCI
C C

CEPCI
= ×  (A.3) 

On the other hand, the bare module cost factor, FBM, which 

is related to the material of construction (carbon steel) and 

pressure operation, is obtained from a set of tables and figures 

that can be found in the book of Turton, R. et al., 2003. Herein 

are summarized the FBM values used in the calculation of the 

capital cost of each piece of equipment listed above in Table 

A.3.  

Table A.3 Bare module cost factor 

Equipment Type FBM 

Compressors 2.80 

Heat exchangers 3.08 

Towers 4.07 

Sieve Trays 1.0 
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APPENDIX B: Strategies for the Robust Simulation of 

Divided Wall Columns 

In this appendix the methodology followed to perform the 

simulation of thermally coupled distillation columns is 

described. We will focus the attention on the Petlyuk 

configuration, which is thermodynamically equivalent to a 

divided wall column. A complete discussion about 

thermodynamically equivalent configurations and their 

implications in cost and operability for systems with three or 

more components can be found in (Caballero, J.A. & I.E. 

Grossmann, 2002).  

As can be seen in Figure B.1, we can simulate a divided 

wall column system using two (or maybe three) conventional 

columns. 

 
Figure B.1 Petlyuk configuration and the thermodynamically equivalent divided wall column 

The problem when we try to simulate a thermally coupled 

sequence using a process simulator like Aspen Hysys is that it 

is necessary to introduce a recycle due to the double stream 

(liquid and vapor) connecting two columns. Therefore, at each 

major iteration, each column must be converged with two 

undesirable side effects: a) the computation time for a single 

simulation increases considerably b) it is relatively easy for 

the system not to converge. 
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Simulation Strategies. Acyclic System Simulation 

The basic idea is to avoid the recycle structure that 

appears in Thermally Couple Distillation (TCD) system in a 

modular simulator. This idea is based on the works by Carlsberg 

and Westerberg (Carlberg, N.A. & A.W. Westerberg, 1989). They 

proved in the context of Underwood's shortcut method, that the 

two side streams in a TCD system connecting the rectifying 

section of the first column (see Figure B.2a) with column 2, is 

equivalent to a superheated vapor stream whose flow is the net 

flow (difference between vapor exiting the column and the liquid 

entering in it) – Figure B.2b –. If the two side streams are 

connecting the stripping section of the first column with the 

second column then these two streams are equivalent to a single 

sub-cooled liquid stream whose flow is the net flow (in this 

case liquid minus vapor flows). See Figure B.2c,d. 

 
Figure B.2 a, b, e equivalent configurations. c, d, f equivalent configurations 

This approach, apparently solve the problem, since each 

pair of streams could be replaced by a net flow of overheated 

vapor (enrichment section) or a net flow of subcooled liquid 

(stripping section) and in this way, the recirculation of 

information in the flowsheet could be removed. 
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However, this cannot generally be implemented in a modular 

process simulator because the degree of superheating and/or 

subcooling could be so large that it might produce results 

without physical meaning, and therefore fail in the convergence 

of the simulator (for example temperatures of liquid below the 

absolute zero). 

Fortunately, it is possible to solve this problem 

substituting the superheating or subcooling streams by a 

combination of a material and an energy stream.  

In the rectifying section, the material stream is vapor at 

its dew point and the energy stream is equivalent to the energy 

removed if we include a partial condenser to provide reflux to 

the first column. See Figure B.2e. In the stripping section, the 

material stream is liquid at its bubble point and the energy 

stream is equivalent to the energy added if we include a 

reboiler to provide vapor to the first column, see Figure B.2f. 

Although this strategy is only an artificial tool to 

simulate the behavior of the thermally coupled system avoiding 

the recycles, there is not an approximation at all if the 

streams introduced/withdraw in/from the column 2 were in 

equilibrium with the liquid and vapor flowing through this 

column (V1
C1 with L2

C2). See Figure B.3.  

 
Figure B.3 Details of the connection between columns, "Cyclic system simulation" 

Unfortunately, this is not entirely true. The Carlberg & 

Westerberg approximation considers the idea that there is no 

mass exchange between the vapor and liquid streams. In the 

rigorous simulation, the energy streams are used to simulate the 

elimination of liquid that is withdraw from the column 2 to the 
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column 1, since it vaporizes part of the liquid stream, which is 

equivalent to the liquid removed, see Figure B.4. 

 
Figure B.4 Details of the connection between columns, "Acyclic system simulation" 

This vapor stream is added to the vapor upward flow within 

the column. This is the main source of error. But if the vapor 

and liquid streams are introduced/withdrawn in/from the same 

tray the error introduced is small and usually can be neglected. 

In any case, in the worst possible scenario the values obtained 

with this technique are excellent initial points to converge the 

rigorous simulations of the original system. 

Steps for the Simulation of a Divided Wall Column 

In the following section we will explain the steps for the 

simulation of a divided wall column using a process simulator. 

First we simulated the acyclic sequence (each thermal 

coupled is substituted by a mass and an energy stream), using 

conventional distillation columns, see Figure B.5. To do the 

thermal couple, we connected the mass and energy streams that 

leave the condenser in the same tray of the next column, and in 

the same way, the mass and energy streams that leave the 

reboiler in the same tray of the next column. Then, we converge 

the acyclic sequence and the results of the acyclic simulation 

are used as initial points of the actual system (with cyclic 

structure). The initial conditions (pressure, temperature, flow 

and compositions) of the recycled streams – vapor entering in 

the bottom tray and liquid entering in the top tray – are the 

conditions of the vapor/liquid exiting from the 

reboiler/condenser in the acyclic system.  
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It is important to remark that the distillate of the first 

column is equivalent to a saturated vapor stream plus an energy 

stream. Therefore, we are adding heat in the upper part of the 

second column. However, the bottom stream is equivalent to a 

saturated liquid stream minus a heat stream and therefore, we 

are removing heat from the second column. It is very important 

take into account the sign of the energy stream added (a 

negative sign in Hysys means that we are removing heat that in 

fact is what we want in the lower part of the second column). 

 
Figure B.5 Simulations of (A) acyclic and (B) cyclic system configurations
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