80 research outputs found

    Radio-frequency circular integrated inductors sizing optimization using bio-inspired techniques

    Get PDF
    In this article, a comparative study is accomplished between three of the most used swarm intelligence (SI) techniques; namely artificial bee colony (ABC), ant colony optimization (ACO), and particle swarm optimization (PSO) to carry out the optimal design of radio-frequency (RF) spiral inductors, the three algorithms are applied to the cost function of RF circular inductors for 180 nm beyond 2.50 GHz, the aim is to ensure optimal performance with less error in inductance, and a high-quality factor when compared to electromagnetic simulation. Simulation experiments are achieved and performances regarding convergence velocity, robustness, and computing time are checked. Also, this paper shows an impact study of technological parameters and geometric features on the inductance and the quality factor of the studied integrated inductor. The building method of constraints design with algorithms used has given good results and electromagnetic simulations are of good accuracy with an error of 2.31% and 4.15% on the quality factor and inductance respectively. The simulation shows that ACO provides more accuracy in circuit size and fewer errors than ABC and PSO, while PSO and ABC are better in terms of convergence velocity

    Performance Evaluation of Evolutionary Algorithms for Analog Integrated Circuit Design Optimisation

    Full text link
    An automated sizing approach for analog circuits using evolutionary algorithms is presented in this paper. A targeted search of the search space has been implemented using a particle generation function and a repair-bounds function that has resulted in faster convergence to the optimal solution. The algorithms are tuned and modified to converge to a better optimal solution with less standard deviation for multiple runs compared to standard versions. Modified versions of the artificial bee colony optimisation algorithm, genetic algorithm, grey wolf optimisation algorithm, and particle swarm optimisation algorithm are tested and compared for the optimal sizing of two operational amplifier topologies. An extensive performance evaluation of all the modified algorithms showed that the modifications have resulted in consistent performance with improved convergence for all the algorithms. The implementation of parallel computation in the algorithms has reduced run time. Among the considered algorithms, the modified artificial bee colony optimisation algorithm gave the most optimal solution with consistent results across multiple runs

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Fast and Robust Design of CMOS VCO for Optimal Performance

    Get PDF
    The exponentially growing design complexity with technological advancement calls for a large scope in the analog and mixed signal integrated circuit design automation. In the automation process, performance optimization under different environmental constraints is of prime importance. The analog integrated circuits design strongly requires addressing multiple competing performance objectives for optimization with ability to find global solutions in a constrained environment. The integrated circuit (IC) performances are significantly affected by the device, interconnect and package parasitics. Inclusion of circuit parasitics in the design phase along with performance optimization has become a bare necessity for faster prototyping. Besides this, the fabrication process variations have a predominant effect on the circuit performance, which is directly linked to the acceptability of manufactured integrated circuit chips. This necessitates a manufacturing process tolerant design. The development of analog IC design methods exploiting the computational intelligence of evolutionary techniques for optimization, integrating the circuit parasitic in the design optimization process in a more meaningful way and developing process fluctuation tolerant optimal design is the central theme of this thesis. Evolutionary computing multi-objective optimization techniques such as Non-dominated Sorting Genetic Algorithm-II and Infeasibility Driven Evolutionary Algorithm are used in this thesis for the development of parasitic aware design techniques for analog ICs. The realistic physical and process constraints are integrated in the proposed design technique. A fast design methodology based on one of the efficient optimization technique is developed and an extensive worst case process variation analysis is performed. This work also presents a novel process corner variation aware analog IC design methodology, which would effectively increase the yield of chips in the acceptable performance window. The performance of all the presented techniques is demonstrated through the application to CMOS ring oscillators, current starved and xi differential voltage controlled oscillators, designed in Cadence Virtuoso Analog Design Environment

    Optimized Design of a Self-Biased Amplifier for Seizure Detection Supplied by Piezoelectric Nanogenerator: Metaheuristic Algorithms versus ANN-Assisted Goal Attainment Method

    Get PDF
    This work is dedicated to parameter optimization for a self-biased amplifier to be used in preamplifiers for the diagnosis of seizures in neuro-diseases such as epilepsy. For the sake of maximum compactness, which is obligatory for all implantable devices, power is to be supplied by a piezoelectric nanogenerator (PENG). Several meta-heuristic optimization algorithms and an ANN (artificial neural network)-assisted goal attainment method were applied to the circuit, aiming to provide us with the set of optimal design parameters which ensure the minimal overall area of the preamplifier. These parameters are the slew rate, load capacitor, gain–bandwidth product, maximal input voltage, minimal input voltage, input voltage, reference voltage, and dissipation power. The results are re-evaluated and compared in the Cadence 180 nm SCL environment. It has been observed that, among the metaheuristic algorithms, the whale optimization technique reached the best values at low computational cost, decreased complexity, and the highest convergence speed. However, all metaheuristic algorithms were outperformed by the ANN-assisted goal attainment method, which produced a roughly 50% smaller overall area of the preamplifier. All the techniques described here are applicable to the design and optimization of wearable or implantable circuits

    Energy Harvesting and Energy Storage Systems

    Get PDF
    This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources

    Hybridization of modified sine cosine algorithm with tabu search for solving quadratic assignment problem

    Get PDF
    Sine Cosine Algorithm (SCA) is a population-based metaheuristic method that widely used to solve various optimization problem due to its ability in stabilizing between exploration and exploitation. However, SCA is rarely used to solve discrete optimization problem such as Quadratic Assignment Problem (QAP) due to the nature of its solution which produce continuous values and makes it challenging in solving discrete optimization problem. The SCA is also found to be trapped in local optima since its lacking in memorizing the moves. Besides, local search strategy is required in attaining superior results and it is usually designed based on the problem under study. Hence, this study aims to develop a hybrid modified SCA with Tabu Search (MSCA-TS) model to solve QAP. In QAP, a set of facilities is assigned to a set of locations to form a one-to-one assignment with minimum assignment cost. Firstly, the modified SCA (MSCA) model with cost-based local search strategy is developed. Then, the MSCA is hybridized with TS to prohibit revisiting the previous solutions. Finally, both designated models (MSCA and MSCA-TS) were tested on 60 QAP instances from QAPLIB. A sensitivity analysis is also performed to identify suitable parameter settings for both models. Comparison of results shows that MSCA-TS performs better than MSCA. The percentage of error and standard deviation for MSCA-TS are lower than the MSCA which are 2.4574 and 0.2968 respectively. The computational results also shows that the MSCA-TS is an effective and superior method in solving QAP when compared to the best-known solutions presented in the literature. The developed models may assist decision makers in searching the most suitable assignment for facilities and locations while minimizing cost

    進化的アルゴリズムにおける集団構造の研究

    Get PDF
    富山大学・富理工博甲第171号・王藝叡・2020/3/24富山大学202

    Air Force Institute of Technology Research Report 2007

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    corecore