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Abstract

Complex networks have been attracting much attention and developed rapidly over the past

two decades. In nature and society, numerous networks have been described widely, such

as Internet, E-mail, interpersonal relationship, collaboration, citation and so on. Investiga-

tions in various networks demonstrate these networks have some identical characteristics of

topologies including small world, scale free, community structure and hierarchical frame-

work. The discovery of these characteristics can make people better understand inherent

regulation of abstract networks. Therefore, the complex network is regarded as an effec-

tive tool to depict and interpret the elusive phenomenon generated by real world. The aim

involves two aspects where one is to cognize and analyze the essence of complicated sys-

tem in terms of multiple viewpoints and the other is to enhance the application of research

objective.

Evolutionary algorithms (EAs) such as genetic algorithm (GA), particle swarm opti-

mization (PSO) and ant colony optimization (ACO) are effective methods to resolve vari-

ous problems. As population-based algorithms, EAs continually evolve their populations

to derive better results on optimization problems. Their population structures can influence

interaction among individuals such that their performances are also determined. Adjusting

population structures can become a kind of methods to improve performance of EAs. Stud-

ies have proved that population structures can remarkably help the evolution of individuals

so as to reinforce the properties of EAs.

In this thesis, three kinds of EAs including differential evolution (DE), brain storm op-

timization (BSO) and gravitational search algorithm (GSA) are researched from the view-

point of population structure. For them, my work mainly focuses on the following aspects:

(1) Construction and implementation of complex networks; (2) Relationship between pop-

ulation structures and transmitting information; (3) Interaction among individuals in differ-

ent population structures; (4) New proposals to modify population topologies for improving

performance of EAs. The specific contents are given as follows.

(1) For DE, a population interaction network (PIN) is proposed to investigate the rela-
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tionship constituted by populations. The cumulative distribution function (CDF) of degree

in PIN is analyzed by five fitting models on twelve benchmark functions. The goodness of

fit is used to measure fitting results. Experimental results demonstrate that CDF meets cu-

mulative Poisson distribution. Besides, the number of nodes in PIN and the rate parameter

λ in the fitted Poisson distribution are further studied using different control parameters of

DE, which exhibits the effect and characteristic of the population interaction.

(2) For BSO, to theoretically analyze its performance from the viewpoint of population

evolution, the PIN is used to construct the relationship among individuals. Four exper-

iments in different dimensions, parameters, combinatorial parameter settings and related

algorithms are implemented, respectively. Experimental results indicate the frequency of

average degree of BSO meets a power law distribution on functions with low dimension,

which shows the best performance of algorithm among three kinds of dimensions. The

parameters of BSO are investigated to find the influence of population interaction with

the power law distribution on the performance of algorithm, and respective parameter can

change the relationship among individuals. In addition, mutual effect among parameters is

analyzed to find the best combinatorial result to significantly enhance the performance of

BSO. Contrast among BSO, DE and PSO demonstrates a power law distribution is more

effective for boosting the population interaction to enhance the performance of BSO.

(3) For GSA, a hierarchical GSA with an effective gravitational constant (HGSA) is

proposed to address premature convergence and low search ability. Three contrastive ex-

periments are carried out to analyze the performances between HGSA and other GSAs,

heuristic algorithms and PSOs on function optimization. Experimental results demonstrate

the effective property of HGSA due to its hierarchical structure and gravitational constant.

A component-wise experiment is also established to further verify the superiority of HGSA.

Additionally, HGSA is applied to several real-world optimization problems so as to veri-

fy its good practicability and performance. Finally, time complexity analysis is discussed

to conclude that HGSA has the same computational efficiency in comparison with other

GSAs.

The thesis is organized as follows. Chapter 1 introduces background and related work

of EAs as well as contributions of this thesis. Chapter 2 presents the research of population

structure on DE. Chapter 3 describes several characteristics of population structure on BSO.

Chapter 4 gives an improved GSA based on a modified population structure. Chapter 5

summarizes some general conclusions and points out several future work.
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Chapter 1

Introduction

1.1 Background of EAs

Nowadays, a number of optimization problems are complex and difficult owing to their

high dimensional spaces [1, 2]. Traditional mathematical methods cannot use effective

formulas to resolve these problems. Thus, more and more attention have been attracted

toward metaheuristic algorithms because they generally find a global optimal solution via

continuous iterations [3–6].

Metaheuristic algorithms can be divided into two classes, i.e., single-point search al-

gorithms and population-based search algorithms. Single-point search algorithms use an

old individual to produce new one over iterations, such as simulated annealing (SA) [7]

and Tabu search (TS) [8]. Population-based search algorithms utilize the population to

gradually converge into a global optimal solution via some cooperative operators, such as

GA [9], evolutionary programming (EP) [10], DE [11–13], ACO [14], PSO [15], BSO [16]

and GSA [17].

Besides, metaheuristic algorithms can also be classified into three categories: biology-

based algorithms, physics-based algorithms and geography-based algorithms. Biology-

based algorithms are inspired from natural evolution and biological behaviors, which con-

sist of swarm-based algorithms and evolution-based algorithms. Swarm-based algorithms

mimic cooperative behaviors of social nature, such as ACO and PSO. A swarm consists

of many distinctive individuals and shows global social behaviors without central con-

trol. Individuals in a swarm are relatively simple whereas their collaboration can exert

remarkable effect to handle different missions. Evolution-based algorithms are inspired

from biological evolution. Biological operators including natural selection, crossover and

mutation are introduced into algorithms to improve their search ability. Thus, these al-

1



Table 1.1: A list of various metaheuristic algorithms.
Biology-based algorithms
Genetic algorithm (GA) [9] Evolutionary programming (EP) [10]
Evolutionary strategy (ES) [19] Differential evolution (DE) [11]
Harmony search algorithm (HSA) [20] Artificial immune system (AIS) [21]
Particle swarm optimization (PSO) [15] Bacterial foraging optimization (BFO) [22]
Cuckoo search algorithm (CS) [23] Artificial bee colony algorithm (ABC) [24]
Ant colony optimization (ACO) [14] Coral reef optimization (CRO) [25]
Firefly algorithm (FA) [26] Teaching-learning based optimization (TLBO) [27]
Shuffled frog leaping algorithm (SFLA) [28] Pigeon inspired optimization (PIO) [29]
Brain storm optimization (BSO) [16]
Physics-based algorithms
Simulated annealing (SA) [7] Gravitational search algorithm (GSA) [17]
Chaotic optimization algorithm (COA) [30] Intelligent water drops algorithm (IWD) [31]
Magnetic optimization algorithm (MOA) [32]
Geography-based algorithms
Tabu search algorithm (TS) [8] Imperialistic competition algorithm (ICA) [18]

gorithms have learning, adaptive and evolutionary capabilities, such as GA, EP and DE.

Physics-based algorithms are designed from physical phenomenon and rules, such as SA

and GSA. Geography-based algorithms are to search space according to geography, such

as TS and imperialistic competition algorithm (ICA) [18]. More algorithms can be referred

in Table 1.1.

These algorithms have two crucial properties, i.e., exploration and exploitation. Ex-

ploration means that algorithms sufficiently search an entire space without trapping into

local optima. Exploitation indicates that algorithms further optimize the search space in

order to find a better solution. To obtain better results, the balance between exploration and

exploitation should be considered. Consequently, numerous researchers focus on them to

improve performances of algorithms.

1.2 Related work of EAs

1.2.1 Population structure

There are enormous complicated relationships among things or people in the real world,

which constructs different kinds of characteristic networks called complex networks via the

mutual collaboration and communication. In the last decades, the complex network as a

hot topic has been studied extensively and developed quickly to apply for a great number

of research fields, such as transportation network, Internet, mobile phone network, neu-

ral network and collaboration network [33–38]. The characteristics of complex networks
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are dynamic, random and complicated, which can be reflected by the numerous nodes and

edges in the networks. At present, the wide and main emergence among heterogeneous net-

works is the scale-free network [39], small-world network [40, 41], random network [42]

and weighted network [43] which show the distinctive property for the structure of net-

work, respectively. Therefore, massive researches concerned about complex network have

demonstrated the structure of network can significantly influence the attribute of network

measured by the degree of nodes, shortest paths, clustering coefficient or motifs [44–46].

In fact, the structure of network shows the general process of evolution of nodes and

controls the entire property of network. Understanding and analyzing the essence of net-

work is beneficial for better profoundly acquainting the evolutionary mechanism of nodes

so as to enhance the attribute of other networks according to this mechanism or change this

mechanism to improve itself. Based on this point of view, a majority of researchers have

paid attention to the performance of complex network mostly modeled by the relationship

among individuals in EAs [47–50].

EAs as population-based swarm intelligent approaches have been used and developed

for addressing various optimization problems such as single objective optimization [51],

multi-objective optimization [52] and combinatorial optimization [53, 54]. These wide ap-

plications indicate that EAs possess tremendous potential and play important roles in the

field of optimization. Thus, their performances are persistently paid attention and investi-

gated in order to further enhance their effectiveness and efficiency. Since EAs consist of

individuals in the population, their population structures influence the organization and evo-

lution of individuals so as to determine the performances of algorithms. Researches have

demonstrated that a novel population structure can be beneficial for significantly improving

the performances of EAs for resolving a number of optimization problems [55–57].

At present, several population structures have been found and integrated into EAs to

strengthen their properties. A simple population topology is panmictic, where the inter-

action among individuals is randomly achieved during the execution of algorithm [48].

Although this kind of structure can facilitate the quick information interaction of all indi-

viduals in the population, its population diversity is low such that premature convergence

is prone to occur. Hence, a population structure with neighborhood or other topologies

are devised to handle this issue [58]. Due to the characteristics of new population struc-

ture, the information interaction among individuals is slowed so as to alleviate the stagna-

tion of algorithm. The population structure with neighborhood is generally called cellular

structure [59]. Its population is trimly arranged and each individual only interacts with
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its neighborhood. Based on this kind of mechanism, the slow spread of information from

neighborhood to neighborhood decreases the possibility of premature convergence. The

distributed structure as a kind of topology is also proposed to improve the performances

of EAs [56]. It divides a complete population into several smaller subpopulations. In each

subpopulation, individuals are independently evolved. Migration strategies implement the

information interaction from subpopulation to subpopulation. This structure not only ex-

plores diverse search ranges but also accomplishes the communication among individuals

in different spaces such that population diversity can be maintained [60]. The cellular

structure and distributed structure have been applied to GA, PSO and DE to enhance their

performances [61–66].

Besides, a hierarchical structure which divides all individuals in the population into sev-

eral levels/layers is also an effective topology [57]. In the same level/layer, each individual

has an identical property. Different levels/layers play distinctive roles in the evolution of

individuals. This structure can hierarchically hybridize the cellular structure and distributed

structure so that the population can be evolved better according to both properties. In [67],

a two-layered hierarchical structure was introduced into a backtracking search optimization

algorithm to generate new individuals. Two layers adopted a multi-swarm learning strategy

based on DE and teaching-learning-based optimization, respectively. In [68], a complete

hierarchical multi-objective GA was proposed to address a transit network design prob-

lem from three levels, namely routes construction, networks design and multi-objective

analysis. In [69], a hierarchical GA was used to optimize modular neural networks. It

adopted four elitism methods to optimize multiple architectures of modular neural net-

works. A hierarchical PSO was designed to learn the fuzzy logic system’s parameters of

a Takagi-Sugeno fuzzy model [70]. It used a six-level hierarchy to decrease the complex-

ity of learning method as well as enhance its computational efficiency and performance.

In [71], a hierarchical operator was introduced into the grey wolf optimizer algorithm to

change the hunting mechanism of grey wolf, where a fuzzy variant of hierarchical operator

based on fuzzy logic was used to effectively improve the performance of algorithm. Thus, a

hierarchical structure can also been demonstrated to change the distribution of individuals

in EAs to strengthen their search performances [48, 49, 72]. Conclusively, these popu-

lation topologies can implement the effective information interaction among individuals

according to their distinctive architectures. Moreover, theoretical analyses with respect to

population structures have been discussed to profoundly understand their inherent attribute

and essence for refining the performances of EAs [44, 47, 50].
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1.2.2 An overview of BSO

BSO proposed by Shi [16] is a novel swarm intelligent algorithm involving two features

consisting of the cluster and evolution of population. The cluster of population reflects the

performances of individuals in the search space of problem, while the evolution of popu-

lation associates individuals in various clusters to produce new better individuals. These

two procedures lead to the persistent convergence and divergence of solutions during the

execution of BSO, which can ultimately acquire an optimal solution in the search space.

For the original BSO, the k-means clustering algorithm is used to classify individuals into

several classes. Subsequently, several different clustering strategies are devised to enhance

the clustering performance, such as random grouping method [73], k-medians clustering

algorithm [74] and so on. These clustering methods effectively decrease the computational

complexity of BSO. Moreover, several variants of BSO are proposed on the basis of dif-

ferent ways to generate new individuals [51, 75, 76]. An adaptive step-size, new selection

and generation strategy was proposed to enhance the performance of BSO [77]. The chaot-

ic operation was added into BSO to avoid trapping into the premature convergence [78].

An advanced discussion mechanism including inter- and intra- cluster discussions, and a

differential step method were introduced to improve the optimization of BSO [79]. The

combination between BSO and other EAs such as SA [80] and DE [81] have demonstrated

the effectiveness and efficiency of hybrid algorithms. Based on the characteristics of BSO,

substantial problems have been addressed, such as multiobjective optimization, multimodal

optimization, electric power systems and so on [82]. Thus, BSO possesses potential capac-

ity to show superior performances for various optimization problems, while it is still in its

infancy.

1.2.3 An overview of GSA

GSA is one of novel and effective EAs [17]. It attempts to use the gravitational force among

individuals to implement the information interaction of population so as to find an optimal

solution. This mechanism brings about exploration and exploitation abilities of GSA and

guarantees both balance. Although GSA has the potential for obtaining an optimum, it usu-

ally may be trapped into the local optima due to its limited search ability [83]. To resolve

this issue, various strategies and approaches have been proposed to further enhance the per-

formance of GSA. The self-adaptive strategies are conducive to balancing exploration and

exploitation abilities of GSA in the search process. In [84], each individual self-adaptively
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chose two updating methods to find a better solution, where one achieved the communica-

tion among individuals and the other assisted individuals in getting out of the local optima.

The chaotic strategies are effective for enhancing the search ability of GSA according to its

ergodicity and stochasticity. In [85], GSA was improved by two chaotic strategies where

one was to use chaotic sequences to replace random sequences and the other was to embed

a chaotic local search to optimize solutions. Due to the effectiveness of chaos, multiple

chaotic maps were incorporated into GSA to investigate their properties [86]. Hybrid s-

trategies which combine several methods also show the distinct performance to address

the disadvantage of GSA. The GSA combined with PSO to sufficiently utilize both char-

acteristics to reinforce its exploration and exploitation process [87]. An improved GSA

hybridized an orthogonal crossover to boost its exploration ability and convergence [88].

An opposition-based learning was incorporated into GSA to initialize its population and

guide the evolution of individuals [89]. The quantum mechanics was added into the GSA

to enhance its population diversity and help it escape from the premature convergence [90].

A novel alpha adjusting method based on agents’ positions and fitness was proposed to

address the premature convergence issue of GSA. Meanwhile, a boundary constraint based

on stability conditions further improved the effect of alpha value for GSA [91]. A global

best solution was used to guide the movement of agents according to the gravitational force

in GSA, and the improved GSA showed a good performance on the benchmark functions

and the training of feedforward neural networks [92]. Fuzzy GSAs based on fuzzy logic

were proposed to resolve the optimal architecture of modular neural networks for the pat-

tern recognition of medical images [93,94]. A niching method was incorporated into GSA

to control the interaction among individuals for multimodal optimization problems [95].

GSA with an offspring repair technique was introduced to solve dynamic constrained opti-

mization problems [96]. A discrete GSA was proposed to solve 0-1 knapsack problem [97]

and graph planarization problem [98]. The combination between GSA and PSO was used

to optimize the optimal multi-robot path [99] and designs of complementary metal oxide

semiconductor analog circuits [100]. These strategies and approaches effectively develop

GSA and enhance its search property.

1.3 Contributions of this thesis

In this thesis, three kinds of EAs including DE, BSO and GSA are investigated in chapters

2, 3 and 4, respectively. Each chapter shows characteristics of population structure of
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one algorithm. Thus, contributions of this thesis mainly consist of these three chapters,

summarized as follows:

(1) Contributions of chapter 2 are: 1) PIN is proposed to depict the information inter-

action of populations in DE. 2) Comparative experiments are implemented to observe five

candidate fitting models. 3) Goodness of fit demonstrates the cumulative frequency of de-

gree in PIN satisfies a cumulative Poisson distribution. 4) Sensitivity analyses for nodes and

λ are accomplished using different population sizes, dimensions, F and CR, respectively.

(2) Contributions of chapter 3 are: 1) Based on the perspective of population structure,

PIN of BSO is established as a theoretically analytical approach to research its performance

on functions with low, medium and high dimensions. 2) BSO whose frequency of average

degree meets a power law distribution possesses the best performance on the functions with

low dimension, whereas it can not completely obey a power law distribution in high dimen-

sion so as to obtain inferior performance. 3) Different parameters of BSO are investigated

to illustrate that they can influence the population interaction in an inefficient way, thus

the performance of algorithm can not be significantly improved. 4) Mutual effect among

parameters is further analyzed by an orthogonal array to find the best combinatorial result

for boosting the performance of BSO. 5) BSO is compared with DE and PSO to discuss

their relationship between performances and characteristics of distributions.

(3) Contributions of chapter 4 are: 1) A three-layered hierarchical structure is proposed

to guide the population interaction in HGSA from the perspective of population topolo-

gy. 2) An improved gravitational constant is developed to extend the exploration period

of HGSA such that HGSA has sufficient time and capacity to find an approximately opti-

mal solution. 3) Two weighted coefficients with time are introduced to not only reinforce

the relationship among three layers but also balance the transition between exploration and

exploitation abilities in HGSA. 4) Extensive experiments are conducted and results sug-

gest that HGSA can help individuals escape from the premature convergence or accelerate

normal convergence.
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Chapter 2

The research of differential evolution

2.1 Introduction

To analyze the characteristics of population in DE, this chapter proposes a population in-

teraction network (PIN) to establish the connection among individuals of the population.

Five models including exponential, gamma, logistic, poisson and normal distributions are

used to fit for the cumulative frequency of degree in PIN. The goodness of fit is adopted

to determine the fitting results. Subsequently, the number of nodes in PIN and the value of

fitting rate parameter λ derived from poisson distribution are discussed based on different

population sizes, dimensions, F and CR of DE.

2.2 Conventional DE

DE proposed by Storn and Price is a population-based global optimization algorithm. It has

many advantages such as simple structure, good convergence, few control parameters and

strong robustness for solving optimization problems [101]. The diagram of DE is shown in

Fig. 2.1(a), including initialization, mutation, crossover and ”one-to-one” selection. The

initialization of each individual Xi, i ∈ {1, 2, ...,NP} in DE is described as follow:

Xd
i = Xdl

i + rand(0, 1) · (Xdu
i − Xdl

i ), (2.1)

where NP is the scale of population and d ∈ {1, 2, ...,D} indicates the dimension. du and dl

represent the upper and lower bounds of Xi in d-th dimension, respectively.

The second process in DE is a differential mutation which can distinctively generate a
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mutant vector to be an intermediate variable Vi of evolution according to:

Vi = Xr1 + F · (Xr2 − Xr3), (2.2)

where r1, r2, r3 ∈ {1, 2, ...,NP} are random indexes and i , r1 , r2 , r3. F is a con-

stant factor indicating the degree of amplification. It should be noticed that the individual

Vi uses the initialization in Eq. (1) to renew some genes which can not satisfy the condi-

tion of bounds in order to guarantee the effectiveness of solutions during the execution of

evolution, i.e., Vdl
i ≤ Vd

i ≤ Vdu
i .

The third process is crossover which can increase the diversity of new individuals Ui

via combining the original individual Xi with the intermediate variable Vi, which is shown

as follow:

Ud
i =

 Vd
i if rand(0, 1) ≤ CR or d = drand

Xd
i otherwise

, (2.3)

where CR is a crossover control parameter and drand ∈ [1, 2...,D] indicates a random inte-

ger.

In the end of an iteration, the selection is implemented by comparing Ui with Xi using

a greedy criterion to make the better individual reserve in the population for the next itera-

tion. Through these processes, DE can gradually converge and ultimately derive the global

optimum.

2.3 Population interaction network

Although DE has achieved tremendous successes on a great number of applications [102],

most of their performances are evaluated empirically, implying a great lack of theoretical

analysis. The rigorous analysis of DE is difficult, but such a theory can help to understand,

design, and teach DE. Pioneering research works have been proposed to theoretically ana-

lyze EAs, including schema theory [103], Markov chains theory together with first hitting

time [104], takeover time analysis [105], and statistical physics analysis [106]. Although

these analytical methods are capable of addressing the fundamental issues in EAs involving

convergence proofs, performance measures, and balance of exploration and exploitation,

their applicability is limited because these methods are proposed for some specific EAs

rather than all of them. Moreover, such theoretical analysis for DE is not yet explored to

the best knowledge of the authors. Thus, an urgent and challenging task is to propose a gen-
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Figure 2.1: (a) The structured diagram, and (b) framework of population interaction net-
work in DE.

eral analytical methodology which can deal with all DEs. It thus motivates us to propose

the following population interaction network (PIN) to theoretically analyze DE.

In the complex network, generally, each individual represents a node and the relation

between two individuals indicates an edge. The inherent regulation of some networks usu-

ally can be reflected by their nodes or edges [107–109]. In fact, these nodes and edges can

explicitly exhibit the information interaction of evolutionary populations. The proposed

PIN is used to investigate the property of population in DE. Since DE adopts the differ-

ential mutation, crossover and selection operations to generate new offsprings to replace

those worse parents, the offsprings can obtain vital information from their parents during

the evolutionary process. PIN not only captures such information but also illustrates the

connection among them.

In DE, the new generated individual is associated with four current individuals which

come from the mutation and crossover respectively. Fig. 2.1(b) shows the framework of

PIN in DE. In the beginning, three randomly selected individuals Xr1, Xr2, Xr3 are recom-

bined to form an intermediate variable Vi through the mutation, hence there are four nodes

and three edges. Then the intermediate variable Vi and the original individual Xi jointly
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Figure 2.2: An illustrative graph of population interaction network in DE.

generate an individual Ui via the crossover. The resultant nodes and edges increase two,

respectively. Finally, the selection determines the next offspring between individuals Ui

and Xi without generating any new nodes and edges. In this way, we just consider the

successful evolutionary process in order to observe the effective population interaction and

information dissemination. To be specific, the individual Ui, which is superior to the o-

riginal individual Xi, should be primarily taken into account. Meanwhile, to simplify the

structure of network, we neglect the nodes and edges formed by the intermediate vari-

ables, and reserve the actual individuals and their relationship. Considering the fact that

intermediate variables which only play a connecting role in constructing new individuals

is meaningless, the parents and offsprings possess the entire information. In other words,

when DE successfully evolves, the overall process involves five individuals composed of

Xr1, Xr2, Xr3, Xi and Ui. Consequently, each evolution can generate one new node and four

new edges. Until the end of algorithm, the whole recorded populations are able to establish

a complex network, which shows the information interaction and population topology.

Fig. 2.2 illustratively depicts the construction of PIN involving the connection of edges

and evolution of vertices. Circle, square and triangle indicate current, new formed and

old substituted vertices, respectively. The concrete procedure of construction is listed as

follows:

(1) DE randomly selects three vertices Xr1, Xr2, Xr3 to connect with new formed vertex

Ui according to the mutation operation;

(2) The original vertex Xi connects with Ui in terms of the crossover operation, shown

as Fig. 2.2(a);

(3) If f (Ui) ≤ f (Xi), new vertex Ui substitutes original vertex Xi in current population

due to the selection operation, exhibited as Fig. 2.2(b);

(4) Repeat procedure (1)-(3) (i.e., Figs. 2.2(c) and (d)) to eventually reach the termina-

tion of algorithm and obtain the topology of PIN.
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2.4 Experiment and analysis

To evaluate the characteristics of population interaction in conventional DE, twelve bench-

mark functions are adopted in Table 2.1, including six standard benchmark functions com-

monly tested on numerous optimization approaches such as GA, PSO and DE [110–112] to

analyze and assess their optimization performances and six CEC’05 benchmark function-

s [113] which further enhance the complexity of functions via shift or rotation to measure

the properties of algorithms.

In Table 2.1, Sphere, Rosenbrock, F1, F2 and F4 are unimodal functions. Griew-ank,

Rastrigin, Schwefel, Ackley, F6, F8 and F9 are multimodal functions with many local

minima, and the number of these local minima increases exponentially according to the

dimension of functions. Sphere function has a global optimum due to its continuous and

convex property. Rosenbrock function is difficult to converge into the global optimum s-

ince the global optimum is located in a long, narrow and parabolic valley. Ackley function

has an almost flat outer range and a deep hole in the center, thus it has not only a global

optimum but also a risk to enable algorithms to trap into many local optima. Griewank

function has a global optimum and massive widespread local optima which overall show a

convex shape. Rastrigin function possesses several regularly distributed local optima and

a global optimum. It is complicated and difficult for many algorithms to resolve Schwefel

function because the complex structure of function may enable algorithms to converge into

a local optimum by mistake rather than its global optimum. F1 is a separable function,

whereas F2 and F4 are non-separable functions without and with noise, respectively. F6

is a non-separable function which has a similar valley with Rosenbrock function. F8 is a

rotated and non-separable function whose global optimum lies on the bound. F9 has sep-

arable characteristic and a great deal of local optima. More information regarding these

functions can be referred in [113, 114]. Using these functions which have different struc-

tures can eliminate the misgiving where the population interaction of DE only takes place

in particular occasions. Then, the parameters of DE are set as follows. The essential fac-

tors F = 0.5 and CR = 0.9 are referred in the literatures [101, 111]. Both the dimension of

functions and the population sizes are 30. The maximum number of iterations is 5000. All

the experiments are implemented by Matlab on a personal PC.

The performance of DE for twelve functions is shown in Table 2.2. By 50 runs for each

function, the minimum, median, maximum, mean and standard deviation of best fitness

values are attained, respectively. The corresponding box-and-whisker diagram is plotted

in Fig. 2.3. It is found from Table 2.2 and Fig. 2.3 that DE has different performance on
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Table 2.2: The best fitness value obtained by DE on twelve benchmark functions.
Function Minimum Median Maximum Mean(±Std)
Griewank 0 0.04 0.66 0.08(±0.12)
Rastrigin 6.97 19.06 50.94 20.14(±7.91)

Rosenbrock 1.00 96.72 13939.84 1062.66(±2504.11)
Schwefel 592.19 1423.04 2718.73 1458.09(±474.12)
Sphere 1.80E-21 0.01 29.68 2.09(±5.66)
Ackley 4.19E-07 1.16 3.34 1.07(±0.87)

F1 -450 -449.99 18.17 -434.31(±68.97)
F2 -450 -449.16 356.31 -395.52(±149.84)
F4 -449.25 -363.67 626.42 -254.01(±257.16)
F6 485.27 3.99E+05 2.05E+08 9.35E+06(±3.27E+07)
F8 -119.15 -119.02 -118.95 -119.02(±0.04)
F9 -320.05 -304.11 -279.10 -302.08(±8.49)
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Figure 2.3: The box-and-whisker diagram of best fitness of DE on six standard benchmark
functions and six CEC’05 benchmark functions.
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Figure 2.4: The 2-dimensional sketch of PIN of DE on six standard benchmark functions.

15



8

1

2

3

4

5

6

7

91
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
43
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

(b
)

(d
)

1

2

3

4

5

6

7

8

91
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

(a
)

1

2

3

4

5

6

7

91
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
43
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5
7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

(c
)

8

Figure 2.5: The general changing process of PIN of DE on Sphere function.
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different functions, thus indicating that the performance of DE is problem-dependent. S-

ince the dimension is 30 which has enhanced the computational complexity, the best fitness

value is difficult to be acquired. On standard benchmark functions, the performance of DE

is superior for Griewank, Sphere and Ackley. However, the weak circumstance occurs on

the other functions, especially Rosenbrock and Schwefel. On CEC’05 benchmark func-

tions, even though the results regarding F1, F8 and F9 are relatively preferable comparing

with those obtained in F2, F4 and F6, the overall performance of DE is inferior to that on

standard functions. The results suggest that: (1) high dimension changes the structure of s-

tandard functions and significantly influences Rastrigin, Rosenbrock and Schwefel; (2) the

search mechanism of DE is proper for resolving Sphere, Ackley and Griewank with high

dimension; (3) CEC’05 benchmark functions with high dimension intensify complexity of

functions to notably interfere with the search performance of DE.

In order to intuitively observe information interaction among individuals of the pop-

ulation, Fig. 2.4 is plotted to show the planar PIN using a 2-dimensional sketch. The

coordinate of node depends on the components of solution, and the values of the first two

dimensions (i.e., X1
i and X2

i ) are used to plot the figure. From Figs. 2.4(a)-(e), we can

find that nodes finally converge at the center, illustrating individuals constantly evolve and

solutions are progressively improved. Nevertheless, Fig. 2.4(f) displays more nodes locate

at the right corner rather than the center where the global minimal solution exists. This

is because the components of optimal solution (both X1
i and X2

i ) in Figs. 2.4(a)-(e) are e-

qual or approximate to 0, whereas in Schwefel, the solutions are trapped around the search

boundaries. Fig. 2.5 is plotted to be an example for showing a general changing process of

PIN on Sphere function. Fig. 2.5(a) indicates thirty initial individuals. Fig. 2.5(b) shows

thirty new generated individuals and the connection between new and old ones. Fig. 2.5(c)

continues to exhibit new formed individuals over iterations and Fig. 2.5(d) is the ultimate

full-connection graph of PIN. Thus, Figs. 2.4 and 2.5 distinctly demonstrate the emergence

of PIN and relation among individuals in the evolutionary process.

2.4.1 Fitting results for PIN

The complex network of DE is constructed by PIN, which indicates the relationship be-

tween the degree of nodes and its cumulative distribution. The degree of a node represents

the number of nodes connecting with this node, namely the number of edges. To observe

the property of PIN, five models involving exponential, gamma, logistic, poisson and nor-

mal are utilized to fit via the maximum likelihood estimation. Since the fitting results are
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similar on both six standard benchmark functions and six CEC’05 benchmark functions,

Fig. 2.6 only shows the fitting results regarding six standard benchmark functions. The

horizontal axis is the degree of nodes in a non-direct graph constituted by PIN and the ver-

tical axis is CDF which depicts the cumulative distribution function of degree. From this

figure, we can notice that, although the total degree of PIN is different on six functions,

the general distribution of respective CDF is similar. It demonstrates that the population

interaction of DE is common and appears to be uninfluenced by the structure of functions.

Its frequency is nearly 0 when the degree is less than 5 or greater than 20, whereas the CDF

obviously increases when the degree is in the interval [5, 20]. Furthermore, the significant

increase of CDF mainly occurs in the interval [5, 7]. Since each evolutionary node gener-

ates 4 edges, it has a high potential to be the parent for next evolution. Thus, the frequency

of degree mostly concentrating on the interval [5, 7] suggests a new node can become a

parent with 1, 2 and 3 times, respectively. Afterwards, the frequency of degree gradually

declines, suggesting that it is difficult for a new node to sustain a parent within numerous

times. In other words, most of nodes need to be evolved continuously in order to enhance

the quality of solution. As for those nodes whose degree are less than 5, they absolutely

belong to initial individuals which are firstly evolved.

Fig. 2.6 can distinctly show the exponential distribution is not eligible for the CDF

of PIN and other models have similar fitting results. To further discern the characteristics

regarding the CDF of PIN, the goodness of fit is used to assess which model the CDF of PIN

accords with. For analyzing the goodness-of-fit statistics, we adopt the sum of square due

to error (SSE) and R-square (R2) to compare their differences. The SSE, which measures

the total square deviation from the fit to the original data, is described as follow:

SSE =
n∑

i=1

(ŷi − yi)2, (2.4)

where ŷi and yi indicate the fit and original data respectively. The SSE closer to 0 means

the smaller fitting error. The R2 indicates the square of the correlation between the fit and

original data, explaining the level of the fitting results. It is defined as the ratio of the

sum of squares of the regression (SSR) and the total sum of squares (SST ), where SSR =∑n
i=1(ŷi − ȳ)2 and SST =

∑n
i=1(yi − ȳ)2. ȳ is the mean of the original data. Hence, R2 is

expressed as follow:

R2 =
SSR
SST

=

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2 . (2.5)

18



0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree

C
D

F

(a)   Sphere

 

 

Data
Exponential
Gamma
Logistic
Poisson
Normal

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree

C
D

F

(b)  Rosenbrock

 

 

Data
Exponential
Gamma
Logistic
Poisson
Normal

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree

C
D

F

(c)   Ackley

 

 

Data
Exponential
Gamma
Logistic
Poisson
Normal

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree

C
D

F

(d)  Griewank

 

 

Data
Exponential
Gamma
Logistic
Poisson
Normal

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree

C
D

F

(e)  Rastrigin

 

 

Data
Exponential
Gamma
Logistic
Poisson
Normal

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree

C
D

F

(f)  Schwefel

 

 

Data
Exponential
Gamma
Logistic
Poisson
Normal

Figure 2.6: The cumulative distribution graphs between the original data and fitting models
of DE.
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The R2 closer to 1 indicates the fitting result is better. The goodness of fit with five models

on twelve functions calculated by these two methods is listed in Table 2.3. From Table 2.3,

we can observe that the SSE of exponential is the maximum and its R2 is the minimum.

It corresponds with the phenomenon that Fig. 2.6 reveals, which shows significant error

between the exponential and original data. Additionally, despite Fig. 2.6 unsuccessfully

distinguishes the relationship between other four models and the CDF of PIN, the poisson

exhibits the best fitting performance according to its smallest SSE and greatest R2 on the

whole functions in Table 2.3. Consequently, the CDF of PIN in DE can be appropriately

regarded as a cumulative poisson distribution.

To better implement a cumulative poisson distribution, the maximum likelihood esti-

mation of poisson distribution is specifically described as follows:

(1) The probability density function of poisson distribution is f (x, λ) = λx

x! e−λ, x =

0, 1, 2, ...;

(2) The likelihood function is formulated by L(λ) =
∏n

i=1 f (xi, λ) =
∏n

i=1
λxi

xi!
e−λ;

(3) Then the log-likelihood equation is obtained, expressed as lnL(λ) = lnλ
∑n

i=1 xi −
ln
∏n

i=1 xi! − nλ;

(4) Setting ∂lnL(λ)
∂λ
= 0, the estimated value of λ is derived finally, which is shown as

λ = 1
n

∑n
i=1 xi = x̄.

2.4.2 Analysis for parameters

After determining that the cumulative poisson distribution is proper for the CDF of PIN in

DE, we discuss about the nodes of PIN and the rate parameter λ of the fitted poisson model

under different parameters. Fig. 2.7 shows the experimental results regarding diverse sizes

of populations, dimensions of functions, control parameters F and CR in DE on six standard

benchmark functions. In each sub-figure, the values of other parameters are the same as

above mention except for the respective analytical parameters.

Firstly, four populations whose sizes are 10, 30, 50 and 100 are investigated. Fig.

2.7(a) indicates the nodes gradually increase in terms of the population size, whereas two

exceptions, where the nodes decrease, occur on Rastrigin and Schwefel since a number of

populations unsuitable for their complex functional structures may influence evolutionary

process to generate less new individuals. The corresponding value of λ decreases and two

exceptions show the notable decline in Fig. 2.7(b). This means the frequency of each

degree diminishes, illustrating the weak interaction of nodes.

Secondly, Figs. 2.7(c) and (d) describe the affect of 2, 10, 30 and 50 dimensions for
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Figure 2.7: The number of nodes and the value of λ under DE with different parameters.
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nodes and λ. Due to the special functional structure, the least nodes are formed on Schwefel

with 2 dimensions. Except for this, the number of nodes and the value of λ decrease

when the dimension of the function increases. The dimension enhances the computational

complexity of algorithm, thereby reducing generation and connection of new individuals.

Thirdly, F in the interval [0.1, 1.0] is studied. Fig. 2.7(e) denotes the number of nodes

gradually declines from intervals 0.1 to 0.9 and slightly ascends on 1.0. Meanwhile, the

λ shows the similar circumstances in Fig. 2.7(f), where the value of λ on Rastrigin and

Schwefel sharply descends when F = 0.9. It seems to be that the smaller F prompts

connections between two individuals and constantly implements the evolutionary process,

and F = 0.9 indicates that it is ineligible to conduct the population interaction for DE.

Finally, CR located in the interval [0.1, 1.0] is analyzed. Figs. 2.7(g) and (h) display

a majority of nodes and λ firstly reduce and later increase, suggesting CR plays an im-

portant role in controlling the number of nodes. Especially on Rastrigin and Schwefel,

the number of nodes and the corresponding value of λ significantly decline on the interval

[0.2, 0.7]. Afterwards, they quickly rise to maintain identical characteristics with other

functions. This is because the greater CR can efficiently recombine the information among

individuals and thus to generate better solutions. The smaller CR also leads to the genera-

tion of new individuals but the quality of solution is inferior. As for the median interval, CR

might not provide effective information for population interaction. Thus, the evolutionary

nodes relatively decrease. Furthermore, the structure of Rastrigin and Schwefel is sensitive

for solutions obtained by different CR. Accordingly, their nodes and λ have distinctive

changes.

In addition, it is interesting to point out that the observations derived from PIN are

roughly consistently with those empirically obtained from other researches [115].

2.5 Conclusions

In this chapter, a population interaction network (PIN) is proposed to analyze the complex

network in DE. Via calculating the original CDF of PIN on twelve benchmark functions,

we find that the whole original CDFs are similar, suggesting that the characteristics of

population interaction in DE are common. Moreover, these CDFs show that the frequency

of degree mostly focuses on the interval [5, 7], indicating a majority of individuals are

evolved within three generations of being parents. The goodness of fit including the sum of

square due to error and R-square is utilized to measure the fitting models. The fitting results

23



demonstrate that the CDF of PIN generally accords with a cumulative poisson distribution.

Furthermore, parameters are investigated to illustrate the number of nodes and the cor-

responding rate parameter λ. We find that (1) most of nodes increase along with the popula-

tion size except for two special functions, and the corresponding value of λ decreases. The

decline of the value of λ indicates that the frequency of degree reduces, i.e., the interaction

of population attenuates. (2) The high dimension reduces the generation of nodes and the

value of λ. (3) Since the small F effectively motivates communication among individuals,

the number of nodes and the value of λ are great. (4) The greater CR is beneficial for tak-

ing advantage of useful information among individuals to produce new solutions, showing

a prospective method for enhancing the number of nodes and the value of λ.
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Chapter 3

The research of brain storm
optimization

3.1 Introduction

In this chapter, to investigate the inherent property of BSO from the point of view of pop-

ulation structure, a PIN is constructed to analyze the relationship between the evolutionary

process of individuals and the performance of algorithm. Four experiments are implement-

ed to show the experimental results in different dimensions, parameters, combinatorial pa-

rameter settings and related algorithms, respectively. The first experiment demonstrates the

emergence of power law distribution in the PIN for thirty one functions with 2 dimension

rather than 10 and 30 dimensions and the performance of BSO is the best in 2 dimension,

suggesting the power law distribution represents the good performance of BSO and effec-

tively guides the evolution of individuals in the functions with low dimension. The second

experiment illustrates the influence of different parameters on the PIN with the power law

distribution. The value of each parameter in BSO can change the power exponent γ of

power law distribution so as to affect the population interaction of algorithm. The third

experiment analyzes the interactive influence among parameters to obtain the best com-

binatorial parameter setting for improving the performance of BSO. The last experiment

discusses the characteristics of distributions and performances among BSO, DE and PSO

to demonstrate that the power law distribution is a better method of population interaction

for enhancing the property of BSO.
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3.2 Conventional BSO

The BSO is inspired by the interactive action of human beings called the brainstorming

process in a group. The mutual collaboration results in various fantastic ideas which can

effectively resolve a hard problem. Based on this mechanism, BSO is used to handle a

great deal of combinatorial optimization problems [82] due to its clustering and evolu-

tionary characteristics. In BSO, there are two essential process including divergence and

convergence of solutions. Solutions are obtained by several classes, and better solutions

are generated by the evolution of current solutions. Through the continuous transformation

of solutions between divergence and convergence, the best solution will be derived finally

in the whole search range.

3.2.1 Basic principle of BSO

It is an original innovation that the BSO combines the swarm intelligence with clustering

algorithm to optimize problems. All the solutions are divided into several classes, and new

solutions are formed to replace previous solutions from one or two classes. Subsequently,

the whole solutions are classified afresh. This operation not only implements the evolution

of solutions in different space to transmit information from one class to other classes but

also enhances both the exploration of algorithm and the diversity of solutions so that BSO

can exploit the eventual search range when those classes maintain invariant. The original

BSO primarily contains four procedures: the classification of individuals, the replacement

of cluster center, the generation of new individuals and the selection between previous and

new individuals.

(A) The classification of individuals: The original BSO utilizes the k-means clustering

algorithm to classify individuals in current population into several classes. Individuals in

the same class have similar characteristics, and each class indicates a search range. Individ-

uals are continually evolved, in the meantime, the distribution of individuals also changes

towards smaller and smaller range according to the clustering algorithm over iterations dur-

ing the execution of algorithm. Therefore, for a problem, the clustering results can show

the distribution of individuals in search space, meaning the landscape of this problem.

(B) The replacement of cluster center: To enhance the diversity of population, the ran-

dom replacement is adopted to substitute a cluster center via a randomly generated indi-

vidual in terms of a probability value pc. This operation is beneficial for the algorithm to

avoid trapping into the premature convergence, which is similar to the mutation of cluster
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center.

(C) The generation of new individuals: After the clustering and replacing process, new

individuals are generated by selecting one or two individuals to be the parents. A probabili-

ty value pg controls the number of selected individuals. In fact, when one individual is used

to generate new individual, the exploitation capacity of BSO plays an important role since

new individual needs to make use of information of the parent to evolve. Nevertheless, if

two individuals are applied for generating new individual, the exploration capacity of BSO

influences the quality of offspring owing to the uncertainty of information of the diverse

parents. In addition to the pg, there are another two parameters pc1 and pc2 which confirm

the selected individuals from one and two cluster centers, respectively. To be specific, new

generated individual from one cluster center or one general individual is decided by pc1.

Similarly, pc2 determines new generated individual from two cluster centers or two general

individuals. The utilization of cluster centers can accelerate the convergence of algorithm,

whereas the employment of general individuals can expand the search space to enhance the

diversity of population. After determining the selected individuals, new individual begins

to form according to the following formulas:

Ud
n = Xd

s + N(µ, σ2) · ξ(t), (3.1)

ξ(t) = logsig(
0.5 × T − t

k
) · rand(0, 1), (3.2)

where Ud
n and Xd

s indicate the d−th dimension of new and selected individuals, respectively.

It should be noted that Xs means the combination of both if two selected individuals are

used. N(µ, σ2) is a Gaussian distribution with mean µ and variance σ2. ξ(t) is a step

size function which determines the direction of evolution. logsig() denotes a logarithmic

sigmoid transfer function. T and t represent the maximum and current number of iteration,

respectively. k is a constant. rand(0, 1) is a random variable uniformly distributed in the

interval (0,1). These two formulas can effectively guide selected individuals to generate

new individuals with nice quality.

(D) The selection between previous and new individuals: The comparison between pre-

vious and new individuals is manipulated to select which possesses better performance. If

new individual is superior to previous one, the replacement is operated to reserve new indi-

vidual. Otherwise, there is no operation. The selection operation guarantees the successful

evolution of individuals over iterations and outputs the whole individuals as the next popu-

lation.
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Algorithm 1: BSO
Input: Parameters p,c,pc,pg,pc1,pc2,k,T
Output: The optimal solution

1 Initialization: p individuals are randomly generated to be the initial population and
assessed;

2 while the termination criterion is not satisfied do
3 Classify p individuals into c classes via a k-means clustering algorithm;
4 Find the best individual in each class to be a cluster center;
5 if rand(0, 1) < pc then
6 An individual is randomly generated to randomly replace a cluster center;

7 for i = 1 to p do
8 if rand(0, 1) < pg then
9 Select a class by the roulette;

10 if rand(0, 1) < pc1 then
11 Select the cluster center in this class to generate new individual

according to Eqs. (3.1) and (3.2);
12 else
13 Randomly select a general individual in this class to generate new

individual according to Eqs. (3.1) and (3.2);

14 else
15 Randomly select two classes;
16 if rand(0, 1) < pc2 then
17 Select two cluster centers to incorporate to generate new individual

according to Eqs. (3.1) and (3.2);
18 else
19 Randomly select one general individual in each class and two

individuals are incorporated to generate new individual according to
Eqs. (3.1) and (3.2);

20 The selection is executed to retain the better individual;

21 Iteration +1;
22 Output the best solution;

23 return
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Based on the above procedures, BSO can finally acquire the optimal solution with the

continuous iterations. The entire process of BSO is shown in Algorithm 1.

3.2.2 Characteristics of BSO

Swarm intelligent algorithms possess two capacities, i.e., exploration and exploitation, so

as to optimize the search space of problem. In BSO, these capacities are embodied by

the convergence and divergence of individuals. To be specific, convergence means that

massive individuals gather on the same position whereas divergence signifies numerous

individuals are distributed on different positions. Thus, the convergence characteristic is

beneficial for exploiting current search range of solutions and the divergence characteristic

is conducive to exploring new different search space to find a possibly better solution. BSO

uses a k-means clustering algorithm to classify individuals into different classes according

to their distances in order to implement the convergence operation. The divergence opera-

tion is that new individuals are generated by the previous individuals in one or two classes.

New individuals correspond to new underlying search space, thereby implying that better

solutions exists in a more promising region.

BSO has several merits according its basic principle as follows: (1) A novel clustering

method can categorize the whole population into several sub-populations so as to effective-

ly manage each individual’s distribution in search space. (2) The generation of individuals

depends on one or two general or best individuals. This operation not only enhances the

diversity of population but also guarantees the speed of convergence, suggesting an ef-

fective balance between the exploration and exploitation of algorithm. (3) A number of

applications have demonstrated that BSO has the potential practicability and expansibility

for various optimization and real-world problems [82].

However, apart from its advantages, BSO also has some drawbacks which needs to be

refined as follows: (1) The number of parameters in BSO is too many to enhance its robust

and performance. (2) The k-means clustering algorithm based on distance is restrained on

a high dimension of problem to cause the inferior performance. (3) The k-means is a user-

defined clustering algorithm and its computational efficiency is low. Consequently, there

is a big space for BSO to enhance its performance according to the above characteristics.

New theoretical analyses or new strategies should be proposed to develop the BSO better

in the future works.
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3.3 Construction of PIN

BSO have successfully resolved various optimization problems [82]. The fact verifies BSO

is a promising and potential algorithm applied for diverse kinds of problems. Therefore,

enhancing the property of BSO is crucial for obtaining nice optimized results. A good

result usually indicates the validity and capacity of algorithm for handling problems. A

theoretical analysis is beneficial for interpreting the essence of algorithm and discovering

certain methods to overcome its drawback so as to better develop the performance of al-

gorithm. Nowadays, there are a few literatures for investigating the performance of BSO

in terms of its parameters [116, 117]. It is obvious that the value of parameters determine

the property of algorithm. However, the actual research regarding systematically analyzing

the inherent attribute of BSO is deficient. As a matter of fact, the theoretical analyses are

helpful and vital for understanding and modifying the characteristics of BSO, which can

provide a guideline to implement the improvement of algorithm. For this purpose, we u-

tilize the PIN [47] to establish the relationship among individuals in BSO to explore and

analyze the concrete phenomenon occurring in the population structure.

Population structures are built by the existing vertices and edges which represent in-

dividuals and connection among individuals, respectively. To characterize the population

structures is an essential measure for comparing and analyzing their properties. Generally,

the population topology shows the ultimate outcome of continuous evolution of popula-

tions and evidently influences the performance of algorithm [48, 118]. The reason why the

population topology leads to the certain result is that the knowledge carried by individuals

is transmitted by a specific evolutionary mechanism, at the same time, the interaction of

individuals (i.e., the update of knowledge) is achieved. The eventual graph of population

structure exhibits the result of transmission of knowledge in the whole populations and cer-

tain regulation. The PIN describes the interaction of individuals. In BSO, each individual

can be regarded as a vertex and the update among individuals indicates the generation of

edges. Although BSO uses the clustering method to classify individuals, the knowledge

of individuals is still effectively applied for delivering. Taking advantage of PIN can ac-

quire both the intrinsic communication of knowledge and the characteristic of population

structure.

The PIN used to construct the interaction of population in BSO is described as follows:

The initial individuals indicate the original vertices, and there is no edge among them.

Then the clustering algorithm classifies individuals and the best individual in each class is

reserved, which is unrelated to the interaction of individuals. Thus, the operation of PIN
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Figure 3.1: A descriptive diagram of PIN in BSO.

is not considered in these two process. Next, the behavior of changing the cluster center

can be regarded as the mutation operation to increase the diversity of population if the

replacement is carried out. It should be noticed that even if a new cluster center is generated,

this cluster center will be regarded as the previous one to take part in the next generation

of individuals. Hence, a new vertex is not generated but to sequentially maintain the vertex

corresponding to the previous cluster center. Thereafter, the generation of new individuals

is executed by selecting one or two individuals. If one class is selected, new individual

as an offspring will be produced by either the cluster center or a general individual as a

parent according to the parameter pc1. Then the new individual denotes the generation of

new vertex, and one edge between the offspring and parent is formed. Otherwise, one new

individual will be generated by either two cluster centers or two general individuals on the

basis of the parameter pc2. Meanwhile, two edges between the offspring and two parents

are established to manifest their relationship. In the end, the selection operation determines

whether the connection is valid or not. If new individual is superior to previous individual,

the previous one is replaced by new one, and new generated vertex and edges are actually

retained. On the contrary, the generated vertex and edges are abandoned if new individual

is inferior to previous one. Since the successful population interaction means the result of

evolution is better and better, it is worth considering a better individual which signifies a

transition in the whole evolutionary process. By this means, when the BSO reaches the

termination, the ultimate population interaction network of BSO is constructed to show the

interaction of knowledge among individuals and the attribute of complete network.

Fig. 3.1 is plot to specifically illustrate the construction process of PIN in BSO. Black

circles indicate the individuals (vertices) in the current population. Transparent circles

denote the classes. Transparent rectangles mean the individuals Xp which will be replaced.

Black rectangles represent the individuals which have been replaced. Black rhombuses

manifest the new generated individual Un. Therefore, in Fig. 3.1, a primary construction

process of PIN can be elucidated as follows:

(1) There are nine initial individuals and three classes in the population;
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(2) Two selected individuals Xs1 and Xs2 from two classes produce the new individual

Un to compare with the previous individual Xp. A vertex and two edges are simultaneously

formed;

(3) If the new individual Un outperforms the previous individual Xp ( f (Un) < f (Xp)),

the individual Un replaces the individual Xp;

(4) Another selected individual Xs from one class generates the individual Un to replace

the individual Xp, meaning a vertex and an edge are formed;

(5) When f (Un) < f (Xp), the replacement is achieved again;

(6) Enter into next iteration, the clustering algorithm resumes classifying individuals

into three classes.

From Figs. 3.1(1) and (6), it can be observed that the distribution of individuals have

changed in the whole population and the number of individuals in each class correspond-

ingly alter, suggesting the interaction of individuals promote the evolution of population

towards better results.

3.4 Experiment and analysis

In order to explore the attribute and relationship of population interaction in BSO, the first

experiment is carried out to investigate the performance of the algorithm under differen-

t dimensions. Dimensions can significantly not only enhance the complicated structure

of problem but also change the effect of population interaction. After determining the e-

mergence of the power law distribution obtained by the connections among individuals

in specific dimension, the second experiment which analyzes the influence of power law

distribution on population interaction under diverse parameters of BSO is implemented.

The exponent γ of power law distribution shows evident results that different parameters

of BSO have respective characteristics, indicating the population interaction depends on

the value of parameters in BSO. The third experiment using an orthogonal array analyzes

the best combinatorial parameter setting of BSO for improving its performance. The last

experiment compares BSO with two related algorithms, i.e., DE and PSO, to discuss their

performances according to their characteristics of distributions.

3.4.1 Experimental setup

To assess the property of BSO for optimization functions with different dimensions, thirty

one functions composed of six benchmark functions and twenty five CEC’05 test functions
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are used to guarantee the generalization and validity of experimental results. Using nu-

merous functions can reduce the potential risk of algorithm trapped into local or specific

situations which can not exhibit the actual property of algorithm, and provide a fair compar-

ison so as to come to a general conclusion. In these functions, Sphere, Rosenbrock, Quartic

and F1-F5 belong to unimodal functions, whereas Griewank, Rastrigin, Schwefel and F6-

F25 are multimodal functions. Compared with unimodal functions which have no local

optima, multimodal functions have plenty of local optima or some local optima. In addi-

tion, the number of local optima in multimodal functions will increase exponentially along

with the increment of dimensions of problem, which will become more difficult to resolve.

A more detailed information of these functions can be referred in [10, 113]. Therefore, it

is useful and critical for analyzing the performance of BSO and avoiding some uncertain

circumstances via adopting these functions which possess heterogeneous structures.

The construction of PIN in BSO is comprised of the edges and vertices. Vertices and

edges represent individuals and their connections, respectively. When the algorithm reach-

es the termination condition, the whole individuals and connections among them generate

the complex network (PIN) which has a great deal of vertices and edges. To extract and

analyze the characteristic of PIN, the degree of vertex, which denotes the number of edges

linked to this vertex, is utilized. Moreover, it should be noticed that the constructed PIN

is a non-directed graph, which indicates the connections among individuals have no direc-

tion. The purpose of this paper is to investigate the influence of distribution of frequency

of average degree on the performance of BSO. Thus, a power law distribution reveals the

relationship between degree and its frequency in BSO for several functions with specific di-

mension. The power law distribution is expressed as P(k) ∝ k−γ [119], where P(k) indicates

the probability distribution of variable k and γ denotes the power exponent. According to

this definition, the power exponent γ in the PIN can be calculated as follow:

γ =
lnP(k1) − lnP(k2)

lnk2 − lnk1
, (3.3)

where P(k1) and P(k2) indicate the frequencies of degrees k1 and k2, respectively. Further-

more, the power law distribution can be shown as a straight line in the two-log figure and

the slope of line represents the value of power exponent γ [119]. Therefore, it can be obvi-

ously judged whether a curve meets the power law distribution in terms of the characteristic

of straight line in two-log axes.

To conduct the comparative experiment in different dimensions, the parameters of BSO

are set in terms of the literature [16]. The population size p is 100. The number of clusters
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c is 5. The replacement rate pc is 0.2. The selected probability pg is 0.8. The parameters

pc1 and pc2 are 0.4 and 0.5, respectively. The constant k is set to be 20, and the number

of maximum iteration T is 2000. The dimensions of each function are set to be 2, 10 and

30, implying low, medium and high dimensions, respectively. The BSO is independently

run 30 times for each function to derive the average optimal solution and the distribution

of average degree. All the experiments are achieved by a Matlab software on a computer

with 3.30GHz Intel(R) Core(TM) i5 CPU and 8GB RAM.

3.4.2 Results in different dimensions

The experimental results obtained by BSO on benchmark functions and CEC’05 test func-

tions with three kinds of dimensions are shown in Table 3.1, where values in and out of the

parenthesis indicate the standard deviation and mean of thirty optimal solutions, respective-

ly. It can be found from Table 3.1 that the experimental results in D = 2 are the least among

three kinds of dimensions and most of them belong to the known best-so-far solutions, sug-

gesting the performance of BSO is the best on all the functions with 2 dimension and the

optimization of BSO for functions is valid. Since the increase of dimension can result in

the more complicated structures of functions, high dimension can significantly intensify

the complexity of functions which can influence the capacity of algorithm for searching

optimal solution. Based on this reason, the performance of BSO in the functions with 10

and 30 dimensions notably declines, which is reflected by the worse experimental results

in D = 10 and D = 30. The higher dimension the function has, the worse optimal solution

the BSO ultimately acquires. This circumstance primarily occurs in CEC’05 test function-

s because the CEC’05 test functions possess the characteristics of shift or rotation which

can be remarkably altered via the increasing dimension so that the searching capacity of

BSO is insufficient for CEC’05 test functions with high dimension comparing with those

benchmark functions. Consequently, Table 3.1 verifies the effective and efficient property

of BSO for the functions with low dimension.

To detect the inherent essence of significant differences of experimental results among

the functions with three dimensions, the average degree is adopted to analyze the relation-

ship between the population interaction and the performance of algorithm. In consideration

of the generally similar status exhibited by numerous experimental results from Table 3.1,

Fig. 3.2 is given to show the box-and-whisker diagrams of optimal solutions on three func-

tions including Sphere, F6 and F18 with three dimensions, and the corresponding two-log

curves of the average degree distribution are plotted in Fig. 3.3. In Fig. 3.2, the horizontal
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Table 3.1: The experimental results obtained by BSO on benchmark functions and CEC’05
test functions with different dimensions.

Function D = 2 D = 10 D = 30
Sphere 7.35E − 48(±5.03E − 48) 3.80E − 44(±8.04E − 45) 6.56E − 43(±1.1E − 43)
Rosenbrock 0(±0) 6.32(±1.77) 39.61(±26.16)
Quartic 4.92E − 05(±3.72E − 05) 2.92E − 04(±1.52E − 04) 9.70E − 03(±5.68E − 03)
Griewank 1.60E − 02(±2.52E − 02) 1.37(±0.43) 1.12E − 02(±1.25E − 02)
Rastrigin 0(±0) 3.98(±1.36) 31.11(±5.92)
Schwefel 8.70(±30.00) 1453.08(±364.62) 5466.16(±789.72)
F1 −450(±0) −450(±0) −450(±2.11E − 14)
F2 −450(±0) −450(±0) −448.61(±0.60)
F3 −445.92(±16.96) 69997.08(±42493.28) 2045349(±603296.7)
F4 −450(±0) −410.79(±136.32) 23353.16(±5163.39)
F5 −310(±0) −309.80(±0.37) 4255.53(±946.41)
F6 390(±0) 595.24(±752.78) 1440.30(±1897.79)
F7 −138.60(±3.80) 1239.78(±84.82) 6342.76(±280.88)
F8 −133.93(±8.89) −119.94(±3.17E − 02) −119.65(±7.92E − 02)
F9 −330(±0) −325.95(±1.17) −290.93(±10.14)
F10 −330(±0) −325.19(±1.63) −291.66(±7.85)
F11 90(±0) 90.58(±0.74) 107.07(±1.89)
F12 −460(±0) −450.21(±11.48) 15496.47(±10756.5)
F13 −130(±0) −129.26(±0.22) −125.75(±1.13)
F14 −300(±7.37E − 03) −296.33(±0.29) −286.92(±0.39)
F15 120(±0) 395.44(±167.04) 525.22(±78.41)
F16 120(±0) 214.91(±8.23) 267.82(±133.56)
F17 120(±0) 217.66(±19.20) 284.55(±151.11)
F18 13.33(±18.26) 710.96(±227.61) 901.95(±46.81)
F19 160(±77.68) 675.84(±246.05) 913.54(±35.17)
F20 176.67(±84.42) 699.51(±219.82) 901.65(±46.64)
F21 433.33(±98.03) 868.41(±227.64) 880(±76.11)
F22 487.09(±97.48) 1020.04(±184.83) 1239.01(±9.86)
F23 453.09(±124.44) 1182.27(±168.29) 940.80(±145.47)
F24 453.33(±25.37) 550(±180.71) 460(±5.71E − 13)
F25 360(±0) 1998.84(±7.61) 1924.83(±7.54)
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Figure 3.2: The box-and-whisker diagrams of optimal solutions obtained by BSO on
Sphere, F6 and F18 with 2, 10, 30 dimensions.

axis indicates dimension and the vertical axis manifests optimal solution. It is obvious from

Fig. 3.2 that the total optimal solutions of each function in 2 dimension are much less than

those in 10 and 30 dimensions, and optimal solutions of each function are worse and worse

along with the increase of dimension, illustrating the performance of BSO in the functions

with 2 dimension is superior to that on the functions with 10 and 30 dimensions once again.

In Fig. 3.3, the horizontal axis denotes the value of average degree and the vertical axis

represents the frequency of average degree. According to Fig. 3.3, it can be seen that the

power law distribution shown by the black dash line occurs in Figs. 3.3(a) (d) and (g), in-

dicating the population interaction of BSO meets a power law distribution on the functions

with 2 dimension. Nevertheless, in the other subfigures which display the average degree

distribution on the functions with 10 and 30 dimensions, it can be evidently observed that

the overall frequency of average degree shows a convex shape rather than a straight line,

implying the population interaction of BSO is significantly influenced and changed by the

dimensions of functions so that the average degree distribution can not completely meet a

power law distribution anymore and the performance of BSO declines.

From Figs. 3.2 and 3.3, it can be concluded that the reason why BSO performs best on

the functions with 2 dimension instead of 10 and 30 dimensions is that the population inter-

action of BSO which indicates a power law distribution is effective and efficient for seeking

an optimal solution in low dimension of functions, whereas the high dimension enhances

the complexity of functions to lead to the descend of property regarding the population

interaction whose structure is transformed and incompletely obeys a power law distribu-

tion, and eventually cause the inferior quality of optimal solution. Therefore, the power

law distribution can stand for the good population interaction of BSO as well as the robust

capacity for exploring and exploiting an optimal solution in heterogeneous functions.

Fig. 3.4 is depicted to further demonstrate that the performance of BSO generally de-
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Figure 3.3: Two-log curves of the average degree distribution of BSO on Sphere, F6 and
F18 with 2, 10, 30 dimensions.
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Figure 3.4: The power law distribution of average degree of BSO on other nine functions
with 2 dimension.
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pends on the power law distribution of population interaction on nine functions with 2

dimension, including Rosenbrock, Rastrigin, Griewank, F2, F4, F10, F15, F22 and F25. In

Fig. 3.4, it can be observed that the frequency of average degree of BSO in each function

also reveals a power law distribution. Meanwhile, the optimal solution of corresponding

each function is superior in Table 3.1. Hence, it can be declared that the population in-

teraction of BSO obeying a power law distribution can effectively guide the evolution of

individuals and efficiently acquire an optimal solution on the functions with low dimension.

The power law distribution not only determines the population structure but also influences

the direction of evolution among populations, suggesting it plays a crucial role in the evo-

lutionary process of BSO. As a result, the power law distribution shows a promising pattern

of population interaction which is beneficial for boosting the performance of BSO. A nov-

el perspective which is to change the population structure of BSO to completely satisfy

a power law distribution in high dimension is worth considering in order to reinforce the

quality of individuals and the capacity of exploration and exploitation of the algorithm in

search space.

3.4.3 Results in different parameters

BSO shows an outstanding attribute owing to its distinctive framework and the effective

application of its parameters. Thus, it is necessary to investigate and analyze the impact of

each parameter on the performance of BSO via a theoretical method. Six parameters in-

cluding the number of clusters c, the number of population p, the replacement rate pc, the

selected probability pg and two parameters pc1 and pc2 are studied, respectively. Since the

power law distribution of population interaction emerges on the whole functions with low

dimension, six benchmark functions with 2 dimension are adopted to measure the effect

of parameters. When one parameter is analyzed, the other parameters maintain the values

mentioned in the experiment regarding dimensions. For each parameter, the experiment is

run 30 times for obtaining the mean and standard deviation of optimal solutions. Tables

3.2, 3.4, 3.6, 3.8, 3.10 and 3.12 indicate the experimental results obtained by BSO with

analytical parameters on six benchmark functions, respectively. The corresponding statis-

tical results obtained by the Friedman test and post-hoc test [120] at a significant level of

α = 0.05 are shown in Tables 3.3, 4.1, 3.7, 3.9, 3.11 and 3.13, respectively. Fig. 3.5 is

plotted to denote the obtained value of power exponent γ for each analytical parameter on

six benchmark functions. The specific analyses of experiment are described as follow.

(1) The analysis of the number of clusters: The parameter c is set to be six values from
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Table 3.2: The experimental results obtained by BSO with different number of clusters c
on benchmark functions.

Function c = 3 c = 5 c = 7 c = 9 c = 11 c = 13

Sphere
6.05E − 48 7.35E − 48 1.02E − 47 9.72E − 48 8.33E − 48 1.13E − 47

(±5.43E − 48) (±5.03E − 48) (±9.91E − 48) (±8.93E − 48) (±6.39E − 48) (±1.11E − 47)

Rosenbrock
0 0 0 0 0 0

(±0) (±0) (±0) (±0) (±0) (±0)

Quartic
3.85E − 05 4.92E − 05 3.62E − 05 4.20E − 05 4.17E − 05 4.94E − 05

(±3.12E − 05) (±3.72E − 05) (±3.02E − 05) (±2.65E − 05) (±3.54E − 05) (±2.96E − 05)

Griewank
2.49E − 02 1.60E − 02 2.16E − 02 3.07E − 02 3.18E − 02 1.72E − 02

(±2.58E − 02) (±2.52E − 02) (±3.18E − 02) (±4.25E − 02) (±3.32E − 02) (±2.07E − 02)

Rastrigin
0 0 0 0 0 0

(±0) (±0) (±0) (±0) (±0) (±0)

Schwefel
10.02 8.70 11.84 11.13 24.69 24.04

(±30.77) (±30.00) (±36.14) (±33.08) (±47.80) (±48.03)

Table 3.3: The statistical results of parameter c obtained by the Friedman test, where *
indicates the best average rank of parameter.

Parameter Average rank Unadjusted p pBon f pHolm pHochberg α = 0.05
c = 3 3.0833 0.877371 1 1 0.877371 No
∗c = 5 2.9167
c = 7 3.0833 0.877371 1 1 0.877371 No
c = 9 3.75 0.440401 1 1 0.877371 No

c = 11 4.25 0.217044 1 1 0.877371 No
c = 13 3.9167 0.354539 1 1 0.877371 No

Table 3.4: The experimental results obtained by BSO with different number of populations
p on benchmark functions.

Function p = 10 p = 50 p = 100 p = 200

Sphere
1.06E − 46 1.38E − 47 7.35E − 48 3.47E − 48

(±1.17E − 46) (±1.37E − 47) (±5.03E − 48) (±3.58E − 48)

Rosenbrock
3.13E − 06 0 0 0

(±1.53E − 05) (±0) (±0) (±0)

Quartic
2.99E − 04 8.15E − 05 4.92E − 05 2.21E − 05

(±2.49E − 04) (±5.67E − 05) (±3.72E − 05) (±1.69E − 05)

Griewank
1.89E − 01 3.91E − 02 1.60E − 02 7.76E − 03

(±1.85E − 01) (±6.28E − 02) (±2.52E − 02) (±1.00E − 02)

Rastrigin
0 0 0 0

(±0) (±0) (±0) (±0)

Schwefel
49.29 29.61 8.07 7.90

(±61.15) (±48.27) (±30.00) (±30.05)
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Table 3.5: The statistical results of parameter p obtained by the Friedman test, where *
indicates the best average rank of parameter.

Parameter Average rank Unadjusted p pBon f pHolm pHochberg α = 0.05
p = 10 3.5 0.013906 0.041719 0.041719 0.041719 Yes
p = 50 2.6667 0.179712 0.539137 0.359425 0.359425 No

p = 100 2.1667 0.502335 1 0.502335 0.502335 No
∗p = 200 1.6667

Table 3.6: The experimental results obtained by BSO with different replacement rate pc on
benchmark functions.

Function pc = 0.1 pc = 0.2 pc = 0.3 pc = 0.4 pc = 0.5

Sphere
6.72E − 48 7.35E − 48 7.78E − 48 9.42E − 48 5.74E − 48

(±6.84E − 48) (±5.03E − 48) (±8.22E − 48) (±8.66E − 48) (±5.00E − 48)

Rosenbrock
0 0 0 0 0

(±0) (±0) (±0) (±0) (±0)

Quartic
4.02E − 05 4.92E − 05 4.20E − 05 4.33E − 05 3.68E − 05

(±3.40E − 05) (±3.72E − 05) (±2.80E − 05) (±2.55E − 05) (±2.55E − 05)

Griewank
1.95E − 02 1.60E − 02 1.90E − 02 1.72E − 02 1.65E − 02

(±2.87E − 02) (±2.52E − 02) (±2.20E − 02) (±1.85E − 02) (±2.34E − 02)

Rastrigin
0 0 0 0 0

(±0) (±0) (±0) (±0) (±0)

Schwefel
27.92 8.07 4.00 4.29 2.55E − 05

(±50.81) (±30.00) (±21.62) (±21.64) (±0)
Function pc = 0.6 pc = 0.7 pc = 0.8 pc = 0.9

Sphere
7.11E − 48 9.85E − 48 7.46E − 48 7.02E − 48

(±8.28E − 48) (±8.19E − 48) (±7.33E − 48) (±9.22E − 48)

Rosenbrock
0 0 0 0

(±0) (±0) (±0) (±0)

Quartic
3.77E − 05 3.74E − 05 4.99E − 05 3.47E − 05

(±3.50E − 05) (±2.80E − 05) (±4.65E − 05) (±4.13E − 05)

Griewank
1.90E − 02 1.25E − 02 1.51E − 02 1.28E − 02

(±1.85E − 02) (±1.49E − 02) (±1.52E − 02) (±1.26E − 02)

Rastrigin
0 0 0 0

(±0) (±0) (±0) (±0)

Schwefel
5.33E − 02 5.20E − 02 2.55E − 05 2.55E − 05

(±2.05E − 01) (±2.85E − 01) (±0) (±0)
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Table 3.7: The statistical results of parameter pc obtained by the Friedman test, where *
indicates the best average rank of parameter.

Parameter Average rank Unadjusted p pBon f pHolm pHochberg α = 0.05
pc = 0.1 6.3333 0.05778 0.462237 0.462237 0.462237 No
pc = 0.2 5.8333 0.113846 0.91077 0.796924 0.683078 No
pc = 0.3 5.6667 0.140017 1 0.796924 0.700083 No
pc = 0.4 5.8333 0.113846 0.91077 0.796924 0.683078 No
pc = 0.5 4 0.67329 1 1 0.75183 No
pc = 0.6 5.3333 0.205903 1 0.823613 0.75183 No
pc = 0.7 3.8333 0.75183 1 1 0.75183 No
pc = 0.8 4.8333 0.342782 1 1 0.75183 No
∗pc = 0.9 3.3333

Table 3.8: The experimental results obtained by BSO with different selected probability pg

on benchmark functions.
Function pg = 0.1 pg = 0.2 pg = 0.3 pg = 0.4 pg = 0.5

Sphere
7.90E − 48 7.70E − 48 7.51E − 48 8.16E − 48 8.08E − 48

(±7.83E − 48) (±5.71E − 48) (±8.21E − 48) (±8.33E − 48) (±8.92E − 48)

Rosenbrock
0 0 0 0 0

(±0) (±0) (±0) (±0) (±0)

Quartic
2.42E − 05 2.80E − 05 3.06E − 05 3.16E − 05 2.60E − 05

(±1.88E − 05) (±2.08E − 05) (±1.89E − 05) (±1.60E − 05) (±1.84E − 05)

Griewank
1.40E − 03 1.13E − 03 7.40E − 04 2.47E − 03 5.19E − 03

(±4.13E − 03) (±2.62E − 03) (±2.26E − 03) (±4.53E − 03) (±9.14E − 03)

Rastrigin
0 0 0 0 0

(±0) (±0) (±0) (±0) (±0)

Schwefel
3.47 3.98 7.94 16.72 3.22

(±15.90) (±19.16) (±30.04) (±40.89) (±15.21)
Function pg = 0.6 pg = 0.7 pg = 0.8 pg = 0.9

Sphere
7.22E − 48 9.88E − 48 7.35E − 48 8.79E − 48

(±6.82E − 48) (±8.80E − 48) (±5.03E − 48) (±8.40E − 48)

Rosenbrock
0 0 0 0

(±0) (±0) (±0) (±0)

Quartic
2.76E − 05 3.25E − 05 4.92E − 05 4.75E − 05

(±1.60E − 05) (±2.35E − 05) (±3.72E − 05) (±3.68E − 05)

Griewank
5.75E − 03 8.38E − 03 1.60E − 02 4.83E − 02

(±8.07E − 03) (±1.20E − 02) (±2.52E − 02) (±3.53E − 02)

Rastrigin
0 0 0 0

(±0) (±0) (±0) (±0)

Schwefel
3.96 5.23 8.07 3.95

(±21.62) (±22.17) (±30.00) (±21.62)
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Table 3.9: The statistical results of parameter pg obtained by the Friedman test, where *
indicates the best average rank of parameter.

Parameter Average rank Unadjusted p pBon f pHolm pHochberg α = 0.05
∗pg = 0.1 3.5
pg = 0.2 4.3333 0.598161 1 1 0.833029 No
pg = 0.3 4.6667 0.460597 1 1 0.833029 No
pg = 0.4 5.6667 0.170587 1 0.980116 0.833029 No
pg = 0.5 3.8333 0.833029 1 1 0.833029 No
pg = 0.6 4.6667 0.460597 1 1 0.833029 No
pg = 0.7 5.8333 0.140017 1 0.980116 0.833029 No
pg = 0.8 6.6667 0.045201 0.361611 0.361611 0.361611 Yes
pg = 0.9 5.8333 0.140017 1 0.980116 0.833029 No

Table 3.10: The experimental results obtained by BSO with different pc1 on benchmark
functions.

Function pc1 = 0.1 pc1 = 0.2 pc1 = 0.3 pc1 = 0.4 pc1 = 0.5

Sphere
8.70E − 48 7.99E − 48 5.81E − 48 7.35E − 48 8.24E − 48

(±7.56E − 48) (±6.16E − 48) (±6.67E − 48) (±5.03E − 48) (±6.46E − 48)

Rosenbrock
0 0 0 0 0

(±0) (±0) (±0) (±0) (±0)

Quartic
4.26E − 05 3.73E − 05 2.71E − 05 4.92E − 05 3.06E − 05

(±3.61E − 05) (±3.40E − 05) (±1.99E − 05) (±3.72E − 05) (±2.51E − 05)

Griewank
9.70E − 03 1.42E − 02 2.38E − 02 1.60E − 02 2.08E − 02

(±9.54E − 03) (±2.30E − 02) (±3.86E − 02) (±2.52E − 02) (±2.17E − 02)

Rastrigin
0 0 0 0 0

(±0) (±0) (±0) (±0) (±0)

Schwefel
12.81 12.26 14.69 8.07 3.95

(±36.02) (±37.56) (±38.40) (±30.00) (±21.62)
Function pc1 = 0.6 pc1 = 0.7 pc1 = 0.8 pc1 = 0.9

Sphere
6.64E − 48 5.93E − 48 5.29E − 48 5.17E − 48

(±7.60E − 48) (±4.80E − 48) (±4.03E − 48) (±6.48E − 48)

Rosenbrock
0 0 0 0

(±0) (±0) (±0) (±0)

Quartic
3.98E − 05 2.98E − 05 4.60E − 05 3.28E − 05

(±3.44E − 05) (±2.25E − 05) (±2.87E − 05) (±2.23E − 05)

Griewank
2.70E − 02 3.14E − 02 3.01E − 02 2.17E − 02

(±2.44E − 02) (±3.18E − 02) (±2.53E − 02) (±2.64E − 02)

Rastrigin
0 0 0 0

(±0) (±0) (±0) (±0)

Schwefel
9.69 7.51 14.39 5.54

(±30.17) (±25.82) (±36.43) (±22.77)
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Table 3.11: The statistical results of parameter pc1 obtained by the Friedman test, where *
indicates the best average rank of parameter.

Parameter Average rank Unadjusted p pBon f pHolm pHochberg α = 0.05
pc1 = 0.1 5 0.460597 1 1 0.75183 No
pc1 = 0.2 4.6667 0.598161 1 1 0.75183 No
pc1 = 0.3 5.1667 0.399075 1 1 0.75183 No
pc1 = 0.4 5.1667 0.399075 1 1 0.75183 No
∗pc1 = 0.5 3.8333
pc1 = 0.6 5.5 0.291841 1 1 0.75183 No
pc1 = 0.7 4.8333 0.527089 1 1 0.75183 No
pc1 = 0.8 6.5 0.09169 0.733522 0.733522 0.733522 No
pc1 = 0.9 4.3333 0.75183 1 1 0.75183 No

Table 3.12: The experimental results obtained by BSO with different pc2 on benchmark
functions.

Function pc2 = 0.1 pc2 = 0.2 pc2 = 0.3 pc2 = 0.4 pc2 = 0.5

Sphere
6.98E − 48 6.08E − 48 5.53E − 48 8.91E − 48 7.35E − 48

(±6.94E − 48) (±7.01E − 48) (±5.29E − 48) (±6.59E − 48) (±5.03E − 48)

Rosenbrock
0 0 0 0 0

(±0) (±0) (±0) (±0) (±0)

Quartic
3.16E − 05 4.44E − 05 3.36E − 05 3.96E − 05 4.92E − 05

(±2.20E − 05) (±3.48E − 05) (±2.65E − 05) (±2.71E − 05) (±3.72E − 05)

Griewank
3.56E − 02 1.80E − 02 2.65E − 02 1.04E − 02 1.60E − 02

(±8.21E − 02) (±2.48E − 02) (±2.44E − 02) (±1.37E − 02) (±2.52E − 02)

Rastrigin
0 0 0 0 0

(±0) (±0) (±0) (±0) (±0)

Schwefel
4.22 4.90 11.97 4.68 8.07

(±21.60) (±21.72) (±33.17) (±21.72) (±30.00)
Function pc2 = 0.6 pc2 = 0.7 pc2 = 0.8 pc2 = 0.9

Sphere
7.96E − 48 6.55E − 48 6.04E − 48 5.77E − 48

(±6.07E − 48) (±5.91E − 48) (±6.78E − 48) (±6.53E − 48)

Rosenbrock
0 0 0 0

(±0) (±0) (±0) (±0)

Quartic
4.33E − 05 3.83E − 05 3.62E − 05 4.06E − 05

(±2.86E − 05) (±4.45E − 05) (±2.69E − 05) (±3.38E − 05)

Griewank
2.34E − 02 2.98E − 02 1.38E − 02 1.94E − 02

(±2.29E − 02) (±2.94E − 02) (±1.53E − 02) (±1.95E − 02)

Rastrigin
0 0 0 0

(±0) (±0) (±0) (±0)

Schwefel
9.37 21.63 3.95 4.63

(±30.33) (±44.58) (±21.62) (±21.80)
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Table 3.13: The statistical results of parameter pc2 obtained by the Friedman test, where *
indicates the best average rank of parameter.

Parameter Average rank Unadjusted p pBon f pHolm pHochberg α = 0.05
pc2 = 0.1 4.5 0.527089 1 1 0.67329 No
pc2 = 0.2 5.3333 0.246252 1 1 0.67329 No
pc2 = 0.3 5.3333 0.246252 1 1 0.67329 No
pc2 = 0.4 4.1667 0.67329 1 1 0.67329 No
pc2 = 0.5 5.5 0.205903 1 1 0.67329 No
pc2 = 0.6 5.8333 0.140017 1 0.980116 0.67329 No
pc2 = 0.7 6 0.113846 0.91077 0.91077 0.67329 No
∗pc2 = 0.8 3.5
pc2 = 0.9 4.8333 0.399075 1 1 0.67329 No

3 to 13 with 2 difference, respectively. From Table 3.3, it can be found that the performance

of BSO is the best in c = 5 according to the average rank whereas it is not significantly

different from other values of c. In Fig. 3.5(a), the values of γ of the power law distribution

on six functions significantly increase with the increment of the number of clusters, mean-

ing the frequencies of average degree in the population interaction significantly decrease.

That is to say, the connections among individuals are reduced so that the transmission of

knowledge carried by individuals is not completely implemented, suggesting the effect of

population interaction is gradually weaken with the increment of the number of cluster-

s. This is because individuals are excessively separated by too many clusters, resulting in

the deficient relationship among individuals. Accordingly, the experiment demonstrates a

small number of clusters which shows a small value of γ can facilitate the population inter-

action better and be an appropriate value for optimization though it slightly influences the

performance of BSO.

(2) The analysis of the number of population: The parameter p is set to be 10, 50, 100

and 200, which indicate a tiny, small, medium and large scale of population, respectively.

Tables 3.4 and 4.1 show BSO performs best in p = 200 on the basis of the experimental

results and average rank, respectively. However, the statistical results validate the fact that

the performance of BSO in p = 200 is superior to that in p = 10 and has no significant

difference with that in p = 50 and p = 100. Fig. 3.5(b) indicates the values of γ in six

functions sharply decline from p = 10 to p = 50 and subsequently slowly decrease from

p = 50 to p = 200, implying the frequencies of average degree in the population interac-

tion increasingly enlarge, which enhances the relationship among individuals. It should be

noted that the values of γ in p = 10 are abnormally large since the number of individuals
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is so small that the population interaction is difficult to achieve a global search. Thus, in

fact, the frequency of average degree can not meet a power law distribution in p = 10.

The impact of population interaction is improved by the increasing number of population

since more individuals can generate more connections among them so as to tighten up the

structure of entire network and the relationship among individuals. Consequently, a large

number of population which shows a small value of γ is more suitable for enhancing the

population interaction of BSO.

(3) The analysis of the replacement rate: The parameter pc is set in the interval [0.1,

0.9]. Table 3.7 reveals that pc = 0.9 is the best but without significant difference comparing

with other values of pc. Fig. 3.5(c) shows the values of γ frequently change and exhibit

fluctuant shapes on six functions according to diverse values of pc, signifying the frequen-

cies of average degree are arbitrarily influenced by the pc. This is because the pc brings

the diversity of population to BSO whereas this kind of diversity has no effective guidance

for the population interaction. Thus, the pc is incompletely beneficial for improving the

performance of BSO. This conclusion is the same as that in the reference [116].

(4) The analysis of the selected probability: The parameter pg is also set in the interval

[0.1, 0.9]. It can be seen that there is no significant difference among experimental results

in different values of pg except for pg = 0.8 though pg = 0.1 indicates the best performance

in terms of the average rank. In Fig. 3.5(d), irregularly fluctuant shapes on six functions

occur due to the changing values of γ, which illustrates the selected number of individuals

determined by the pg notably affects the population interaction but without adequate effec-

tiveness. The quality of new individual generated by one or two selected individuals is not

enormously different since the BSO only considers to enhance the diversity of population

but not provides a mechanism for reinforcing the quality of new solution between one and

two selected individuals. Hence, the BSO should be further improved to enable the pg to

be more effective for intensifying the population interaction so that the algorithm can get a

better optimal solution.

(5) The analysis of two parameters pc1 and pc2: The pc1 and pc2 are tested in the interval

[0.1, 0.9], respectively. From Tables 3.11 and 3.13, it can be observed that the overall

experimental results in pc1 = 0.5 and pc2 = 0.8 show the best property whereas they

are similar with experimental results under other values, respectively. Figs. 3.5(e) and

(f) display the values of γ on six functions decrease with the increase of the pc1 and pc2,

respectively, indicating the frequencies of average degree progressively ascend and the

population interaction is increasingly enhanced. In Fig. 3.5(e), it is obvious that the values
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Figure 3.5: The value of power exponent γ obtained by various parameters of BSO on six
benchmark functions.
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of γ significantly decline in the interval [0.1, 0.4] and gradually decrease in the interval

[0.4, 0.9]. However, in Fig. 3.5(f), the similar situation occurs in the interval [0.1, 0.5] and

[0.5, 0.9], respectively. A small value of pc1 or pc2 means to generate new individual by

one or two general individuals with a high probability, which leads to the more exploration

and exploitation of solutions so as to make the population interaction weak. When a large

value of pc1 or pc2 is adopted, it is more likely to use one or two cluster centers to generate

new individual to accelerate the convergence of BSO. One or two good optimal solutions

used to offer more effective knowledge can strengthen the connection among individuals

so that the population interaction becomes strong. Thus, the parameters pc1 and pc2 exhibit

the similarly changing process of population interaction, suggesting the relationship among

individuals generated by the general individuals or cluster centers makes difference. On the

basis of this circumstance, a balance between pc1 and pc2 should be taken into account to

further improve the population interaction to acquire a better property of BSO.

3.4.4 Analysis for combinatorial parameter settings

The above analyses of parameters focus on each independent parameter. That is to say,

for discussing a parameter, only it remains variant while other parameters are fixed. To

further investigate the interactive influence among these parameters, six parameters are

combined according to their different values to optimize six benchmark functions in 2 di-

mension. Each parameter is set as follows: c ∈ {3, 5, 7, 9, 10}, p ∈ {10, 30, 50, 100, 200},
pg ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, pc ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, pc1 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, pc2 ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. Since a thorough analysis of parameter settings needs 56 = 15625

experiments, we use the Taguchi’s method [121] to reasonably decrease the number of ex-

periments so as to derive the best combinatorial parameter setting. The Taguchi’s method

uses an orthogonal array to measure a portion of possible combinations instead of all the

combinations, meaning the best evaluation of combinations can be acquired by the least

experimental runs. As a result, in our experiment, an orthogonal array L25(56) is utilized to

assess the best combinatorial result among twenty five kinds of parameter settings. Each

combinatorial parameter setting is run 30 times and mean is obtained in Table 3.14. Table

3.15 shows the statistical results of the Friedman test.

From Table 3.15, we can see that the No.15 combinatorial parameter setting has the

best average rank and significantly outperforms eight groups among the whole parameter

settings. Therefore, c = 7, p = 200, pg = 0.1, pc = 0.9, pc1 = 0.7, pc2 = 0.3 can be

regarded as the best combinatorial parameter setting. In order to evaluate its effect, we
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Table 3.16: The experimental results obtained by BS Obp on benchmark functions and
CEC’05 test functions with three dimensions.

Function D = 2 D = 10 D = 30
Sphere 4.51E − 48(±4.63E − 48) 2.61E − 44(±9.41E − 45) 3.80E − 43(±6.08E − 44)
Rosenbrock 0(±0) 5.79(±0.73) 30.33(±13.01)
Quartic 1.73E − 05(±1.22E − 05) 4.61E − 05(±2.39E − 05) 6.75E − 04(±3.68E − 04)
Griewank 0(±0) 0.59(±0.33) 7.06E − 03(±6.87E − 03)
Rastrigin 0(±0) 2.69(±1.26) 19.31(±5.67)
Schwefel 2.55E − 05(±0) 1450.37(±271.51) 5467.97(±729.54)
F1 −450(±0) −450(±0) −450(±0)
F2 −450(±0) −450(±0) −448.75(±0.62)
F3 −450(±0) 61468.04(±29747.80) 1893647(±515078.9)
F4 −450(±0) −442.49(±31.82) 20569.12(±3171.15)
F5 −310(±0) −309.41(±0.54) 4060.34(±702.73)
F6 390(±0) 395.64(±0.83) 969.88(±327.11)
F7 −140.85(±0) 1224.52(±60.75) 6644.19(±262.50)
F8 −139.20(±3.16) −119.91(±3.66E − 02) −119.51(±0.11)
F9 −330(±0) −327.08(±1.04) −299.92(±6.31)
F10 −330(±0) −326.82(±1.24) −300.96(±10.51)
F11 90(±0) 92.72(±0.85) 113.95(±2.99)
F12 −460(±0) −447.06(±11.57) 15761.19(±10756.16)
F13 −130(±0) −129.39(±0.19) −125.03(±1.17)
F14 −300(±0) −296.88(±0.31) −287.61(±0.40)
F15 120(±0) 208.57(±99.86) 515.42(±93.43)
F16 120(±0) 206.33(±19.72) 201.61(±92.58)
F17 120(±0) 213.08(±18.67) 311.96(±164.71)
F18 10(±0) 762.28(±183.64) 901.35(±46.48)
F19 106.67(±49.01) 713.12(±205.71) 897.12(±48.90)
F20 60(±62.97) 824.40(±104.58) 901.38(±46.49)
F21 360(±0) 766.67(±170.06) 860(±2.75E − 13)
F22 366.67(±36.51) 934.37(±228.85) 1252.58(±9.15)
F23 360(±0) 1035.54(±125.46) 907.59(±73.55)
F24 438.43(±44.51) 470(±54.77) 460(±0)
F25 360(±0) 2006.79(±5.21) 1931.31(±6.39)
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Table 3.17: Statistical results obtained by the Wilcoxon signed ranks test between BS Obp

and BS Oop in three dimensions.
Algorithm Dim R+ R− p-value α=0.05 α=0.1

BS Obp 2 428.0 68.0 1.9536E-04 Yes Yes
vs. 10 362.5 133.5 0.02399 Yes Yes

BS Oop 30 340.5 155.5 0.07107 No Yes

apply it to BSO on the whole thirty one functions with three different dimensions. The

experimental results are listed in Table 3.16. BSO with the best combinatorial parameter

setting and the original parameter setting is called BS Obp and BS Oop, respectively. The

comparison between them is conducted by the Wilcoxon signed ranks and shown in Table

3.17. According to Table 3.17, it is obvious that BS Obp significantly outperforms BS Oop on

functions with 2 and 10 dimensions. In 30 dimension, BS Obp can be remarkably superior

to BS Oop at a significant level of α = 0.1. Consequently, on the one hand, these statistical

results demonstrate that the best combinatorial parameter setting can notably enhance the

performance of BSO on functions with various dimensions. On the other hand, they also

illustrate that the interactive effect among parameters can effectively boost the population

interaction to significantly influence the performance of BSO.

3.4.5 Analysis for different related algorithms

BSO has shown that its degree of population interaction obeys a power law distribution on

functions with low dimension. To further demonstrate the effect of the power law distribu-

tion, we compare BSO with two related algorithms, i.e., DE and PSO. DE has been verified

that its degree meets a poisson law distribution in PIN [47]. PSO has shown a truncated

power law distribution in terms of its search dynamics [122]. Thus, in this experiment, we

contrast the performances of three algorithms on twenty five CEC’05 test functions with

three dimensions to discuss their characteristics. BSO adopts the best combinatorial pa-

rameter setting mentioned before. DE uses F = 0.5,CR = 0.9, p = 200,T = 2000. PSO

uses p = 200, γ = 0.72984, c1 = c2 = 2.05,T = 2000. Each algorithm is run 30 times for

each function. Their mean and standard deviation are listed in Table 3.18. The compari-

son between BSO and two algorithms is obtained by the Wilcoxon signed ranks test at a

significant level of α = 0.05, exhibited in Table 3.19.

From Table 3.19, we can observe that BS Obp significantly outperforms DE and PSO

on functions with three dimensions, suggesting that BSO is the most effective algorithm
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Table 3.18: The experimental results obtained by BS Obp, DE and PS O on CEC’05 test
functions with three dimensions.

Func D = 2 D = 10 D = 30
tion BS Obp DE PS O BS Obp DE PS O BS Obp DE PS O
F1 -450 -450 -450 -450 -450 -450 -450 -443.22 -450

(±0) (±0) (±0) (±0) (±9.28E − 07) (±0) (±0) (±2.40) (±0)
F2 -450 -450 -450 -450 -449.98 -450 -448.75 4347.09 -450

(±0) (±0) (±0) (±0) (±9.10E − 03) (±0) ( ±0.62) (±914.46) (±0)
F3 -450 -450 -450 61468.04 321328.36 -450 1893646.97 38864770.59 -450

(±0) (±1.44E − 11) (±0) (±118318.97) (±1543.48) (±0) (±515078.88) (±9344780) (±0)
F4 -450 -450 -450 -442.49 -420.75 -450 20569.12 9071.91 -450

(±0) (±0) (±0) ( ±31.82) ( ±6.28) (±0) (±3171.15) (±2432.20) ( ±0)
F5 -310 -310 -310 -309.41 -305.56 -310 4060.34 3401.96 -310

(±0) (±7.44E − 09) (±0) (±0.54) (±1.50) (±0) (±702.73) (±532.75) (±0)
F6 390 390.01 390 395.64 989.38 390 969.88 20137.12 390

(±0) (±3.43E − 02) (±0) (±0.83) (±215.30) (±0) (±327.11) (±11166.03) (±0)
F7 -140.85 -140.85 1365.43 1224.52 1233.03 16117.14 6644.19 4516.46 91818.51

(±0) (±0) (±4.21E − 05) (±60.75) (±61.64) (±123.31) (±262.50) (±5.04E − 02) (±25170.02)
F8 -139.20 -133.91 637.07 -119.91 -119.62 8370.59 -119.51 -119.01 27464.96

(±3.16) ( ±3.43) (±2.31E − 13) (±3.66E − 02) (±9.77E − 02) (±5.77) (±0.11) (±4.73E − 02) (±599.79)
F9 -330 -330 3752.51 -327.08 -301.11 23806.84 -299.92 -134.76 76610.87

(±0) (±2E − 08) (±2.80E − 13) (±1.04) (±5.15) (±6.62) (±6.31) (±14.32) (±244.42)
F10 -330 -330 3752.51 -326.82 -293.15 23809.71 -300.96 -106.03 76610.28

(±0) (±1.41E − 03) (±8.44E − 14) (±1.24) (±4.90) (±11.41) (±10.51) (±15.18) (±239.58)
F11 90 90.04 5006.91 92.72 99.34 28034.39 113.95 130.05 88556.31

(±0) (±2.29E − 02) (±1.69E − 13) (±0.85) (±0.57) (±0.75) (±2.99) (±1.15) (±39.33)
F12 -460 -460 3957.28 -447.06 -315.62 25201.81 15761.19 331923.67 81112.90

(±0) (±5.71E − 08) (±7.36E − 13) (±11.57) (±189.19) (±7.82) (±10756.16) (±87780.46) (±186.49)
F13 -130 -130 4540.95 -129.39 -127.07 26346.74 -125.03 -109.68 84291.93

(±0) (±7.28E − 14) (±1.85E − 12) ( ±0.19) (±0.43) ( ±1.60) ( ±1.17) ( ±1.56) ( ±65.53)
F14 -300 -299.99 -300 -296.88 -296.24 -300 -287.61 -286.46 -300

( ±0) (±7.56E − 03) (±0) (±0.31) (±0.14) (±0) (±0.40) (±0.11) (±0)
F15 120 120 4202.51 208.57 454.54 24261.18 515.42 538.15 77007.77

(±0) (±1.34E − 07) (±1.69E − 13) (±99.86) (±127.47) (±13.69) (±93.43) (±58.32) (±309.43)
F16 120 120 4202.51 206.33 294.42 24260.04 201.61 383.64 77070.08

(±0) (±1.12E − 05) (±0) (±19.72) (±12.15) (±11.26) (±92.58) (±39.16) (±259.51)
F17 120 120 4202.51 213.08 316.62 24256.32 311.96 399.57 77128.95

(±0) (±9.52E − 04) (±0) (±18.67) (±11.42) (±7.68) (±164.71) ( ±26.96) ( ±243.88)
F18 10 113.33 4092.51 762.28 395.35 24145.09 901.35 917.35 76904.68

(±0) (±103.34) (±0) (±183.64) (±81.23) (±4.66) (±46.48) (±0.16) (±282.50)
F19 106.67 206.67 4092.51 713.12 376.67 24145.78 897.12 917.25 76917.20

(±49.01) (±18.26) (±2.53E − 13) (±205.71) (±172.87) (±5.31) (±48.90) (±0.21) (±253.95)
F20 60 170 4092.51 824.40 310 24150.94 901.38 917.22 77056.71

(±62.97) (±81.37) (±0) ( ±104.58) (±4.77E − 03) (±11.30) (±46.49) (±0.26) (±315.04)
F21 360 540 4442.51 766.67 860 24495.08 860.00 861.38 77306.95

(±0) (±61.03) (±0) (±170.06) (±1.55E − 06) ( ±8.47) (±2.75E − 13) (±0.53) ( ±281.31)
F22 366.67 560 4442.51 934.37 1087.78 24495.06 1252.58 1275.96 77313.94

(±36.51) (±4.36E − 11) (±0) (±228.85) (±144.97) (±5.50) (±9.15) ( ±10.71) (±378.95)
F23 360 597.43 4442.51 1035.54 1421.40 24497.67 907.59 895.20 77357.57

(±0) ( ±62.67) ( ±0) ( ±125.46) (±204.20) (±8.01) (±73.55) (±1.33) (±280.56)
F24 438.43 457.97 4342.51 470 841.50 24403.47 460 462.63 77186.56

(±44.51) (±11.09) (±0) (±54.77) (±315.68) (±15.78) (±0) (±0.85) (±265.88)
F25 360 367.09 4871.87 2006.78 2010.63 28030.92 1931.31 1910.50 86930.68

(±0) (±13.20) (±9.17E − 07) (±5.21) (±6.00) (±12.62) ( ±6.39) (±5.60) ( ±301.92)
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Table 3.19: Statistical results obtained by the Wilcoxon signed ranks test among BS Obp,
DE and PS O on CEC’05 test functions with three dimensions.

Algorithm Dim R+ R− p-value α=0.05
BS Obp 2 257.0 68.0 9.636E-03 Yes

vs. 10 263.0 62.0 5.578E-03 Yes
DE 30 246.5 78.5 0.02277 Yes

BS Obp 2 289.5 10.5 5.841E-06 Yes
vs. 10 280.5 44.5 8.60E-04 Yes

PS O 30 261.0 39.0 8.462E-04 Yes

in contrast to DE and PSO. In 2 dimension, BSO possessing a power law distribution is

remarkably superior to DE owning a poisson law distribution and PSO showing a truncated

power law distribution, manifesting that the power law distribution effectively guides the

population interaction to enhance the performance of algorithm comparing with a poisson

law or a truncated power law distribution. A poisson law distribution indicates a random

property of population interaction. A truncated power law distribution shows an incom-

pletely power law attribute based on cutting off a part of data. Compared with these two

distributions, a complete power law distribution has a more compact population interac-

tion and maintains the relationship among the whole individuals. Thus, the effect of power

law distribution can be more obvious and efficient than a poisson law or a truncated power

law distribution. In 10 and 30 dimensions, although BSO can not completely implement a

power law distribution, the trend towards a power law distribution also plays an essential

role in the population interaction. This trend partially leads the evolution of population to

gradually improve the qualities of individuals. Hence, BSO still performs better than DE

and PSO. According to this characteristic, we can reasonably consider that the power law

distribution is conducive to boosting the population interaction of BSO so as to refine its

property. In the future work, modifying the structure of population to totally meet a power

law distribution in high dimension is a promising research for enhancing the performance

of BSO.

3.5 Conclusions

In this chapter, the population interaction of BSO is investigated by the PIN to analyze the

performance of algorithm. The PIN is able to establish the connection among individuals

and shows the characteristics of constructed network. Four experiments are conducted to

discuss the population interaction of BSO in different dimensions, parameters, combinato-
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rial parameter settings and related algorithms, respectively. The experimental results with

2, 10 and 30 dimensions demonstrate that the performance of BSO is the best on six bench-

mark functions and twenty five CEC’05 test functions with 2 dimension, and is worse and

worse along with the increase of dimension. Meanwhile, the frequency of average degree

in 2 dimension obviously shows a power law distribution comparing with that in 10 and 30

dimensions where the high dimension significantly influences the structures of functions so

that the relationship among individuals can not completely satisfy a power law distribution

anymore. Therefore, the occurrence of power law distribution indicates the validity and ef-

ficiency of BSO on the functions with low dimension and represents the good performance

of BSO, which can effectively promote the population interaction to achieve the evolution

of individuals.

The experimental results in different parameters verify that the respective parameter

can influence the population interaction of BSO whereas the performance of algorithm is

similar. Thus, the interactive influence among parameters is taken into account to investi-

gate their best combinatorial result. The final combinatorial parameter setting manifests its

efficiency for enhancing the performance of BSO. In the end, the comparisons among BSO,

DE and PSO are discussed to illustrate that a complete power law distribution is beneficial

for the population interaction so as to reinforce the performance of BSO.
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Chapter 4

The research of gravitational search
algorithm

4.1 Introduction

Since an effective population topology can remarkably influence the performances of EAs

[48, 57], it is worth noticing and investigating to improve the GSA from the viewpoint of

population structure. Based on the principle of conventional GSA, a hierarchical popula-

tion structure can be implemented to further guide the evolution direction of individuals in

the population. In this chapter, a three-layered hierarchical GSA with an effective gravi-

tational constant (HGSA) is devised to address the premature convergence and low search

ability of GSA. The hierarchical structure not only provides an effective guideline for indi-

viduals on each layer but also is beneficial for alleviating the stagnation of HGSA. A new

gravitational constant strengthens the exploration ability of HGSA. Two weighted coeffi-

cients with time are designed to balance the exploration and exploitation process in HGSA.

To evaluate the performance of HGSA, three experiments are conducted to compare it with

six variants of GSA, five heuristic algorithms and seven variants of PSO on a number of

benchmark functions. The results between HGSA and other six GSAs demonstrate that

HGSA significantly enhances its exploration and exploitation abilities owing to its effec-

tive population structure and gravitational constant. The results between HGSA and five

heuristic algorithms indicate that HGSA is a competitive and promising algorithm. The

comparison between HGSA and seven kinds of PSOs verifies the notable performance of

the hierarchical structure in HGSA. A component-wise experiment is carried out to analyze

the effect of HGSA using a hierarchical structure and an improved gravitational constant. In

addition, HGSA is used to resolve four real-world optimization problems and experimental
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results manifest its effectiveness and practicability. Finally, the time complexity analysis

is discussed to demonstrate that HGSA is the same computational efficient in comparison

with other GSAs.

4.2 Conventional GSA

GSA inspired by the law of gravity and implemented by the gravitational force among

individuals is a swarm intelligent algorithm. The gravitational force acts on everything and

is different from other physical force. In particular, its effect is much significant for particles

in the universe. The gravitational force among particles decides their motion trajectories

where one particle with a higher mass tends to attract other particles with lower masses

so as to change their motion direction and reduce their distance. Thus, the gravitational

force between two particles is proportional to the product of their masses and inversely

proportional to the square of their distance. The velocity and position of each particle are

frequently altered due to the gravitational force among them. According to this mechanism,

GSA is initially proposed to optimize the continuous functions [17].

In GSA, each particle is deemed as one individual. The influence of gravitational force

on individuals is conducted by their masses expressed by the variant of fitness on function-

s, their distance and the gravitational constant. The gravitational force among individuals

interacts with each one to guide their movement towards several individuals with higher

masses. A high mass indicates a good fitness value. Hence, the movement direction of

each individual stands for its evolutionary process from a low mass to a high mass. In other

words, the communication among individuals is to use the gravitational force to enable the

whole population to move towards a global optimal individual with the highest mass. For

each individual, it possesses the attribute of position and mass, which indicates the com-

position and quality of a solution, respectively. The mass of each individual is improved

by continually changing its position according to the gravitational force among individuals

over the iterations.

The realizable process of GSA is described as follows. Firstly, the initialization of pop-

ulation is randomly generated by n individuals in which the i-th individual is formulated

as Xi = (x1
i , x

2
i , ..., x

d
i ) where xd

i is its position in the d-th dimension. Secondly, individ-

uals Xi and X j interact with each other in the d-th dimension with the iteration t via the

57



gravitational force Fd
i j(t), expressed as

Fd
i j(t) = G(t)

Mi(t) × M j(t)
Ri j(t) + ϵ

(xd
j (t) − xd

i (t)), (4.1)

where G(t) is a gravitational constant related with the iteration t, Mi(t) and M j(t) are masses

of two individuals. Ri j(t) indicates the Euclidean distance between two individuals, defined

as Ri j(t) = ||Xi(t), X j(t)||2, and ϵ is a small constant. The gravitational constant G(t) is

described as

G(t) = G0 × e−α
t
T , (4.2)

where G0 is an initial value and α is a constant. t and T indicate the current iteration

number and the maximum iteration number, respectively. The mass Mi(t) of individual Xi

is formulated as follows:

mi(t) =
fi(t) − w(t)
b(t) − w(t)

, (4.3)

Mi(t) =
mi(t)∑n

l=1 ml(t)
, (4.4)

where fi(t) manifests the fitness value of individual Xi. w(t) and b(t) denote the worst and

best fitness values of current population in the iteration t, respectively. For an individu-

al Xi, the whole gravitational force Fd
i (t) from other individuals in the d-th dimension is

calculated as follow:

Fd
i (t) =

∑
j∈Kb, j,i

rand jFd
i j(t), (4.5)

where Kb indicates the K best individuals in the current population, and the K value is

declined linearly from the initial n to 2. rand j is a uniform random value in the interval [0,1]

for the individual X j. Thirdly, the acceleration ad
i (t) of individual Xi in the d-th dimension

is formed by the gravitational force as follow:

ad
i (t) =

Fd
i (t)

Mi(t)
. (4.6)

Finally, the velocity vd
i (t + 1) of individual Xi is updated to change its position in the next

iteration t + 1, given as follows:

vd
i (t + 1) = randivd

i (t) + ad
i (t), (4.7)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1), (4.8)
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where randi indicates a uniform random value in the interval [0,1] for the individual Xi.

4.3 Hierarchical GSA

4.3.1 Motivation

GSA has been widely used in diverse optimization and engineering application problem-

s [123–126]. These results have also demonstrated that GSA is an effective and promising

algorithm. However, its performance is limited by its potential mechanism such that a pre-

mature convergence is prone to occur and the search ability is low. This is because GSA

uses the interactive information among individuals in the whole population to constantly

evolve new individuals, whereas it is difficult for them to escape from the local optima once

individuals are stagnated into the premature situation. Besides, the movement of individ-

uals depend on their velocities controlled by their gravitational force and masses during

the entire search process. In the late stage of searching process, the update velocities of

individuals are so small that results in a low exploitation behavior for finding a better solu-

tion, implying that an inefficient update operation is used for further optimizing the search

space. Thus, it is effective and valuable for balancing the search ability of GSA between

exploration and exploitation in order to improve its performance from the beginning to the

ending of optimization process. Taking into account these two disadvantages, a hierarchi-

cal population structure is adopted to alleviate them and enhance the search performance

of GSA.

A hierarchical population structure is that individuals are ordered and placed on dif-

ferent layers according to some certain properties. On different layers, individuals have

distinctive characteristics and function. The relationship among various layers can provide

an effective guideline for individuals to efficiently evolve so that the whole population can

be improved gradually [49,72]. As a result, these layers are defined as different levels from

the top to bottom like a tree structure according to the actual influence of each layer on

individuals. Top layer leads its next layer, and its next layer continues to lead its second

layer. In this way, the interactive relationship among layers is constructed to form a hi-

erarchical structure used to guide the evolution direction of individuals. The reason why

a hierarchical population structure is effective for GSA is that the conventional GSA only

uses the K best individuals to attract other individuals, and other individuals face the same

circumstance and hardly escape from them once these K best individuals are trapped into
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local optima. In the meantime, a slow exploitation operation further deteriorates this pre-

mature phenomenon and causes an adverse effect on the population evolution. Therefore,

these K best individuals should need to be prevented from generating the premature conver-

gence or be apt to get away from the local optima by a more effective guideline. From this

point of view, a three-layered hierarchical population structure is proposed to strengthen

the performance of GSA.

HGSA uses the hierarchical interaction among three layers to alleviate the above is-

sues. Each layer has different properties of individuals. The population, K best individuals

and global optimal individual are placed on different layers. For the population, the K

best individuals act on them according to the gravitational force, which constructs a kind

of interaction between two layers. However, this interaction can easily cause a premature

convergence without any guidelines for the K best individuals. Thus, a global optimal in-

dividual is used to further attract the K best individuals, which also establishes a kind of

interaction between two layers. According to the hierarchical interaction among three lay-

ers, the K best individuals are effectively guided to ameliorate the stagnation of GSA and

the exploitation ability of population is enhanced. Moreover, to improve the exploration

ability of population, a new log-sigmoid gravitational constant is proposed to replace the

previous exponential one. It remarkably strengthens the gravitational force among individ-

uals to expand their search ranges for finding a better solution. Two weighted coefficients

with time cooperate with the hierarchical structure to finally implement an effective pop-

ulation interaction. In terms of the above motivation and mechanism, HGSA effectively

achieves the hierarchical interaction among individuals and reinforces its performance.

4.3.2 Proposed HGSA

Conventional GSA adopts the gravitational force to associate individuals in the population

and the K best individuals as better ones facilitate the population evolution. This kind

of behavior actually constructs a specific population topology which can be regarded as a

two-layered structure. To be specific, all the individuals in current population are on the

bottom layer, and are evolved and guided by those K best individuals on the top layer. This

kind of two-layered structure is able to guarantee that individuals on the bottom layer move

towards those K best individuals on the top layer according to their gravitational force.

Nevertheless, the K best individuals only rely on the gravitational force among them to

further enhance themselves. This behavior brings an issue that they may be trapped into

local optima and have no ability to escape so that the other individuals on the bottom layer

60



also move towards the local optima, and finally the whole population meets a premature

convergence.

To address this issue, a three-layered hierarchical structure consisting of top, medium

and bottom layers is established for GSA. Based on the original structure of GSA, we new-

ly add a top layer and let the K best individuals be on the medium layer. On the top layer,

a global optimal individual is adopted to be a better one than the K best individuals. The

global optimal individual on the top layer attracts the K best individuals on the medium

layer which guide the other ones on the bottom layer. On the basis of this structure, a hier-

archical control is implemented from the top layer to medium layer and from the medium

layer to bottom layer. That is to say, a global optimal individual leads the evolution of the

K best individuals, and the K best individuals direct the movement of other individuals.

In this way, a premature convergence can be effectively alleviated and individuals can de-

rive valid interactive information to achieve a better evolution and development. Concrete

construction and function of three layers are described as follows.

(1) Bottom layer: The whole population is placed on this layer, i.e., the distribution

of all the individuals in current population is shown on this layer. Individuals move and

evolve towards better ones in terms of the K best individuals on the medium layer. For

a function optimization, this layer can reveal the landscape of function constructed by a

large number of evolved individuals. In other words, the bottom layer provides a complete

search space for the population, and individuals can implement their survival, elimination

and reformation on it. Thus, this layer is defined as a bottom layer.

(2) Medium layer: In order to effectively guide the evolution of general individuals, the

K best individuals are arranged on this layer. In each iteration, the medium layer always

leads the bottom layer to accomplish the velocity update of individuals. It is worth noticing

that each individual needs a great velocity so as to globally explore the entire search space

in the beginning stage of search process, and gradually decreases the updated velocity over

iterations. In the late stage of search process, an approximate optimum is found. Thus, the

exploitation ability of individuals should play an essential role in further optimizing this

approximate optimum. For the conventional GSA, the update velocity of each individual

depends on its gravitational force and mass where the gravitational constant G(t) signifi-

cantly determines the value of gravitational force. That is to say, the exploration ability of

GSA needs to be supported by a great gravitational constant G(t) and its exploitation ability

needs a small one. The conventional GSA adopts an exponential G(t) to calculate the grav-

itational force. However, this kind of exponential change can make its exploration ability
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Figure 4.1: The graphs of conventional and new gravitational constant G(t).

weak, meaning that GSA insufficiently explores the entire search space in the early phase

so that the exploitation operation acts on an inferior optimum, and the resultant optimum is

not the best. Thus, to improve its exploration ability, a new G(t) is proposed to replace the

exponential one.

We use a log-sigmoid transfer function to create a new gravitational constant G(t), and

the formula is given as follow:

G(t) =
G0

1 + e
t− T

2
L

, (4.9)

where t indicates the current iteration number and T is the maximum iteration number.

L is a step length. According to this log-sigmoid transfer function, the value of G(t) is

obviously different from the original one. The graphs of both changing values with 3000

iterations and G0 = 100 are shown in Fig. 4.1. From Fig. 4.1(a), it can be seen that the

value of G(t) declines quickly before 1500 iterations, suggesting the exploration ability of

GSA weakens quickly. However, in Fig. 4.1(b), the value of G(t) consistently maintains

great before 1500 iterations, and subsequently it decreases quickly to approximate 0. This

effect can guarantee a strong exploration ability of GSA in the early phase such that it has

sufficient time to seek for an approximate optimum which can be further refined by its next

exploitation ability. Therefore, both difference primarily focuses on the value of G(t) in

the early search process. In other words, new proposed G(t) can obviously enhance the

exploration ability of GSA. On the medium layer, this new revision is executed to change

the gravitational force among individuals so as to influence their velocities and eventually

implement the evolution of individuals on the bottom layer. In addition, since the K value

decreases gradually with iterations, meaning the number of best individuals on this layer
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dynamically reduces. It is beneficial for the global optimal individual on the top layer to

efficiently and promisingly guide several elite individuals in current population in order to

offer a better evolution direction to all the individuals on the bottom layer.

(3) Top layer: To provide an effective management for the medium layer, a global opti-

mal individual is selected and placed on this layer. In each iteration, the K best individuals

on the medium layer are chosen to compared with the global optimal individual. If a bet-

ter individual exists, this global optimal individual is replaced by it. The global optimal

individual possesses the highest mass and the best position in current population. Thus, it

can further attract several best individuals to move towards it. This method can bring two

advantages to GSA. On the one hand, it can keep the K best individuals from trapping into

the local optima. This is because the conventional GSA is liable to converge into a local

optimum only by the gravitational force without the assistance of other mechanisms, while

a global optimal individual can persistently attract other best individuals to enable them to

escape from the stagnation so as to help the whole population continue to seek for a better

position. On the other hand, this global optimal individual can accelerate the convergence

speed of population. When the K best individuals without occurring a premature situation

are further attracted by it, the movement speed of individuals is increased quickly to reduce

the distance between them and the global optimal individual. According to this mechanis-

m, the formula of update velocity of the K best individuals guided by the global optimal

individual is described as follow:

v
′d
i∈Kb

(t + 1) = gd
opt − Xd

i∈Kb
(t), (4.10)

where gopt indicates the global optimal individual. Adding this kind of extra update veloci-

ty on the top layer can effectively alleviate the premature convergence of GSA and enhance

its performance. Hence, an ultimate three-layered hierarchical population structure is com-

pletely constructed to boost the evolution of individuals in GSA, and its illustrative graph

is plotted in Fig. 4.2. In Fig. 4.2, there are n (e.g., n = 6) individuals in the population

on the bottom layer. They are attracted by the K (e.g., K = 2) best individuals consisting

of individuals 2 and 3 on the medium layer. Finally, a global optimal individual on the top

layer guides the K = 2 best individuals on the medium layer.

Another disadvantage of GSA which should be concerned is that its exploitation ability

is low in the late stage of search process. Moreover, our new added top layer may influence

the exploration ability of GSA in the early stage. Taking into account these two issues, we

adopt two weighted coefficients with time w1(t) and w2(t) to balance their relationship. The
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Figure 4.2: A three-layered structure of HGSA.

formulas of final update velocity of individuals on the medium layer and the bottom layer

are given, respectively as follows:

v
′d
i∈Kb

(t + 1) = w2(t) × (gd
opt − Xd

i∈Kb
(t)), (4.11)

vd
i (t + 1) = randivd

i (t) + w1(t) × ad
i (t) + v

′d
i∈Kb

(t + 1), (4.12)

where w1(t) = 1− t6

T 6 and w2(t) = t6

T 6 . Two weighted coefficients are set to not only intensify

the relationship among three layers but also guarantee the effective transformation between

exploration and exploitation abilities of GSA in different search phases. Their purpose is to

use w1(t) to enhance the exploration ability of GSA in the early half stage of search process

and use w2(t) to reinforce the exploitation ability of GSA in the late half stage of search

process. The figure regarding two weighted coefficients in 3000 iterations is plotted in Fig.

4.3. From it, we can observe that w1(t) maintains a great value before 1500 iterations, and

then declines gradually to 0. Nevertheless, w2(t) is the opposite. This kind of operation

can correspond to our proposed new G(t). In a early half stage of search process, a great

value of w1(t) takes charge of a strong exploration of GSA whereas w2(t) approximating to

0 disables the exploitation of GSA. Whereafter, the values of w1(t) and w2(t) progressively

decline and ascend, respectively, suggesting that the exploration ability of GSA begins to

decay and its exploitation ability is gradually improved. Based on this manipulation, we

can effectively balance the exploration and exploitation of GSA and enhance its property
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Figure 4.3: The curves of two weighted coefficients w1(t) and w2(t).

in the whole search period. Therefore, a complete HGSA is established.

The primary procedures of HGSA are described as follows: 1) Set up the parameters of

GSA; 2) Initialize a random population on the bottom layer and construct two empty pop-

ulations on the medium and top layers; 3) Justify the search boundary of each individual

on the bottom layer; 4) Evaluate the fitness (i.e., objective function value) of each individ-

ual on the bottom layer according to the objective function; 5) Calculate the mass of each

individual on the bottom layer according to Eqs. (4.3) and (4.4); 6) Calculate the current

gravitational constant according to Eq. (4.9); 7) Select the K best individuals in current

population to be placed on the medium layer according to their K values and masses; 8)

Determine the best individual among the K best individuals as a global optimal one on the

top layer; 9) The global optimal individual on the top layer updates the velocities of the K

best individuals on the medium layer according to Eq. (4.11); 10) The resultant gravita-

tional force of each individual on the bottom layer is obtained by the K best individuals on

the medium layer according to Eqs. (4.1) and (4.5); 11) The corresponding acceleration of

each individual is calculated by Eq. (4.6); 12) The K best individuals on the medium layer

update the velocities of individuals on the bottom layer according to Eq. (4.12), and then

the movement of each individual is implemented by Eq. (4.8); 13) Repeat procedures 3)

- 12) until the termination criteria is satisfied. The implementation of HGSA is shown in

Algorithm 2.

In order to further illustrate the explicit characteristics of HGSA, Fig. 4.4 is plotted

to show its operating principle on the multi-modal landscape with local optima. Figs.
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Algorithm 2: HGSA
Input: Parameters n, d, K, G0, L, w1, w2, t, T
Output: The optimal solution

1 Initialization: Randomly generate an initial population {X1, X2, ..., Xn} on the bottom
layer. The medium and top layers are empty;

2 while the termination criterion is not satisfied do
3 for i = 1 to n do
4 if individual Xi on the bottom layer is beyond the boundary then
5 Individual Xi is randomly initialized;

6 for i = 1 to n do
7 Evaluate the fitness fi(t) of individual Xi on the bottom layer according to the

objective function;

8 for i = 1 to n do
9 Calculate the mass Mi(t) of individual Xi on the bottom layer according to

Eqs. (4.3) and (4.4);

10 Calculate the current gravitational constant G(t) according to Eq. (4.9);
11 Select the K best individuals in current population as a set Kb to be placed on the

medium layer according to their K values and masses;
12 if t == 1 then
13 Select the minimum fKbi

(t) among the Kb as the fitness fopt(t) of global
optimal individual gopt, and the individual Kbi as the global optimal
individual gopt is placed on the top layer ;

14 else
15 if fopt(t) > minimum fKbi

(t) then
16 gopt = Kbi ;
17 fopt(t) = minimum fKbi

(t);

18 for j = 1 to K do
19 gopt on the top layer updates the velocity of individual Kb j on the medium

layer according to Eq. (4.11);

20 for i = 1 to n do
21 for j = 1 to K do
22 Individual Kb j on the medium layer attracts individual Xi on the bottom

layer according to Eqs. (4.1) and (4.5);

23 for i = 1 to n do
24 The velocity and position of individual Xi on the bottom layer are updated

according to Eqs. (4.6), (4.12) and (4.8);

25 t = t + 1;
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Figure 4.4: The illustrative graphs of the operating principle of HGSA.

4.4(a) and (b) explain why our proposed HGSA is effective for handling the premature

convergence or accelerating the convergence. There are n (e.g., n = 5) individuals in

the population where individuals X3 and X4 are the K (e.g., K = 2) best individuals. In

Fig. 4.4(a), it can be observed that individuals X3 and X4 are moving towards a local

optimum, whereas a global optimal individual gopt provides an extra direction for them to

help them escape from the local optimum. In Fig. 4.4(b), when individuals X3 and X4 are

not trapped into a premature convergence, they can effectively attract other individuals to

move towards them. Meanwhile, the global optimal individual gopt further accelerates the

movement of individuals X3 and X4 so as to enhance the convergence speed of population.

Consequently, HGSA can effectively enhance its exploration and exploitation abilities in

the search process.

4.4 Experiment and analysis

To evaluate the performance of HGSA, three comparative experiments are carried out. The

first experiment compares HGSA with six kinds of GSAs on fifty seven benchmark func-

tions with three kinds of dimensions from CEC2013 and CEC2017 [127,128]. The second

experiment conducts a contrast between HGSA and five heuristic algorithms on fifty seven

benchmark functions. The last experiment analyzes the performances of HGSA and seven

variants of PSO on twenty eight benchmark functions from CEC2013.

4.4.1 Experimental setup

In order to assess the property of HGSA, fifty seven benchmark functions (F1-F57) con-

sisting of twenty eight CEC2013 benchmark functions (F1-F28) and twenty nine CEC2017
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benchmark functions (F29-F57) are adopted. A large number of benchmark functions are

used so as to avoid a potential risk such as trapping into the local optima caused by some

algorithms, assure the accuracy and reliability of experimental results, and provide a fair

contrast among various algorithms. In CEC2013 benchmark functions, F1-F5 are unimodal

functions and F6-F20 are multimodal functions. F21-F28 indicate composition functions.

In them, numerous functions are rotated to increase their complexity. In CEC2017 bench-

mark functions, there are two unimodal functions (F29-F30), seven multimodal functions

(F31-F37), ten hybrid functions (F38-F47) and ten composition functions (F48-F57). Com-

pared with CEC2013 functions, CEC2017 have many shifted and rotated functions which

are more complex and difficult to be resolved. Both optimal solutions are obviously differ-

ent. According to these two sets of test functions, HGSA can be effectively measured to

show its performance.

For three experiments, the common parameters of all the algorithms are set as follows:

The termination criterion is the maximum number of function evaluations (NFEs) set to be

D ∗ 10000 where D is the dimension of the benchmark function. The search range is in

[−100, 100]D. Other parameters of each algorithm are set according to its corresponding

reference. For each function, each algorithm is independently run 30 times to acquire its

statistical results. All the algorithm are implemented by a Matlab software on a PC with

3.30GHz Intel(R) Core(TM) i5 CPU and 8GB RAM.

4.4.2 Comparison between HGSA and other GSAs

To observe the performance of HGSA, six kinds of GSAs including GSA [17], GGSA

[123], CGSA-M [86], PSOGSA [87], MGSA [129] and DNLGSA [130] are adopted to

make a comparison. Conventional GSA is compared to primarily show the degree of im-

provement of HGSA. GGSA uses the best individual to enhance its exploitation ability in

the search process. CGSA-M memory-selectively incorporates multiple chaotic maps into

GSA to further exploit a small search space. PSOGSA combines the exploration of GSA

with the exploitation of PSO to improve its overall performance. MGSA adds a memory

ability into GSA from the viewpoint of global and local optimal solutions to strengthen its

search accuracy. DNLGSA uses a dynamic neighborhood learning scheme to change its

local and global neighborhood topologies for balancing its exploration and exploitation a-

bilities. To explicitly show the property of each algorithm, fifty seven benchmark functions

with three different dimensions, i.e., D = 10, 30 and 50, are used to test their performances

on low, medium and high dimensions. The population size n is set to be 100. Their pa-
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rameters are listed in Table 4.1. The experimental results composed of mean and standard

deviation are summarized in Tables 4.2, 4.3 and 4.4, and the best result on each function is

highlighted by a bold font.

From Tables 4.2, 4.3 and 4.4, we can find that HGSA can obtain the best solutions on

numerous benchmark functions with 10, 30 and 50 dimensions, suggesting that HGSA has

a strong exploration and exploitation ability for finding an optimal solution. To provide

more accurate conclusions, the statistical analysis is conducted by the Wilcoxon signed

ranks test at a significant level of α = 0.05 in Table 4.5. From it, we can see that HGSA

significantly outperforms other six GSAs on all the benchmark functions with 10, 30 and

50 dimensions according to p-value. It demonstrates that a hierarchical structure can no-

tably change the search ability of individuals and an improved gravitational constant can

effectively enhance the exploration ability of GSA. In addition, although HGSA performs

the best among seven algorithms on all the benchmark functions with three dimensions,

p-values in D = 30 and 50 are less, indicating that it can more effectively act on medium

and high dimensions. It manifests that HGSA can effectively optimize the functions with

diverse dimensions due to its hierarchical structure, and especially has a better performance

in medium and high dimensions. Furthermore, DNLGSA which is a kind of state-of-the-art

GSA adopts a neighborhood structure to randomly divide the whole population and control

the gravitational force among neighborhoods. In fact, it belongs to a kind of distribut-

ed population structure, which includes several subpopulations to enhance the diversity of

GSA. The comparison between HGSA and DNLGSA demonstrates that HGSA has a bet-

ter performance. In other words, a hierarchical structure is more suitable than a distributed

structure for the evolution of population in GSA. To be specific, on the one hand, HGSA

uses an effective gravitational constant to reinforce its exploration ability. On the other

hand, a hierarchical structure is also beneficial for further guiding the evolution of individ-

uals on different layers so as to eventually enhance the performance of GSA. Experimental

results indicate this kind of mechanism is more effective than DNLGSA with neighbor-

hoods. Hence, we can conclude that HGSA is a superior and competitive algorithm among

various variants of GSA for numerous functions with different dimensions.

To intuitively show the performances of seven kinds of GSAs, Fig. 4.5 is plotted to

reveal the box-and-whisker diagrams of thirty optimal solutions obtained by each algo-

rithm on F7 and F38 with 10, 30 and 50 dimensions. In it, the vertical axis indicates the

optimal solution and the horizontal axis denotes seven algorithms. From Figs. 4.5(a) and

(d), we can see that each algorithm finds different optimal solutions which have a distinct
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Table 4.2: Experimental results of benchmark functions (F1-F57) with D = 10 dimensions
using HGSA, GSA, GGSA, CGSA-M, PSOGSA, MGSA and DNLGSA.

Algorithm F1 F2 F3 F4 F5 F6
HGSA -1.40E+03 ± 2.00E-09 7.96E+03 ± 1.04E+04 -1.20E+03 ± 5.37E-01 1.01E+04 ± 2.62E+03 -1.00E+03 ± 1.12E-08 -8.91E+02 ± 3.05E+00
GSA -1.40E+03 ± 0.00E+00 5.00E+06 ± 7.31E+05 7.67E+08 ± 6.56E+08 1.63E+04 ± 2.10E+03 -1.00E+03 ± 8.61E-05 -8.30E+02 ± 1.78E+00
GGSA -1.40E+03 ± 0.00E+00 3.73E+06 ± 7.79E+05 1.61E+08 ± 1.31E+08 1.13E+04 ± 2.05E+03 -1.00E+03 ± 3.86E-07 -8.37E+02 ± 6.80E+00
CGSA-M -1.40E+03 ± 0.00E+00 4.86E+06 ± 7.82E+05 7.48E+08 ± 4.34E+08 1.61E+04 ± 2.43E+03 -1.00E+03 ± 6.28E-05 -8.31E+02 ± 1.82E+00
PSOGSA -1.40E+03 ± 0.00E+00 9.60E+05 ± 1.67E+06 4.60E+07 ± 2.01E+08 4.02E+03 ± 3.24E+03 -1.00E+03 ± 5.91E-13 -8.84E+02 ± 2.06E+01
MGSA -1.40E+03 ± 0.00E+00 8.75E+05 ± 9.65E+05 9.39E+07 ± 1.33E+08 1.83E+04 ± 6.98E+03 -1.00E+03 ± 8.83E-07 -8.76E+02 ± 2.75E+01
DNLGSA -1.40E+03 ± 0.00E+00 2.96E+06 ± 2.09E+06 7.04E+08 ± 1.59E+09 1.89E+04 ± 8.39E+03 -1.00E+03 ± 1.08E-08 -8.76E+02 ± 2.69E+01

F7 F8 F9 F10 F11 F12
HGSA -8.00E+02 ± 2.78E-04 -6.80E+02 ± 6.53E-02 -5.98E+02 ± 9.61E-01 -5.00E+02 ± 8.13E-03 -3.95E+02 ± 2.11E+00 -2.98E+02 ± 1.40E+00
GSA -7.73E+02 ± 1.65E+01 -6.80E+02 ± 8.06E-02 -5.94E+02 ± 1.24E+00 -5.00E+02 ± 1.06E-01 -3.51E+02 ± 7.61E+00 -2.47E+02 ± 9.77E+00
GGSA -7.74E+02 ± 1.82E+01 -6.80E+02 ± 9.29E-02 -5.97E+02 ± 1.16E+00 -5.00E+02 ± 5.46E-02 -3.91E+02 ± 3.28E+00 -2.93E+02 ± 2.64E+00
CGSA-M -7.68E+02 ± 2.13E+01 -6.80E+02 ± 8.16E-02 -5.95E+02 ± 1.40E+00 -5.00E+02 ± 9.84E-02 -3.53E+02 ± 9.32E+00 -2.49E+02 ± 1.04E+01
PSOGSA -7.44E+02 ± 3.21E+01 -6.80E+02 ± 7.97E-02 -5.95E+02 ± 1.96E+00 -5.00E+02 ± 2.19E-01 -3.86E+02 ± 7.99E+00 -2.66E+02 ± 2.05E+01
MGSA -7.49E+02 ± 2.52E+01 -6.80E+02 ± 9.84E-02 -5.96E+02 ± 1.39E+00 -5.00E+02 ± 1.24E-01 -3.86E+02 ± 7.26E+00 -2.77E+02 ± 9.27E+00
DNLGSA -7.43E+02 ± 2.88E+01 -6.80E+02 ± 1.16E-01 -5.94E+02 ± 1.80E+00 -4.92E+02 ± 9.23E+00 -3.77E+02 ± 1.18E+01 -2.69E+02 ± 2.05E+01

F13 F14 F15 F16 F17 F18
HGSA -1.97E+02 ± 2.28E+00 4.83E+02 ± 1.77E+02 3.33E+02 ± 1.02E+02 2.00E+02 ± 3.87E-03 3.12E+02 ± 1.20E+00 4.13E+02 ± 1.79E+00
GSA -1.19E+02 ± 9.50E+00 9.28E+02 ± 2.78E+02 8.39E+02 ± 1.76E+02 2.00E+02 ± 2.40E-02 3.13E+02 ± 1.13E+00 4.13E+02 ± 1.11E+00
GGSA -1.82E+02 ± 8.80E+00 5.63E+02 ± 2.15E+02 3.69E+02 ± 1.41E+02 2.00E+02 ± 9.17E-02 3.11E+02 ± 5.02E-01 4.12E+02 ± 1.04E+00
CGSA-M -1.26E+02 ± 8.84E+00 8.33E+02 ± 2.88E+02 8.11E+02 ± 2.11E+02 2.00E+02 ± 2.86E-02 3.13E+02 ± 1.39E+00 4.12E+02 ± 8.72E-01
PSOGSA -1.48E+02 ± 1.60E+01 3.44E+02 ± 1.67E+02 1.06E+03 ± 3.47E+02 2.00E+02 ± 1.70E-01 3.33E+02 ± 1.35E+01 4.42E+02 ± 1.27E+01
MGSA -1.55E+02 ± 1.43E+01 4.87E+02 ± 2.36E+02 7.14E+02 ± 2.82E+02 2.01E+02 ± 3.53E-01 3.18E+02 ± 4.03E+00 4.21E+02 ± 5.75E+00
DNLGSA -1.41E+02 ± 2.33E+01 6.31E+02 ± 2.54E+02 1.15E+03 ± 2.65E+02 2.00E+02 ± 1.98E-01 3.37E+02 ± 1.26E+01 4.43E+02 ± 1.38E+01

F19 F20 F21 F22 F23 F24
HGSA 5.01E+02 ± 2.65E-01 6.03E+02 ± 4.51E-01 1.10E+03 ± 1.75E-10 1.69E+03 ± 3.69E+02 1.74E+03 ± 1.99E+02 1.22E+03 ± 4.37E+00
GSA 5.02E+02 ± 2.33E-01 6.04E+02 ± 3.07E-01 1.10E+03 ± 4.63E-13 3.08E+03 ± 2.24E+02 2.47E+03 ± 2.82E+02 1.23E+03 ± 4.71E+00
GGSA 5.01E+02 ± 2.78E-01 6.04E+02 ± 2.86E-01 1.10E+03 ± 4.63E-13 2.39E+03 ± 4.20E+02 1.82E+03 ± 2.37E+02 1.22E+03 ± 4.29E+00
CGSA-M 5.02E+02 ± 3.32E-01 6.04E+02 ± 3.07E-01 1.10E+03 ± 4.63E-13 2.90E+03 ± 2.84E+02 2.43E+03 ± 2.78E+02 1.23E+03 ± 5.05E+00
PSOGSA 5.01E+02 ± 3.89E-01 6.03E+02 ± 6.52E-01 1.07E+03 ± 6.52E+01 1.43E+03 ± 2.54E+02 2.16E+03 ± 3.97E+02 1.22E+03 ± 6.12E+00
MGSA 5.01E+02 ± 2.30E-01 6.03E+02 ± 5.16E-01 1.10E+03 ± 4.63E-13 1.84E+03 ± 4.89E+02 2.19E+03 ± 4.13E+02 1.22E+03 ± 5.82E+00
DNLGSA 5.02E+02 ± 6.09E-01 6.04E+02 ± 4.48E-01 1.06E+03 ± 8.95E+01 1.73E+03 ± 2.87E+02 2.32E+03 ± 4.09E+02 1.22E+03 ± 1.51E+01

F25 F26 F27 F28 F29 F30
HGSA 1.31E+03 ± 9.09E+00 1.44E+03 ± 5.81E+01 1.70E+03 ± 2.89E-05 1.80E+03 ± 6.09E-04 4.72E+02 ± 6.85E+02 3.00E+02 ± 1.18E-08
GSA 1.32E+03 ± 3.52E+00 1.50E+03 ± 4.44E+01 1.70E+03 ± 1.83E-10 2.19E+03 ± 8.86E+01 2.73E+02 ± 2.17E+02 1.01E+04 ± 1.58E+03
GGSA 1.31E+03 ± 1.07E+01 1.45E+03 ± 6.41E+01 1.70E+03 ± 6.17E-11 2.05E+03 ± 2.46E+01 2.10E+02 ± 1.21E+02 5.49E+03 ± 1.47E+03
CGSA-M 1.32E+03 ± 3.34E+00 1.49E+03 ± 4.27E+01 1.70E+03 ± 2.46E-10 2.17E+03 ± 6.88E+01 3.00E+02 ± 3.27E+02 1.06E+04 ± 1.58E+03
PSOGSA 1.32E+03 ± 2.10E+01 1.38E+03 ± 5.28E+01 1.79E+03 ± 1.27E+02 1.83E+03 ± 2.06E+02 8.87E+04 ± 4.76E+05 3.00E+02 ± 1.83E-14
MGSA 1.32E+03 ± 9.13E+00 1.40E+03 ± 6.89E+01 1.69E+03 ± 9.62E+01 1.89E+03 ± 1.94E+02 1.19E+03 ± 9.72E+02 3.21E+02 ± 5.21E+01
DNLGSA 1.31E+03 ± 2.26E+01 1.41E+03 ± 6.41E+01 1.75E+03 ± 8.51E+01 1.88E+03 ± 2.29E+02 2.42E+03 ± 2.40E+03 3.92E+02 ± 1.24E+02

F31 F32 F33 F34 F35 F36
HGSA 4.00E+02 ± 4.33E-02 5.18E+02 ± 3.84E+00 6.00E+02 ± 1.77E-01 7.12E+02 ± 1.04E+00 8.17E+02 ± 2.65E+00 9.00E+02 ± 1.45E-09
GSA 4.07E+02 ± 4.53E-01 5.58E+02 ± 7.77E+00 6.28E+02 ± 6.86E+00 7.14E+02 ± 1.54E+00 8.21E+02 ± 3.68E+00 9.00E+02 ± 0.00E+00
GGSA 4.06E+02 ± 5.00E-01 5.19E+02 ± 5.04E+00 6.00E+02 ± 3.51E-01 7.12E+02 ± 8.04E-01 8.11E+02 ± 2.84E+00 9.00E+02 ± 2.11E-14
CGSA-M 4.07E+02 ± 3.79E+00 5.61E+02 ± 8.19E+00 6.27E+02 ± 6.18E+00 7.14E+02 ± 1.94E+00 8.20E+02 ± 4.09E+00 9.03E+02 ± 1.76E+01
PSOGSA 4.03E+02 ± 5.56E+00 5.22E+02 ± 7.55E+00 6.02E+02 ± 3.48E+00 7.34E+02 ± 8.29E+00 8.21E+02 ± 7.90E+00 1.08E+03 ± 3.93E+02
MGSA 4.05E+02 ± 1.13E+01 5.26E+02 ± 1.12E+01 6.02E+02 ± 2.42E+00 7.19E+02 ± 5.15E+00 8.16E+02 ± 6.87E+00 9.08E+02 ± 3.06E+01
DNLGSA 4.09E+02 ± 1.30E+01 5.27E+02 ± 8.97E+00 6.08E+02 ± 8.38E+00 7.38E+02 ± 1.59E+01 8.18E+02 ± 6.93E+00 1.03E+03 ± 1.82E+02

F37 F38 F39 F40 F41 F42
HGSA 2.26E+03 ± 2.02E+02 1.12E+03 ± 7.38E+00 8.70E+03 ± 3.22E+03 6.73E+03 ± 1.56E+03 4.39E+03 ± 9.68E+02 3.56E+03 ± 1.29E+03
GSA 2.74E+03 ± 2.85E+02 1.16E+03 ± 2.21E+01 8.12E+05 ± 3.79E+05 1.08E+04 ± 1.25E+03 6.12E+03 ± 1.66E+03 1.74E+04 ± 3.36E+03
GGSA 2.45E+03 ± 2.20E+02 1.13E+03 ± 9.86E+00 4.26E+05 ± 2.49E+05 1.03E+04 ± 1.76E+03 2.62E+03 ± 3.36E+02 3.81E+03 ± 1.17E+03
CGSA-M 2.79E+03 ± 2.29E+02 1.15E+03 ± 2.10E+01 7.51E+05 ± 3.92E+05 1.10E+04 ± 1.79E+03 4.89E+03 ± 1.82E+03 1.45E+04 ± 4.67E+03
PSOGSA 1.72E+03 ± 3.48E+02 1.12E+03 ± 1.41E+01 1.72E+04 ± 1.26E+04 9.06E+03 ± 6.93E+03 2.05E+03 ± 4.73E+02 4.72E+03 ± 4.83E+03
MGSA 1.94E+03 ± 2.96E+02 1.14E+03 ± 1.86E+01 3.53E+04 ± 3.18E+04 1.02E+04 ± 5.18E+03 4.85E+03 ± 3.49E+03 5.42E+03 ± 4.07E+03
DNLGSA 1.92E+03 ± 2.57E+02 1.15E+03 ± 2.77E+01 1.46E+05 ± 7.39E+05 9.50E+03 ± 7.83E+03 2.73E+03 ± 1.45E+03 5.65E+03 ± 4.72E+03

F43 F44 F45 F46 F47 F48
HGSA 1.98E+03 ± 7.42E+01 1.76E+03 ± 1.28E+01 5.48E+03 ± 2.34E+03 5.86E+03 ± 1.87E+03 2.15E+03 ± 4.40E+00 2.31E+03 ± 4.33E+01
GSA 2.12E+03 ± 9.49E+01 1.86E+03 ± 1.11E+02 9.85E+03 ± 3.50E+03 6.22E+04 ± 2.51E+04 2.24E+03 ± 5.77E+01 2.35E+03 ± 3.10E+01
GGSA 2.02E+03 ± 1.18E+02 1.77E+03 ± 2.37E+01 3.35E+03 ± 9.11E+02 4.92E+03 ± 1.01E+03 2.17E+03 ± 4.61E+01 2.31E+03 ± 3.88E+01
CGSA-M 2.14E+03 ± 9.69E+01 1.83E+03 ± 7.69E+01 7.80E+03 ± 2.44E+03 4.96E+04 ± 3.12E+04 2.25E+03 ± 7.93E+01 2.36E+03 ± 1.97E+01
PSOGSA 1.78E+03 ± 1.23E+02 1.77E+03 ± 4.88E+01 5.54E+03 ± 3.79E+03 5.56E+03 ± 3.57E+03 2.10E+03 ± 5.90E+01 2.29E+03 ± 5.18E+01
MGSA 1.86E+03 ± 1.37E+02 1.79E+03 ± 6.21E+01 1.03E+04 ± 7.37E+03 6.73E+03 ± 3.90E+03 2.12E+03 ± 6.55E+01 2.29E+03 ± 5.87E+01
DNLGSA 1.82E+03 ± 1.53E+02 1.79E+03 ± 4.69E+01 5.68E+03 ± 3.79E+03 5.82E+03 ± 4.15E+03 2.13E+03 ± 7.78E+01 2.28E+03 ± 5.90E+01

F49 F50 F51 F52 F53 F54
HGSA 2.30E+03 ± 5.23E-02 2.64E+03 ± 7.89E+00 2.52E+03 ± 6.20E+01 2.94E+03 ± 8.28E+00 2.82E+03 ± 4.07E+01 3.10E+03 ± 4.54E+00
GSA 2.30E+03 ± 2.26E-11 2.76E+03 ± 4.04E+01 2.52E+03 ± 7.18E+01 2.94E+03 ± 1.36E+01 3.55E+03 ± 7.22E+02 3.26E+03 ± 3.85E+01
GGSA 2.30E+03 ± 8.53E-12 2.65E+03 ± 1.26E+01 2.67E+03 ± 1.34E+02 2.94E+03 ± 8.04E+00 2.83E+03 ± 4.79E+01 3.18E+03 ± 2.03E+01
CGSA-M 2.30E+03 ± 2.02E-01 2.76E+03 ± 2.54E+01 2.59E+03 ± 1.45E+02 2.94E+03 ± 8.05E+00 3.53E+03 ± 6.22E+02 3.27E+03 ± 4.73E+01
PSOGSA 2.30E+03 ± 6.14E+00 2.63E+03 ± 1.57E+01 2.72E+03 ± 8.71E+01 2.92E+03 ± 2.41E+01 2.96E+03 ± 2.22E+02 3.12E+03 ± 2.44E+01
MGSA 2.30E+03 ± 2.16E+01 2.65E+03 ± 1.97E+01 2.72E+03 ± 1.06E+02 2.93E+03 ± 2.21E+01 3.14E+03 ± 3.92E+02 3.15E+03 ± 4.01E+01
DNLGSA 2.31E+03 ± 4.47E+00 2.63E+03 ± 1.28E+01 2.74E+03 ± 6.90E+01 2.94E+03 ± 2.61E+01 3.04E+03 ± 2.94E+02 3.13E+03 ± 3.96E+01

F55 F56 F57
HGSA 3.38E+03 ± 2.14E+01 3.21E+03 ± 4.66E+01 1.42E+04 ± 7.16E+03
GSA 3.46E+03 ± 2.54E+01 3.45E+03 ± 1.21E+02 1.19E+06 ± 3.26E+05
GGSA 3.44E+03 ± 2.49E+01 3.33E+03 ± 1.20E+02 7.12E+05 ± 1.93E+05
CGSA-M 3.45E+03 ± 2.72E+01 3.44E+03 ± 1.10E+02 1.12E+06 ± 2.80E+05
PSOGSA 3.30E+03 ± 1.85E+02 3.24E+03 ± 6.28E+01 1.15E+06 ± 2.08E+06
MGSA 3.36E+03 ± 1.63E+02 3.24E+03 ± 6.52E+01 1.48E+06 ± 2.57E+06
DNLGSA 3.23E+03 ± 9.38E+01 3.23E+03 ± 5.42E+01 5.78E+05 ± 6.74E+05

71



Table 4.3: Experimental results of benchmark functions (F1-F57) with D = 30 dimensions
using HGSA, GSA, GGSA, CGSA-M, PSOGSA, MGSA and DNLGSA.

Algorithm F1 F2 F3 F4 F5 F6
HGSA -1.40E+03 ± 1.98E-13 3.19E+05 ± 1.08E+05 -1.20E+03 ± 3.29E-07 5.30E+04 ± 5.52E+03 -1.00E+03 ± 4.87E-13 -8.88E+02 ± 1.42E+01
GSA -1.40E+03 ± 0.00E+00 7.32E+06 ± 1.39E+06 5.33E+09 ± 2.35E+09 6.70E+04 ± 3.50E+03 -1.00E+03 ± 6.20E-13 -8.33E+02 ± 1.36E+01
GGSA -1.40E+03 ± 5.97E-14 4.20E+06 ± 7.47E+05 2.78E+09 ± 1.25E+09 5.47E+04 ± 4.60E+03 -1.00E+03 ± 4.26E-12 -8.49E+02 ± 2.39E+01
CGSA-M -1.40E+03 ± 0.00E+00 7.44E+06 ± 8.98E+05 5.46E+09 ± 1.90E+09 6.68E+04 ± 4.02E+03 -1.00E+03 ± 7.49E-13 -8.30E+02 ± 6.99E+00
PSOGSA -1.40E+03 ± 2.15E-13 6.71E+07 ± 7.32E+07 6.72E+11 ± 3.08E+12 9.23E+03 ± 5.56E+03 -1.00E+03 ± 3.64E-13 -5.06E+02 ± 2.12E+02
MGSA -1.40E+03 ± 0.00E+00 4.44E+06 ± 5.09E+06 6.70E+08 ± 7.07E+08 6.71E+04 ± 1.27E+04 -1.00E+03 ± 5.22E-13 -8.18E+02 ± 4.71E+01
DNLGSA -1.40E+03 ± 6.21E-04 4.53E+07 ± 2.63E+07 2.78E+10 ± 2.10E+10 7.20E+04 ± 2.39E+04 -9.94E+02 ± 2.05E+01 -6.92E+02 ± 8.83E+01

F7 F8 F9 F10 F11 F12
HGSA -7.99E+02 ± 1.63E+00 -6.79E+02 ± 7.51E-02 -5.81E+02 ± 3.72E+00 -5.00E+02 ± 4.08E-03 -3.47E+02 ± 9.94E+00 -2.83E+02 ± 3.65E+00
GSA -7.33E+02 ± 1.20E+01 -6.79E+02 ± 4.61E-02 -5.67E+02 ± 2.64E+00 -5.00E+02 ± 4.78E-02 -1.05E+02 ± 2.01E+01 3.12E+01 ± 2.58E+01
GGSA -7.48E+02 ± 1.05E+01 -6.79E+02 ± 8.78E-02 -5.81E+02 ± 2.94E+00 -5.00E+02 ± 3.78E-02 -3.08E+02 ± 1.63E+01 -2.43E+02 ± 1.17E+01
CGSA-M -7.34E+02 ± 7.91E+00 -6.79E+02 ± 5.99E-02 -5.67E+02 ± 2.58E+00 -5.00E+02 ± 5.55E-02 -1.10E+02 ± 2.02E+01 3.82E+01 ± 2.62E+01
PSOGSA -6.14E+02 ± 1.41E+02 -6.79E+02 ± 8.14E-02 -5.69E+02 ± 4.89E+00 -1.75E+02 ± 5.50E+02 -3.09E+02 ± 2.46E+01 -9.62E+01 ± 6.84E+01
MGSA -6.96E+02 ± 3.12E+01 -6.79E+02 ± 5.02E-02 -5.73E+02 ± 3.82E+00 -5.00E+02 ± 4.51E-02 -2.47E+02 ± 3.46E+01 -4.80E+01 ± 5.43E+01
DNLGSA -3.67E+02 ± 7.14E+02 -6.79E+02 ± 9.74E-02 -5.68E+02 ± 2.95E+00 -3.48E+02 ± 7.39E+01 -1.69E+02 ± 4.92E+01 -5.12E+01 ± 5.85E+01

F13 F14 F15 F16 F17 F18
HGSA -1.33E+02 ± 1.92E+01 2.51E+03 ± 4.21E+02 2.45E+03 ± 3.01E+02 2.00E+02 ± 2.15E-03 3.39E+02 ± 2.31E+00 4.40E+02 ± 2.53E+00
GSA 2.65E+02 ± 3.89E+01 3.91E+03 ± 5.71E+02 3.64E+03 ± 5.08E+02 2.00E+02 ± 3.41E-03 3.66E+02 ± 8.21E+00 4.56E+02 ± 5.02E+00
GGSA -6.43E+01 ± 2.11E+01 3.12E+03 ± 3.95E+02 3.04E+03 ± 4.66E+02 2.00E+02 ± 2.61E-03 3.36E+02 ± 1.67E+00 4.36E+02 ± 1.85E+00
CGSA-M 2.68E+02 ± 3.34E+01 4.09E+03 ± 3.89E+02 3.70E+03 ± 5.35E+02 2.00E+02 ± 2.75E-03 3.64E+02 ± 8.22E+00 4.54E+02 ± 5.45E+00
PSOGSA 1.54E+02 ± 1.07E+02 1.95E+03 ± 3.88E+02 4.14E+03 ± 7.49E+02 2.00E+02 ± 2.68E-01 5.07E+02 ± 3.75E+01 6.83E+02 ± 7.62E+01
MGSA 1.56E+02 ± 6.02E+01 2.50E+03 ± 6.53E+02 3.81E+03 ± 6.90E+02 2.01E+02 ± 8.42E-01 4.38E+02 ± 2.80E+01 5.57E+02 ± 3.76E+01
DNLGSA 1.60E+02 ± 7.30E+01 3.60E+03 ± 6.28E+02 4.51E+03 ± 5.66E+02 2.00E+02 ± 3.06E-01 6.06E+02 ± 7.05E+01 7.00E+02 ± 7.77E+01

F19 F20 F21 F22 F23 F24
HGSA 5.05E+02 ± 5.96E-01 6.15E+02 ± 4.15E-01 1.01E+03 ± 4.38E+01 3.65E+03 ± 5.26E+02 5.61E+03 ± 4.07E+02 1.20E+03 ± 1.43E+01
GSA 5.10E+02 ± 2.63E+00 6.15E+02 ± 1.68E-01 1.01E+03 ± 3.64E+01 7.22E+03 ± 4.88E+02 6.79E+03 ± 3.99E+02 1.32E+03 ± 5.82E+01
GGSA 5.04E+02 ± 1.47E+00 6.15E+02 ± 4.27E-01 1.01E+03 ± 4.38E+01 4.97E+03 ± 5.56E+02 6.02E+03 ± 4.99E+02 1.22E+03 ± 1.13E+01
CGSA-M 5.09E+02 ± 2.23E+00 6.15E+02 ± 1.71E-01 1.02E+03 ± 4.96E+01 7.28E+03 ± 4.49E+02 6.88E+03 ± 3.29E+02 1.33E+03 ± 5.49E+01
PSOGSA 5.11E+02 ± 3.81E+00 6.15E+02 ± 7.78E-01 1.01E+03 ± 8.53E+01 3.85E+03 ± 1.03E+03 5.94E+03 ± 8.57E+02 1.30E+03 ± 1.67E+01
MGSA 5.06E+02 ± 1.88E+00 6.15E+02 ± 1.50E-01 1.04E+03 ± 9.96E+01 4.87E+03 ± 1.05E+03 6.59E+03 ± 7.64E+02 1.29E+03 ± 1.38E+01
DNLGSA 9.64E+02 ± 3.25E+02 6.15E+02 ± 2.76E-01 1.10E+03 ± 1.32E+02 5.38E+03 ± 8.67E+02 6.16E+03 ± 8.97E+02 1.31E+03 ± 1.10E+01

F25 F26 F27 F28 F29 F30
HGSA 1.30E+03 ± 1.33E+01 1.49E+03 ± 6.58E+01 1.71E+03 ± 1.40E+02 1.63E+03 ± 9.80E+01 2.68E+03 ± 2.50E+03 4.36E+04 ± 5.49E+03
GSA 1.49E+03 ± 1.31E+01 1.56E+03 ± 1.97E+01 2.23E+03 ± 9.49E+01 5.07E+03 ± 2.41E+02 2.00E+03 ± 1.03E+03 8.30E+04 ± 4.33E+03
GGSA 1.31E+03 ± 2.51E+01 1.51E+03 ± 5.39E+01 1.85E+03 ± 8.07E+01 2.79E+03 ± 1.07E+03 2.18E+03 ± 1.12E+03 6.02E+04 ± 6.73E+03
CGSA-M 1.49E+03 ± 9.70E+00 1.55E+03 ± 2.34E+01 2.19E+03 ± 8.78E+01 4.97E+03 ± 2.72E+02 1.82E+03 ± 7.79E+02 8.41E+04 ± 6.80E+03
PSOGSA 1.44E+03 ± 1.81E+01 1.52E+03 ± 8.91E+01 2.46E+03 ± 1.51E+02 2.74E+03 ± 8.83E+02 4.12E+03 ± 3.26E+03 3.56E+03 ± 7.87E+03
MGSA 1.43E+03 ± 1.77E+01 1.54E+03 ± 5.74E+01 2.33E+03 ± 1.09E+02 4.03E+03 ± 1.16E+03 4.63E+03 ± 4.30E+03 4.23E+04 ± 1.28E+04
DNLGSA 1.44E+03 ± 1.61E+01 1.53E+03 ± 8.08E+01 2.43E+03 ± 1.04E+02 4.34E+03 ± 4.69E+02 1.22E+05 ± 1.81E+05 1.49E+04 ± 1.24E+04

F31 F32 F33 F34 F35 F36
HGSA 5.19E+02 ± 2.63E+00 6.53E+02 ± 1.28E+01 6.08E+02 ± 4.54E+00 7.41E+02 ± 3.01E+00 9.00E+02 ± 9.03E+00 9.00E+02 ± 9.67E-14
GSA 5.42E+02 ± 1.59E+01 7.26E+02 ± 2.01E+01 6.50E+02 ± 2.75E+00 7.87E+02 ± 1.19E+01 9.51E+02 ± 1.31E+01 2.93E+03 ± 3.92E+02
GGSA 5.33E+02 ± 2.30E+01 6.11E+02 ± 1.22E+01 6.09E+02 ± 5.29E+00 7.37E+02 ± 1.49E+00 8.88E+02 ± 9.79E+00 9.00E+02 ± 0.00E+00
CGSA-M 5.36E+02 ± 1.95E+01 7.18E+02 ± 1.76E+01 6.51E+02 ± 4.18E+00 7.84E+02 ± 9.91E+00 9.52E+02 ± 7.97E+00 2.87E+03 ± 3.34E+02
PSOGSA 1.04E+03 ± 5.05E+02 6.46E+02 ± 3.40E+01 6.24E+02 ± 8.94E+00 9.72E+02 ± 6.32E+01 9.36E+02 ± 3.25E+01 4.54E+03 ± 1.67E+03
MGSA 5.33E+02 ± 5.86E+01 6.35E+02 ± 3.01E+01 6.27E+02 ± 8.09E+00 8.38E+02 ± 2.65E+01 9.08E+02 ± 2.29E+01 3.41E+03 ± 8.50E+02
DNLGSA 7.11E+02 ± 1.46E+02 6.50E+02 ± 3.67E+01 6.41E+02 ± 7.86E+00 9.86E+02 ± 6.78E+01 9.16E+02 ± 2.85E+01 3.93E+03 ± 1.10E+03

F37 F38 F39 F40 F41 F42
HGSA 4.21E+03 ± 2.93E+02 1.20E+03 ± 2.98E+01 1.29E+05 ± 8.15E+04 1.46E+04 ± 5.32E+03 6.72E+03 ± 3.05E+03 2.20E+03 ± 7.21E+02
GSA 4.87E+03 ± 4.34E+02 1.45E+03 ± 8.92E+01 1.03E+07 ± 1.93E+07 3.10E+04 ± 6.45E+03 4.74E+05 ± 1.31E+05 1.17E+04 ± 1.93E+03
GGSA 4.38E+03 ± 3.89E+02 1.25E+03 ± 3.23E+01 4.83E+05 ± 2.11E+05 1.87E+04 ± 4.70E+03 1.96E+05 ± 7.59E+04 4.12E+03 ± 1.57E+03
CGSA-M 4.94E+03 ± 4.11E+02 1.47E+03 ± 1.06E+02 1.46E+07 ± 2.66E+07 2.83E+04 ± 5.26E+03 4.84E+05 ± 1.19E+05 1.15E+04 ± 1.93E+03
PSOGSA 4.70E+03 ± 6.23E+02 1.49E+03 ± 3.14E+02 6.00E+07 ± 1.48E+08 2.39E+07 ± 7.46E+07 9.87E+04 ± 2.69E+05 5.31E+05 ± 2.82E+06
MGSA 4.92E+03 ± 8.11E+02 1.23E+03 ± 4.53E+01 5.27E+05 ± 5.78E+05 2.81E+05 ± 1.42E+06 1.87E+04 ± 3.80E+04 6.08E+03 ± 4.72E+03
DNLGSA 4.96E+03 ± 8.84E+02 1.51E+03 ± 2.44E+02 1.58E+08 ± 2.63E+08 1.62E+06 ± 8.72E+06 6.07E+04 ± 1.02E+05 1.29E+04 ± 1.02E+04

F43 F44 F45 F46 F47 F48
HGSA 2.83E+03 ± 2.32E+02 2.77E+03 ± 1.99E+02 6.16E+04 ± 1.47E+04 5.42E+03 ± 1.25E+03 2.86E+03 ± 2.24E+02 2.41E+03 ± 5.90E+01
GSA 3.18E+03 ± 2.84E+02 2.90E+03 ± 1.70E+02 3.20E+05 ± 1.76E+05 1.42E+04 ± 5.13E+03 3.03E+03 ± 2.36E+02 2.56E+03 ± 1.95E+01
GGSA 2.88E+03 ± 3.22E+02 2.67E+03 ± 2.06E+02 1.68E+05 ± 7.28E+04 5.93E+03 ± 1.46E+03 2.82E+03 ± 1.64E+02 2.41E+03 ± 2.11E+01
CGSA-M 3.20E+03 ± 2.90E+02 2.83E+03 ± 1.92E+02 2.78E+05 ± 1.01E+05 1.34E+04 ± 4.79E+03 3.01E+03 ± 1.88E+02 2.57E+03 ± 2.71E+01
PSOGSA 3.05E+03 ± 4.59E+02 2.27E+03 ± 2.29E+02 3.07E+05 ± 1.01E+06 1.43E+04 ± 1.33E+04 2.57E+03 ± 2.35E+02 2.43E+03 ± 3.53E+01
MGSA 2.83E+03 ± 2.89E+02 2.37E+03 ± 2.07E+02 1.44E+05 ± 1.28E+05 9.28E+03 ± 6.23E+03 2.67E+03 ± 1.86E+02 2.44E+03 ± 3.14E+01
DNLGSA 2.74E+03 ± 3.13E+02 2.30E+03 ± 2.31E+02 1.88E+05 ± 1.86E+05 1.72E+04 ± 5.34E+04 2.72E+03 ± 2.15E+02 2.43E+03 ± 3.73E+01

F49 F50 F51 F52 F53 F54
HGSA 2.30E+03 ± 3.91E-09 2.76E+03 ± 1.33E+02 2.92E+03 ± 3.58E+01 2.89E+03 ± 7.59E+00 2.85E+03 ± 5.07E+01 3.25E+03 ± 2.08E+01
GSA 6.39E+03 ± 1.69E+03 3.56E+03 ± 1.23E+02 3.29E+03 ± 5.57E+01 2.93E+03 ± 1.22E+01 6.86E+03 ± 8.95E+02 4.67E+03 ± 3.21E+02
GGSA 2.30E+03 ± 2.05E-10 2.86E+03 ± 3.94E+01 2.91E+03 ± 3.70E+01 2.93E+03 ± 1.03E+01 2.94E+03 ± 5.28E+02 3.39E+03 ± 3.57E+01
CGSA-M 5.89E+03 ± 2.08E+03 3.62E+03 ± 1.06E+02 3.29E+03 ± 5.28E+01 2.94E+03 ± 8.49E+00 6.73E+03 ± 6.61E+02 4.55E+03 ± 2.73E+02
PSOGSA 4.68E+03 ± 1.91E+03 2.93E+03 ± 8.75E+01 3.21E+03 ± 1.43E+02 3.02E+03 ± 7.53E+01 5.70E+03 ± 1.30E+03 3.52E+03 ± 1.36E+02
MGSA 4.19E+03 ± 2.22E+03 3.00E+03 ± 8.12E+01 3.27E+03 ± 1.12E+02 2.92E+03 ± 1.66E+01 5.56E+03 ± 1.63E+03 3.52E+03 ± 1.19E+02
DNLGSA 4.50E+03 ± 2.32E+03 3.00E+03 ± 8.74E+01 3.18E+03 ± 7.29E+01 3.00E+03 ± 4.61E+01 5.98E+03 ± 1.26E+03 3.43E+03 ± 1.50E+02

F55 F56 F57
HGSA 3.11E+03 ± 2.82E+01 4.05E+03 ± 1.88E+02 1.10E+04 ± 2.60E+03
GSA 3.31E+03 ± 4.94E+01 4.71E+03 ± 2.10E+02 1.70E+05 ± 1.24E+05
GGSA 3.23E+03 ± 3.28E+01 4.25E+03 ± 2.30E+02 4.39E+04 ± 1.91E+04
CGSA-M 3.32E+03 ± 4.92E+01 4.71E+03 ± 1.91E+02 1.67E+05 ± 9.29E+04
PSOGSA 3.52E+03 ± 2.00E+02 4.24E+03 ± 3.80E+02 3.39E+06 ± 1.42E+07
MGSA 3.21E+03 ± 7.43E+01 4.12E+03 ± 3.03E+02 7.95E+04 ± 1.81E+05
DNLGSA 3.44E+03 ± 9.79E+01 4.47E+03 ± 3.17E+02 3.60E+06 ± 6.27E+06
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Table 4.4: Experimental results of benchmark functions (F1-F57) with D = 50 dimensions
using HGSA, GSA, GGSA, CGSA-M, PSOGSA, MGSA and DNLGSA.

Algorithm F1 F2 F3 F4 F5 F6
HGSA -1.40E+03 ± 1.89E-13 5.27E+05 ± 1.66E+05 -1.19E+03 ± 2.59E+01 7.21E+04 ± 5.42E+03 -1.00E+03 ± 5.59E-13 -8.27E+02 ± 2.43E+01
GSA -1.40E+03 ± 2.23E-13 3.57E+06 ± 1.68E+06 4.14E+09 ± 1.87E+09 9.00E+04 ± 4.04E+03 -1.00E+03 ± 4.02E-13 -8.06E+02 ± 1.91E+01
GGSA -1.40E+03 ± 0.00E+00 2.13E+06 ± 1.49E+06 1.24E+09 ± 8.58E+08 7.74E+04 ± 4.22E+03 -1.00E+03 ± 8.83E-13 -8.14E+02 ± 2.60E+01
CGSA-M -1.40E+03 ± 2.11E-13 3.34E+06 ± 7.42E+05 4.25E+09 ± 1.69E+09 8.73E+04 ± 3.48E+03 -1.00E+03 ± 4.38E-13 -8.06E+02 ± 1.02E+01
PSOGSA -1.40E+03 ± 7.31E-14 1.89E+08 ± 1.44E+08 6.24E+10 ± 1.94E+11 1.13E+04 ± 5.64E+03 -1.00E+03 ± 3.84E-13 -5.49E+02 ± 3.63E+02
MGSA -1.40E+03 ± 1.12E-13 6.34E+06 ± 7.13E+06 4.52E+08 ± 3.16E+08 7.97E+04 ± 1.31E+04 -1.00E+03 ± 3.48E-13 -8.12E+02 ± 4.52E+01
DNLGSA -1.40E+03 ± 4.20E-03 1.15E+08 ± 7.72E+07 4.68E+10 ± 2.20E+10 1.10E+05 ± 2.80E+04 -9.61E+02 ± 9.46E+01 -6.45E+02 ± 5.52E+01

F7 F8 F9 F10 F11 F12
HGSA -8.00E+02 ± 9.32E-01 -6.79E+02 ± 5.26E-02 -5.68E+02 ± 4.64E+00 -5.00E+02 ± 6.18E-03 -2.82E+02 ± 1.08E+01 -1.96E+02 ± 1.02E+01
GSA -7.32E+02 ± 5.23E+00 -6.79E+02 ± 3.49E-02 -5.53E+02 ± 4.66E+00 -5.00E+02 ± 1.16E-01 1.83E+01 ± 2.99E+01 4.22E+02 ± 5.04E+01
GGSA -7.53E+02 ± 5.89E+00 -6.79E+02 ± 5.80E-02 -5.69E+02 ± 4.28E+00 -5.00E+02 ± 4.89E-02 -2.37E+02 ± 1.74E+01 -1.65E+02 ± 1.63E+01
CGSA-M -7.34E+02 ± 6.20E+00 -6.79E+02 ± 4.08E-02 -5.54E+02 ± 3.82E+00 -5.00E+02 ± 1.01E-01 2.79E+01 ± 3.09E+01 4.18E+02 ± 5.35E+01
PSOGSA -5.80E+02 ± 1.98E+02 -6.79E+02 ± 7.00E-02 -5.38E+02 ± 6.21E+00 1.08E+03 ± 1.57E+03 -2.00E+02 ± 4.73E+01 2.48E+02 ± 1.34E+02
MGSA -6.90E+02 ± 2.02E+01 -6.79E+02 ± 3.61E-02 -5.51E+02 ± 5.96E+00 -5.00E+02 ± 8.56E-02 -9.65E+01 ± 4.56E+01 2.01E+02 ± 7.26E+01
DNLGSA -6.04E+02 ± 8.07E+01 -6.79E+02 ± 6.13E-02 -5.39E+02 ± 4.01E+00 -7.37E+01 ± 1.44E+02 3.25E+01 ± 7.31E+01 1.72E+02 ± 7.70E+01

F13 F14 F15 F16 F17 F18
HGSA 8.54E+01 ± 3.27E+01 4.07E+03 ± 5.65E+02 6.39E+03 ± 4.96E+02 2.00E+02 ± 1.78E-03 3.69E+02 ± 3.45E+00 4.70E+02 ± 4.52E+00
GSA 6.66E+02 ± 6.30E+01 6.90E+03 ± 7.54E+02 8.61E+03 ± 6.99E+02 2.00E+02 ± 1.26E-03 4.43E+02 ± 1.70E+01 5.11E+02 ± 1.09E+01
GGSA 7.21E+01 ± 3.85E+01 5.15E+03 ± 7.17E+02 6.96E+03 ± 6.63E+02 2.00E+02 ± 1.53E-03 3.64E+02 ± 2.86E+00 4.63E+02 ± 2.71E+00
CGSA-M 6.51E+02 ± 7.29E+01 6.77E+03 ± 7.00E+02 8.53E+03 ± 5.65E+02 2.00E+02 ± 1.29E-03 4.36E+02 ± 1.40E+01 5.13E+02 ± 1.07E+01
PSOGSA 5.70E+02 ± 1.35E+02 3.22E+03 ± 5.33E+02 9.00E+03 ± 2.83E+03 2.00E+02 ± 1.43E-01 7.74E+02 ± 8.51E+01 1.26E+03 ± 1.42E+02
MGSA 4.65E+02 ± 1.06E+02 4.30E+03 ± 1.02E+03 7.72E+03 ± 6.88E+02 2.01E+02 ± 1.17E+00 6.59E+02 ± 5.94E+01 8.15E+02 ± 8.12E+01
DNLGSA 4.90E+02 ± 1.19E+02 6.82E+03 ± 9.82E+02 8.38E+03 ± 1.49E+03 2.01E+02 ± 3.41E-01 1.08E+03 ± 1.66E+02 1.17E+03 ± 1.32E+02

F19 F20 F21 F22 F23 F24
HGSA 5.08E+02 ± 9.07E-01 6.24E+02 ± 2.71E-01 1.61E+03 ± 1.29E+02 7.51E+03 ± 2.18E+03 1.03E+04 ± 3.88E+02 1.20E+03 ± 6.40E+00
GSA 5.13E+02 ± 2.27E+00 6.25E+02 ± 2.46E-01 1.64E+03 ± 1.40E+02 1.32E+04 ± 5.54E+02 1.21E+04 ± 3.87E+02 1.33E+03 ± 1.82E+01
GGSA 5.06E+02 ± 1.66E+00 6.24E+02 ± 3.90E-01 1.63E+03 ± 1.37E+02 1.10E+04 ± 1.47E+03 1.08E+04 ± 3.74E+02 1.24E+03 ± 1.63E+01
CGSA-M 5.14E+02 ± 2.92E+00 6.24E+02 ± 2.02E-01 1.61E+03 ± 1.29E+02 1.31E+04 ± 5.17E+02 1.20E+04 ± 3.92E+02 1.34E+03 ± 1.36E+01
PSOGSA 5.37E+02 ± 2.34E+01 6.24E+02 ± 7.78E-01 1.54E+03 ± 3.78E+02 6.77E+03 ± 2.12E+03 1.14E+04 ± 2.29E+03 1.42E+03 ± 2.79E+01
MGSA 5.13E+02 ± 2.62E+00 6.24E+02 ± 7.06E-01 1.66E+03 ± 2.47E+02 8.81E+03 ± 1.90E+03 1.15E+04 ± 1.06E+03 1.39E+03 ± 2.28E+01
DNLGSA 2.50E+03 ± 1.03E+03 6.25E+02 ± 3.03E-01 2.01E+03 ± 5.99E+02 1.03E+04 ± 1.67E+03 1.18E+04 ± 1.22E+03 1.44E+03 ± 2.37E+01

F25 F26 F27 F28 F29 F30
HGSA 1.33E+03 ± 6.91E+01 1.57E+03 ± 4.57E+01 2.36E+03 ± 1.59E+02 2.10E+03 ± 9.10E+02 9.42E+02 ± 1.17E+03 1.19E+05 ± 1.15E+04
GSA 1.72E+03 ± 1.41E+01 1.61E+03 ± 5.68E+01 3.01E+03 ± 1.34E+02 8.52E+03 ± 3.42E+02 8.71E+02 ± 8.68E+02 1.69E+05 ± 1.03E+04
GGSA 1.47E+03 ± 5.40E+01 1.57E+03 ± 5.77E+01 2.52E+03 ± 1.36E+02 2.42E+03 ± 1.30E+03 9.98E+02 ± 1.57E+03 1.37E+05 ± 7.98E+03
CGSA-M 1.71E+03 ± 1.53E+01 1.61E+03 ± 5.71E+01 3.01E+03 ± 1.11E+02 8.73E+03 ± 3.54E+02 8.62E+02 ± 1.06E+03 1.70E+05 ± 8.92E+03
PSOGSA 1.61E+03 ± 3.42E+01 1.66E+03 ± 2.09E+01 3.33E+03 ± 1.77E+02 4.66E+03 ± 2.39E+03 1.69E+09 ± 4.33E+09 3.67E+04 ± 6.07E+04
MGSA 1.59E+03 ± 3.50E+01 1.63E+03 ± 4.51E+01 3.11E+03 ± 1.50E+02 6.55E+03 ± 1.98E+03 3.38E+03 ± 6.28E+03 1.12E+05 ± 2.49E+04
DNLGSA 1.61E+03 ± 2.92E+01 1.65E+03 ± 4.71E+01 3.41E+03 ± 1.46E+02 7.07E+03 ± 7.24E+02 4.19E+06 ± 7.15E+06 8.33E+04 ± 6.15E+04

F31 F32 F33 F34 F35 F36
HGSA 6.02E+02 ± 2.91E+01 7.68E+02 ± 1.36E+01 6.25E+02 ± 3.97E+00 7.70E+02 ± 3.44E+00 1.09E+03 ± 2.04E+01 9.00E+02 ± 1.01E-13
GSA 5.99E+02 ± 6.18E+01 8.23E+02 ± 1.91E+01 6.57E+02 ± 3.03E+00 9.28E+02 ± 3.10E+01 1.16E+03 ± 2.15E+01 9.27E+03 ± 6.58E+02
GGSA 5.78E+02 ± 6.56E+01 7.33E+02 ± 2.01E+01 6.26E+02 ± 4.73E+00 7.67E+02 ± 3.05E+00 1.04E+03 ± 2.03E+01 1.51E+03 ± 4.40E+02
CGSA-M 6.23E+02 ± 6.62E+01 8.30E+02 ± 1.75E+01 6.57E+02 ± 2.47E+00 9.40E+02 ± 2.70E+01 1.16E+03 ± 1.79E+01 9.14E+03 ± 4.80E+02
PSOGSA 3.70E+03 ± 2.22E+03 7.87E+02 ± 7.88E+01 6.35E+02 ± 7.66E+00 1.46E+03 ± 1.51E+02 1.09E+03 ± 6.46E+01 1.26E+04 ± 3.13E+03
MGSA 6.42E+02 ± 7.90E+01 7.78E+02 ± 4.38E+01 6.40E+02 ± 7.05E+00 1.08E+03 ± 4.60E+01 1.07E+03 ± 3.90E+01 9.67E+03 ± 1.98E+03
DNLGSA 1.49E+03 ± 9.04E+02 7.80E+02 ± 4.79E+01 6.49E+02 ± 5.27E+00 1.49E+03 ± 1.02E+02 1.10E+03 ± 4.06E+01 1.04E+04 ± 1.76E+03

F37 F38 F39 F40 F41 F42
HGSA 6.83E+03 ± 5.55E+02 1.23E+03 ± 1.92E+01 7.11E+05 ± 3.35E+05 1.90E+03 ± 5.38E+02 2.71E+04 ± 3.76E+04 8.61E+03 ± 1.64E+03
GSA 7.98E+03 ± 6.19E+02 2.27E+03 ± 3.04E+02 1.92E+06 ± 5.40E+05 2.81E+04 ± 3.84E+03 3.00E+05 ± 1.14E+05 1.53E+04 ± 3.66E+03
GGSA 6.87E+03 ± 5.56E+02 1.50E+03 ± 7.46E+01 1.39E+06 ± 4.25E+05 1.47E+04 ± 2.49E+03 6.78E+04 ± 2.86E+04 9.19E+03 ± 1.40E+03
CGSA-M 7.72E+03 ± 5.77E+02 2.35E+03 ± 2.81E+02 1.76E+06 ± 3.88E+05 2.73E+04 ± 2.97E+03 3.60E+05 ± 4.18E+05 1.71E+04 ± 3.12E+03
PSOGSA 7.67E+03 ± 1.80E+03 5.20E+03 ± 4.61E+03 1.19E+09 ± 2.38E+09 2.36E+08 ± 7.44E+08 3.33E+06 ± 5.41E+06 2.14E+06 ± 1.09E+07
MGSA 7.47E+03 ± 8.91E+02 1.34E+03 ± 6.66E+01 1.50E+06 ± 1.02E+06 2.01E+04 ± 1.27E+04 2.82E+05 ± 7.01E+05 1.29E+04 ± 2.61E+04
DNLGSA 8.07E+03 ± 8.63E+02 2.15E+03 ± 1.28E+03 4.26E+08 ± 6.24E+08 3.38E+04 ± 2.98E+04 1.44E+06 ± 2.16E+06 4.62E+06 ± 1.63E+07

F43 F44 F45 F46 F47 F48
HGSA 3.55E+03 ± 3.50E+02 3.44E+03 ± 3.14E+02 1.74E+05 ± 7.74E+04 1.69E+04 ± 3.36E+03 3.38E+03 ± 2.75E+02 2.56E+03 ± 3.22E+01
GSA 3.73E+03 ± 3.60E+02 3.58E+03 ± 3.66E+02 1.39E+06 ± 8.69E+05 2.68E+04 ± 4.51E+03 3.61E+03 ± 2.84E+02 2.74E+03 ± 2.62E+01
GGSA 3.37E+03 ± 3.45E+02 3.45E+03 ± 3.62E+02 9.57E+05 ± 6.76E+05 1.68E+04 ± 2.83E+03 3.30E+03 ± 2.09E+02 2.54E+03 ± 2.83E+01
CGSA-M 3.64E+03 ± 3.67E+02 3.50E+03 ± 3.31E+02 1.35E+06 ± 8.39E+05 2.65E+04 ± 6.33E+03 3.48E+03 ± 2.79E+02 2.73E+03 ± 3.30E+01
PSOGSA 4.39E+03 ± 7.44E+02 3.13E+03 ± 2.78E+02 1.14E+07 ± 1.42E+07 1.21E+04 ± 1.06E+04 3.32E+03 ± 4.38E+02 2.62E+03 ± 1.02E+02
MGSA 3.68E+03 ± 5.08E+02 3.33E+03 ± 3.23E+02 1.95E+06 ± 2.68E+06 1.64E+04 ± 1.16E+04 3.23E+03 ± 3.52E+02 2.61E+03 ± 4.87E+01
DNLGSA 3.85E+03 ± 5.17E+02 3.28E+03 ± 3.07E+02 5.56E+06 ± 6.28E+06 9.83E+04 ± 4.24E+05 3.39E+03 ± 3.05E+02 2.62E+03 ± 5.57E+01

F49 F50 F51 F52 F53 F54
HGSA 1.01E+04 ± 4.22E+02 3.30E+03 ± 1.80E+02 3.29E+03 ± 4.71E+01 3.08E+03 ± 1.89E+01 2.90E+03 ± 7.51E-13 4.02E+03 ± 3.01E+02
GSA 1.13E+04 ± 5.11E+02 4.34E+03 ± 1.60E+02 3.76E+03 ± 6.39E+01 3.25E+03 ± 7.27E+01 6.74E+03 ± 2.69E+03 6.38E+03 ± 3.58E+02
GGSA 9.72E+03 ± 1.49E+03 3.13E+03 ± 6.52E+01 3.21E+03 ± 5.75E+01 3.16E+03 ± 2.98E+01 2.90E+03 ± 4.17E-10 4.03E+03 ± 1.42E+02
CGSA-M 1.14E+04 ± 4.45E+02 4.33E+03 ± 1.66E+02 3.76E+03 ± 7.09E+01 3.23E+03 ± 8.13E+01 6.68E+03 ± 2.40E+03 6.47E+03 ± 4.87E+02
PSOGSA 8.86E+03 ± 1.52E+03 3.53E+03 ± 2.19E+02 3.81E+03 ± 2.44E+02 4.75E+03 ± 1.06E+03 9.89E+03 ± 1.49E+03 4.71E+03 ± 4.32E+02
MGSA 1.02E+04 ± 1.00E+03 3.54E+03 ± 1.02E+02 3.83E+03 ± 1.51E+02 3.19E+03 ± 6.82E+01 9.45E+03 ± 2.37E+03 4.54E+03 ± 2.16E+02
DNLGSA 9.97E+03 ± 1.06E+03 3.59E+03 ± 2.08E+02 3.82E+03 ± 1.79E+02 3.59E+03 ± 2.60E+02 1.06E+04 ± 8.14E+02 4.55E+03 ± 6.46E+02

F55 F56 F57
HGSA 3.31E+03 ± 1.56E+01 4.70E+03 ± 3.13E+02 1.33E+06 ± 1.17E+05
GSA 3.54E+03 ± 1.15E+02 5.57E+03 ± 4.38E+02 4.11E+07 ± 5.18E+06
GGSA 3.45E+03 ± 6.51E+01 5.11E+03 ± 3.23E+02 3.00E+07 ± 4.50E+06
CGSA-M 3.50E+03 ± 1.02E+02 5.57E+03 ± 4.12E+02 4.11E+07 ± 6.46E+06
PSOGSA 6.22E+03 ± 1.10E+03 6.16E+03 ± 1.22E+03 1.27E+08 ± 9.98E+07
MGSA 3.43E+03 ± 9.29E+01 5.19E+03 ± 6.04E+02 3.63E+07 ± 1.51E+07
DNLGSA 4.07E+03 ± 3.68E+02 6.43E+03 ± 1.00E+03 1.97E+08 ± 9.15E+07
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Figure 4.5: The box-and-whisker diagrams of optimal solutions obtained by seven kinds of
GSAs on F7 and F38 with 10, 30 and 50 dimensions.
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Figure 4.6: The convergence graphs of average best-so-far solutions obtained by seven
kinds of GSAs on F2 and F39 with 10, 30 and 50 dimensions.
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difference in comparison with the others in 10 dimensions whereas HGSA maintains the

less values and the shorter distribution of optimal solutions, indicating a good and steady

performance of HGSA in low dimensions. In Figs. 4.5(b), (c), (e) and (f), the complexity

of two functions is enhanced owing to the increase of dimensions. Thus, we can observe

that optimal solutions obtained by each algorithm are greater, suggesting that their perfor-

mances gradually decrease with the increase of dimensions. Nevertheless, HGSA can still

find a better optimal solution than the others, implying that it is an more effective algorith-

m among seven algorithms for optimizing functions with different dimensions. In order

to display the convergence characteristic of each algorithm, Fig. 4.6 is depicted to show

their average best-so-far solutions on F2 and F39 with 10, 30 and 50 dimensions. In it, the

vertical axis indicates the log value of average best-so-far solution which aims to provide a

more distinct difference of average best-so-far solutions among seven algorithms, and the

horizontal axis indicates the number of function evaluations. According to Fig. 4.6, it can

be found that other six GSAs converge quickly in the early stage of search process so that

they are trapped into the local optima in the late stage of search process. However, HGSA

shows a different convergence characteristic. It consistently converges in the early half

stage of search process and finally obtains the best solution among seven algorithms in a

later stage, denoting that it effectively alleviates a premature convergence and significantly

enhances its performance during its execution. Therefore, this result verifies that HGSA

enhances its exploration and exploitation abilities in the search process due to an effective

hierarchical structure and an improved gravitational constant.

4.4.3 Comparison between HGSA and other heuristic algorithms

The first experiment implements an internal comparison among seven kinds of GSAs and

demonstrates a superior performance of HGSA. To further illustrate its property, an exter-

nal comparison is adopted to analyze the difference of performances between it and other

heuristic algorithms including DE [101], CMA-ES [131], GABC [132], GWO [133] and

SCA [134]. DE is an efficient and strong-robustness global optimization algorithm using

a differential mutation and a crossover operation. CMA-ES uses a novel evolution strate-

gy with covariance matrix adaptation to decrease the number of iterations needed to find

an optimal solution. GABC incorporates the global best individual into the artificial bee

colony algorithm to enhance its exploitation ability. GWO and SCA are two relatively new

population-based optimization algorithms where GWO called grey wolf optimizer emu-

lates the leadership hierarchy and hunting behavior of grey wolves to seek for an optimal
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solution, and SCA called sine cosine algorithm uses a mathematical model based on sine

and cosine functions to update the positions of individuals so as to guarantee its exploration

and exploitation abilities. These five distinctive algorithms compare with HGSA on fifty

seven benchmark functions with 30 dimensions. HGSA uses the same parameters above

mentioned. DE sets parameters F and CR to be 0.9 and 0.9. The parameters of CMA-ES are

set to be λ = 100, µ = ⌊λ/2⌋, wi = ln[(λ+ 1)/2]− ln(i), cc = 4/(D+ 4), ccov = 2/(D+
√

2)2,

cσ = 4/(D+4), dσ = c−1
σ +1. GABC uses C = 1.5. GWO adopts the parameter a to linearly

decrease from 2 to 0 with iterations. In SCA, a = 2.

The mean and standard deviation obtained by each algorithm are shown in Table 4.6.

From Table 4.6, we can observe that HGSA still derives the best solutions on many func-

tions whereas other heuristic algorithms also show competitive performances on several

functions. To further distinguish the difference of their performances, the statistical result-

s obtained by the Wilcoxon signed ranks test at two significant levels of α = 0.05 and

α = 0.01 are listed in Table 4.7. According to Table 4.7, we can find that HGSA signifi-

cantly outperforms other five heuristic algorithms in terms of p-value, suggesting that it is

more effective. Thus, it can be concluded that HGSA can show a strong and competitive

performance in contrast to other heuristic algorithms.

In order to exhibit the distribution of optimal solutions obtained by six algorithms, three

box-and-whisker diagrams on F17, F27 and F53 with 30 dimensions are plotted in Fig. 4.7.

From it, we can see that HGSA has the smaller values of optimal solutions in comparison

with other five algorithms, indicating it has a better performance. Fig. 4.8 is given to dis-

play the convergence graphs of average best-so-far solutions among six algorithms on F14,

F29 and F39 with 30 dimensions. In Fig. 4.8, it can be observed that DE, SCA and GWO

have inferior solutions due to their slow convergence speed. Figs. 4.8(b) and (c) show that

CMA-ES and GABC trap into the local optima although they converge quickly. Neverthe-

less, HGSA reveals a good convergence characteristic where it gradually converges in the

early stage of search process and ultimately obtains a better solution in the late stage of

search process. Consequently, this experiment also demonstrates a superior performance

of HGSA in comparison with other heuristic algorithms owing to its hierarchical structure

and gravitational constant.

4.4.4 Comparison between HGSA and other PSOs

HGSA uses a global optimal individual to facilitate its population evolution. Similar mech-

anisms have also been utilized in various PSOs [135]. Although HGSA and PSOs overall
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Table 4.6: Experimental results of benchmark functions (F1-F57) with D = 30 dimensions
using HGSA, DE, CMA-ES, GABC, GWO and SCA.

Algorithm F1 F2 F3 F4 F5 F6
HGSA -1.40E+03 ± 1.98E-13 3.19E+05 ± 1.08E+05 -1.20E+03 ± 3.29E-07 5.30E+04 ± 5.52E+03 -1.00E+03 ± 4.87E-13 -8.88E+02 ± 1.42E+01
DE -7.26E+02 ± 3.32E+02 1.13E+08 ± 2.05E+07 1.32E+10 ± 2.63E+09 5.72E+04 ± 9.55E+03 -9.32E+02 ± 1.42E+01 -7.37E+02 ± 2.44E+01
CMA-ES -1.40E+03 ± 0.00E+00 2.41E+07 ± 1.02E+07 -1.20E+03 ± 0.00E+00 1.94E+05 ± 3.89E+04 -1.00E+03 ± 1.06E-04 -8.96E+02 ± 2.90E+00
GABC -1.40E+03 ± 1.58E-13 1.68E+07 ± 5.42E+06 2.06E+09 ± 2.27E+09 6.70E+04 ± 6.85E+03 -1.00E+03 ± 3.45E-04 -8.48E+02 ± 3.05E+01
GWO -7.16E+02 ± 6.54E+02 1.58E+07 ± 9.24E+06 2.80E+09 ± 2.86E+09 2.69E+04 ± 7.43E+03 -4.45E+02 ± 2.31E+02 -7.74E+02 ± 4.24E+01
SCA 9.08E+03 ± 1.72E+03 1.31E+08 ± 3.26E+07 3.12E+10 ± 8.79E+09 3.17E+04 ± 6.61E+03 9.15E+02 ± 3.40E+02 -2.06E+02 ± 2.22E+02

F7 F8 F9 F10 F11 F12
HGSA -7.99E+02 ± 1.63E+00 -6.79E+02 ± 7.51E-02 -5.81E+02 ± 3.72E+00 -5.00E+02 ± 4.08E-03 -3.47E+02 ± 9.94E+00 -2.83E+02 ± 3.65E+00
DE -6.88E+02 ± 1.16E+01 -6.79E+02 ± 4.22E-02 -5.61E+02 ± 1.10E+00 -4.30E+01 ± 1.05E+02 -1.59E+02 ± 2.11E+01 -9.86E+00 ± 1.22E+01
CMA-ES -8.00E+02 ± 0.00E+00 -6.79E+02 ± 5.73E-02 -5.59E+02 ± 1.57E+00 -4.98E+02 ± 4.83E-01 -2.99E+02 ± 6.81E+01 -1.40E+02 ± 9.72E+00
GABC -6.84E+02 ± 3.42E+01 -6.79E+02 ± 5.53E-02 -5.61E+02 ± 1.27E+00 -4.99E+02 ± 5.12E-01 -3.62E+02 ± 1.28E+01 -1.15E+02 ± 6.48E+01
GWO -7.54E+02 ± 1.82E+01 -6.79E+02 ± 4.24E-02 -5.82E+02 ± 2.23E+00 -3.06E+02 ± 1.42E+02 -3.14E+02 ± 3.19E+01 -1.82E+02 ± 4.85E+01
SCA -6.27E+02 ± 4.28E+01 -6.79E+02 ± 6.99E-02 -5.61E+02 ± 1.21E+00 1.01E+03 ± 3.28E+02 -4.43E+01 ± 2.90E+01 7.99E+01 ± 3.52E+01

F13 F14 F15 F16 F17 F18
HGSA -1.33E+02 ± 1.92E+01 2.51E+03 ± 4.21E+02 2.45E+03 ± 3.01E+02 2.00E+02 ± 2.15E-03 3.39E+02 ± 2.31E+00 4.40E+02 ± 2.53E+00
DE 9.85E+01 ± 8.77E+00 6.61E+03 ± 4.55E+02 7.47E+03 ± 2.43E+02 2.02E+02 ± 3.33E-01 6.31E+02 ± 3.76E+01 7.47E+02 ± 3.22E+01
CMA-ES -4.25E+01 ± 1.13E+01 7.24E+03 ± 3.25E+02 7.52E+03 ± 2.71E+02 2.00E+02 ± 0.00E+00 4.85E+02 ± 8.70E+00 5.86E+02 ± 9.57E+00
GABC 1.62E+01 ± 2.85E+01 7.16E+03 ± 2.40E+02 7.44E+03 ± 2.16E+02 2.02E+02 ± 2.67E-01 4.86E+02 ± 4.25E+01 6.48E+02 ± 1.63E+01
GWO -2.68E+01 ± 3.66E+01 2.78E+03 ± 9.75E+02 3.41E+03 ± 1.09E+03 2.02E+02 ± 3.05E-01 4.67E+02 ± 4.51E+01 6.41E+02 ± 2.87E+01
SCA 1.67E+02 ± 3.69E+01 7.00E+03 ± 3.40E+02 7.49E+03 ± 2.06E+02 2.02E+02 ± 2.55E-01 7.88E+02 ± 4.68E+01 8.88E+02 ± 3.94E+01

F19 F20 F21 F22 F23 F24
HGSA 5.05E+02 ± 5.96E-01 6.15E+02 ± 4.15E-01 1.01E+03 ± 4.38E+01 3.65E+03 ± 5.26E+02 5.61E+03 ± 4.07E+02 1.20E+03 ± 1.43E+01
DE 5.37E+02 ± 1.24E+01 6.13E+02 ± 1.37E-01 1.57E+03 ± 1.87E+02 7.76E+03 ± 4.13E+02 8.44E+03 ± 3.02E+02 1.30E+03 ± 2.66E+00
CMA-ES 5.12E+02 ± 2.38E+00 6.15E+02 ± 2.20E-01 9.70E+02 ± 4.66E+01 8.26E+03 ± 2.93E+02 8.52E+03 ± 2.82E+02 1.30E+03 ± 2.92E+00
GABC 5.17E+02 ± 6.84E+00 6.15E+02 ± 2.16E-01 1.02E+03 ± 8.32E+01 8.67E+03 ± 2.79E+02 8.90E+03 ± 2.86E+02 1.28E+03 ± 1.17E+01
GWO 5.69E+02 ± 2.05E+02 6.12E+02 ± 1.63E+00 1.53E+03 ± 2.64E+02 3.57E+03 ± 1.01E+03 4.82E+03 ± 1.51E+03 1.25E+03 ± 9.95E+00
SCA 2.99E+03 ± 1.30E+03 6.14E+02 ± 3.54E-01 2.58E+03 ± 1.79E+02 8.35E+03 ± 4.43E+02 8.70E+03 ± 3.72E+02 1.32E+03 ± 5.05E+00

F25 F26 F27 F28 F29 F30
HGSA 1.30E+03 ± 1.33E+01 1.49E+03 ± 6.58E+01 1.71E+03 ± 1.40E+02 1.63E+03 ± 9.80E+01 2.68E+03 ± 2.50E+03 4.36E+04 ± 5.49E+03
DE 1.42E+03 ± 3.38E+00 1.41E+03 ± 2.06E+00 2.63E+03 ± 2.62E+01 2.66E+03 ± 1.29E+02 1.32E+09 ± 4.55E+08 8.04E+04 ± 1.05E+04
CMA-ES 1.40E+03 ± 2.83E+00 1.58E+03 ± 4.82E+01 2.60E+03 ± 1.96E+01 1.70E+03 ± 0.00E+00 1.74E+04 ± 2.32E+04 3.10E+05 ± 7.67E+04
GABC 1.40E+03 ± 8.67E+00 1.40E+03 ± 5.82E+00 2.39E+03 ± 9.01E+01 1.85E+03 ± 4.05E+02 5.27E+03 ± 5.71E+03 9.20E+04 ± 1.02E+04
GWO 1.37E+03 ± 9.54E+00 1.49E+03 ± 7.02E+01 2.10E+03 ± 5.93E+01 2.43E+03 ± 2.78E+02 1.02E+09 ± 8.91E+08 2.85E+04 ± 9.70E+03
SCA 1.43E+03 ± 4.21E+00 1.41E+03 ± 5.66E+00 2.66E+03 ± 4.51E+01 3.92E+03 ± 1.98E+02 1.18E+10 ± 1.77E+09 3.50E+04 ± 6.31E+03

F31 F32 F33 F34 F35 F36
HGSA 5.19E+02 ± 2.63E+00 6.53E+02 ± 1.28E+01 6.08E+02 ± 4.54E+00 7.41E+02 ± 3.01E+00 9.00E+02 ± 9.03E+00 9.00E+02 ± 9.67E-14
DE 6.25E+02 ± 2.90E+01 7.50E+02 ± 1.31E+01 6.24E+02 ± 4.43E+00 1.17E+03 ± 9.96E+01 1.06E+03 ± 1.14E+01 4.14E+03 ± 7.85E+02
CMA-ES 4.11E+02 ± 1.98E+00 6.48E+02 ± 2.89E+01 6.00E+02 ± 1.03E-07 8.83E+02 ± 7.56E+00 9.56E+02 ± 8.45E+00 9.00E+02 ± 0.00E+00
GABC 4.82E+02 ± 3.32E+01 5.96E+02 ± 2.01E+01 6.00E+02 ± 1.15E-01 8.38E+02 ± 3.40E+01 8.91E+02 ± 2.13E+01 2.08E+03 ± 1.08E+03
GWO 5.70E+02 ± 4.98E+01 5.92E+02 ± 2.63E+01 6.04E+02 ± 2.33E+00 8.35E+02 ± 4.95E+01 8.81E+02 ± 1.25E+01 1.18E+03 ± 1.39E+02
SCA 1.40E+03 ± 2.74E+02 7.71E+02 ± 2.17E+01 6.49E+02 ± 5.34E+00 1.12E+03 ± 2.88E+01 1.05E+03 ± 1.63E+01 5.52E+03 ± 1.10E+03

F37 F38 F39 F40 F41 F42
HGSA 4.21E+03 ± 2.93E+02 1.20E+03 ± 2.98E+01 1.29E+05 ± 8.15E+04 1.46E+04 ± 5.32E+03 6.72E+03 ± 3.05E+03 2.20E+03 ± 7.21E+02
DE 8.17E+03 ± 2.51E+02 1.33E+03 ± 2.16E+01 5.43E+07 ± 1.60E+07 4.13E+03 ± 5.37E+02 1.49E+03 ± 7.57E+00 1.72E+03 ± 3.06E+01
CMA-ES 8.34E+03 ± 3.49E+02 3.26E+03 ± 9.70E+02 1.31E+07 ± 6.07E+06 5.09E+06 ± 2.67E+06 1.88E+05 ± 1.02E+05 2.53E+06 ± 1.71E+06
GABC 8.20E+03 ± 2.16E+02 1.71E+03 ± 7.64E+02 1.30E+06 ± 1.06E+06 8.32E+03 ± 7.15E+03 1.88E+05 ± 9.66E+04 7.32E+03 ± 7.67E+03
GWO 3.73E+03 ± 5.49E+02 1.51E+03 ± 4.42E+02 3.31E+07 ± 3.81E+07 6.63E+06 ± 2.33E+07 8.10E+04 ± 1.76E+05 2.44E+05 ± 5.82E+05
SCA 8.12E+03 ± 3.34E+02 2.19E+03 ± 3.99E+02 1.21E+09 ± 2.30E+08 4.07E+08 ± 1.98E+08 1.19E+05 ± 7.05E+04 1.56E+07 ± 1.29E+07

F43 F44 F45 F46 F47 F48
HGSA 2.83E+03 ± 2.32E+02 2.77E+03 ± 1.99E+02 6.16E+04 ± 1.47E+04 5.42E+03 ± 1.25E+03 2.86E+03 ± 2.24E+02 2.41E+03 ± 5.90E+01
DE 3.19E+03 ± 3.08E+02 2.41E+03 ± 2.16E+02 6.90E+03 ± 1.84E+03 1.96E+03 ± 4.88E+00 2.31E+03 ± 2.03E+02 2.54E+03 ± 1.26E+01
CMA-ES 2.95E+03 ± 1.71E+02 2.28E+03 ± 1.59E+02 3.29E+06 ± 2.15E+06 2.21E+06 ± 1.45E+06 2.55E+03 ± 1.55E+02 2.44E+03 ± 2.65E+01
GABC 2.48E+03 ± 2.19E+02 2.05E+03 ± 1.34E+02 5.10E+06 ± 2.12E+06 6.00E+03 ± 5.19E+03 2.72E+03 ± 8.80E+01 2.40E+03 ± 2.35E+01
GWO 2.32E+03 ± 2.39E+02 1.93E+03 ± 1.16E+02 7.75E+05 ± 1.40E+06 2.06E+05 ± 3.88E+05 2.33E+03 ± 1.66E+02 2.37E+03 ± 1.85E+01
SCA 3.64E+03 ± 2.13E+02 2.42E+03 ± 1.64E+02 2.80E+06 ± 1.21E+06 2.48E+07 ± 1.13E+07 2.61E+03 ± 1.29E+02 2.56E+03 ± 1.92E+01

F49 F50 F51 F52 F53 F54
HGSA 2.30E+03 ± 3.91E-09 2.76E+03 ± 1.33E+02 2.92E+03 ± 3.58E+01 2.89E+03 ± 7.59E+00 2.85E+03 ± 5.07E+01 3.25E+03 ± 2.08E+01
DE 2.52E+03 ± 4.78E+01 2.88E+03 ± 1.38E+01 3.04E+03 ± 1.07E+01 3.01E+03 ± 3.38E+01 6.15E+03 ± 1.47E+02 3.26E+03 ± 1.20E+01
CMA-ES 9.41E+03 ± 3.94E+02 2.79E+03 ± 4.13E+01 2.91E+03 ± 7.22E+01 2.88E+03 ± 1.14E-01 4.82E+03 ± 1.26E+02 3.20E+03 ± 4.94E-05
GABC 2.30E+03 ± 1.56E+00 2.78E+03 ± 3.12E+01 2.95E+03 ± 3.66E+01 2.90E+03 ± 1.45E+01 5.08E+03 ± 7.13E+02 3.25E+03 ± 1.52E+01
GWO 4.47E+03 ± 1.45E+03 2.73E+03 ± 3.04E+01 2.90E+03 ± 4.70E+01 2.96E+03 ± 2.69E+01 4.43E+03 ± 2.45E+02 3.23E+03 ± 1.78E+01
SCA 8.25E+03 ± 2.37E+03 2.99E+03 ± 2.34E+01 3.16E+03 ± 2.96E+01 3.20E+03 ± 4.91E+01 6.87E+03 ± 2.56E+02 3.39E+03 ± 4.83E+01

F55 F56 F57
HGSA 3.11E+03 ± 2.82E+01 4.05E+03 ± 1.88E+02 1.10E+04 ± 2.60E+03
DE 3.39E+03 ± 3.61E+01 4.34E+03 ± 1.18E+02 1.94E+05 ± 7.07E+04
CMA-ES 3.30E+03 ± 6.39E-05 4.34E+03 ± 1.88E+02 2.20E+06 ± 1.16E+06
GABC 3.22E+03 ± 2.59E+01 3.73E+03 ± 1.69E+02 1.08E+04 ± 2.81E+03
GWO 3.33E+03 ± 4.83E+01 3.71E+03 ± 1.26E+02 3.90E+06 ± 3.10E+06
SCA 3.78E+03 ± 1.36E+02 4.62E+03 ± 2.62E+02 7.44E+07 ± 2.59E+07
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Table 4.7: Statistical results obtained by the Wilcoxon signed ranks test between HGSA
and DE, CMA-ES, GABC, GWO and SCA in D = 30 dimensions.

HGSA vs. R+ R− p-value α=0.05 α=0.01
DE 1300.0 296.0 3.30E-05 YES YES
CMA-ES 1383.5 212.5 2.00E-06 YES YES
GABC 1312.5 340.5 1.02E-04 YES YES
GWO 1242.5 410.5 9.14E-04 YES YES
SCA 1466.0 130.0 0 YES YES
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Figure 4.7: The box-and-whisker diagrams of optimal solutions obtained by HGSA and
five heuristic algorithms on F17, F27 and F53 with 30 dimensions.
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Figure 4.8: The convergence graphs of average best-so-far solutions obtained by HGSA
and five heuristic algorithms on F14, F29 and F39 with 30 dimensions.
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employ a global optimal individual to help to guide the movement of individuals, their

performances are obviously different. In order to compare and analyze their difference,

the comparative experiment among HGSA, FIPS [136], GPSO [137], CLPSO [138], OLP-

SO [139], GAPSO [140], DEPSO [141] and GL-PSO [142] is constructed to assess their

performances on twenty eight CEC2013 test functions (F1-F28) with 30 dimensions. FIPS

implements a fully informed topology of particle swarm according to its neighbors. GPSO

adds an inertia weight into PSO to improve its effect. CLPSO adopts a learning strategy

where other particles’ historical best knowledge is recorded to update individuals. OLP-

SO uses an orthogonal learning strategy which selects the best information between each

particle and its neighbors via an orthogonal experiment to effectively guide the movement

direction of individuals. GAPSO combines GA with PSO to jointly enhance its exploration

and exploitation abilities. DEPSO hybridizes DE and PSO with a random moving strategy

to update individuals. GL-PSO uses genetic operators to evolve exemplars for PSO, which

improves its global search ability and search efficiency. These seven variants of PSO not

only use a global optimal individual but also add some other strategies so that their per-

formances are significantly enhanced in contrast to the original PSO. Thus, they are used

to compare with HGSA to further illustrate the effectiveness of the hierarchical structure.

The parameters of seven PSOs are listed in Table 4.8. The population size is set to be 50.

The mean and standard deviation of error values obtained by eight algorithms are shown in

Table 4.9. The corresponding statistical results achieved by the Wilcoxon signed ranks test

at a significant level of α = 0.05 are revealed in Table 4.10.

Table 4.9 shows that HGSA obtains the least error values on a number of functions

whereas seven variants of PSO perform better on certain functions. It illustrates that HGSA

performs the best on a majority of functions and seven PSOs are more suitable for solving

some specific functions due to their inherent mechanisms and characteristics. According

to Table 4.10, we can conclude that HGSA significantly outperforms six variants of PSO,

i.e., FIPS, GPSO, CLPSO, OLPSO, GAPSO and DEPSO, in terms of p-value, verifying

that HGSA which adopts a hierarchical structure with an improved gravitational constan-

t can effectively enhance its performance. However, the statistical result between HGSA

and GL-PSO is not significant. This is because GL-PSO which is a kind of state-of-the-art

PSO has a considerably superior search ability for functions. Genetic operators are used

to generate exemplars for evolving particles. This genetic learning scheme achieves a cas-

cade hybrid paradigm of PSO and GA so that GL-PSO is capable of providing a remarkable

search performance. Although HGSA dose not significantly outperform GL-PSO, the num-
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Table 4.9: Experimental results of error values of CEC2013 test functions (F1-F28) with
D = 30 dimensions using HGSA, FIPS, GPSO, CLPSO, OLPSO, GAPSO, DEPSO and
GL-PSO.

Algorithm F1 F2 F3 F4 F5 F6
HGSA 2.27E-14 ± 6.94E-14 3.44E+05 ± 1.95E+05 4.41E-04 ± 2.41E-03 4.62E+04 ± 8.27E+03 5.19E-12 ± 4.60E-12 1.92E+01 ± 2.01E+01
FIPS 1.00E+00 ± 3.46E+00 1.09E+07 ± 2.89E+06 1.88E+06 ± 2.08E+06 9.34E+03 ± 2.28E+03 4.10E-02 ± 1.16E-01 3.43E+01 ± 2.34E+01
GPSO 2.27E-13 ± 5.97E-14 2.89E+06 ± 1.17E+06 3.67E+07 ± 4.23E+07 1.24E+03 ± 3.21E+02 2.27E-13 ± 5.97E-14 4.43E+01 ± 2.98E+01
CLPSO 2.27E-13 ± 0.00E+00 2.00E+07 ± 3.91E+06 4.15E+08 ± 2.26E+08 2.90E+04 ± 5.72E+03 5.64E-11 ± 1.95E-11 3.32E+01 ± 8.86E+00
OLPSO 2.58E-13 ± 7.86E-14 1.60E+07 ± 1.96E+07 2.37E+07 ± 5.35E+07 5.83E+04 ± 1.52E+04 3.33E-13 ± 9.87E-14 2.70E+01 ± 2.15E+01
GAPSO 6.46E-11 ± 1.20E-10 1.16E+07 ± 6.64E+06 2.72E+09 ± 2.51E+09 5.08E+03 ± 2.06E+03 3.17E-06 ± 2.87E-06 5.48E+01 ± 2.73E+01
DEPSO 2.27E-13 ± 0.00E+00 1.54E+07 ± 7.83E+06 5.60E+08 ± 9.01E+08 4.14E+03 ± 1.04E+03 1.52E-13 ± 5.45E-14 4.12E+01 ± 2.75E+01
GL-PSO 1.97E-13 ± 7.86E-14 1.97E+05 ± 1.10E+05 1.95E+07 ± 2.61E+07 1.56E+04 ± 5.21E+03 1.48E-13 ± 5.30E-14 1.61E+01 ± 1.19E+01

F7 F8 F9 F10 F11 F12
HGSA 4.86E-03 ± 1.19E-02 2.09E+01 ± 7.02E-02 1.49E+01 ± 2.80E+00 1.97E-03 ± 5.10E-03 1.88E+01 ± 4.65E+00 1.58E+01 ± 3.99E+00
FIPS 2.15E+01 ± 9.71E+00 2.10E+01 ± 5.04E-02 2.30E+01 ± 2.68E+00 4.34E+00 ± 4.62E+00 6.34E+01 ± 1.35E+01 1.83E+02 ± 8.38E+00
GPSO 2.36E+01 ± 8.41E+00 2.09E+01 ± 6.91E-02 1.94E+01 ± 3.69E+00 1.61E-01 ± 1.02E-01 2.05E+01 ± 6.11E+00 7.37E+01 ± 3.20E+01
CLPSO 7.95E+01 ± 1.02E+01 2.09E+01 ± 4.34E-02 2.84E+01 ± 1.80E+00 3.42E+00 ± 1.03E+00 1.24E+00 ± 1.42E+00 1.61E+02 ± 2.02E+01
OLPSO 2.26E+01 ± 9.35E+00 2.10E+01 ± 7.79E-02 2.26E+01 ± 7.70E+00 1.44E-01 ± 7.91E-02 6.30E-01 ± 8.05E-01 1.01E+02 ± 5.76E+01
GAPSO 7.10E+01 ± 3.23E+01 2.10E+01 ± 5.38E-02 1.66E+01 ± 3.09E+00 1.72E+01 ± 7.75E+00 1.17E+00 ± 5.36E-01 1.06E+02 ± 3.17E+01
DEPSO 4.56E+01 ± 2.78E+01 2.09E+01 ± 5.26E-02 1.53E+01 ± 4.49E+00 4.43E-02 ± 2.54E-02 1.70E+02 ± 1.90E+01 1.98E+02 ± 1.24E+01
GL-PSO 4.05E+01 ± 1.48E+01 2.09E+01 ± 7.28E-02 1.87E+01 ± 4.14E+00 1.39E-01 ± 7.75E-02 1.19E-12 ± 5.80E-12 5.07E+01 ± 1.41E+01

F13 F14 F15 F16 F17 F18
HGSA 2.52E+01 ± 1.27E+01 1.49E+03 ± 2.64E+02 1.80E+03 ± 2.72E+02 8.79E-03 ± 5.33E-03 4.63E+01 ± 5.19E+00 4.79E+01 ± 6.30E+00
FIPS 1.59E+02 ± 1.40E+01 3.81E+03 ± 6.14E+02 6.57E+03 ± 3.80E+02 2.51E+00 ± 2.32E-01 1.71E+02 ± 1.08E+01 2.08E+02 ± 6.87E+00
GPSO 1.38E+02 ± 3.80E+01 1.11E+03 ± 2.77E+02 4.81E+03 ± 1.44E+03 1.98E+00 ± 3.98E-01 6.09E+01 ± 9.30E+00 2.27E+02 ± 2.43E+01
CLPSO 1.66E+02 ± 1.62E+01 5.35E+02 ± 1.23E+02 6.09E+03 ± 3.11E+02 2.44E+00 ± 2.43E-01 7.23E+01 ± 4.92E+00 2.22E+02 ± 1.21E+01
OLPSO 1.35E+02 ± 4.27E+01 1.79E+02 ± 1.23E+02 6.12E+03 ± 1.20E+03 1.90E+00 ± 3.78E-01 3.16E+01 ± 6.74E-01 1.81E+02 ± 3.19E+01
GAPSO 1.77E+02 ± 2.69E+01 7.81E+00 ± 2.48E+00 3.99E+03 ± 8.32E+02 1.88E+00 ± 4.03E-01 3.61E+01 ± 1.11E+00 2.23E+02 ± 2.01E+01
DEPSO 2.02E+02 ± 1.79E+01 6.04E+03 ± 5.03E+02 6.99E+03 ± 3.52E+02 2.57E+00 ± 3.12E-01 2.36E+02 ± 1.32E+01 2.42E+02 ± 1.00E+01
GL-PSO 1.16E+02 ± 3.54E+01 9.25E-01 ± 7.49E-01 3.55E+03 ± 6.99E+02 5.16E-01 ± 2.65E-01 3.14E+01 ± 5.67E-01 7.54E+01 ± 1.30E+01

F19 F20 F21 F22 F23 F24
HGSA 3.69E+00 ± 7.35E-01 1.44E+01 ± 8.72E-01 3.22E+02 ± 7.17E+01 9.56E+02 ± 2.55E+02 4.02E+03 ± 6.97E+02 1.92E+02 ± 2.49E+01
FIPS 1.25E+01 ± 8.02E-01 1.21E+01 ± 6.28E-01 2.77E+02 ± 3.90E+01 3.07E+03 ± 5.95E+02 7.22E+03 ± 2.69E+02 2.11E+02 ± 6.17E+00
GPSO 2.96E+00 ± 6.31E-01 1.20E+01 ± 1.01E+00 3.35E+02 ± 8.91E+01 1.09E+03 ± 3.03E+02 4.31E+03 ± 9.56E+02 2.46E+02 ± 1.51E+01
CLPSO 3.23E+00 ± 8.03E-01 1.38E+01 ± 5.71E-01 3.00E+02 ± 3.17E+01 9.95E+02 ± 2.11E+02 6.62E+03 ± 4.00E+02 2.73E+02 ± 6.00E+00
OLPSO 1.74E+00 ± 4.14E-01 1.34E+01 ± 1.55E+00 3.12E+02 ± 7.64E+01 1.95E+02 ± 8.00E+01 6.19E+03 ± 1.12E+03 2.28E+02 ± 1.44E+01
GAPSO 2.20E+00 ± 4.56E-01 1.21E+01 ± 4.67E-01 3.14E+02 ± 7.63E+01 1.12E+02 ± 4.88E+01 4.20E+03 ± 9.85E+02 2.65E+02 ± 9.03E+00
DEPSO 1.79E+01 ± 1.77E+00 1.24E+01 ± 5.05E-01 3.05E+02 ± 1.17E+02 5.88E+03 ± 5.37E+02 7.22E+03 ± 4.40E+02 2.36E+02 ± 2.12E+01
GL-PSO 1.60E+00 ± 2.76E-01 1.19E+01 ± 8.60E-01 2.99E+02 ± 7.01E+01 1.04E+02 ± 3.18E+01 4.33E+03 ± 1.01E+03 2.39E+02 ± 1.07E+01

F25 F26 F27 F28
HGSA 2.00E+02 ± 7.60E-03 2.52E+02 ± 9.33E+01 4.29E+02 ± 1.60E+02 2.07E+02 ± 1.01E+02
FIPS 2.49E+02 ± 2.98E+01 2.09E+02 ± 3.27E+01 5.83E+02 ± 1.26E+02 2.71E+02 ± 6.32E+01
GPSO 2.87E+02 ± 1.61E+01 3.22E+02 ± 5.56E+01 8.05E+02 ± 1.17E+02 4.09E+02 ± 3.58E+02
CLPSO 2.91E+02 ± 5.69E+00 2.02E+02 ± 5.76E-01 8.10E+02 ± 2.81E+02 3.00E+02 ± 1.11E-03
OLPSO 2.65E+02 ± 8.18E+00 2.67E+02 ± 7.35E+01 6.57E+02 ± 9.66E+01 3.00E+02 ± 3.54E-13
GAPSO 2.88E+02 ± 8.44E+00 2.75E+02 ± 7.52E+01 8.62E+02 ± 7.63E+01 3.85E+02 ± 2.67E+02
DEPSO 2.85E+02 ± 3.53E+01 2.72E+02 ± 7.27E+01 7.90E+02 ± 1.69E+02 4.75E+02 ± 4.18E+02
GL-PSO 2.67E+02 ± 8.12E+00 2.50E+02 ± 6.69E+01 6.65E+02 ± 1.18E+02 3.00E+02 ± 2.38E-13

Table 4.10: Statistical results obtained by the Wilcoxon signed ranks test between HGSA
and FIPS, GPSO, CLPSO, OLPSO, GAPSO, DEPSO and GL-PSO in D = 30 dimensions.

HGSA vs. R+ R− p-value α=0.05
FIPS 350.0 56.0 4.25E-04 YES
GPSO 317.0 61.0 1.39E-03 YES
CLPSO 292.0 86.0 1.21E-02 YES
OLPSO 313.0 93.0 1.10E-02 YES
GAPSO 294.0 112.0 3.79E-02 YES
DEPSO 338.0 40.0 1.25E-04 YES
GL-PSO 221.0 157.0 4.35E-01 No
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ber of functions where the experimental results obtained by HGSA are better than those by

GL-PSO is 16 out of 28. That is to say, both HGSA and GL-PSO are highly competitive

on twenty eight functions. Thus, we can consider that HGSA still shows an effective and

competitive performance in comparison with the state-of-the-art PSO. This experiment in-

dicates that a global optimal individual is able to benefit the population evolution so that

diverse PSOs can be proposed to reinforce the movement of individuals. Moreover, it is

also effective for HGSA to achieve a better performance.

4.5 Discussion

4.5.1 Parameter sensitivity analysis

HGSA has two important parameters, i.e., L and K, which indicate the steepness of log-

sigmoid function and the number of individuals on the medium layer, respectively. A large

L value means a low steepness of log-sigmoid function whereas a small one denotes a high

steepness of log-sigmoid function. Different steepness cause diverse gravitational constant

values which may result in different performances of HGSA. The K value influences the

hierarchical interaction among three layers. To be specific, a large K value indicates that

the medium layer has many best individuals to guide the population on the bottom layer

and be led by the global optimal individuals on the top layer, suggesting that HGSA is ex-

ecuting an exploration process. A small K value means that few best individuals act on the

population and HGSA mainly exerts an exploitation ability to accelerate the convergence

of population. Although the K value in HGSA linearly decreases as the same as that in the

conventional GSA, its initial value may influence the performance of HGSA. Therefore,

two experiments are conducted to investigate the influence of these two parameters on the

performance of HGSA.

The parameter L is firstly investigated. To explore the effectiveness of L value, it is set

to be 50, 100, 150, 200 and 250, implying five different steepness of log-sigmoid function.

Their curves are shown in Fig. 4.9(a) where the steepness of log-sigmoid function gradually

decreases according to the L value from 50 to 250. The K value linearly decreases and is

set to be in the interval [n, 2] where n = 100. Other parameter settings maintain invariant

as the above experiments. Fifty seven benchmark functions with 30 dimensions are used

to test the performance of HGSA with five different L values. Experimental results are

summarized in Table 4.11 and statistical results calculated by the Friedman test are shown
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Table 4.11: Experimental results of benchmark functions (F1-F57) with D = 30 dimensions
using HGSA with five different L values.

Parameter F1 F2 F3 F4 F5 F6
L = 50 -1.40E+03 ± 0.00E+00 8.36E+05 ± 2.78E+05 -1.20E+03 ± 1.85E+01 5.66E+04 ± 5.84E+03 -1.00E+03 ± 4.42E-09 -8.72E+02 ± 2.30E+01
L = 100 -1.40E+03 ± 1.98E-13 3.19E+05 ± 1.08E+05 -1.20E+03 ± 3.29E-07 5.30E+04 ± 5.52E+03 -1.00E+03 ± 4.87E-13 -8.88E+02 ± 1.42E+01
L = 150 -1.40E+03 ± 6.07E-13 1.70E+05 ± 6.86E+04 9.67E+04 ± 4.80E+05 5.05E+04 ± 5.26E+03 -1.00E+03 ± 2.25E-13 -8.92E+02 ± 7.28E+00
L = 200 -1.40E+03 ± 3.18E-11 9.95E+04 ± 5.31E+04 -1.20E+03 ± 2.00E-03 4.64E+04 ± 5.13E+03 -1.00E+03 ± 3.85E-12 -8.91E+02 ± 7.57E+00
L = 250 -1.40E+03 ± 7.67E-10 6.76E+04 ± 2.65E+04 7.01E+05 ± 3.81E+06 4.26E+04 ± 2.94E+03 -1.00E+03 ± 6.36E-11 -8.92E+02 ± 7.43E+00

F7 F8 F9 F10 F11 F12
L = 50 -8.00E+02 ± 4.23E-01 -6.79E+02 ± 5.50E-02 -5.81E+02 ± 3.14E+00 -5.00E+02 ± 6.97E-03 -3.47E+02 ± 6.53E+00 -2.84E+02 ± 4.11E+00
L = 100 -7.99E+02 ± 1.63E+00 -6.79E+02 ± 7.51E-02 -5.81E+02 ± 3.72E+00 -5.00E+02 ± 4.08E-03 -3.47E+02 ± 9.94E+00 -2.83E+02 ± 3.65E+00
L = 150 -8.00E+02 ± 1.04E-01 -6.79E+02 ± 5.39E-02 -5.80E+02 ± 4.93E+00 -5.00E+02 ± 2.56E-03 -3.42E+02 ± 7.83E+00 -2.83E+02 ± 4.07E+00
L = 200 -7.99E+02 ± 1.78E+00 -6.79E+02 ± 5.05E-02 -5.82E+02 ± 4.08E+00 -5.00E+02 ± 3.59E-03 -3.41E+02 ± 9.53E+00 -2.81E+02 ± 4.66E+00
L = 250 -8.00E+02 ± 2.66E-01 -6.79E+02 ± 7.24E-02 -5.80E+02 ± 3.38E+00 -5.00E+02 ± 3.76E-03 -3.39E+02 ± 8.19E+00 -2.81E+02 ± 4.05E+00

F13 F14 F15 F16 F17 F18
L = 50 -1.31E+02 ± 2.46E+01 2.27E+03 ± 3.36E+02 2.54E+03 ± 3.27E+02 2.00E+02 ± 6.25E-03 3.40E+02 ± 3.61E+00 4.40E+02 ± 3.57E+00
L = 100 -1.33E+02 ± 1.92E+01 2.51E+03 ± 4.21E+02 2.45E+03 ± 3.01E+02 2.00E+02 ± 2.15E-03 3.39E+02 ± 2.31E+00 4.40E+02 ± 2.53E+00
L = 150 -1.23E+02 ± 2.08E+01 2.52E+03 ± 4.47E+02 2.43E+03 ± 4.29E+02 2.00E+02 ± 1.69E-03 3.40E+02 ± 2.29E+00 4.41E+02 ± 2.44E+00
L = 200 -1.27E+02 ± 2.35E+01 2.48E+03 ± 3.98E+02 2.45E+03 ± 3.78E+02 2.00E+02 ± 1.12E-03 3.39E+02 ± 2.18E+00 4.41E+02 ± 3.81E+00
L = 250 -1.17E+02 ± 1.93E+01 2.52E+03 ± 3.91E+02 2.54E+03 ± 3.44E+02 2.00E+02 ± 1.15E-03 3.39E+02 ± 2.16E+00 4.41E+02 ± 3.31E+00

F19 F20 F21 F22 F23 F24
L = 50 5.05E+02 ± 6.16E-01 6.15E+02 ± 5.57E-01 1.03E+03 ± 5.84E+01 3.63E+03 ± 7.63E+02 5.66E+03 ± 3.34E+02 1.20E+03 ± 2.02E+01
L = 100 5.05E+02 ± 5.96E-01 6.15E+02 ± 4.15E-01 1.01E+03 ± 4.38E+01 3.65E+03 ± 5.26E+02 5.61E+03 ± 4.07E+02 1.20E+03 ± 1.43E+01
L = 150 5.05E+02 ± 7.85E-01 6.15E+02 ± 3.15E-01 1.02E+03 ± 4.96E+01 3.66E+03 ± 3.79E+02 5.63E+03 ± 3.57E+02 1.20E+03 ± 1.40E+01
L = 200 5.04E+02 ± 6.82E-01 6.15E+02 ± 5.32E-01 1.01E+03 ± 6.37E+01 3.68E+03 ± 5.53E+02 5.67E+03 ± 3.39E+02 1.19E+03 ± 2.25E+01
L = 250 5.05E+02 ± 7.24E-01 6.15E+02 ± 2.64E-01 1.03E+03 ± 6.17E+01 3.91E+03 ± 5.77E+02 5.75E+03 ± 3.10E+02 1.19E+03 ± 1.99E+01

F25 F26 F27 F28 F29 F30
L = 50 1.30E+03 ± 4.67E-03 1.51E+03 ± 5.18E+01 1.68E+03 ± 1.27E+02 1.65E+03 ± 9.00E+01 2.19E+03 ± 1.53E+03 5.90E+04 ± 6.85E+03
L = 100 1.30E+03 ± 1.33E+01 1.49E+03 ± 6.58E+01 1.71E+03 ± 1.40E+02 1.63E+03 ± 9.80E+01 2.68E+03 ± 2.50E+03 4.36E+04 ± 5.49E+03
L = 150 1.30E+03 ± 1.52E+01 1.51E+03 ± 5.34E+01 1.73E+03 ± 1.49E+02 1.64E+03 ± 9.32E+01 2.69E+03 ± 1.81E+03 3.18E+04 ± 4.11E+03
L = 200 1.30E+03 ± 4.04E-03 1.49E+03 ± 7.82E+01 1.74E+03 ± 1.68E+02 1.65E+03 ± 9.00E+01 2.32E+03 ± 1.70E+03 2.37E+04 ± 2.95E+03
L = 250 1.30E+03 ± 6.63E-03 1.51E+03 ± 6.01E+01 1.69E+03 ± 1.02E+02 1.64E+03 ± 9.32E+01 2.38E+03 ± 1.84E+03 1.66E+04 ± 2.53E+03

F31 F32 F33 F34 F35 F36
L = 50 5.20E+02 ± 2.32E+00 6.51E+02 ± 1.21E+01 6.08E+02 ± 5.20E+00 7.41E+02 ± 2.96E+00 9.02E+02 ± 8.61E+00 9.00E+02 ± 0.00E+00
L = 100 5.19E+02 ± 2.63E+00 6.53E+02 ± 1.28E+01 6.08E+02 ± 4.54E+00 7.41E+02 ± 3.01E+00 9.00E+02 ± 9.03E+00 9.00E+02 ± 9.67E-14
L = 150 5.18E+02 ± 2.42E+00 6.54E+02 ± 1.11E+01 6.09E+02 ± 4.39E+00 7.41E+02 ± 2.64E+00 9.05E+02 ± 1.00E+01 9.00E+02 ± 4.06E-13
L = 200 5.18E+02 ± 2.19E+00 6.58E+02 ± 1.45E+01 6.09E+02 ± 4.29E+00 7.41E+02 ± 3.10E+00 9.09E+02 ± 9.88E+00 9.00E+02 ± 2.95E-11
L = 250 5.18E+02 ± 1.88E+00 6.52E+02 ± 1.22E+01 6.10E+02 ± 4.18E+00 7.41E+02 ± 3.06E+00 9.09E+02 ± 1.11E+01 9.00E+02 ± 3.02E-10

F37 F38 F39 F40 F41 F42
L = 50 4.15E+03 ± 3.36E+02 1.20E+03 ± 2.84E+01 3.49E+05 ± 1.84E+05 1.44E+04 ± 4.04E+03 7.96E+03 ± 4.29E+03 2.10E+03 ± 4.62E+02
L = 100 4.21E+03 ± 2.93E+02 1.20E+03 ± 2.98E+01 1.29E+05 ± 8.15E+04 1.46E+04 ± 5.32E+03 6.72E+03 ± 3.05E+03 2.20E+03 ± 7.21E+02
L = 150 4.27E+03 ± 4.04E+02 1.19E+03 ± 2.75E+01 3.42E+04 ± 1.66E+04 1.35E+04 ± 5.53E+03 5.51E+03 ± 2.59E+03 2.26E+03 ± 5.37E+02
L = 200 4.32E+03 ± 3.90E+02 1.19E+03 ± 3.11E+01 1.62E+04 ± 7.44E+03 1.35E+04 ± 4.44E+03 4.78E+03 ± 1.35E+03 2.43E+03 ± 8.68E+02
L = 250 4.17E+03 ± 4.26E+02 1.19E+03 ± 2.81E+01 1.50E+04 ± 3.42E+03 1.28E+04 ± 5.02E+03 4.67E+03 ± 1.53E+03 2.41E+03 ± 7.37E+02

F43 F44 F45 F46 F47 F48
L = 50 2.83E+03 ± 2.41E+02 2.77E+03 ± 2.03E+02 1.22E+05 ± 4.78E+04 5.36E+03 ± 1.23E+03 2.85E+03 ± 1.96E+02 2.41E+03 ± 5.89E+01
L = 100 2.83E+03 ± 2.32E+02 2.77E+03 ± 1.99E+02 6.16E+04 ± 1.47E+04 5.42E+03 ± 1.25E+03 2.86E+03 ± 2.24E+02 2.41E+03 ± 5.90E+01
L = 150 2.89E+03 ± 2.42E+02 2.70E+03 ± 2.12E+02 5.15E+04 ± 1.03E+04 4.86E+03 ± 1.39E+03 2.81E+03 ± 1.84E+02 2.43E+03 ± 1.56E+01
L = 200 2.86E+03 ± 2.35E+02 2.71E+03 ± 2.08E+02 4.80E+04 ± 1.30E+04 5.03E+03 ± 1.47E+03 2.86E+03 ± 1.49E+02 2.42E+03 ± 4.49E+01
L = 250 2.92E+03 ± 2.93E+02 2.75E+03 ± 1.92E+02 4.57E+04 ± 1.07E+04 5.03E+03 ± 9.94E+02 2.87E+03 ± 1.85E+02 2.43E+03 ± 1.51E+01

F49 F50 F51 F52 F53 F54
L = 50 2.30E+03 ± 3.87E-13 2.80E+03 ± 1.08E+02 2.92E+03 ± 2.70E+01 2.89E+03 ± 8.08E+00 2.86E+03 ± 4.98E+01 3.26E+03 ± 1.87E+01
L = 100 2.30E+03 ± 3.91E-09 2.76E+03 ± 1.33E+02 2.92E+03 ± 3.58E+01 2.89E+03 ± 7.59E+00 2.85E+03 ± 5.07E+01 3.25E+03 ± 2.08E+01
L = 150 2.30E+03 ± 4.63E-07 2.83E+03 ± 1.38E+02 2.93E+03 ± 4.31E+01 2.89E+03 ± 7.68E+00 2.86E+03 ± 4.98E+01 3.26E+03 ± 1.93E+01
L = 200 2.30E+03 ± 6.54E-06 2.81E+03 ± 1.27E+02 2.93E+03 ± 3.92E+01 2.89E+03 ± 8.18E+00 2.85E+03 ± 5.09E+01 3.25E+03 ± 1.82E+01
L = 250 2.44E+03 ± 7.73E+02 2.80E+03 ± 9.88E+01 2.92E+03 ± 5.05E+01 2.89E+03 ± 6.98E+00 2.86E+03 ± 5.04E+01 3.26E+03 ± 1.90E+01

F55 F56 F57
L = 50 3.12E+03 ± 3.34E+01 4.07E+03 ± 1.80E+02 1.33E+04 ± 2.82E+03
L = 100 3.11E+03 ± 2.82E+01 4.05E+03 ± 1.88E+02 1.10E+04 ± 2.60E+03
L = 150 3.10E+03 ± 1.75E+01 4.09E+03 ± 1.87E+02 1.00E+04 ± 1.38E+03
L = 200 3.10E+03 ± 1.30E-06 4.13E+03 ± 1.70E+02 9.12E+03 ± 1.24E+03
L = 250 3.10E+03 ± 7.04E-06 4.14E+03 ± 2.00E+02 8.71E+03 ± 7.57E+02

Table 4.12: Statistical results of parameter L obtained by the Friedman test, where * indi-
cates the best average rank of parameter.

Parameter Average rank p-value α = 0.05
L = 50 3.0614 3.90E-01 No
∗L = 100 2.807
L = 150 3.1228 2.86E-01 No
L = 200 2.8947 7.67E-01 No
L = 250 3.114 3.00E-01 No
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Table 4.13: Experimental results of benchmark functions (F1-F57) with D = 30 dimensions
using HGSA with five different K value intervals, where n = 100.

Parameter F1 F2 F3 F4 F5 F6
K ∈ [n, 2] -1.40E+03 ± 1.98E-13 3.19E+05 ± 1.08E+05 -1.20E+03 ± 3.29E-07 5.30E+04 ± 5.52E+03 -1.00E+03 ± 4.87E-13 -8.88E+02 ± 1.42E+01
K ∈ [75%n, 2] -1.40E+03 ± 1.03E-13 1.56E+05 ± 7.27E+04 1.50E+05 ± 5.92E+05 5.52E+04 ± 5.54E+03 -1.00E+03 ± 3.07E-13 -8.91E+02 ± 7.01E+00
K ∈ [50%n, 2] -1.40E+03 ± 5.97E-14 9.94E+04 ± 6.88E+04 1.89E+06 ± 4.93E+06 5.23E+04 ± 5.96E+03 -1.00E+03 ± 1.23E-13 -8.87E+02 ± 1.25E+01
K ∈ [25%n, 2] -1.40E+03 ± 4.22E-14 5.40E+04 ± 2.03E+04 1.23E+06 ± 1.47E+06 3.86E+04 ± 5.88E+03 -1.00E+03 ± 5.97E-14 -8.82E+02 ± 2.44E+01
K ∈ [15%n, 2] -1.40E+03 ± 9.44E-14 5.10E+04 ± 2.56E+04 1.57E+06 ± 5.40E+06 1.79E+04 ± 3.51E+03 -1.00E+03 ± 8.44E-14 -8.55E+02 ± 4.68E+01

F7 F8 F9 F10 F11 F12
K ∈ [n, 2] -7.99E+02 ± 1.63E+00 -6.79E+02 ± 7.51E-02 -5.81E+02 ± 3.72E+00 -5.00E+02 ± 4.08E-03 -3.47E+02 ± 9.94E+00 -2.83E+02 ± 3.65E+00
K ∈ [75%n, 2] -8.00E+02 ± 3.86E-01 -6.79E+02 ± 7.59E-02 -5.76E+02 ± 4.86E+00 -5.00E+02 ± 4.39E-03 -3.29E+02 ± 9.50E+00 -2.62E+02 ± 1.09E+01
K ∈ [50%n, 2] -7.95E+02 ± 6.46E+00 -6.79E+02 ± 8.43E-02 -5.72E+02 ± 2.84E+00 -5.00E+02 ± 4.60E-03 -2.78E+02 ± 1.38E+01 5.68E+00 ± 3.20E+01
K ∈ [25%n, 2] -7.69E+02 ± 1.86E+01 -6.79E+02 ± 5.30E-02 -5.68E+02 ± 3.06E+00 -5.00E+02 ± 5.10E-03 -9.69E+01 ± 3.27E+01 1.27E+02 ± 4.29E+01
K ∈ [15%n, 2] -7.39E+02 ± 1.95E+01 -6.79E+02 ± 4.55E-02 -5.65E+02 ± 2.85E+00 -5.00E+02 ± 7.98E-03 -4.46E+00 ± 5.47E+01 1.20E+02 ± 5.50E+01

F13 F14 F15 F16 F17 F18
K ∈ [n, 2] -1.33E+02 ± 1.92E+01 2.51E+03 ± 4.21E+02 2.45E+03 ± 3.01E+02 2.00E+02 ± 2.15E-03 3.39E+02 ± 2.31E+00 4.40E+02 ± 2.53E+00
K ∈ [75%n, 2] -7.13E+01 ± 2.03E+01 2.35E+03 ± 3.80E+02 2.69E+03 ± 4.15E+02 2.00E+02 ± 2.65E-03 3.42E+02 ± 2.88E+00 4.42E+02 ± 3.20E+00
K ∈ [50%n, 2] 3.20E+02 ± 4.92E+01 2.60E+03 ± 4.12E+02 3.07E+03 ± 4.15E+02 2.00E+02 ± 2.63E-03 3.48E+02 ± 4.74E+00 4.43E+02 ± 3.60E+00
K ∈ [25%n, 2] 3.39E+02 ± 5.59E+01 3.30E+03 ± 4.31E+02 4.06E+03 ± 5.57E+02 2.00E+02 ± 5.52E-03 3.60E+02 ± 7.40E+00 4.58E+02 ± 5.84E+00
K ∈ [15%n, 2] 3.35E+02 ± 5.16E+01 4.20E+03 ± 5.43E+02 4.28E+03 ± 5.46E+02 2.00E+02 ± 1.19E-02 3.77E+02 ± 1.06E+01 4.76E+02 ± 1.15E+01

F19 F20 F21 F22 F23 F24
K ∈ [n, 2] 5.05E+02 ± 5.96E-01 6.15E+02 ± 4.15E-01 1.01E+03 ± 4.38E+01 3.65E+03 ± 5.26E+02 5.61E+03 ± 4.07E+02 1.20E+03 ± 1.43E+01
K ∈ [75%n, 2] 5.04E+02 ± 4.89E-01 6.15E+02 ± 6.78E-01 1.02E+03 ± 6.80E+01 3.69E+03 ± 4.69E+02 5.74E+03 ± 3.27E+02 1.20E+03 ± 2.09E+01
K ∈ [50%n, 2] 5.04E+02 ± 6.36E-01 6.14E+02 ± 1.87E+00 1.02E+03 ± 5.44E+01 5.03E+03 ± 9.84E+02 6.24E+03 ± 2.77E+02 1.24E+03 ± 2.05E+01
K ∈ [25%n, 2] 5.03E+02 ± 6.56E-01 6.13E+02 ± 2.13E+00 1.04E+03 ± 6.46E+01 6.67E+03 ± 6.69E+02 6.69E+03 ± 3.87E+02 1.29E+03 ± 6.90E+01
K ∈ [15%n, 2] 5.03E+02 ± 5.79E-01 6.13E+02 ± 1.58E+00 1.04E+03 ± 8.20E+01 7.12E+03 ± 6.64E+02 6.98E+03 ± 3.61E+02 1.30E+03 ± 3.27E+01

F25 F26 F27 F28 F29 F30
K ∈ [n, 2] 1.30E+03 ± 1.33E+01 1.49E+03 ± 6.58E+01 1.71E+03 ± 1.40E+02 1.63E+03 ± 9.80E+01 2.68E+03 ± 2.50E+03 4.36E+04 ± 5.49E+03
K ∈ [75%n, 2] 1.30E+03 ± 1.41E+01 1.52E+03 ± 4.40E+01 1.83E+03 ± 1.64E+02 2.09E+03 ± 8.99E+02 2.60E+03 ± 2.06E+03 3.59E+04 ± 5.50E+03
K ∈ [50%n, 2] 1.41E+03 ± 5.99E+01 1.53E+03 ± 3.08E+01 2.02E+03 ± 1.17E+02 4.93E+03 ± 2.56E+02 3.45E+03 ± 4.08E+03 2.12E+04 ± 3.77E+03
K ∈ [25%n, 2] 1.50E+03 ± 1.33E+01 1.55E+03 ± 2.34E+01 2.23E+03 ± 8.26E+01 5.23E+03 ± 2.73E+02 2.81E+03 ± 3.12E+03 3.00E+02 ± 1.63E-13
K ∈ [15%n, 2] 1.49E+03 ± 1.46E+01 1.56E+03 ± 1.79E+01 2.34E+03 ± 1.18E+02 5.20E+03 ± 2.80E+02 2.56E+03 ± 3.95E+03 3.00E+02 ± 4.02E-13

F31 F32 F33 F34 F35 F36
K ∈ [n, 2] 5.19E+02 ± 2.63E+00 6.53E+02 ± 1.28E+01 6.08E+02 ± 4.54E+00 7.41E+02 ± 3.01E+00 9.00E+02 ± 9.03E+00 9.00E+02 ± 9.67E-14
K ∈ [75%n, 2] 5.18E+02 ± 2.31E+00 6.70E+02 ± 1.38E+01 6.14E+02 ± 6.94E+00 7.43E+02 ± 3.74E+00 9.12E+02 ± 1.03E+01 9.00E+02 ± 1.01E-13
K ∈ [50%n, 2] 4.85E+02 ± 4.24E+01 6.83E+02 ± 1.70E+01 6.30E+02 ± 4.93E+00 7.48E+02 ± 4.40E+00 9.27E+02 ± 1.18E+01 9.05E+02 ± 2.48E+01
K ∈ [25%n, 2] 4.98E+02 ± 4.34E+01 6.79E+02 ± 1.83E+01 6.40E+02 ± 3.56E+00 8.01E+02 ± 2.31E+01 9.17E+02 ± 1.16E+01 2.15E+03 ± 3.18E+02
K ∈ [15%n, 2] 5.14E+02 ± 2.92E+01 6.68E+02 ± 1.56E+01 6.46E+02 ± 4.27E+00 8.98E+02 ± 3.85E+01 9.10E+02 ± 1.60E+01 3.08E+03 ± 3.41E+02

F37 F38 F39 F40 F41 F42
K ∈ [n, 2] 4.21E+03 ± 2.93E+02 1.20E+03 ± 2.98E+01 1.29E+05 ± 8.15E+04 1.46E+04 ± 5.32E+03 6.72E+03 ± 3.05E+03 2.20E+03 ± 7.21E+02
K ∈ [75%n, 2] 4.24E+03 ± 4.26E+02 1.19E+03 ± 2.91E+01 5.00E+04 ± 1.93E+04 1.42E+04 ± 4.18E+03 6.05E+03 ± 2.28E+03 2.23E+03 ± 5.74E+02
K ∈ [50%n, 2] 4.74E+03 ± 4.70E+02 1.19E+03 ± 2.49E+01 2.02E+04 ± 6.27E+03 1.53E+04 ± 4.21E+03 4.44E+03 ± 8.41E+02 2.42E+03 ± 8.59E+02
K ∈ [25%n, 2] 4.98E+03 ± 6.96E+02 1.19E+03 ± 2.00E+01 1.58E+04 ± 4.76E+03 1.41E+04 ± 5.33E+03 3.32E+03 ± 1.10E+03 1.99E+03 ± 3.77E+02
K ∈ [15%n, 2] 5.06E+03 ± 5.74E+02 1.18E+03 ± 1.42E+01 4.83E+06 ± 2.28E+07 1.53E+04 ± 6.46E+03 2.58E+03 ± 5.67E+02 2.60E+03 ± 9.23E+02

F43 F44 F45 F46 F47 F48
K ∈ [n, 2] 2.83E+03 ± 2.32E+02 2.77E+03 ± 1.99E+02 6.16E+04 ± 1.47E+04 5.42E+03 ± 1.25E+03 2.86E+03 ± 2.24E+02 2.41E+03 ± 5.90E+01
K ∈ [75%n, 2] 2.98E+03 ± 3.09E+02 2.94E+03 ± 1.77E+02 4.76E+04 ± 9.61E+03 4.94E+03 ± 9.07E+02 2.89E+03 ± 2.13E+02 2.45E+03 ± 5.09E+01
K ∈ [50%n, 2] 3.11E+03 ± 4.15E+02 2.94E+03 ± 1.84E+02 4.44E+04 ± 6.73E+03 4.53E+03 ± 1.11E+03 2.99E+03 ± 1.90E+02 2.54E+03 ± 2.46E+01
K ∈ [25%n, 2] 3.22E+03 ± 3.38E+02 2.82E+03 ± 2.58E+02 3.95E+04 ± 7.70E+03 5.32E+03 ± 1.72E+03 2.91E+03 ± 1.61E+02 2.51E+03 ± 3.11E+01
K ∈ [15%n, 2] 3.22E+03 ± 3.08E+02 2.77E+03 ± 2.87E+02 3.57E+04 ± 8.21E+03 5.03E+03 ± 1.94E+03 2.88E+03 ± 1.82E+02 2.49E+03 ± 2.25E+01

F49 F50 F51 F52 F53 F54
K ∈ [n, 2] 2.30E+03 ± 3.91E-09 2.76E+03 ± 1.33E+02 2.92E+03 ± 3.58E+01 2.89E+03 ± 7.59E+00 2.85E+03 ± 5.07E+01 3.25E+03 ± 2.08E+01
K ∈ [75%n, 2] 2.75E+03 ± 1.37E+03 3.02E+03 ± 1.58E+02 3.05E+03 ± 5.69E+01 2.89E+03 ± 2.66E+00 3.08E+03 ± 9.31E+02 3.34E+03 ± 6.78E+01
K ∈ [50%n, 2] 5.38E+03 ± 2.08E+03 3.34E+03 ± 1.36E+02 3.25E+03 ± 4.89E+01 2.89E+03 ± 2.14E+00 6.02E+03 ± 2.00E+03 4.27E+03 ± 2.71E+02
K ∈ [25%n, 2] 6.75E+03 ± 9.94E+02 3.47E+03 ± 1.17E+02 3.31E+03 ± 6.47E+01 2.90E+03 ± 1.30E+01 7.17E+03 ± 1.57E+03 4.41E+03 ± 2.40E+02
K ∈ [15%n, 2] 6.28E+03 ± 1.27E+03 3.44E+03 ± 9.89E+01 3.35E+03 ± 5.80E+01 2.91E+03 ± 1.55E+01 7.79E+03 ± 1.16E+03 4.38E+03 ± 2.74E+02

F55 F56 F57
K ∈ [n, 2] 3.11E+03 ± 2.82E+01 4.05E+03 ± 1.88E+02 1.10E+04 ± 2.60E+03
K ∈ [75%n, 2] 3.10E+03 ± 1.67E-09 4.20E+03 ± 1.97E+02 7.51E+03 ± 8.20E+02
K ∈ [50%n, 2] 3.10E+03 ± 1.91E-09 4.30E+03 ± 1.81E+02 6.83E+03 ± 5.10E+02
K ∈ [25%n, 2] 3.10E+03 ± 1.89E+01 4.51E+03 ± 2.81E+02 7.19E+03 ± 5.92E+02
K ∈ [15%n, 2] 3.15E+03 ± 9.72E+01 4.49E+03 ± 2.66E+02 8.14E+03 ± 1.20E+03

Table 4.14: Statistical results of parameter K obtained by the Friedman test, where * indi-
cates the best average rank of parameter.

Parameter Average rank p-value α = 0.05
∗K ∈ [n, 2] 2.2193

K ∈ [75%n, 2] 2.4825 3.74E-01 No
K ∈ [50%n, 2] 3.1228 2.28E-03 Yes
K ∈ [25%n, 2] 3.4825 2.00E-05 Yes
K ∈ [15%n, 2] 3.693 1.00E-06 Yes
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Figure 4.9: The curves of (a) log-sigmoid function with five different L values and (b) five
different K value intervals.

in Table 4.12.

From Table 4.11, it can be seen that HGSA with different L values obtains the best

results on different functions, indicating that each L value is effective for certain functions,

respectively. Table 4.12 shows that L = 100 has the best average rank among five values

whereas it is not significantly better than the others. That is to say, HGSA with five different

L values can obtain a similar performance and their experimental results have no significant

difference. Thus, we can consider that these five L values are all effective. Five different

steepness of log-sigmoid function hardly influence the overall performance of HGSA. In

order to determine the best L value, L = 100 is adopted according to the best average rank

among five values.

After selecting the best value L = 100, the parameter K is investigated. Since the K

best individuals on the medium layer come from the population on the bottom layer, its

initial value is set to be n, 75%n, 50%n, 25%n and 15%n where n = 100, indicating that

different number of initial individuals on the medium layer. Their curves are displayed

in Fig. 4.9(b) where they linearly decrease from their initial values to 2 with iterations.

Experimental and statistical results obtained by HGSA with five different K initial values

on fifty seven benchmark functions with 30 dimensions are listed in Tables 4.13 and 4.14.

In Table 4.13, it can be observed that HGSA with K ∈ [n, 2] has the best results on 34

functions, showing its good performance on numerous functions. From Table 4.14, it can

be found that HGSA with K ∈ [n, 2] has the best average rank and significantly outper-

forms that with K ∈ [50%n, 2], K ∈ [25%n, 2] and K ∈ [15%n, 2] according to p-value,

suggesting that a large initial K value is better than a small one. This is because a large
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number of individuals on the medium layer can enhance the hierarchical interaction among

three layers to improve the exploration ability of HGSA. However, a small initial K value

means that the number of individuals on the medium layer is too few to guarantee a suf-

ficient exploration process of HGSA. Thus, the performance of HGSA with a small initial

K value declines. In addition, the statistical result between K ∈ [n, 2] and K ∈ [75%n, 2]

shows a non-significant difference because both have approximately initial values, which

also indicates the effectiveness of a large initial K value. Therefore, K ∈ [n, 2] is adopted

to be the best K value interval according to the best average rank. It demonstrates that the

number of initial individuals on the medium layer which is equal to the population size n

is the best selection in HGSA. Based on these two experiments, it can be concluded that

L = 100 and K ∈ [n, 2] are the best parameter settings for HGSA.

4.5.2 Component-wise analysis

The above experiments have demonstrated that HGSA has a superior performance due to

its population structure and improved gravitational constant. In order to further verify the

effect of these combination, a component-wise experiment is carried out. Two comparative

algorithms consist of a hierarchical GSA with an original gravitational constant (HGSA-

OG) and a conventional GSA with an improved gravitational constant (GSA-IG). Three

algorithms are used to test fifty seven benchmark functions with 30 dimensions. Parameter

settings are the same as the above experiments. Experimental and statistical results are

shown in Tables 4.15 and 4.16.

According to Table 4.15, it can be found that HGSA, HGSA-OG and GSA-IG obtain the

best results on 31, 3 and 23 functions, respectively. It illustrates that HGSA performs better

than HGSA-OG and GSA-IG from the number of functions. Statistical results in Table

4.16 demonstrate that HGSA significantly outperforms HGSA-OG and GSA-IG according

to p-value. The comparison between HGSA and HGSA-OG manifests that an improved

gravitational constant effectively enhances the exploration ability of algorithm. In other

words, a log-sigmoid gravitational constant is better than an exponential one because it

reinforces the exploration period of algorithm such that HGSA can find a better optimal

solution. The comparison between HGSA and GSA-IG demonstrates that a hierarchical

population structure can better direct the evolution of individuals and enhance the overall

performance of algorithm. That is to say, a hierarchical control can effectively balance

the exploration and exploitation abilities of algorithm, and provide a promising guideline

for evolving the population. Consequently, this component-wise experiment proves the
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Table 4.15: Experimental results of benchmark functions (F1-F57) with D = 30 dimensions
using HGSA, HGSA-OG and GSA-IG.

Algorithm F1 F2 F3 F4 F5 F6
HGSA -1.40E+03 ± 1.98E-13 3.19E+05 ± 1.08E+05 -1.20E+03 ± 3.29E-07 5.30E+04 ± 5.52E+03 -1.00E+03 ± 4.87E-13 -8.88E+02 ± 1.42E+01
HGSA-OG -1.40E+03 ± 0.00E+00 7.37E+06 ± 1.41E+06 5.19E+09 ± 2.29E+09 6.69E+04 ± 3.50E+03 -1.00E+03 ± 9.53E-13 -8.33E+02 ± 1.38E+01
GSA-IG -1.40E+03 ± 7.31E-14 3.78E+05 ± 1.51E+05 -1.20E+03 ± 1.16E-03 6.39E+04 ± 3.98E+03 -1.00E+03 ± 3.07E-13 -8.90E+02 ± 6.47E+00

F7 F8 F9 F10 F11 F12
HGSA -7.99E+02 ± 1.63E+00 -6.79E+02 ± 7.51E-02 -5.81E+02 ± 3.72E+00 -5.00E+02 ± 4.08E-03 -3.47E+02 ± 9.94E+00 -2.83E+02 ± 3.65E+00
HGSA-OG -7.36E+02 ± 9.42E+00 -6.79E+02 ± 5.97E-02 -5.67E+02 ± 3.08E+00 -5.00E+02 ± 6.26E-02 -1.05E+02 ± 1.94E+01 3.12E+01 ± 2.58E+01
GSA-IG -7.99E+02 ± 1.99E+00 -6.79E+02 ± 5.09E-02 -5.82E+02 ± 3.50E+00 -5.00E+02 ± 3.97E-03 -3.44E+02 ± 9.58E+00 -2.83E+02 ± 4.06E+00

F13 F14 F15 F16 F17 F18
HGSA -1.33E+02 ± 1.92E+01 2.51E+03 ± 4.21E+02 2.45E+03 ± 3.01E+02 2.00E+02 ± 2.15E-03 3.39E+02 ± 2.31E+00 4.40E+02 ± 2.53E+00
HGSA-OG 2.65E+02 ± 3.84E+01 3.90E+03 ± 5.66E+02 3.64E+03 ± 5.06E+02 2.00E+02 ± 3.88E-03 3.63E+02 ± 7.38E+00 4.55E+02 ± 6.09E+00
GSA-IG -1.38E+02 ± 1.73E+01 2.46E+03 ± 3.84E+02 2.49E+03 ± 3.04E+02 2.00E+02 ± 1.88E-03 3.42E+02 ± 2.44E+00 4.43E+02 ± 3.01E+00

F19 F20 F21 F22 F23 F24
HGSA 5.05E+02 ± 5.96E-01 6.15E+02 ± 4.15E-01 1.01E+03 ± 4.38E+01 3.65E+03 ± 5.26E+02 5.61E+03 ± 4.07E+02 1.20E+03 ± 1.43E+01
HGSA-OG 5.09E+02 ± 1.66E+00 6.15E+02 ± 2.05E-01 1.01E+03 ± 3.64E+01 7.20E+03 ± 5.28E+02 6.79E+03 ± 4.02E+02 1.31E+03 ± 5.64E+01
GSA-IG 5.04E+02 ± 6.71E-01 6.15E+02 ± 1.54E-01 1.04E+03 ± 6.69E+01 3.67E+03 ± 5.62E+02 5.64E+03 ± 4.05E+02 1.20E+03 ± 2.19E+01

F25 F26 F27 F28 F29 F30
HGSA 1.30E+03 ± 1.33E+01 1.49E+03 ± 6.58E+01 1.71E+03 ± 1.40E+02 1.63E+03 ± 9.80E+01 2.68E+03 ± 2.50E+03 4.36E+04 ± 5.49E+03
HGSA-OG 1.49E+03 ± 1.32E+01 1.56E+03 ± 1.99E+01 2.22E+03 ± 8.93E+01 5.06E+03 ± 2.70E+02 1.93E+03 ± 8.32E+02 8.27E+04 ± 6.69E+03
GSA-IG 1.30E+03 ± 9.79E-04 1.52E+03 ± 9.72E+00 1.68E+03 ± 1.23E+02 1.65E+03 ± 9.00E+01 2.34E+03 ± 1.86E+03 6.34E+04 ± 9.15E+03

F31 F32 F33 F34 F35 F36
HGSA 5.19E+02 ± 2.63E+00 6.53E+02 ± 1.28E+01 6.08E+02 ± 4.54E+00 7.41E+02 ± 3.01E+00 9.00E+02 ± 9.03E+00 9.00E+02 ± 9.67E-14
HGSA-OG 5.40E+02 ± 2.54E+01 7.24E+02 ± 1.99E+01 6.51E+02 ± 3.27E+00 7.88E+02 ± 1.40E+01 9.56E+02 ± 1.32E+01 2.99E+03 ± 3.47E+02
GSA-IG 5.18E+02 ± 2.93E+00 6.54E+02 ± 1.57E+01 6.08E+02 ± 3.92E+00 7.43E+02 ± 3.93E+00 9.07E+02 ± 8.81E+00 9.00E+02 ± 2.99E-14

F37 F38 F39 F40 F41 F42
HGSA 4.21E+03 ± 2.93E+02 1.20E+03 ± 2.98E+01 1.29E+05 ± 8.15E+04 1.46E+04 ± 5.32E+03 6.72E+03 ± 3.05E+03 2.20E+03 ± 7.21E+02
HGSA-OG 4.89E+03 ± 3.95E+02 1.44E+03 ± 7.39E+01 9.28E+06 ± 1.74E+07 3.09E+04 ± 5.77E+03 4.77E+05 ± 1.08E+05 1.17E+04 ± 1.99E+03
GSA-IG 4.08E+03 ± 3.10E+02 1.20E+03 ± 3.08E+01 1.36E+05 ± 7.86E+04 1.46E+04 ± 4.78E+03 9.39E+03 ± 7.64E+03 2.17E+03 ± 5.54E+02

F43 F44 F45 F46 F47 F48
HGSA 2.83E+03 ± 2.32E+02 2.77E+03 ± 1.99E+02 6.16E+04 ± 1.47E+04 5.42E+03 ± 1.25E+03 2.86E+03 ± 2.24E+02 2.41E+03 ± 5.90E+01
HGSA-OG 3.19E+03 ± 3.13E+02 2.85E+03 ± 2.02E+02 2.79E+05 ± 1.33E+05 1.25E+04 ± 5.65E+03 3.00E+03 ± 1.92E+02 2.55E+03 ± 2.73E+01
GSA-IG 2.88E+03 ± 2.90E+02 2.72E+03 ± 2.24E+02 6.64E+04 ± 2.19E+04 5.01E+03 ± 1.13E+03 2.85E+03 ± 1.83E+02 2.42E+03 ± 1.26E+01

F49 F50 F51 F52 F53 F54
HGSA 2.30E+03 ± 3.91E-09 2.76E+03 ± 1.33E+02 2.92E+03 ± 3.58E+01 2.89E+03 ± 7.59E+00 2.85E+03 ± 5.07E+01 3.25E+03 ± 2.08E+01
HGSA-OG 6.16E+03 ± 1.86E+03 3.59E+03 ± 1.35E+02 3.28E+03 ± 5.03E+01 2.93E+03 ± 9.91E+00 6.39E+03 ± 1.25E+03 4.60E+03 ± 3.65E+02
GSA-IG 2.30E+03 ± 8.65E-08 2.78E+03 ± 8.30E+01 2.92E+03 ± 2.87E+01 2.89E+03 ± 8.73E+00 2.85E+03 ± 5.07E+01 3.26E+03 ± 2.37E+01

F55 F56 F57
HGSA 3.11E+03 ± 2.82E+01 4.05E+03 ± 1.88E+02 1.10E+04 ± 2.60E+03
HGSA-OG 3.31E+03 ± 5.72E+01 4.69E+03 ± 2.46E+02 1.82E+05 ± 9.87E+04
GSA-IG 3.11E+03 ± 2.68E+01 4.07E+03 ± 1.97E+02 1.11E+04 ± 1.93E+03

Table 4.16: Statistical results obtained by the Wilcoxon signed ranks test between HGSA
and HGSA-OG and GSA-IG in D = 30 dimensions.

HGSA vs. R+ R− p-value α=0.05
HGSA-OG 1550.5 45.5 0 YES
GSA-IG 1068.0 585.0 4.24E-02 YES
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validity and superiority of combination between a hierarchical structure and an improved

gravitational constant in HGSA.

4.5.3 Real-world optimization problems

To further investigate the practicability and performance of HGSA in other problems, four

real-world optimization problems from CEC2011 [143] are adopted to evaluate the prop-

erties between it and GSA, GGSA, CGSA-M, MGSA, PSOGSA and DNLGSA. These

four real-world problems are optimal control of a nonlinear stirred tank reactor (NLSTR),

spread spectrum radar polyphase code design (SSRPCD), transmission network expansion

planning (TNEP) and static economic load dispatch (ELD). NLSTR is a chemical process

occurred in a nonlinear stirred tank reactor. It is a benchmark optimization problem. SSR-

PCD aims to design a radar system by the polyphase codes, which is a mix-max nonlinear

global optimization problem with continuous variables. TNEP is to resolve the minimum

cost of expansion plan and implement no overloads during the planning horizon by the set

of transmission lines. It contains a DC power flow model. ELD is to minimize the fuel

cost of units in order to achieve an optimal generation dispatch among them, and meet four

constraints, i.e., load demand, generator operation, ramp rate limits and prohibited oper-

ating zones. The explicit implementation regarding these four problems can be referred

in [143]. The parameters of seven kinds of GSAs are the same as those in Table 4.1. For

each problem, each algorithm is independently run 30 times and the termination criterion

is D ∗ 10000 where D is set to be 1, 20, 7 and 13 according to the configuration of four

problems.

The mean, standard deviation, the best and worst solutions obtained by each algorithm

are shown in Table 4.17. From it, we can see that HGSA derives the least mean in four

problems, indicating its effective and steady performance in comparison with other six

GSAs. In addition, the worst solutions obtained by the HGSA in four problems are also the

least, suggesting that when seven algorithms trap into the local optima, the influence of the

premature convergence on HGSA is the lowest due to its effective structure and mechanism.

Therefore, this experiment denotes that HGSA is an effective and practicable algorithm for

resolving some real-world optimization problems.
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4.5.4 Time complexity analysis

The above experiments have demonstrated a remarkable performance of HGSA on func-

tions and real-world optimization problems. To investigate the efficiency of HGSA, the

time complexity analysis between it and other six GSAs is carried out. The population size

n is analyzed in the time complexity. The corresponding time complexity of each procedure

in HGSA is calculated as follows:

(1) Initializing the parameters of HGSA needs the time complexity O(1).

(2) Establishing a three-layered hierarchical population structure requires 2O(n)+O(1).

(3) Justifying the boundary of population costs O(n).

(4) Calculating the fitness of all the individuals on the bottom layer needs O(n).

(5) The masses of all the individuals on the bottom layer are calculated, which costs

4O(n).

(6) The time complexity of obtaining a gravitational constant is O(1).

(7) The K best individuals on the medium layer are determined. Since the K value

linearly decreases, the time complexity of this procedure in the worst condition is O(n2) +

O(n).

(8) The global optimal individual is selected to place on the top layer. The time com-

plexity of this operation at most is O(n).

(9) The velocities of the K best individuals on the medium layer are updated by the

global optimal individual on the top layer. This process at most requires O(n).

(10) The accelerations of all the individuals on the bottom layer are calculated by the K

best individuals on the medium layer. This operation at most costs 2O(n2).

(11) The velocities and positions of all the individuals on the bottom layer are updated,

which need O(n) and O(n).

Consequently, the overall time complexity of HGSA under the termination criterion is

calculated as follow:

O(1) + 2O(n) + O(1) + T ∗ [O(n) + O(n) + 4O(n) + O(1) + O(n2) + O(n)+

O(n) + O(n) + 2O(n2) + O(n) + O(n)]

= 3T ∗ O(n2) + (11T + 2) ∗ O(n) + (T + 2) ∗ O(1),

(4.13)

where T is the maximum iteration number. To be simplified, we can regard its overall time

complexity as O(n2).

After calculating the time complexity of GSA, GGSA, CGSA-M, MGSA, PSOGSA
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and DNLGSA, we find that these six GSAs possess the same time complexity O(n2) which

mainly occurs in generating accelerations of individuals. The results show that the time

complexity of HGSA is identical with that of other six GSAs, implying that HGSA main-

tains the same computational efficiency in comparison with other GSAs. In other words,

a hierarchical structure not only enhances the performance of HGSA but also does not de-

crease its efficiency, indicating that it is an effective and prospective population topology

for refining the property of GSA.

4.6 Conclusions

In this chapter, a three-layered hierarchical GSA with an improved gravitational constant

(HGSA) is proposed to enhance the performance of GSA from the viewpoint of population

topology. Since the conventional GSA is prone to trap into the local optima and its search

ability is limited, HGSA is devised to address these two issues. A hierarchical population

structure is used to effectively guide the evolution of individuals and an improved gravita-

tional constant intensifies the exploration ability of HGSA. Two weighted coefficients with

time effectively control the relationship among three layers so as to balance the exploration

and exploitation abilities of HGSA. Three comparative experiments are implemented to an-

alyze the performances between HGSA and other six GSAs, five heuristic algorithms and

seven PSOs on numerous benchmark functions. Three experiments demonstrate a superior

performance of HGSA in comparison with other eighteen algorithms due to its effective

hierarchical structure and gravitational constant, suggesting that it significantly enhances

its exploration and exploitation abilities in the search process. In addition, a component-

wise experiment is conducted to show the effect of combination between a hierarchical

structure and an improved gravitational constant in HGSA. Afterwards, HGSA is applied

to four real-world optimization problems to further investigate its property. The experi-

ment verifies that HGSA is an effective and practicable approach for optimizing real-world

problems. Finally, the time complexity analysis of HGSA shows that it is the same compu-

tational efficient in contrast to other six GSAs.
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Chapter 5

Conclusions

5.1 Some general remarks

In this thesis, three kinds of evolutionary algorithms including DE, BSO and GSA are in-

vestigated from the viewpoint of population structure. Different algorithms have distinctive

population structures and characteristics. For them, three chapters are written to analyze

their inherent relationship and performance, respectively. Thus, some general remarks can

be summarized as follows:

(1) The population structure of DE shows a cumulative Poisson distribution. The good-

ness of fit verifies this phenomenon on several benchmark functions according to frequency

of degree among individuals. Besides, parameters of DE influence its population interac-

tion, which reflects different number of nodes and values of λ.

(2) The population structure of BSO meets a power law distribution on functions with

low dimension. Its frequency of degree can exhibit a straight slash in double logarithmic

coordinates. Different dimensions and parameters also influence the population structure

and performance of algorithm. To be specific, the occurrence of power law distribution can

indicate good performance of BSO. In addition, combinatorial parameter setting effectively

improves the property of BSO.

(3) The population structure of GSA in fact is a two-layered hierarchy. Based on this

characteristic, a three-layered hierarchical GSA with a log-sigmoid gravitational constant,

namely HGSA, is proposed to enhance its search ability. Hierarchical structure effectively

guides interaction among individuals and improved gravitational constant reinforces search

performance. Numerous contrastive experiments demonstrate the significant improvement

of HGSA.
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5.2 Future work

PIN provides an analytical platform for search performance metrics (such as population

entropy, search step length, population dispersion, convergence speed, etc.) and topolog-

ical structure metrics (such as degree distribution of network, characteristic path length,

assortative mixing, etc.). It is expected that some generic relationships between search

performance of EAs and topological structures of population can be drawn, thus to give

some potential guidelines for designing and improving the performance of EAs. Especial-

ly, EAs constructed based on heterogeneous population structures are expected to be more

effective. At present, my work only plays significant influence within DE, BSO and GSAs’

community, and it opens the door to the following future researches:

(1) PIN should be used to construct population structures of other EAs such as PSO

and ACO to investigate the relationship between their properties and population interaction

from a theoretical viewpoint of complex network.

(2) EAs with diverse population topologies could be designed to attempt to resolve

some engineering and practical problems. Their performances could also be analyzed via

PIN.

(3) More topological structure metrics should be used to study the properties of popu-

lation structures derived from EAs.

(4) New strategies or framework of population interaction should be added into EAs to

adjust their current structures and thereafter to enhance the performance and robustness of

algorithms. For instance, GSA can be further improved according to a three-layered hier-

archical structure where the distribution of individuals on three layers should be changed

by several new proposed strategies.
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