18 research outputs found

    Multi-threshold Control of the BMAP/SM/1/K Queue with Group Services

    Get PDF
    We consider a finite capacity queue in which arrivals occur according to a batch Markovian arrival process (BMAP). The customers are served in groups of varying sizes. The services are governed by a controlled semi-Markovian process according to a multithreshold strategy. We perform the steady-state analysis of this model by computing (a) the queue length distributions at departure and arbitrary epochs, (b) the Laplace-Stieltjes transform of the sojourn time distribution of an admitted customer, and (c) some selected system performance measures. An optimization problem of interest is presented and some numerical examples are illustrated

    Optimal Threshold Control by the Robots of Web Search Engines with Obsolescence of Documents

    Get PDF
    A typical web search engine consists of three principal parts: crawling engine, indexing engine, and searching engine. The present work aims to optimize the performance of the crawling engine. The crawling engine finds new web pages and updates web pages existing in the database of the web search engine. The crawling engine has several robots collecting information from the Internet. We first calculate various performance measures of the system (e.g., probability of arbitrary page loss due to the buffer overflow, probability of starvation of the system, the average time waiting in the buffer). Intuitively, we would like to avoid system starvation and at the same time to minimize the information loss. We formulate the problem as a multi-criteria optimization problem and attributing a weight to each criterion. We solve it in the class of threshold policies. We consider a very general web page arrival process modeled by Batch Marked Markov Arrival Process and a very general service time modeled by Phase-type distribution. The model has been applied to the performance evaluation and optimization of the crawler designed by INRIA Maestro team in the framework of the RIAM INRIA-Canon research project

    Mathematical Analysis of Queue with Phase Service: An Overview

    Get PDF
    We discuss various aspects of phase service queueing models. A large number of models have been developed in the area of queueing theory incorporating the concept of phase service. These phase service queueing models have been investigated for resolving the congestion problems of many day-to-day as well as industrial scenarios. In this survey paper, an attempt has been made to review the work done by the prominent researchers on the phase service queues and their applications in several realistic queueing situations. The methodology used by several researchers for solving various phase service queueing models has also been described. We have classified the related literature based on modeling and methodological concepts. The main objective of present paper is to provide relevant information to the system analysts, managers, and industry people who are interested in using queueing theory to model congestion problems wherein the phase type services are prevalent

    Markovian arrivals in stochastic modelling: a survey and some new results

    Get PDF
    This paper aims to provide a comprehensive review on Markovian arrival processes (MAPs), which constitute a rich class of point processes used extensively in stochastic modelling. Our starting point is the versatile process introduced by Neuts (1979) which, under some simplified notation, was coined as the batch Markovian arrival process (BMAP). On the one hand, a general point process can be approximated by appropriate MAPs and, on the other hand, the MAPs provide a versatile, yet tractable option for modelling a bursty flow by preserving the Markovian formalism. While a number of well-known arrival processes are subsumed under a BMAP as special cases, the literature also shows generalizations to model arrival streams with marks, nonhomogeneous settings or even spatial arrivals. We survey on the main aspects of the BMAP, discuss on some of its variants and generalizations, and give a few new results in the context of a recent state-dependent extension.Peer Reviewe

    Unreliable Retrial Queues in a Random Environment

    Get PDF
    This dissertation investigates stability conditions and approximate steady-state performance measures for unreliable, single-server retrial queues operating in a randomly evolving environment. In such systems, arriving customers that find the server busy or failed join a retrial queue from which they attempt to regain access to the server at random intervals. Such models are useful for the performance evaluation of communications and computer networks which are characterized by time-varying arrival, service and failure rates. To model this time-varying behavior, we study systems whose parameters are modulated by a finite Markov process. Two distinct cases are analyzed. The first considers systems with Markov-modulated arrival, service, retrial, failure and repair rates assuming all interevent and service times are exponentially distributed. The joint process of the orbit size, environment state, and server status is shown to be a tri-layered, level-dependent quasi-birth-and-death (LDQBD) process, and we provide a necessary and sufficient condition for the positive recurrence of LDQBDs using classical techniques. Moreover, we apply efficient numerical algorithms, designed to exploit the matrix-geometric structure of the model, to compute the approximate steady-state orbit size distribution and mean congestion and delay measures. The second case assumes that customers bring generally distributed service requirements while all other processes are identical to the first case. We show that the joint process of orbit size, environment state and server status is a level-dependent, M/G/1-type stochastic process. By employing regenerative theory, and exploiting the M/G/1-type structure, we derive a necessary and sufficient condition for stability of the system. Finally, for the exponential model, we illustrate how the main results may be used to simultaneously select mean time customers spend in orbit, subject to bound and stability constraints

    MAP/PH/1 systems with group service: performance analysis under different admission strategies

    Get PDF
    2015 - 2016Recent advances in wireless communication networks led to possibility of multi-rate transmission of information. The queueing theory represents a valid tool to study how the performances of such communication systems can be improved, and to give proper solutions. Modeling a multi-rate transmission system, in terms of queueing theory, means that a particular discipline has to be considered: a group of requests from users can be processed simultaneously in parallel and processing of the whole group is supposed finished if processing of all individual requests belonging to this group is over. In order to model this typology of telecommunication systems, some particular assumption can be made on arrivals, which occur by a Markovian arrival process, and on service time and length of admission period, which are regulated by phase type distributions. Thus, in this thesis MAP/PH/1 queueing systems have been considered, with and without retrial to take into account all possible behaviours of the customers. The main goal of the research activity presented in this work is to introduce novel admission strategies for the described systems, in order to give a major contribute to the current performance analysys, in particular as regard the choice of the optimal length of admission period and optimal size of the groups. Dynamics of such systems are described by multidimensional Markov chains. Ergodicity condition for these Markov chains have been derived, stationary probability distribution of the states have been computed, formulas for the main performance measures of the system have been attained. Essential advantages of the proposed customer’s service disciplines have been numerically illustrated. [edited by author]I recenti progressi ottenuti per le reti di comunicazione wireless, permettono la trasmissione multi-frequenza delle informazioni. La teoria delle code rappresenta un valido strumento per studiare come le performance di tali sistemi di comunicazione possano essere migliorate, e individuare opportune soluzioni. In termini di teoria delle code, modellare un sistema di trasmissione multi-frequenza significa considerare una determinata disciplina: un gruppo di richieste da parte di utenti possono essere processate simultaneamente in parallelo, e il processo dell’intero gruppo risulta completato se tutte le richieste appartenenti a tale gruppo sono espletate. Al fine di modellare tale tipologia di sistemi di telecomunicazione, si possono definire particolari assunzioni sugli arrivi, determinati da processi di arrivo Markoviani, e sul tempo di servizio e lunghezza del periodo di ammissione, regolati da distribuzioni di tipo a fasi. Pertanto, in tale lavoro di tesi sono stati considerati sistemi a coda di tipo MAP/PH/1, con e senza retrial per considerare tutti i possibili comportamenti degli utenti. Il principale obiettivo dell’attivita` di ricerca presentata in tale lavoro `e introdurre nuove strategie di ammissione per i sistemi descritti, al fine di fornire un maggior contributo alle attuali analisi sulle performance, in particolare relativamente alla scelta della lunghezza ottimale del periodo di ammissione e la dimensione ottimale dei gruppi. Le dinamiche di tali sistemi sono descritte da catene di Markov multidimensionali. `E stata ricavata la condizione di ergodicit`a per tali catene di Markov, `e stata calcolata la distribuzione delle probabilita` stazionarie degli stati, e sono state ottenute le formule per le misure dei principali parametri prestazionali del sistema. I principali vantaggi delle discipline di servizio proposte sono state illustrate numericamente. [a cura dell'autore]XXIX n.s

    Single server retrial queueing models.

    Get PDF
    Most retrial queueing research assumes that each retrial customer has its own orbit, and the retrial customers retry to enter service independently of each other. A small selection of papers assume that the retrial customers themselves form a queue, and only one customer from the retrial queue can attempt to enter at any given time. Retrial queues with exponential retrial times have been extensively studied, but little attention has been paid to retrial queues with general retrial times. In this thesis, we consider four retrial queueing models of the type in which the retrial customers form their own queue. Model I is a type of M/G/1 retrial queue with general retrial times and server subject to breakdowns and repairs. In addition, we allow the customer in service to leave the service position and keep retrying for service until the server has been repaired. After repair, the server is not allowed to begin service on other customers until the current customer (in service) returns from its temporary absence. We say that the server is in reserved mode, when the current customer is absent and the server has already been repaired. We define the server to be blocked if the server is busy, under repair or in reserved mode. In Model II, we consider a single unreliable server retrial queue with general retrial times and balking customers. If an arriving primary customer finds the server blocked, the customer either enters a retrial queue with probability p or leaves the system with probability 1 - p. An unsuccessful arriving customer from the retrial queue either returns to its position at the head of the retrial queue with probability q or leaves the system with the probability 1 - q. If the server fails, the customer in service either remains in service with probability r or enters a retrial service orbit with probability 1 - r and keeps returning until the server is repaired. We give a formal description for these two retrial queueing models, with examples. The stability of the system is analyzed by using an embedded Markov chain. We get a necessary and sufficient condition for the ergodicity of the embedded Markov chain. By employing the method of supplementary variables, we describe the state of the system at each point in time. A system of partial differential equations related to the models is derived from a stochastic analysis of the model. The steady state distribution of the system is obtained by means of probability generating functions. In steady state, some performance measures of the system are reported, the distribution of some important performance characteristics in the waiting process are investigated, and the busy period is discussed. In addition, some numerical results are given. Model III consists of a single-server retrial queue with two primary sources and both a retrial queue and retrial orbits. Some results are obtained using matrix analytic methods. Also simulation results are obtained. Model IV consists of a single server system in which the retrial customers form a queue. The service times are discrete. A stability condition and performance measures are presented.Dept. of Mathematics and Statistics. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .W87. Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3883. Thesis (Ph.D.)--University of Windsor (Canada), 2006

    Markovian arrivals in stochastic modelling : a survey and some new results

    Get PDF
    This paper aims to provide a comprehensive review on Markovian arrival processes (MAPs), which constitute a rich class of point processes used extensively in stochastic modelling. Our starting point is the versatile process introduced by Neuts (1979) which, under some simplified notation, was coined as the batch Markovian arrival process (BMAP). On the one hand, a general point process can be approximated by appropriate MAPs and, on the other hand, the MAPs provide a versatile, yet tractable option for modelling a bursty flow by preserving the Markovian formalism. While a number of well-known arrival processes are subsumed under a BMAP as special cases, the literature also shows generalizations to model arrival streams with marks, nonhomogeneous settings or even spatial arrivals. We survey on the main aspects of the BMAP, discuss on some of its variants and generalizations, and give a few new results in the context of a recent state-dependent extension

    Cross-layer performance control of wireless channels using active local profiles

    Get PDF
    To optimize performance of applications running over wireless channels state-of-the-art wireless access technologies incorporate a number of channel adaptation mechanisms. While these mechanisms are expected to operate jointly providing the best possible performance for current wireless channel and traffic conditions, their joint effect is often difficult to predict. To control functionality of various channel adaptation mechanisms a new cross-layer performance optimization system is sought. This system should be responsible for exchange of control information between different layers and further optimization of wireless channel performance. In this paper design of the cross-layer performance control system for wireless access technologies with dynamic adaptation of protocol parameters at different layers of the protocol stack is proposed. Functionalities of components of the system are isolated and described in detail. To determine the range of protocol parameters providing the best possible performance for a wide range of channel and arrival statistics the proposed system is analytically analyzed. Particularly, probability distribution functions of the number of lost frames and delay of a frame as functions of first- and second-order wireless channel and arrival statistics, automatic repeat request, forward error correction functionality, protocol data unit size at different layers are derived. Numerical examples illustrating performance of the whole system and its elements are provided. Obtained results demonstrate that the proposed system provide significant performance gains compared to static configuration of protocols

    Queues: Flows, Systems, Networks

    Get PDF
    В сборнике излагаются новые результаты научных исследований в области разработки и оптимизации моделей процессов передачи информации в телекоммуникационных сетях с использованием аппарата теории систем и сетей массового обслуживания. Предназначен специалистам в области вероятностного анализа, случайных процессов, математического моделирования, и математической статистики, а также специалистам в области проектирования и эксплуатации сетей связи и компьютерных сетей
    corecore