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We consider a finite capacity queue in which arrivals occur according to a batch Markov-
ian arrival process (BMAP ). The customers are served in groups of varying sizes.
The services are governed by a controlled semi-Markovian process according to a multi-
threshold strategy. We perform the steady-state analysis of this model by computing
(a) the queue length distributions at departure and arbitrary epochs, (b) the Laplace-
Stieltjes transform of the sojourn time distribution of an admitted customer, and (c)
some selected system performance measures. An optimization problem of interest is
presented and some numerical examples are illustrated.
Key words: Batch Markovian Arrival Process, Semi-Markovian Service, Algorithmic
Probability, Optimal Control.

AMS (MOS) subject classification: 90B22, 60K25

1 Introduction

One of the most popular and effective ways to model the flows of messages in modern
communication networks or jobs in a production and manufacturing process is to use
the batch Markovian arrival process (BMAP ). The BMAP is a rich class of point
processes that includes many well-known processes such as Poisson, Switched Poisson,
Markov-modulated Poisson, and PH-renewal processes. In recent years, there has been
a constant and growing interest in the investigation of queues with BMAP input [1, 6,
17, 41].
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328 A.N. DUDIN and S.R. CHAKRAVARTHY

The behavior of such queues is described usually in terms of continuous or discrete-
time Markov chains. These fall under the so-called M/G/1 type Markov chains [44]
or the quasi-Toeplitz Markov chains [23]. These chains have two important properties.
The first one is the Toeplitz-like structure for the (block) transition probability matrix
governing the queueing system under study. That is, the (i, l)th block matrix Pi,l of the
one-step transition probability matrix of the denumerable Markov chain corresponding
to the transition from state i to state l depends only on l−i, but not on i and l separately
for i > i0 where i0 ≥ 0 is some integer. The second property is the so-called non-skip
free to the left property. That is, Pi,l = 0, for 0 ≤ l < i − 1.

The presence of these two properties enables one to study the stationary distribution
of the chain using matrix analytic methods. We refer the reader to [1, 6, 17, 23, 28, 32,
34, 36, 37, 44] for latest developments in this area.

Under this paradigm, the queueing systems N/G/1 [45], M/SM/1 [44], BMAP/G/1
[42], and BMAP/SM/1 [43] have been completely investigated. Several modifications
of the BMAP/G/1 and BMAP/SM/1 queues are considered in the book [32].

The “non-skip free to the left” property is an important one in the development
of the theory of Markov chains of the M/G/1 paradigm. If we do not assume this
property (e.g., queues where negative arrivals take place or where services are in groups)
the investigation of the Markov chain governing the corresponding queueing system
becomes far more difficult (see, for example, [2, 3, 4, 35]). However, there are at least
two interesting cases where the analytical investigation of the chain is still possible when
the skip free to the left property is not satisfied.

The first case arises in the investigation of queues with disasters. Disaster is a special
case of negative arrivals of customers. A disaster causes the removal of all customers
(including those in service) from the system instantaneously. For more information on
such queueing systems we refer the reader to the survey paper [2]. A Markov chain that
describes the queue with disasters has non-zero blocks Pi,0 for any i ≥ 0. Hence, such
chains do not belong to the class of quasi-Toeplitz type Markov chains. However, the
stationary distribution of the queue length can be obtained in a rather nice analytical
form (see, for example, [27, 29, 33]).

The second case is where the customers are offered services in groups of varying sizes.
In the context of a finite capacity queueing system with finite buffer of size K, a different
type of service scheme in which services are offered to groups of varying size, ranging
from a predetermined threshold L to the maximum buffer size K, was introduced in
[7]. The pre-assigned number L ≥ 1, called the threshold, operates as follows. An
idle server finding fewer than L customers in the queue remains idle. However, when
i, L ≤ i ≤ K, customers are present, the idle server initiates a service for the entire
group. If a service has to be initiated through an arrival of a batch (for example, i jobs,
i < L, are in the queue with the server being idle, and the arriving batch has at least
L− i jobs) only a group of size no larger than K enter into service, and any remaining
customers in the batch are considered lost. Service schemes of this type in the context of
finite capacity GI/PH/1 and MAP/G/1 with single arrivals, and BMAP/M/c models
were investigated in the papers [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Some potential
applications of this type of service mechanism in manufacturing processes were outlined
in those papers.

Optimization problems in queueing theory play an important role in practice. They
can be broadly divided into two groups. One group deals with static optimization,
where some system parameters must be tuned to provide the desired quality of service
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to customers. For example, A.K. Erlang investigated the M/M/N/0 model and when
the arrival and service intensities are fixed, he calculated the minimal number of channels
needed to guarantee that the loss probability does not exceed a prespecified value.

The other group of optimization problems that falls under dynamic optimization
involves the control of some parameters of the queueing system such as the arrival rate,
the service rate, and the number of channels so as to optimize a given objective function.
This class of problems is more complicated and challenging as the objective function is a
(nonlinear) function of the steady-state probabilities and for most interesting practical
queueing models these probabilities will not be known explicitly. The traditional way
of solving such optimal control problems in queues is to use Markov decision processes.
However, this approach is not very powerful even in the case of classical queueing sys-
tems. Furthermore, in the case of Markov chains describing queues with BMAP input
and SM -services there is the curse of dimensionality problem. Thus, it appears that
when parametric strategies of control such as threshold, hysteretic, and randomization
are used in queueing models, the problem of finding an optimal control is better solved
by a direct approach. This approach involves an iterative process consisting of three
stages:

(1) Computation of the stationary queue length distribution for a given set of values
for controlled parameters,

(2) Evaluation of the objective function, and

(3) A search for optimal values for the controlled parameters using an efficient heuris-
tic approach.

Such an approach was used in analyzing the BMAP/G/1 system with a multi-threshold
service rate control with N service modes in [26], for the BMAP/PH/1/K queue with
hysteretic control in [5], for the BMAP/G/1 queue with hysteretic control in [30], and
for the BMAP/SM/1/K queue with hysteretic control in [31].

In this paper, we extend this approach to the BMAP/SM/1/K system with group
services. This generalizes the results of the paper [5] in two aspects. The first one is
the assumption of availability of J, J ≥ 2, service modes (in [5] J = 2). Secondly, we
assume SM -type service time distributions while in [5] PH-type services were used.
Furthermore, here we make a more realistic assumption about the service switching
mechanism in that we allow the switching only at the beginning of a service epoch. In
[5] the service rates can be changed at any epoch using a hysteretic type control.

The paper is organized as follows. In Section 2 the mathematical model and the
service control mechanism are described. The stationary queue length distribution em-
bedded at service completion epochs is investigated in Section 3 and the stationary
queue length distribution at an arbitrary time point is obtained in Section 4. In Section
5 some key system performance measures describing the queueing model are presented
along with their formulas. The stationary sojourn time distribution in the system of an
admitted customer is derived in Section 6. Section 7 contains a brief description of an
optimization problem and some illustrative numerical examples are presented in Section
8.
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2 The Mathematical Model

We consider a single server queue with a limited buffer of size K. Arrivals of customers
occur according to a batch Markovian arrival process (BMAP ), a tractable class of
Markov renewal process. Customers in a batch are admitted to the extent of buffer
availability and all others are considered lost. That is, we allow ”partial admission”
of a batch. We assume that the behavior of the BMAP is governed by the directing
process {νt, t ≥ 0}. This process is an irreducible continuous-time Markov chain with
the finite state space {1, . . . , W}. Suppose that the matrix D0 governs the transitions
corresponding to no arrivals, and the matrices Dk, k ≥ 1 govern the transitions cor-
responding to arrivals of batch size k, k ≥ 1. By assuming D0 to be a nonsingular
matrix, the interarrival times will be finite with probability one and the arrival process
does not terminate. Thus, we see that D0 is a stable matrix. Let Nt denote the
number of arrivals in (0, t] of the {νt} process. In the sequel, we need the matrices
P (n, t), n ≥ 0, t ≥ 0 where the (j, k)th entry of the matrix P (n, t) is defined as Pi,j(n, t)
= P (Nt = n, νt = j|N0 = 0, ν0, = i). Let

∞∑

n=0

P (n, t)zn = eD(z)t, (2.1)

where

D(z) =
∞∑

k=0

Dkzk, |z| < 1.

For use in the sequel, let 0 and 1 denote, respectively, the row and column vectors of
0’s and 1’s with appropriate size. The matrix D(1) is the infinitesimal generator of
the chain {νt, t ≥ 0}. Let u denote the stationary vector of this generator. That is,
uD(1) = 0, u1 = 1. The (group) arrival rate, λg , and the fundamental rate (or the
average intensity), λ, of the BMAP are defined as:

λg = u(D(1) − D0)1,

and
λ = uD′(1)1.

For full details on BMAP we refer the reader to [32, 42, 44] and for a review and
recent work on BMAP we refer the reader to [17].

We assume that the service is offered to groups of varying size i, L ≤ i ≤ K. Here
L is some pre-assigned number, L ≥ 1. If at the completion of a service fewer than L
customers are present, the server waits until the queue length reaches at least L and
then initiates a service to all those customers present in the system.

In order to attract and serve customers efficiently it may be necessary to control the
service rate (or the service time distribution) according to the number of customers in
the queue. We assume that the (group) service times of the customers follow an irre-
ducible finite state semi-Markov process {mt, t ≥ 0} with state space {1, 2, . . . , M}. The
sojourn times of the services are given by the entries of the kernel B(t) = ||Bm,m′(t)||
of dimension M . In this paper we categorize the services into J , J ≥ 2, modes of
operation. During the jth mode, the service times are given by the entries of the kernel
B(j)(t) = ||B(j)

m,m′(t)|| of dimension M . In other words, while the services of all groups
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are directed by the common process {mt, t ≥ 0}, the transitions of this process are gov-
erned by different kernels depending on the type of strategy control used. We further
assume that the semi-Markov services times have finite second moments. Note that
independent and identically distributed service time is a special case of the SM -service.
In this case, the service time of the group is characterized by the distribution function
B(j)(t), 1 ≤ j ≤ J .

We consider a multi-threshold strategy in this paper. This is defined by the integer-
valued thresholds I1, . . . , IJ−1. First assume that L − 1 = I0 ≤ I1 ≤ . . . ≤ IJ−1 ≤
IJ = K. If the number i of customers in the system at a service completion satisfies
the inequality Ij−1 < i ≤ Ij , then the entire group of i customers is served in the jth

mode, 1 ≤ j ≤ J . If the number of customers i is less than L, no service is offered until
the queue builds up to L or more. In the latter case, we consider two possible variants
for selecting the service mode for the next group. In Variant 1 the service for the
next group will always be in mode 1 and in Variant 2 the service mode for the next
group is determined at the beginning of the service according to the multi-threshold
strategy. Note that in the case of MAP (which corresponds to single arrivals) these two
variants coincide. Other types of variants for choosing the service mode can easily be
incorporated without any additional complexity and the details are omitted. In the case
when the thresholds are equal, the number of service modes is reduced appropriately.
Thus, if r thresholds are equal then the number of service modes will be reduced by
r − 1 to J − r + 1 and the service modes will be relabelled as 1, 2,..., J − r + 1.

In situations where there are various costs associated with the waiting of customers as
well as for providing faster modes of services, one of the most popular classes of the para-
metric strategies is the class of the multi-threshold strategies. The optimality of such
multi-threshold strategies in the class of all homogeneous Markovian strategies is proven
only in some particular cases (see, e.g., [18, 46]). However, such strategies are practical
as well as reasonable for numerical implementations. Various queueing systems, such
as M/M/N [19], GI |M |1 [22, 38], M |G|1 [20, 21, 39], BMAP |G|1 [26], BMAP |SM |1
(with retrials) [25], and BMAP |SM |1|N [24], with multi-threshold strategies of control
have been analyzed in the literature. For the type of group services introduced in [7],
to our knowledge this is the first time such a multi-threshold policy is considered.

3 Embedded Queue Length Distribution

Let tn denote the epoch of the nth service completion; in the number of customers in the
queue at tn +0, in ≥ 0; νn the state of the BMAP process, {νt}, at tn, 1 ≤ νn ≤ W ; and
mn be the state of the semi-Markovian process, {mt}, that governs the service process
at tn + 0, for 1 ≤ mn ≤ M, n ≥ 1. When the server becomes idle immediately after a
service completion due to not having enough customers in the queue, we assume that
the phase at tn + 0 will be the phase of the next service to be initiated. That is, the
phase of the service process will be frozen at the instant when the server becomes idle.
We can modify this scheme to allow the phase to be chosen according to some initial
probability vector, but this will not be addressed in this paper.

Let the thresholds I1, . . . , IJ−1 be fixed and predetermined. It is easy to verify that
the process {(in, νn, mn), n ≥ 1} is a three-dimensional Markov chain. The assumptions
of our model imply that this Markov chain has a stationary state distribution.
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Define
π(i, ν, m) = lim

n→∞
P{in = i, νn = ν, mn = m

i0, ν0, m0}, i ≥ 0, 1 ≤ ν ≤ W, 1 ≤ m ≤ M.

Enumerating the states of the Markov chain (in, νn, mn) in lexicographic order, we
form the vectors ~π(i), of dimension WM , for 0 ≤ i ≤ K, of stationary probabilities.

We now define a number of auxiliary quantities that we need in the sequel. Let Ω(j)
i

denote the matrix of probabilities that during the service of a group of customers in the
jth service mode exactly i customers arrive. That is,

Ω(j)
i =

∞∫

0

P (i, t) ⊗ dB(j)(t), i ≥ 0, 1 ≤ j ≤ J, (3.1)

and

Ω̃(j)
K =

∞∑

r=K

Ω(j)
r =

∞∫

0

eD(1)t ⊗ dB(j)(t) −
K−1∑

r=0

Ω(j)
r , 1 ≤ j ≤ J. (3.2)

Let X(i) denote the first passage probabilities of going from level 0 to level i
or higher. That is, the components of X(i) give the probabilities that the process
{Nt, νt, mt} reaches level i or higher for the first time from level 0. It is easy to verify
that X(i) is given by

X(i) =
i−1∑

l=0

∞∫

0

P (l, t)dt(D(1) −
i−l−1∑

r=0

Dr) ⊗ IM , i ≥ 1. (3.3)

Define Y
(l)
m , for L ≤ l ≤ K, 0 ≤ m ≤ L − 1, to be the matrices of probabilities that

the process {Nt, νt, mt} reaches level l starting from level m. These matrices are given
by

Y (l)
m =

L−m−1∑

i=0

∞∫

0

P (i, t)Dl−m−idt ⊗ IM , L ≤ l < K − 1, 0 ≤ m ≤ L − 1, (3.4)

and

Y (K)
m =

L−m−1∑

i=0

∞∫

0

P (i, t)(D(1) −
K−m−i−1∑

r=0

Dr) ⊗ IM dt, 0 ≤ m ≤ L− 1. (3.5)

Lemma 1: The vectors ~π(i), i ≥ 0 satisfy the following equations:

~π(i) =
L−1∑

r=0

~π(r)X(L−r)Ω(1)
i +

J∑

j=1

Ij∑

r=Ij−1+1

~π(r)Ω(j)
i , 0 ≤ i ≤ K − 1, (3.6)

~π(K) =
L−1∑

r=0

~π(r)X(L−r)Ω̃(1)
K +

J∑

j=1

Ij∑

r=Ij−1+1

~π(r)Ω̃(j)
K , (3.7)
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for Variant 1 (where service is always in mode 1 once the group size builds to L or
more); and for Variant 2 (where the mode of service is determined at the beginning of
a service after the group size builds to L or more) the equations are

~π(i) =
L−1∑

r=0

~π(r)
K∑

l=L

Y (l)
r Ω(χ(l))

i +
J∑

j=1

Ij∑

r=Ij−1+1

~π(r)Ω(j)
i , 0 ≤ i ≤ K − 1, (3.8)

~π(K) =
L−1∑

r=0

~π(r)
K∑

l=L

Y (l)
r Ω̃(χ(l))

K +
J∑

j=1

Ij∑

r=Ij−1+1

~π(r)Ω̃(j)
K . (3.9)

The quantity χ(l) is equal to j if Ij−1 + 1 ≤ l ≤ Ij , L ≤ l ≤ K, 1 ≤ j ≤ J , and χ(l) is
equal to J for l > K.

Proof: The proof follows directly from the law of total probability.
Theorem 1: The stationary probability vectors ~π(i) are calculated as follows:

~π(i) =
J∑

j=1

vjΩ
(j)
i , 0 ≤ i ≤ K − 1, (3.10)

~π(K) =
J∑

j=1

vjΩ̃
(j)
K , (3.11)

where the vector v = (v1, . . . ,vJ ) is the unique solution to the system

v = vA, (3.12)

v1 = 1. (3.13)

The matrix A is defined as follows. In the case of Variant 1, the entries Arj are given
by:

Arj =





Ω(r)(I0 + 1, I1) +
L−1∑
i=0

Ω(r)
i X(L−i), 1 ≤ r ≤ J, j = 1,

Ω(r)(Ij−1 + 1, Ij), 1 ≤ r ≤ J, 2 ≤ j ≤ J,

(3.14)

with

Ω(r)(Ij−1 + 1, Ij) =





Ij∑
i=Ij−1+1

Ω(r)
i , 1 ≤ j ≤ J − 1,

∞∑
i=Ij−1+1

Ω(r)
i , j = J.

(3.15)

For Variant 2, the entries Arj are of the form:

Arj =
L−1∑

k=0

Ω(r)
k

Ij∑

l=Ij−1+1

Y
(l)
k + Ω(r)(Ij−1 + 1, Ij), 1 ≤ r, j ≤ J. (3.16)
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Proof: We will prove for Variant 2 as the proof is similar for the other case. Defining

vj =
L−1∑

k=0

~π(k)
Ij∑

l=Ij−1+1

Y
(l)
k +

Ij∑

k=Ij−1+1

~π(k), 1 ≤ j ≤ J, (3.17)

and substituting (3.17) into (3.8) and (3.9) we get expressions (3.10) and (3.11). Thus,
to complete the proof we have to show that the vectors vj , 1 ≤ j ≤ J satisfy system
of equations given in (3.12) and (3.13) for Variant 2. To this end, we first multiply

equation (3.10) by
Ij∑

l=Ij−1+1

Y
(l)
i and add over 0 ≤ i ≤ L− 1. When this is added to the

sum of equations (11) over Ij−1 ≤ i ≤ Ij , we get

vj =
J∑

r=1

vrArj , 1 ≤ j ≤ J, (3.18)

where the matrices Arj are defined by formula (3.16). The stated result follows imme-
diately.

Remarks:

(1) Note that the vectors ~π(i), 0 ≤ i ≤ K can be calculated directly by solving the
system of linear equations in (3.6) and (3.7) (or (3.8) and (3.9)). However, when
J < K, use of Theorem 1 will reduce the computational efforts.

(2) The entries of the matrices Arj of dimension WM have a very nice probabilistic
interpretation. Partitioning the matrix Arj into W blocks of M by M matrices,
the (l, l′)th entry of the (k, k′)th block matrix gives the transition probability that
the next service will start in mode j with phase l′ and at that instant the arrival
process will be in phase k′ given that the current service is in mode r with phase
l and the arrival process is in phase k.

4 Stationary Queue Length Distribution at Arbitrary
Time Points

Let z(0, i), 0 ≤ i ≤ L−1, be the row vector of size WM whose entries z(0, i, j, k) give the
steady-state probabilities that at an arbitrary time there are i customers in the queue
with the arrival process in phase j and the server became idle from service phase k.
Similarly, let z(n, i), for L ≤ n ≤ K, 0 ≤ i ≤ K, 1 ≤ j ≤ W, 1 ≤ m ≤ M , be the vector
whose entries z(n, i, j, k) define the steady-state probability that at an arbitrary time
there are i customers in the queue with the arrival process in phase j and the current
service for a batch of n customers is in phase k. To derive an expression relating the
steady state probabilities at an arbitrary time and at embedded epochs, first we need
the following lemma dealing with the mean interdeparture time.

Lemma 2: Suppose that τ denotes the mean interdeparture time. It is calculated as

τ =
[L−1∑

i=0

~π(i)Ĝ(L−i) +
J∑

j=1

vj

(
IW ⊗

∞∫

0

tdB(j)(t)
)]

1, (4.1)
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where

Ĝ(L−i) =
L−i−1∑

l=0

∞∫

0

tP (l, t)(D(1) −
L−i−l−1∑

r=0

Dr)dt ⊗ IM . (4.2)

Proof: The proof follows immediately from the law of total probability on noting
that the entries of the matrix Ĝ(L−i) give the (conditional) mean time until the beginning
of the next service for a group of L or more customers given that that the previous service
left behind i, 0 ≤ i ≤ L − 1, customers in the queue.

Theorem 2: The stationary-state probability vectors z(n, i) in Variant 1 are ob-
tained as follows:

z(0, i) = τ−1
i∑

l=0

~π(l)

∞∫

0

P (i − l, t)dt ⊗ IM , 0 ≤ i ≤ L − 1, (4.3)

z(n, i) = τ−1

[L−1∑

l=0

~π(l)
L−l−1∑

k=0

∞∫

0

P (k, t)Dn−l−kdt ⊗ IM

∞∫

0

P̃ (i, t) ⊗ (IM −∇(1)
B (t))dt

+~π(n)

∞∫

0

P̃ (i, t) ⊗ (IM −∇(χ(n))
B (t))dt

]
, L ≤ n ≤ K − 1, 0 ≤ i ≤ K, (4.4)

z(K, i) = τ−1

[L−1∑

l=0

~π(l)
L−l−1∑

k=0

∞∫

0

P (k, t)
∞∑

r=K−l−k

Drdt ⊗ IM

∞∫

0

P̃ (i, t) ⊗ (IM −∇(1)
B (t))dt

+~π(K)

∞∫

0

P̃ (i, t) ⊗ (IM −∇(χ(K))
B (t))dt

]
, 0 ≤ i ≤ K, (4.5)

where

P̃ (i, t) =





P (i, t), if i < K,

∞∑
l=K

P (l, t), if i = K,

and ∇(j)
B (t) is the diagonal matrix with the diagonal entries defined by the vector B(j)(t)1,

1 ≤ j ≤ J , and the indicator function χ(n) is as defined in Lemma 1.
In Variant 2, the formulas are corrected by means of replacing ∇(1)

B (t) with ∇(χ(n))
B (t)

in (4.4) and ∇(χ(K))
B (t) in (4.5).

Proof: Proof follows from a classical argument based on the key renewal theorem
(see e.g. [40]).

Remark: Note that the arbitrary time stationary probabilities depend implicitly
on the type of variant considered for initiating a service while waiting for the queue size
to build up to L or more, through the vectors ~π(l).
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Corollary 1: Let ~ηi be the vector such that the (j, k)th component gives the proba-
bility that at an arbitrary time there are i customers in the system and that the arrival
and service processes are respectively in phases j and k. Then we have

~ηi = z(0, i) +
min{i,K}∑

l=L

z(l, i − l), 0 ≤ i ≤ 2K. (4.6)

Note that z(0, i) = 0 for i ≥ L and in the above summation when the lower bound is
greater than the upper bound the value is set to zero.

Corollary 2: The probability vector, q(n), n ≥ L, of seeing n customers at the
beginning of a service is obtained as

q(n) = τ−1

[L−1∑

l=0

~π(l)
L−l−1∑

k=0

∞∫

0

P (k, t)Dn−l−kdt ⊗ IM + ~π(n)
]
, L ≤ n ≤ K. (4.7)

5 Selected System Performance Measures

In this section we give a number of system performance measures and their respective
formulas useful in qualitative interpretation of the model.

(1) The probability that an arriving customer will be lost is given by

Preject = 1 − λ−1
[L−1∑

i=0

z(0, i)
K−i∑

k=0

(k + i − K)Dk ⊗ IM

+
K∑

n=L

K∑

i=0

z(n, i)
K−i∑

k=0

(k + i − K)Dk ⊗ IM

]
1. (5.1)

(2) Let ζj , for j ≥ 0, denote the probability that exactly j customers are lost at an
arrival epoch. Then we have

ζj = λg
−1
[L−1∑

i=0

z(0, i)(DK−i+j1⊗1)+
K∑

n=L

K∑

i=0

z(n, i)(DK−i+j1⊗1)
]
, j ≥ 0, (5.2)

where λg is the (group) arrival rate of the BMAP .

(3) The mean number of lost customers at an arrival epoch, µNL, is calculated as

µNL =
∞∑

j=1

jζj . (5.3)

(4) The throughput of the system is given by λ(1 − Preject).

(5) Denoting by θ0 the fraction of time the server is idle and by θr, 1 ≤ r ≤ J , the
fraction of time the server is busy serving customers in rth mode, we have

θ0 = τ−1
L−1∑

i=0

~π(i)Ĝ(L−i)1, (5.4)
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θr = τ−1vr(IW ⊗
∞∫

0

tdB(r)(t))1, 2 ≤ r ≤ J, (5.5)

θ1 = τ−1
I1∑

i=0

~π(i)(IW ⊗
∞∫

0

tdB(1)(t))1, (5.6)

in the case of Variant 1 and

θ1 = τ−1v1(IW ⊗
∞∫

0

tdB(1)(t))1 (5.7)

in the case of Variant 2.

(6) The mean number of customers in the queue, µQL, is given by

µQL =
K∑

i=0

i
[
z(0, i)1 +

K∑

n=L

z(n, i)1
]
. (5.8)

(7) Suppose that Srj , for r 6= j, 1 ≤ r, j ≤ J , denotes the average number of ser-
vice switches per unit of time. Then from the probabilistic interpretation of the
quantities vr and Arj , we have

Srj = τ−1vrArj1, r 6= j, 1 ≤ r, j ≤ J, (5.9)

where Arj is as defined in (3.14) for Variant 1 and (3.16) for Variant 2.

6 Sojourn Time Distribution

Let V(x) be the vector distribution function of the sojourn time in the system of an
admitted customer at an arrival epoch. We will call this admitted customer a tagged
customer. Partitioning V(x) into V(x) = (v1,1(x), ..., v1,M (x), ..., vW,1(x), ..., vW,M (x)),
the entry of vj1,j2(x) gives the distribution function of the sojourn time of the tagged
customer given that the arrival process is in state j1 and the current service is in phase
j2. Recall that if the server is idle then the new service will start in phase j2. Let

v(s) =
∞∫
0

e−sxdV(x), Re s > 0, be the Laplace-Stieltjes transform of V(x).

Before we derive an expression for v(s) for the tagged customer, we need the following
result. Suppose ξl,r, 0 ≤ l ≤ L−1, L ≤ r ≤ K, denotes the sojourn time from the epoch
when the server is idle with l customers waiting in the system to the epoch when the
service starts for a group of r customers.

Let Fl,r(x) be the matrix whose (j, j′)th entry is the conditional distribution function:

P (ξl,r ≤ x, νt = j′|ν0 = j).

Let φl,r(s) =
∞∫
0

e−sxdFl,r(x) and Φ(s) = ||φl,r(s)||l=0,L−1, r=L,K .
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Lemma 3: The (matrix) Laplace-Stieltjes transform Φ(s) is given by

Φ(s) = (I − ∆2(s))−1∆1(s), (6.1)

where ∆r(s)= (IL ⊗ (−D0 + sI)−1) ∆̃r with

∆̃1 =




DL DL+1 · · · DK−1

∞∑
m=K

Dm

DL−1 DL · · · DK−2

∞∑
m=K−1

Dm

...
...

...
...

D1 D2 · · · DK−L

∞∑
m=K−L+1

Dm




,

and

∆̃2 =




0 D1 D2 · · · DL−1

0 0 D1 · · · DL−2

...
...

...
...

0 0 0 · · · D1

0 0 0 · · · 0




.

Proof: The proof follows immediately on noting that

dFl,r(x) = eD0xDr−ldx +

x∫

0

eD0y
L−l−1∑

m=1

DmdydFl+m,r(x − y), L ≤ r ≤ K − 1,

dFl,K(x) = eD0x
∞∑

m=K−l

Dmdx +

x∫

0

eD0y
L−l−1∑

m=1

DmdydFl+m,K(x − y), 0 ≤ l ≤ L − 1.

In order to derive an expression for v(s) for the tagged customer, we need to consider
two cases.

Case 1: Suppose that the tagged customer is part of a batch of k customers at the
epoch when the server is idle and when i, 0 ≤ i ≤ L− 1, customers are waiting in
the queue. In this case we need to consider the following three scenarios depending
on the size of k:

Case 1A: Suppose that k is such that L ≤ i+k ≤ K. In this case the tagged customer
and the others enter service immediately and the service time distribution function
is given by B(χ(k+i))(t).

Case 1B: Suppose that k is such that 1 ≤ i + k ≤ L − 1. In this case the tagged
customer waits for a random duration, ξk+i,r until the number of customers in
the system reaches r, L ≤ r ≤ K, before entering into service. The service time
of the tagged customer will then be given by B(χ(r))(t).

Case 1C: Suppose that k is such that i + k > K. In this case the tagged customer
along with K−i−1 customers will enter into service immediately and their service
time is governed by B(J)(t).
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Case 2: Suppose that the tagged customer arrives as part of a batch of k customers at
the epoch when the server is busy with m customers and that there are i customers
waiting in the queue. In this case, we need to consider the following two scenarios.

Case 2A: Suppose that k is such that i + k ≤ K. Suppose that l customers arrive
during the residual service time of the current service. Note that the current
service is governed by B(χ(m))(t). If i + k + l ≥ L, then the service time of the
tagged customer is given by B(χ(i+k+l))(t). If i + k + l < L, then the tagged
customer waits for a duration ξi+k+l,r , L ≤ r ≤ K before entering service which
is governed by B(χ(r))(t).

Case 2B: Suppose that k is such that i + k > K. In this case the tagged customer
along with K−i−1 customers will enter into service immediately and their service
time is governed by B(J)(t).

Combining all of the above scenarios, the following relation holds good for x > 0:

d~V (x) = λ−1

{L−1∑

i=0

z(0, i)
[L−i−1∑

k=1

kDk ⊗ I

K∑

r=L

x∫

0

dxFi+k,r(x − y) ⊗ dB(χ(r))(y)

+
K−i∑

k=L−i

kDk ⊗ dB(χ(k+i))(x) +
∞∑

k=K−i+1

(K − i)Dk ⊗ dB(J)(x)
]

+
K∑

m=L

~q(m)
[L−1∑

i=0

∞∫

0

P (i, u)
L−i−1∑

k=1

kDkdu ⊗ I
L−i−k−1∑

l=0

x∫

0

P (l, y)⊗ dyB(χ(m))(u + y)·

·
K∑

r=L

x−y∫

0

dxFi+k+l,r(x − y − v) ⊗ dB(χ(r))(v)

+
K∑

i=0

∞∫

0

P (i, u)
K−i∑

k=1

kDkdu ⊗ I

∞∑

l=L−l−k

x∫

0

P (l, y) ⊗ dyB(χ(m))(y + u)· (6.2)

·I ⊗ dxB(χ(i+k+l))(x − y) +
K∑

i=L

∞∫

0

P (i, u)
∞∑

k=K−i+1

(K − i)Dkdu ⊗ I ·

·
x∫

0

eD(1)y ⊗ dyB(χ(m))(y + u)I ⊗ dxB(J)(x − y)
]}

.

Defining

T (i, k, l, j, s) =

∞∫

0

P (i, u)Dkdu

∞∫

0

P (l, y)e−sy ⊗ dyB(j)(y + u), (6.3)

i ≥ 0, k ≥ 1, l ≥ 0, 1 ≤ j ≤ J, Res > 0,

the following theorem is easily verified.
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Theorem 3: The vector Laplace-Stieltjes transform v(s) of the sojourn time of an
admitted customer in the case of Variant 2 is given by

v(s) =
1

λ(1 − Preject)

{L−1∑

i=0

z(0, i)
[L−i−1∑

k=1

kDk ⊗ I

K∑

r=L

φi+k,r(s)β(χ(r))(s)+

+
K−i∑

k=L−i

kDk ⊗ β(χ(k+i))(s) +
∞∑

k=K−i+1

(K − i)Dk ⊗ β(J)(s)
]
+

+
K∑

m=L

~q(m)
[L−1∑

i=0

L−i−1∑

k=1

L−i−1−k∑

l=0

kT (i, k, l, χ(m), s)· (6.4)

·
K∑

r=L

φi+k+l,r(s) ⊗ β(χ(r))(s)+

+
K∑

i=0

K−i∑

k=1

∞∑

l=L−i−k

kT (i, k, l, χ(m), s)I ⊗ β(χ(i+k+l))(s)+

+
K∑

i=L

∞∑

k=K−i+1

∞∑

l=0

(K − i)T (i, k, l, χ(m), s)I ⊗ β(J)(s)
]}

,

where β(j)(s) =
∞∫
0

e−sxdB(j)(x), 1 ≤ j ≤ J.

Note: The expression in (6.4) can be used to calculate the mean sojourn time of an
admitted customer in the case of Variant 2.

Corollary 3: The (marginal) Laplace-Stieltjes transform v̂(s) of the tagged customer
is given by

v̂(s) = v(s)1. (6.5)

Remark: Theorem 3 can easily be modified for Variant 1 and the details are omit-
ted.

7 An Optimization Problem

In this section we consider an optimization problem. Let cj , 0 ≤ j ≤ J , denote the cost
per unit of time of service in mode j. Note that when j=0, the server is considered
to be idle. Let d1 denote the holding cost per customer per unit of time of waiting in
the queue and d2 the cost per lost customer per unit of time. Then the optimization
problem of interest is given by

min
I1,...,IJ−1

{
J∑

j=0

cjθj + d1µQL + d2λPreject}, (7.1)

where Preject, θj , and µQL are as given in (5.1),(5.4)–(5.8).
Finding an optimal solution in the set of all multi-threshold policies is very complex.

Furthermore, the solution of this problem is complicated due to the fact that the ob-
jective function is known only implicitly in terms of the steady state measures. Hence,
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developing a very clever and efficient heuristic algorithm and the numerical implemen-
tation of this algorithm require a very careful and detailed analysis. In the next section
we provide some interesting numerical examples.

8 Numerical Examples

In this section we will discuss some illustrating numerical examples. We consider three
arrival processes with the following BMAP representations {Dk}.

1. Erlang:

D0 =
(

−5.65218 5.65218
0 −5.65218

)
, D1 = D2 =

(
0 0

2.82609 0

)

Dk = 0, k ≥ 3.

2. Hyperexponential:

D0 =
(

−6 0
0 −1.2648646

)
, D1 = D2 =

(
2.1 0.9

0.4427026 0.1897297

)
,

Dk = 0, k ≥ 3.

3. BMAP with Positive Correlation:

D0 =




−1.45 0.2 0.15 0.1
0.2 −2.6 0.1 0.3
0.2 0.1 −3.7 0.4
0.1 0.05 0.15 −4.3


 , D1 = D2 =




0.5 0 0 0
0 1 0 0
0 0 1.5 0
0 0 0 2


 ,

Dk = 0, k ≥ 3.

For all these BMAPs it is easy to verify that λg = 2.8261 and λ = 4.2391. While
the first two arrival processes correspond to renewal processes, the third arrival process
corresponds to a correlated process with the correlation between the successive interar-
rival epochs given by 0.12795. The standard deviation of these three arrival processes
are, respectively, 0.25021, 0.53731, and 0.43652.

We take J = 3. That is, the system has at most three operation modes. The
service times are of semi-Markov type. For all three operation modes, the transition
matrix P of the embedded Markov chain for the directing process {mt, t ≥ 0} and the
semi-Markovian kernels B(j)(t), 1 ≤ j ≤ 3, are taken to be

P =
(

0.6 0.4
0.35 0.65

)
, B(j)(t) =

(
B

(j)
1 (t) 0
0 B

(j)
2 (t)

)
P,

where the distribution functions B
(j)
r (t) correspond to degenerate random variables T

(j)
r

with
T

(1)
1 = 0.8, T

(1)
2 = 0.9, T

(2)
1 = 0.7, T

(2)
2 = 0.65, T

(3)
1 = 0.5, T

(3)
2 = 0.4.
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The mean service time, b
(j)
1 , 1 ≤ j ≤ 3, when the system operates in the jth mode is

calculated as
b
(1)
1 = 0.85333, b

(2)
1 = 0.67333, b

(3)
1 = 0.44667.

We fix K = 10, L = 2, and take

c0 = 2, c1 = 4, c2 = 6.3, c3 = 9.8, d1 = 3, and d2 = 10.

In the following we consider Variant 1 for the service mechanism. That is, the service
initiated through an arrival of a customer will always be in mode 1.

In Tables 1 through 3 that follow we list the values of θj , 0 ≤ j ≤ 3, P = Preject, and
µQL for various combinations of the thresholds I1 and I2, for the three arrival processes.
Note that I3 = K = 10. Also, when I1 = I2 we have only two service modes, namely
mode 1 and mode 3, and when I1 = I2 = I3, there is only one service mode which is
mode 1.

Table 1: Cost function and its components for various values of I1 and I2 for Erlang arrivals

I1, I2 Cost µQL P × 105 θ0 × 103 θ1 × 103 θ2 × 103 θ3 × 103

2,2 9.37472 1.322 24 119 600 0 281
2,3 9.38577 1.372 24 102 548 162 188
3,3 9.28403 1.441 31 95 708 0 197
2,4 9.39593 1.417 23 88 501 306 105
3,4 9.29263 1.488 31 81 666 139 114
4,4 9.20693 1.547 37 75 804 0 121
2,5 9.40151 1.443 23 79 473 394 54
3,5 9.29762 1.517 31 71 640 228 61
4,5 9.21053 1.579 37 65 780 89 66
5,5 9.15483 1.619 41 61 870 0 69
2,6 9.40475 1.460 23 73 456 448 23
3,6 9.30060 1.536 31 65 623 285 27
4,6 9.21267 1.600 37 58 765 147 30
5,6 9.15589 1.642 41 54 856 58 32
6,6 9.11905 1.669 44 51 916 0 33
2,7 9.40605 1.467 23 71 449 471 9
3,7 9.30184 1.544 31 62 616 311 11
4,7 9.21356 1.610 37 55 757 175 13
5,7 9.15628 1.653 41 50 849 87 14
6,7 9.11910 1.681 44 47 910 29 14
7,7 9.10052 1.695 45 45 940 0 15
2,8 9.40662 1.470 23 70 445 482 3
3,8 9.30240 1.548 31 61 612 323 4
4,8 9.21395 1.615 37 53 754 188 5
5,8 9.15644 1.658 41 48 846 101 5
6,8 9.11909 1.687 44 45 907 43 5
7,8 9.10044 1.701 45 43 937 14 6
8,8 9.09137 1.708 46 42 952 0 6
2,9 9.40681 1.471 23 69 444 486 1
3,9 9.30259 1.550 31 60 611 327 2
4,9 9.21409 1.617 37 53 753 193 1
5,9 9.15650 1.660 41 48 845 105 2
6,9 9.11909 1.689 44 44 906 48 2
7,9 9.10040 1.703 45 43 936 19 2
8,9 9.09133 1.710 46 42 951 5 2
9,9 9.08785 1.713 46 41 957 0 2
2,10 9.40691 1.471 23 69 444 487 0
3,10 9.30270 1.551 31 60 610 330 0
4,10 9.21417 1.618 37 52 752 196 0
5,10 9.15653 1.661 41 47 844 109 0
6,10 9.11908 1.690 44 44 905 51 0
7,10 9.10038 1.705 45 42 935 23 0
8,10 9.09130 1.712 46 41 950 9 0
9,10 9.08782 1.714 46 41 956 3 0
10,10 9.08590 1.716 46 41 959 0 0
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Table 2: Cost function and its components for various values of I1 and I2 for hyperexponential arrivals

I1, I2 Cost µQL P × 105 θ0 × 103 θ1 × 103 θ2 × 103 θ3 × 103

2,2 9.64944 1.409 1341 296 455 0 249
2,3 9.64231 1.435 1360 284 436 84 196
3,3 9.64090 1.474 1479 276 526 0 198
2,4 9.63622 1.459 1378 273 418 163 146
3,4 9.63346 1.497 1495 265 508 79 148
4,4 9.63239 1.533 1606 258 592 0 150
2,5 9.63316 1.478 1393 265 404 224 107
3,5 9.62928 1.515 1507 257 493 141 109
4,5 9.62740 1.551 1618 250 578 61 111
5,5 9.62871 1.579 1706 244 643 0 113
2,6 9.63150 1.495 1406 258 392 276 74
3,6 9.62667 1.531 1518 250 480 193 77
4,6 9.62411 1.567 1628 242 565 114 79
5,6 9.62513 1.595 1716 237 631 52 80
6,6 9.62750 1.619 1791 232 686 0 82
2,7 9.63112 1.507 1417 253 383 314 50
3,7 9.62559 1.544 1527 245 471 232 52
4,7 9.62252 1.579 1636 237 555 154 54
5,7 9.62332 1.608 1725 231 622 91 56
6,7 9.62560 1.632 1801 227 677 39 57
7,7 9.62899 1.651 1860 223 719 0 58
2,8 9.63130 1.517 1425 249 377 342 32
3,8 9.62527 1.553 1534 241 463 262 34
4,8 9.62183 1.588 1643 233 548 184 35
5,8 9.62249 1.617 1732 227 614 122 37
6,8 9.62472 1.641 1808 222 670 70 38
7,8 9.62811 1.661 1868 219 713 30 38
8,8 9.63173 1.675 1914 216 745 0 39
2,9 9.63174 1.523 1430 246 372 362 20
3,9 9.62539 1.559 1539 238 459 282 21
4,9 9.62171 1.595 1647 231 543 204 22
5,9 9.62227 1.624 1737 225 609 143 23
6,9 9.62448 1.649 1813 220 665 91 24
7,9 9.62789 1.668 1874 216 708 51 25
8,9 9.63153 1.683 1920 213 740 22 25
9,9 9.63494 1.694 1954 211 763 0 26
2,10 9.63332 1.534 1439 242 365 393 0
3,10 9.622651 1.571 1547 234 450 316 0
4,10 9.62251 1.606 1656 226 533 241 0
5,10 9.62299 1.636 1746 220 600 180 0
6,10 9.62522 1.661 1824 215 656 129 0
7,10 9.62872 1.681 1885 211 699 90 0
8,10 9.63246 1.697 1932 208 732 60 0
9,10 9.63594 1.708 1967 206 755 39 0
10,10 9.64515 1.729 2033 202 798 0 0
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Table 3: Cost function and its components for various values of I1 and I2 for positively correlated arrivals

I1, I2 Cost µQL P × 105 θ0 × 103 θ1 × 103 θ2 × 103 θ3 × 103

2,2 9.40340 1.356 746 233 511 0 256
2,3 9.39871 1.389 756 221 484 102 193
3,3 9.38464 1.439 863 214 591 0 195
2,4 9.39523 1.419 765 210 459 196 135
3,4 9.38026 1.468 870 203 567 92 138
4,4 9.36943 1.511 967 197 662 0 141
2,5 9.39398 1.442 772 203 441 263 93
3,5 9.37840 1.490 876 195 548 160 97
4,5 9.36718 1.533 973 189 644 67 100
5,5 9.36364 1.565 1047 185 713 0 102
2,6 9.39352 1.460 778 197 427 316 60
3,6 9.37750 1.507 881 189 533 214 64
4,6 9.36602 1.551 974 183 630 121 66
5,6 9.36246 1.584 1053 179 699 53 69
6,6 9.36190 1.610 1115 175 754 0 71
2,7 9.39364 1.472 782 193 417 352 38
3,7 9.37734 1.520 884 185 523 251 41
4,7 9.36572 1.564 981 179 619 159 43
5,7 9.36218 1.597 1057 174 689 92 45
6,7 9.36168 1.624 1120 171 745 38 46
7,7 9.36349 1.644 1168 169 784 0 47
2,8 9.39389 1.481 786 190 410 377 23
3,8 9.37743 1.529 887 183 515 278 24
4,8 9.36574 1.573 984 176 611 187 26
5,8 9.36223 1.607 1061 171 682 119 28
6,8 9.36180 1.634 1124 168 738 66 28
7,8 9.36369 1.654 1172 166 777 27 30
8,8 9.36619 1.669 1208 164 806 0 30
2,9 9.39416 1.486 788 189 405 393 13
3,9 9.37761 1.534 889 181 510 294 15
4,9 9.36589 1.579 986 174 606 204 16
5,9 9.36243 1.613 1063 170 677 137 16
6,9 9.362063 1.641 1127 166 733 84 17
7,9 9.36401 1.661 1176 163 773 46 18
8,9 9.36656 1.676 1212 162 802 18 18
9,9 9.36906 1.686 1237 161 821 0 18
2,10 9.39473 1.494 791 187 399 414 0
3,10 9.37810 1.542 891 179 503 318 0
4,10 9.36640 1.588 988 172 599 229 0
5,10 9.36306 1.623 1066 167 670 163 0
6,10 9.36283 1.651 1131 164 725 111 0
7,10 9.36491 1.672 1181 161 766 74 0
8,10 9.36756 1.688 1217 159 795 46 0
9,10 9.37013 1.698 1243 158 814 28 0
10,10 9.37611 1.714 1285 156 844 0 0

From these tables we notice the following observations.

• For all I2 and for the three arrival processes considered, the mean queue length
(µQL), the loss probability (Preject), and the fraction of time the server is busy
in service mode 1 (θ1) appear to increase as I1 increases. The rate of increase de-
creases as I1 increases. It is interesting to note that as I1 increases, the mean queue
length for Erlang arrivals appears to dominate the other two arrival processes for
all values of I2.

• For all I2 and for the three arrival processes considered, the fraction of time the
server is idle (θ0), the fraction of time the server is busy serving in mode 2 (θ2),
and the fraction of time the server is busy in service mode 3 (θ3) appear to decrease
as I1 increases. The rate of decrease appears to decrease as I1 increases.

• With respect to the measure, θ2, there appears to be a cut-off point, say, I∗2 (I1),
such that for I1 ≤ I2 < I∗2 , Erlang has the largest value for this measure and
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hyperexponential has the least value. For I2 ≥ I∗2 , hyperexponential has the
largest value and Erlang has the least. For example, when I1 = 2, we have I∗2 = 2
and when I1 = 4, I∗2 = 6. The same type of phenomenon appears to hold true for
the measure θ3.

• While for all values of I1 and I2, the measure θ2 appears to decrease with increasing
variance of the arrival times, the measures θ0 and Preject appear to increase with
increasing variance of the arrival times. However, more experimentation is needed
to see how correlation plays a role.

• We see that the optimal value 9.085900 for the cost criterion in (41) occurs at I1 =
10 and I2 = 10 for Erlang arrivals; the optimal value of 9.621708 occurs at I1 = 4
and I2 = 9 for the hyperexponential case; and for BMAP with positive correlation
the optimal value of 9.36168 occurs at I1 = 6 and I2 = 7. It is interesting to note
that for this choice of parameters, there is no control mechanism required for
the Erlang arrivals; however, for the other two arrival processes, control strategy
yields a better solution. This indicates that whenever the arrival processes have
a larger variation or are correlated the situation will be quite different and needs
a careful analysis.
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