16,267 research outputs found

    Optimal crowd editing

    Get PDF
    International audienceSimulating realistic crowd behaviors is a challenging problem in computer graphics. Yet, several satisfying simulation models exhibiting natural pedestrians or group emerging behaviors exist. Choosing among these model generally depends on the considered crowd density or the topology of the environment. Conversely, achieving a user-desired kinematic or dynamic pattern at a given instant of the simulation reveals to be much more tedious. In this paper, a novel generic control methodology is proposed to solve this crowd editing issue. Our method relies on an adjoint formulation of the underlying optimization procedure. It is independent to a certain extent of the choice of the simulation model, and is designed to handle several forms of constraints. A variety of examples attesting the benefits of our approach are proposed, along with quantitative performance measures

    Shocking the Crowd: The Effect of Censorship Shocks on Chinese Wikipedia

    Full text link
    Collaborative crowdsourcing has become a popular approach to organizing work across the globe. Being global also means being vulnerable to shocks -- unforeseen events that disrupt crowds -- that originate from any country. In this study, we examine changes in collaborative behavior of editors of Chinese Wikipedia that arise due to the 2005 government censor- ship in mainland China. Using the exogenous variation in the fraction of editors blocked across different articles due to the censorship, we examine the impact of reduction in group size, which we denote as the shock level, on three collaborative behavior measures: volume of activity, centralization, and conflict. We find that activity and conflict drop on articles that face a shock, whereas centralization increases. The impact of a shock on activity increases with shock level, whereas the impact on centralization and conflict is higher for moderate shock levels than for very small or very high shock levels. These findings provide support for threat rigidity theory -- originally introduced in the organizational theory literature -- in the context of large-scale collaborative crowds

    Correlation Clustering with Same-Cluster Queries Bounded by Optimal Cost

    Get PDF
    Several clustering frameworks with interactive (semi-supervised) queries have been studied in the past. Recently, clustering with same-cluster queries has become popular. An algorithm in this setting has access to an oracle with full knowledge of an optimal clustering, and the algorithm can ask the oracle queries of the form, "Does the optimal clustering put vertices u and v in the same cluster?" Due to its simplicity, this querying model can easily be implemented in real crowd-sourcing platforms and has attracted a lot of recent work. In this paper, we study the popular correlation clustering problem (Bansal et al., 2002) under the same-cluster querying framework. Given a complete graph G=(V,E) with positive and negative edge labels, correlation clustering objective aims to compute a graph clustering that minimizes the total number of disagreements, that is the negative intra-cluster edges and positive inter-cluster edges. In a recent work, Ailon et al. (2018b) provided an approximation algorithm for correlation clustering that approximates the correlation clustering objective within (1+epsilon) with O((k^{14} log{n} log{k})/epsilon^6) queries when the number of clusters, k, is fixed. For many applications, k is not fixed and can grow with |V|. Moreover, the dependency of k^14 on query complexity renders the algorithm impractical even for datasets with small values of k. In this paper, we take a different approach. Let C_{OPT} be the number of disagreements made by the optimal clustering. We present algorithms for correlation clustering whose error and query bounds are parameterized by C_{OPT} rather than by the number of clusters. Indeed, a good clustering must have small C_{OPT}. Specifically, we present an efficient algorithm that recovers an exact optimal clustering using at most 2C_{OPT} queries and an efficient algorithm that outputs a 2-approximation using at most C_{OPT} queries. In addition, we show under a plausible complexity assumption, there does not exist any polynomial time algorithm that has an approximation ratio better than 1+alpha for an absolute constant alpha > 0 with o(C_{OPT}) queries. Therefore, our first algorithm achieves the optimal query bound within a factor of 2. We extensively evaluate our methods on several synthetic and real-world datasets using real crowd-sourced oracles. Moreover, we compare our approach against known correlation clustering algorithms that do not perform querying. In all cases, our algorithms exhibit superior performance

    Coordination and Efficiency in Decentralized Collaboration

    Full text link
    Environments for decentralized on-line collaboration are now widespread on the Web, underpinning open-source efforts, knowledge creation sites including Wikipedia, and other experiments in joint production. When a distributed group works together in such a setting, the mechanisms they use for coordination can play an important role in the effectiveness of the group's performance. Here we consider the trade-offs inherent in coordination in these on-line settings, balancing the benefits to collaboration with the cost in effort that could be spent in other ways. We consider two diverse domains that each contain a wide range of collaborations taking place simultaneously -- Wikipedia and GitHub -- allowing us to study how coordination varies across different projects. We analyze trade-offs in coordination along two main dimensions, finding similar effects in both our domains of study: first we show that, in aggregate, high-status projects on these sites manage the coordination trade-off at a different level than typical projects; and second, we show that projects use a different balance of coordination when they are "crowded," with relatively small size but many participants. We also develop a stylized theoretical model for the cost-benefit trade-off inherent in coordination and show that it qualitatively matches the trade-offs we observe between crowdedness and coordination.Comment: 10 pages, 6 figures, ICWSM 2015, in Proc. 9th International AAAI Conference on Weblogs and Social Medi

    Tuning the Diversity of Open-Ended Responses from the Crowd

    Full text link
    Crowdsourcing can solve problems that current fully automated systems cannot. Its effectiveness depends on the reliability, accuracy, and speed of the crowd workers that drive it. These objectives are frequently at odds with one another. For instance, how much time should workers be given to discover and propose new solutions versus deliberate over those currently proposed? How do we determine if discovering a new answer is appropriate at all? And how do we manage workers who lack the expertise or attention needed to provide useful input to a given task? We present a mechanism that uses distinct payoffs for three possible worker actions---propose,vote, or abstain---to provide workers with the necessary incentives to guarantee an effective (or even optimal) balance between searching for new answers, assessing those currently available, and, when they have insufficient expertise or insight for the task at hand, abstaining. We provide a novel game theoretic analysis for this mechanism and test it experimentally on an image---labeling problem and show that it allows a system to reliably control the balance betweendiscovering new answers and converging to existing ones
    • …
    corecore