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Abstract
Several clustering frameworks with interactive (semi-supervised) queries have been studied in the
past. Recently, clustering with same-cluster queries has become popular. An algorithm in this
setting has access to an oracle with full knowledge of an optimal clustering, and the algorithm can
ask the oracle queries of the form, “Does the optimal clustering put vertices u and v in the same
cluster?” Due to its simplicity, this querying model can easily be implemented in real crowd-sourcing
platforms and has attracted a lot of recent work.

In this paper, we study the popular correlation clustering problem (Bansal et al., 2002) under the
same-cluster querying framework. Given a complete graph G = (V,E) with positive and negative
edge labels, correlation clustering objective aims to compute a graph clustering that minimizes the
total number of disagreements, that is the negative intra-cluster edges and positive inter-cluster
edges. In a recent work, Ailon et al. (2018b) provided an approximation algorithm for correlation
clustering that approximates the correlation clustering objective within (1 + ε) with O( k

14 logn log k
ε6 )

queries when the number of clusters, k, is fixed. For many applications, k is not fixed and can grow
with |V |. Moreover, the dependency of k14 on query complexity renders the algorithm impractical
even for datasets with small values of k.

In this paper, we take a different approach. Let COPT be the number of disagreements made
by the optimal clustering. We present algorithms for correlation clustering whose error and query
bounds are parameterized by COPT rather than by the number of clusters. Indeed, a good clustering
must have small COPT . Specifically, we present an efficient algorithm that recovers an exact optimal
clustering using at most 2COPT queries and an efficient algorithm that outputs a 2-approximation
using at most COPT queries. In addition, we show under a plausible complexity assumption, there
does not exist any polynomial time algorithm that has an approximation ratio better than 1 + α

for an absolute constant α > 0 with o(COPT ) queries. Therefore, our first algorithm achieves the
optimal query bound within a factor of 2.

We extensively evaluate our methods on several synthetic and real-world datasets using real
crowd-sourced oracles. Moreover, we compare our approach against known correlation clustering
algorithms that do not perform querying. In all cases, our algorithms exhibit superior performance.
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1 Introduction

In correlation clustering, the algorithm is given potentially inconsistent information about
similarities and dissimilarities between pairs of vertices in a graph, and the task is to
cluster the vertices so as to minimize disagreements with the given information [7, 10]. The
correlation clustering problem was first proposed by Bansal, Blum and Chawla [7] and
since then it has found numerous applications in document clustering, image segmentation,
grouping gene expressions etc. [7, 10].

In correlation clustering, we are given a complete graph G = (V,E), |V | = n, where each
edge is labelled either + or −. An optimal clustering partitions the vertices such that the
number of intra-cluster negative edges and inter-cluster positive edges is minimized. The
problem is known to be NP-Hard. The seminal work of Bansal et al. [7] gave a constant factor
approximation for correlation clustering. Following a long series of works [7, 9, 4, 16, 12], the
best known approximation bounds till date are a 3-approximation combinatorial algorithm [1]
and a 2.06-approximation based on linear programming rounding [10]. The proposed linear
programming relaxation for correlation clustering [9, 1, 10] is known to have an integrality
gap of 2, but there does not exist yet a matching algorithm that has an approximation
ratio 2 or lower.

Correlation clustering problem can be extended to weighted graphs for an O(logn)-
approximation bound and is known to be optimal [12]. Moreover, when one is inter-
ested in maximizing agreements, a polynomial time approximation scheme was provided by
Bansal et al. [7].

Over the last two decades, crowdsourcing has become a widely used way to generate
labeled data for supervised learning. The same platforms that are used for this purpose can
also be used for unsupervised problems, thus converting the problems to a semi-supervised
active learning setting. This can often lead to significant improvements in accuracy. However,
using crowdsourcing introduces another dimension to the optimization problems, namely
minimizing the amount of crowdsourcing that is used. The setting of active querying has
been studied previously in the context of various clustering problems. Balcan and Blum [6]
study a clustering problem in which the only information given to the algorithm is provided
through an oracle that tells the algorithm either to “merge” two clusters or to “split” a
cluster. More recently, Ashtiani, Kushgra and Ben-David [5] considered a framework of
same-cluster queries for clustering; in this framework, the algorithm can access an oracle
that has full knowledge of an optimal clustering and can issue queries to the oracle of the
form “Does the optimal clustering put vertices u and v in the same cluster?” Because of its
simplicity, such queries are highly suited for crowdsourcing and has been studied extensively
both in theory community [3, 19, 2, 15] and in applied domains [23, 14, 17, 22]. Correlation
clustering has also been considered in this context. Ailon, Bhattacharya and Jaiswal [2]
study correlation clustering in this framework under the assumption that the number k of
clusters is fixed. They gave an (1 + ε) approximation algorithm for correlation clustering
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that runs in polynomial time and issues O(k14 logn log k/ε6) queries. However, for most
relevant applications, the number of clusters k is not fixed. Even for fixed k, the dependence
of k14 is huge (consider k = 2 and 214 = 16384 with additional constants terms hidden
under O() notation).

In this paper, we give near-optimal algorithms for correlation clustering with same-cluster
queries that are highly suitable for practical implementation and whose performance is
parameterized by the optimum number of disagreements. Along with providing theoretical
guarantees, we perform extensive experiments on multiple synthetic and real datasets. Let
COPT be the number of disagreements made by the optimal clustering. Our contributions
are as follows.
1. A deterministic algorithm that outputs an optimal clustering using at most 2COPT queries

(Section 3).
2. An expected 2-approximation algorithm that uses at most COPT queries in expectation

(Section 4).
3. A new lower bound that shows it is not possible to get an (1 + α) approximation for

some constant α > 0 with any polynomial time algorithm that issues o(COPT ) queries
assuming GAP-ETH (see definition in Section 5).

4. An extensive experimental comparison that not only compares the effectiveness of our
algorithms, but also compares the state-of-the art correlation clustering algorithms that
do not require any querying (Section 6).

Assumption of an optimum oracle [5, 2] is quite strong in practice. However, our experiments
reveal that such an assumption is not required. In correlation clustering, often the ± edges
are generated by fitting an automated classifier, where each vertex corresponds to some
object and is associated with a feature vector. In our experiments with real-world data,
instead of an optimum oracle, we use crowdsourcing. By making only a few pair-wise queries
to a crowd oracle, we show it is possible to obtain an optimum or close to optimum clustering.
After our work, it came to our notice that it may be possible to use Bocker et al.’s [8] results
on fixed-parameter tracktability of cluster editing to adapt to our setting, and get better
constants on the query complexity. This is an ongoing work. Our algorithms and techniques
are vastly different from [8] and are also considerably simpler.

2 Related Work

Asthiani et al. [5] considered the k-means objective with same-cluster queries and showed that
it is possible to recover the optimal clustering under k-means objective with high probability
by issuing O(k2 log k + k logn) queries if a certain margin condition holds for each cluster.
Gamlath, Huang and Svensson extended the above result when approximation is allowed
[15]. Ailon et al. [2] studied correlation clustering with same-cluster queries and showed
that there exists an (1 + ε) approximation for correlation clustering where the number of
queries is a (large) polynomial in k. Our algorithms are different from those in [2] in that
our guarantees are parameterized by COPT rather than by k. Kushagra et al. [18] study a
restricted version of correlation clustering where the valid clusterings are provided by a set of
hierarchical trees and provide an algorithm using same-cluster queries for a related setting,
giving guarantees in terms of the size of the input instance (or the VC dimension of the
input instance) rather than COPT . [19] studied, among other clustering problems, a random
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instance of correlation clustering under same-cluster queries. Our algorithms are based on
the basic 3-approximation algorithm of Ailon et al. [1] that selects a pivot vertex randomly
and forms a cluster from that vertex and all of its +-neighbors. They further honed this
approach by choosing to keep each vertex in the pivot’s cluster with a probability that is a
function of the linear programming solution. Chawla et al. [10] used a more sophisticated
function of the linear programming solution to design the current state-of-the-art algorithm,
which gives a 2.06 approximation for correlation clustering.

3 Finding an Optimal Clustering

We are given a query access to an oracle that given any two vertices u and v returns whether
or not u and v are together in a cluster in an optimal solution. Let OPT denote the optimal
solution which is used by the oracle. Given a positive (+) edge (u, v), if OPT puts u and v
in different clusters, then we say OPT makes a mistake on that edge. Similarly for a negative
(−) edge (u, v), if OPT puts them together in a cluster then again OPT makes a mistake
on it. Similarly, our algorithm can decide to make mistakes on certain edges and our goal
is to minimize the overall number of mistakes. It is easy to see that an optimal solution
for a given input graph makes mistakes only on edges that are part of a (+,+,−) triangle.
Moreover, any optimal solution must make at least one mistake in such a triangle.

The pseudocode for our algorithm, QueryPivot, is given in Algorithm 1. The algorithm
is as follows (in the following description, we give in brackets the corresponding line number
for each step). We pick a pivot u arbitrarily from the set of vertices that are not clustered
yet [line 5]. For each (+,+,−) triangle (u, v, w) [line 10], if we have not yet determined via
queries that OPT makes a mistake on {u, v} or that OPT makes a mistake on {u,w} [lines
11-14], then (1) we query {u, v} [line 17] and if OPT makes a mistake on this edge, we too
decide to make a mistake on this edge and proceed to the next (+,+,−) triangle involving u
and (2) if OPT does not make a mistake on {u, v}, then we query {u,w} [line 23] and make
a mistake on it if OPT makes a mistake on it. Note that if we have already queries one of
{u, v} or {u,w} and found a mistake, we do not query the other edge [line 11]. Once we have
gone through all (+,+,−) triangles involving u then for every v 6= u, if we have not already
decided to make a mistake on {u, v}, then if {u, v} is a + edge we keep v in u’s cluster and
if {u, v} is a − edge we do not put v in u’s cluster. On the other hand, if we have decided to
make a mistake on {u, v}, then if {u, v} is a − edge we keep v in u’s cluster and if {u, v} is a
+ edge we do not put v in u’s cluster. Finally, we remove all vertices in u’s cluster from the
set of remaining vertices and recursively call the function on the set of remaining vertices.

In the pseudocode, Queried[v] = 1 means the algorithm has already issued a query
(pivot, v) to the oracle, Mistake[v] = 1 means it has decided to make a mistake on the edge
(pivot, v) based on the oracle answer, and Oracle(pivot, v) returns 1 iff OPT makes a mistake
on the edge {pivot, v}. We prove the following theorem that shows that QueryPivot is
able to recover the optimal clustering known to the oracle with a number of queries bounded
in terms of COPT .

I Theorem 3.1. Let COPT be the number of mistakes made by an optimal clustering.
The QueryPivot algorithm makes COPT mistakes and makes at most 2COPT queries to
the oracle.
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Algorithm 1 QueryPivot.

1: Input: vertex set V , adjacency matrix A, oracle Oracle
2: if V == ∅ then
3: return ∅
4: end if
5: pivot← Arbitrary vertex in V
6: T← all (+,+,−) triangles that include pivot
7: C← V
8: Queried← length-n array of zeros
9: Mistakes← length-n array of zeros
10: for (pivot, v, w) ∈ T do
11: if Mistake[v] == 1 or Mistake[w] == 1 then
12: continue
13: else if Queried[v] == 1 and Queried[w] == 1 then
14: continue
15: else if Queried[v] == 0 then
16: Queried[v]← 1
17: if Oracle(pivot, v) == 1 then
18: Mistake[v]← 1
19: end if
20: end if
21: if Queried[w] == 0 and Mistake[v] == 0 then
22: Queried[w]← 1
23: if Oracle(pivot, w) == 1 then
24: Mistake[w]← 1
25: end if
26: end if
27: end for
28: for v ∈ V \ {pivot} do
29: if (v ∈ N−(pivot) and Mistake[v] == 0) or (v ∈ N+(pivot) and Mistake[v] == 1) then
30: C = C \ {v}
31: end if
32: end for
33: return {C} ∪QueryPivot(V \ C,A,Oracle)

For a given cluster C and a vertex w ∈ C, we denote by N+
C (w) the set of vertices in

C that have + edges with w. Similarly, we denote by N−C (w) the set of vertices in C that
have − edges.

The algorithm time complexity is dominated by the time taken to check (+,+,−) triangles
involved with the pivots. Let E+ denote the set of positive edges in G. Then all the (+,+,−)
triangles that include a pivot can be checked in time O(|E+| ∗ n).

I Lemma 3.2. The QueryPivot algorithm outputs a valid partition of the vertices.

Proof. Note that the pivot is never removed from C. Hence, between each pair of consecutive
recursive calls, at least one vertex is removed from V . The algorithm must then terminate
after at most n recursive calls. Moreover, in each recursive call, the set of vertices passed
to the next recursive call is disjoint from the cluster created in that recursive call. Thus,
inductively, the sets returned by the algorithm must be disjoint. J

I Lemma 3.3. Consider a clustering C in which some cluster C contains vertices u, v s.t.
{u, v} is a − edge and s.t. u and v do not form a (+,+,−) triangle with any other vertex in
C. C is suboptimal.
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Proof. If we were to remove v from C and put it in a singleton cluster, we would make
|N−C (v)| − |N+

C (v)| fewer mistakes than C. If |N−C (v)| − |N+
C (v)| > 0, then C is suboptimal.

Therefore, assume |N−C (v)| ≤ |N+
C (v)|. Now, note that ∀w ∈ N+

C (v), w ∈ N−C (u) because
otherwise, u, v, and w form a (+,+,−) triangle. Thus |N+

C (v)| ≤ |N−C (u)| − 1 because
v ∈ N−C (u). Moreover, |N+

C (u)| ≤ |N−C (v)| − 1 because u ∈ N−C (v).
Hence, if we were to remove u from C and put it in a singleton cluster, we would make

|N−C (u)|−|N+
C (u)| ≥ |N+

C (v)|−|N−C (v)|+2 fewer mistakes than C. Since |N−C (v)|−|N+
C (v)| ≤

0, |N+
C (v)| − |N−C (v)|+ 2 > 0, so C is suboptimal. J

I Lemma 3.4. Consider a clustering C in which a cluster C1 contains a vertex u, a different
cluster C2 contains a vertex v, {u, v} is a + edge, and in every (+,+,−) triangle that includes
{u, v}, the clustering makes at least 2 edge mistakes. C is suboptimal.

Proof. If we were to remove u from C1 and put it in C2, we would make |N+
C2

(u)| +
|N−C1

(u)| − |N−C2
(u)| − |N+

C1
(u)| = 2|N+

C2
(u)|+ |C1| − |C2| − 2|N+

C1
(u)| fewer mistakes than

C. If 2|N+
C2

(u)|+ |C1| − |C2| − 2|N+
C1

(u)| > 0, then C is suboptimal. Otherwise, note that
∀w ∈ N+

C1
(u), w ∈ N+

C1
(v) because if not, u, v, w would form a (+,+,−) triangle in which

the algorithm makes fewer than 2 edge mistakes. By a similar argument, ∀w ∈ N+
C2

(v),
w ∈ N+

C2
(u). Thus, since in addition, {u, v} is a + edge, we have that |N+

C1
(v)| ≥ |N+

C1
(u)|+1

and |N+
C2

(u)| ≥ |N+
C2

(v)| + 1. Now if we were to remove v from C2 and put it in C1, the
number of mistakes will reduce by |N+

C1
(v)|+ |N−C2

(v)| − |N−C1
(v)| − |N+

C2
(v)| = 2|N+

C1
(v)|+

|C2| − |C1| − 2|N+
C2

(v)|. Since |N+
C1

(v)| ≥ |N+
C1

(u)|+ 1 and |N+
C2

(v)| ≤ |N+
C2

(u)| − 1, we have
that 2|N+

C1
(v)|+|C2|−|C1|−2|N+

C2
(v)| ≥ 2(|N+

C1
(u)|+1)+|C2|−|C1|−2(|N+

C2
(u)−1) . Since

2|N+
C2

(u)|+ |C1| − |C2| − 2|N+
C1

(u)| ≤ 0, 2(|N+
C1

(u)|+ 1) + |C2| − |C1| − 2(|N+
C2

(u)− 1) > 0,
so C is suboptimal. J

I Lemma 3.5. When given an oracle corresponding to an optimal clustering OPT , the
clustering returned by the QueryPivot algorithm is identical to OPT . It follows that the
algorithm’s clustering makes at most as many mistakes as OPT .

Proof. We will prove inductively that in each recursive call, the cluster C returned by the
algorithm is a cluster in OPT . Note that at the beginning of the first recursive call, the
claim that all clusters formed so far are clusters in OPT is vacuously true because there are
no clusters yet formed. Now consider an arbitrary but particular recursive call, and let u be
the pivot in this recursive call. Suppose for contradiction that C is not a cluster in OPT .
Case 1 : There is a vertex v such that v /∈ C, but in OPT , v is in the same cluster as u. Let
H be the cluster in OPT that contains u and v. First, observe that H must be a subset
of the remaining vertices in this recursive call; otherwise, one of the clusters formed in a
previous call contains some vertex in H but does not include u, contradicting the induction
hypothesis because this previously formed cluster is not a cluster in OPT . Next, note that
for any mistake that the algorithm makes on an edge incident on a pivot, the algorithm
queries the OPT oracle and makes the mistake iff OPT makes the mistake. Then if {u, v} is
a + edge, then the algorithm must have queried the oracle for {u, v} and found that OPT
makes a mistake on it because the algorithm decided to make a mistake on that edge. This
implies that OPT puts u and v in different clusters, which is a contradiction. Now suppose
instead that {u, v} is a − edge. Again if the algorithm queried the oracle for {u, v}, then
OPT must have put u and v in different clusters, so it must be the case that the algorithm
did not query the oracle for {u, v}. It follows that for any (+,+,−) triangle (u, v, w) that
includes {u, v}, our algorithm has queried {u,w} and found OPT makes a mistake on the
+ edge {u,w}. Then for any such triangle, w /∈ H. It follows that u and v do not form a
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(+,+,−) triangle with any vertex in H. Since u and v are in the same cluster H in OPT ,
{u, v} is a − edge, and u and v do not form a (+,+,−) triangle with any other vertex in
H, the conditions for Lemma 3.3 are satisfied. Therefore, OPT is a suboptimal clustering,
which is a contradiction.
Case 2 : There is a vertex v such that v ∈ C, but in OPT , v is not in u’s cluster. As in the
first case, if {u, v} were a − edge, the algorithm must make a mistake on {u, v} and so must
have queried OPT and found that OPT made a mistake on {u, v}, a contradiction. Now
suppose instead that {u, v} is a + edge. If there is some vertex w that was clustered prior
to this recursive call s.t. {u, v, w} is a (+,+,−) triangle in which OPT makes exactly one
mistake (on {u, v}), then note that either u or v should be in the same cluster as w because
one of {u,w} and {v, w} must be a + edge; in this case, we have reached a contradiction
with the inductive hypothesis because the previously formed cluster that included w did not
include u or v. Then in order to show that the conditions for Lemma 3.4 are satisfied, we
must show that for every vertex w in the set of remaining vertices when u is the pivot, if
(u, v, w) is a (+,+,−) triangle, then OPT must make at least two mistakes in the triangle.
Since OPT makes a mistake on {u, v} but the algorithm does not do so, it must be the case
that the algorithm did not query {u, v}. Since the algorithm did not query {u, v}, for every
(+,+,−) triangle (u, v, w) that includes {u, v} and such that w is in the set of remaining
vertices when u is the pivot, OPT must make a mistake on {u,w}. Then since OPT makes
a mistake on {u, v} and on {u,w} in any (+,+,−) triangle (u, v, w), we have by Lemma 3.4
that OPT is suboptimal clustering, which is a contradiction. J

I Lemma 3.6. Let COPT be the number of mistakes made by an optimal clustering OPT .
Then the QueryPivot algorithm makes at most 2COPT queries to the oracle.

Proof. The algorithm queries the oracle only when considering (+,+,−) triangles. Note that
whenever considering a particular (+,+,−) triangle, if the algorithm makes a query, it makes
at most two queries when considering that triangle and makes at least one mistake that had
not been made when considering previous triangles. Therefore, the algorithm makes at most
twice as many queries as mistakes. Since the algorithm makes exactly COPT mistakes, the
algorithm makes at most 2COPT queries. J

Theorem 3.1 follows directly from Lemmas 3.5 and 3.6.

4 A 2-Approximation Algorithm for Correlation Clustering

A natural question that arises from QueryPivot is how to use fewer queries and obtain
an approximation guarantee that is better than the state-of-the-art outside the setting
with same-cluster queries, which is a 2.06-approximation. In this section, we show that a
randomized version of QueryPivot gives a 2-approximation in expectation using at most
COPT queries in expectation.

The algorithm RandomQueryPivot(p) is as follows. We pick a pivot u uniformly
at random from the vertices yet to be clustered. For each (+,+,−) triangle (u, v, w), we
have two cases. (1) If {u, v} and {u,w} are both + edges, then with probability p (chosen
appropriately), we query both {u, v} and {u,w} and for each of these two edges we make a
mistake on the edge iff OPT makes a mistake on the edge. With probability 1− p we make
no queries for this triangle and proceed to the next triangle. (2) If one of {u, v} and {u,w}
is a + edge and the other is a − edge, then with probability p, we do the following. First,
we query the + edge and if OPT makes a mistake on it, then we make a mistake on it and
proceed to the next triangle. If OPT does not make a mistake on the + edge, then we query

ESA 2019



81:8 Same-Cluster Queries Bounded by Optimal Cost

Algorithm 2 RandomQueryPivot.

1: Input: vertex set V , adjacency matrix A, oracle Oracle, parameter p
2: if V == ∅ then
3: return ∅
4: end if
5: pivot← Random vertex in V
6: T← all (+,+,−) triangles that include pivot
7: C← V
8: Queried← length-n array of zeros
9: Mistakes← length-n array of zeros

10: for (pivot, v, w) ∈ T do
11: // Without loss of generality, suppose that {pivot, v} is a + edge
12: Sample r from Uniform(0, 1)
13: if r > p then
14: continue
15: end if
16: if Oracle(pivot, v) == 1 then
17: Mistake[v]← 1
18: end if
19: if Mistake[v] == 0 or {pivot, w} is a + edge then
20: if Oracle(pivot, w) == 1 then
21: Mistake[v]← 1
22: end if
23: end if
24: end for
25: for v ∈ V \ {pivot} do
26: if (v ∈ N−(pivot) and Mistake[v] == 0) or (v ∈ N+(pivot) and Mistake[v] == 1) then
27: C = C \ {v}
28: end if
29: end for
30: return {C} ∪RandomQueryPivot(V \ C,A,Oracle)

the − edge and make a mistake on the − edge iff OPT does so. Again, with probability
1− p we make no queries for this triangle and proceed to the next triangle. Once we have
gone through all triangles, if we have not already decided to make a mistake on {u, v}, then
if {u, v} is a + edge we keep v in u’s cluster and if {u, v} is a − edge we do not put v in u’s
cluster. On the other hand, if we have decided to make a mistake on {u, v}, then if {u, v} is
a − edge we keep v in u’s cluster and if {u, v} is a + edge we do not put v in u’s cluster.
Finally, we remove all vertices in u’s cluster from the set of remaining vertices and recursively
call the function on the set of remaining vertices. Note that given a pivot u and a (+,+,−)
triangle containing u, if the algorithm chooses not to query either of the edges incident on u,
then the algorithm must make a mistake on the edge opposite to u in that triangle.

I Theorem 4.1. RandomQueryPivot(p) gives a max
(

2, 3
1+2p

)
-approximation in expect-

ation and uses at most max(4p, 1) ∗ COPT queries in expectation.

I Corollary 4.2. When p = 0.25, RandomQueryPivot gives a 2-approximation in expect-
ation and uses at most COPT queries in expectation.

I Lemma 4.3. In an arbitrary but particular recursive call, the probability that Random-
QueryPivot queries edge {u, v} on which OPT makes a mistake given that u is the pivot is
equal to the probability that RandomQueryPivot queries edge {u, v} given that v is the pivot.
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Proof. For a + edge {u, v} on which OPT makes a mistake, the probability that the edge
is queried given that one of the vertices is the pivot is a function only of the number of
(+,+,−) triangles that include the edge. In particular, if T is the number of (+,+,−)
triangles including the edge, the probability that the edge is queried is 1− (1− p)T . This
number of triangles does not depend on the pivot vertex, so the claim holds if {u, v} is a +
edge. If {u, v} is a − edge, then we claim that the probability that {u, v} is queried given
that either u or v is a function only of the number of (+,+,−) triangles that include {u, v}
in which OPT makes a mistake only on this − edge. This claim is true because (1) in any
(+,+,−) triangle in which OPT makes a mistake on the − and a + edge, OPT must make a
mistake on all of the three edges in the triangle and (2) when considering a (+,+,−) triangle
such that the pivot is an endpoint of the − edge, the algorithm queries the − edge iff OPT
does not make a mistake on the + edge of which the pivot is an endpoint. It follows that
for any (+,+,−) triangle in which the algorithm queries the − edge, OPT must make a
mistake only on the − edge. Since the number of (+,+,−) triangles that include {u, v} in
which OPT makes a mistake only on {u, v} does not depend on whether u or v is the pivot,
the claim holds when {u, v} is a − edge. J

Let suv = 1 if {u, v} is a − edge and 0 otherwise. Let c∗uv equal 1 if OPT makes a mistake
on {u, v} and 0 otherwise.

Let OPT t be the number of edges {u, v} s.t. c∗uv = 1 and the algorithm makes a decision
on {u, v} in iteration t. Let ALGt be the number of edges {u, v} s.t. the algorithm makes a
mistake on {u, v} and the algorithm makes a decision on {u, v} in iteration t.

Let Vt be the set of vertices remaining at the beginning of iteration t. Let Dt
uv be the

event that the algorithm makes a decision on {u, v} in iteration t.

I Lemma 4.4. Let T be the number of iterations that the algorithm takes to cluster all
vertices. If E[ALGt|Vt] ≤ αE[OPT t|Vt], for each iteration t, then E

[∑T
t=1ALG

t
]
≤

αE
[∑T

t=1OPT
t
]
.

Proof. Define X0 = 0 and for each s > 0, define Xs =
∑s
t=1 αOPT

t − ALGt. If the
condition in the lemma holds, then Xs is a submartingale because E[Xs+1|Xs] ≥ Xs. Also,
T is a stopping time that is almost surely bounded (since T ≤ n with probability 1). By
Doob’s optional stopping theorem [24, p. 100], if T is a stopping time that is almost surely
bounded and X is a discrete-time submartingale, then E[XT ] ≥ E[X0]. Then we have that
E[XT ] = E

[∑T
t=1 αOPT

t −ALGt
]
≥ E[X0] = 0. J

I Lemma 4.5. The expected number of mistakes made by the algorithm’s clustering is at
most max

(
2, 3

1+2p

)
COPT .

Proof Sketch. Here we give a sketch of the proof. By Lemma 4.4, if we show that E[ALGt−
αOPT t] ≤ 0 for any t, where α ≤ max

(
2, 3

1+2p

)
, then the claim will follow. Let Atw be the

event that w ∈ Vt is the pivot in iteration t.

E[OPT t|Vt] =
∑

{u,v}⊆E∩(Vt×Vt)

c∗uv
|Vt|

∑
w∈Vt

Pr[Dt
uv|Atw]

Now we will write E[ALGt|Vt] by charging the algorithm’s mistakes to each of OPT ’s
mistakes.
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Let M t
uv be the charge incurred to {u, v} in iteration t. We will assign charges such that

M t
uv = 0 if c∗uv = 0. Then

E[ALGt|Vt] =
∑

{u,v}⊆E∩(Vt×Vt)

c∗uvE[M t
uv] =

∑
{u,v}⊆E∩(Vt×Vt)

c∗uv
1
|Vt|

∑
w∈Vt

E[M t
uv|Atw]

Our goal is to compute an upper bound on E[M t
uv|Atw]. To do so, we define several events.

For each edge {u, v} s.t. c∗uv = 1, define the following subsets of Vt: {u, v}, ∀i ∈ {1, 2, 3},
Tuvi is the set of vertices w s.t. {u, v, w} is a (+,+,−) triangle in which OPT makes exactly
i mistakes, Suv is the set of vertices w s.t. {u, v, w} is a (+,−,−) or (+,+,+) triangle in
which OPT makes exactly 2 mistakes, Ruv ≡ Vt \ Tuv1 \ Tuv2 \ Suv \ {u, v}. Furthermore,
let Tuv2u be the subset of Tuv2 s.t. w ∈ Tuv2u if the 2 mistakes in {u, v, w} are both incident
on u. Similarly, let Suvu be the subset of Suv s.t. w ∈ Tuvu if the 2 mistakes in {u, v, w}
are both incident on u. ∀w ∈ Tuv1 , the probability that the algorithm makes a mistake on
{u, v} given that w is the pivot is Pr[Dt

uv|Atw] = 1. Note that Tuv1 , Tuv2 , {u, v}, Suv, and
Ruv partition Vt.

We compute E[M t
uv|Atw] (or an upper bound thereof) when w is in each of the sets {u, v},

Tuv1 , Tuv2u , Tuv2v , Suvu , Suvv , and Ruv, which partition Vt. Similarly, we analyze Pr[Dt
uv|Atw],

breaking up the calculation based on whether the pivot w is in Tuv1 , Tuv2u , Tuv2v , Suv2u , Suv2v ,
{u, v}, or Ruv.

In order to prove the claim, we show that

∑
w∈Vt

E[M t
uv|Atw] ≤ max

(
2, 3

1 + 2p

) ∑
w∈Vt

Pr[Dt
uv|Atw]

Thus, we have shown that E[ALGt|Vt] ≤ max
(

2, 3
1+2p

)
E[OPT t|Vt]. By Lemma 4.4,

the claim follows. J

I Lemma 4.6. The expected number of queries made by RandomQueryPivot is at most
max (4p, 1)COPT .

Proof. We follow an approach similar to that taken in the proof of Lemma 4.5. We will
bound the number of queries made by the algorithm in each iteration t by charging queries
to edges on which OPT makes a mistake and on which the algorithm makes a mistake in
iteration t. Let U t be the number of queries made by the algorithm in iteration t. We charge
queries as follows to an edge {u, v} on which OPT makes a mistake:
1. When u or v is the pivot, the algorithm makes at most 1 query on {u, v} itself.
2. When u or v is the pivot (suppose WLOG u is the pivot), ∀w ∈ Tuv1 (defined in the proof

of Lemma 4.5), the algorithm makes a query on {u,w} with probability p if {u,w} is a
+ edge.

3. When the pivot w is in Tuv1 , then with probability p at most 2 queries are made when
the algorithm considers the triangle {u, v, w}.

4. Note that we need not worry about charging mistakes in (+,+,−) triangles in which OPT
makes 2 mistakes because when considering such a triangle the algorithm is guaranteed
not to query the − edge on which OPT does not make a mistake. We also need not
worry about charging mistakes in (+,+,−) triangles in which OPT makes 3 mistakes
because each edge can be charged for any query made on that edge.
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E[U t|Vt] ≤
∑

{u,v}⊆E∩(Vt×Vt)

c∗uv
|Vt|

2(1 + p|Tuv1 |) +
∑

w∈Tuv
1

2p


≤

∑
{u,v}⊆E∩(Vt×Vt)

c∗uv
|Vt|

[2 + 4p|Tuv1 |]

Recall from the proof of Lemma 4.5 that

E[OPT t|Vt] =
∑

{u,v}⊆E∩(Vt×Vt)

c∗uv
|Vt|

∑
w∈Vt

Pr[Dt
uv|Atw] ≥

∑
{u,v}⊆E∩(Vt×Vt)

c∗uv
|Vt|

(2 + |Tuv1 |)

Here the second inequality follows from computing
∑
w∈Vt

Pr[Dt
uv|Atw] (see Case 1 and 7).

Clearly, 2+4p|Tuv
1 |

2+|Tuv
1 |

≤ max (4p, 1), so E[U t|Vt] ≤ max (4p, 1)E[OPT t|Vt]. Then by Lemma
4.4, the claim follows. J

Theorem 4.1 follows directly from Lemmas 4.5 and 4.6.

5 Lower bound on Query Complexity

The query complexities of the algorithms presented in this paper are linear in COPT , but it is
not clear whether this number of queries is necessary for finding an (approximately) optimal
solution. In this section, we show that a query complexity linear in COPT is necessary
for approximation factors below a certain threshold assuming that the Gap-ETH, stated
below, is true.

I Hypothesis 5.1 (Gap-ETH). There is some absolute constant γ > 0 s.t. any algorithm
that can distinguish between the following two cases for any given 3-SAT instance with n
variables and m clauses must take time at least 2Ω(m). (see e.g. [13])
i. The instance is satisfiable.
ii. Fewer than (1− γ)m of the clauses are satisfiable.

The proof of the following lemma is provided in the appendix, which appears in the
extended version of the paper.

I Lemma 5.2. Let COPT be the optimum number of mistakes for a given instance of
correlation clustering. Assuming Hypothesis 1, there is no

(
1 + γ

10
)
-approximation algorithm

for correlation clustering on N vertices that runs in time 2o(COP T )poly(N) where γ is as
defined in Hypothesis 1.

As a corollary to the above lemma, we obtain the following.

I Theorem 5.3. There is no polynomial-time
(
1 + γ

10
)
-approximation algorithm for correla-

tion clustering that uses o(COPT ) queries.

Proof. Suppose there exists an algorithm that approximates correlation clustering with an
approximation factor of

(
1 + γ

10
)
and uses at most o(COPT ) queries. We follow the algorithm

but instead when the algorithm issues a query, we branch to two parallel solutions instances
with the two possible query answers from the oracle. Since the number of queries is o(COPT ),
the number of branches/solutions that we obtain by this process is at most 2o(COP T ). We
return the one which gives the minimum number of mistakes. This gives a contradiction
to Lemma 5.2. J
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6 Experiments

In this section, we report detailed experimental results on multiple synthetic and real-world
datasets. We compare the performance of the existing correlation clustering algorithms that
do not issue any queries, alongside with our new algorithms. We compare three existing
algorithms: the deterministic constant factor approximation algorithm of Bansal et al. [7]
(BBC), the combinatorial 3-approximation algorithm of Ailon et al. [1] (ACN), and the
state-of-the-art 2.06-approximation algorithm of Chawla et al. based on linear program (LP)
rounding [10] (LP-Rounding). The code and data used in our experiments can be found at
https://github.com/sanjayss34/corr-clust-query-esa2019.

6.1 Datasets

Our datasets range from small synthetic datasets to large real datasets and real crowd
answers obtained using Amazon Mechanical Turk. Below we give a short description of them.

Synthetics Datasets: Small

We generate graphs with ≈ 100 nodes by varying the cluster size distribution as follows. [N]
represents 10 cliques whose sizes are drawn i.i.d. from a Normal(8, 2) distribution. This
generates clusters of nearly equal size. [S] represents 5 clusters of size 5 each, 4 clusters of
size 15 each and one cluster of size 30. This generates clusters with moderate skew. [D]
represents 3 cliques whose total size is 100 and whose individual sizes are determined by a
draw from a Dirichlet((3, 1, 1)) distribution. This generates clusters with extreme skewed
distribution with one cluster accounting for more than 80% of edges.

Synthetics Datasets: Large

We generate two datasets skew and sqrtn each containing 900 nodes of fictitious hospital
patients data, including name, phone number, birth date and address using the data set
generator of the Febrl system [11]. skew contains few (≈ logn) clusters of large size (≈ n

logn ),
moderate number of clusters (≈

√
n) of moderate size (≈

√
n) and a large tail of small

clusters. sqrtn contains
√
n clusters of size

√
n.

Noise Models for Synthetic Datasets

Initially, all intra-cluster edges are labelled with + sign and all inter-cluster edges are labelled
with − sign. Next, the signs of a subset of edges are flipped according to the following
distributions. Denote by C1, C2, ..., Ck the clusters that we generate. Let N denote the
number of vertices in a graph. Let `1 = 0.01, `2 = 0.1, and L be an integer. For the small
datasets, we set L = 100, and for the large skew and sqrtn datasets, we set L = b`2

(
N
2
)
c.

I. Flip sign of L edges uniformly at random.
II. Flip sign of min{bL/kc, |Ci| − 1} edges uniformly at random within each clique Ci. Do

not flip sign of the inter-cluster edges.
III. Flip sign of edges as in II in addition to selecting uniformly at random d`1|Ci||Cj |e

edges between each pair of cliques Ci, Cj and flipping their sign.

https://github.com/sanjayss34/corr-clust-query-esa2019
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Real-World Datasets

We use several real-world datasets.

In the cora dataset [20], each node is a scientific paper represented by a string determined
by its title, authors, venue, and date; edge weights between nodes are computed using
Jaro string similarity [14, 25]. The cora dataset consists of 1.9K nodes, 191 clusters with
the largest cluster-size being 236.
In the gym dataset [22], each node corresponds to an image of a gymnast, and each edge
weight reflects the similarity of the two images (i.e. whether the two images correspond to
the same person). The gym dataset consists of 94 nodes with 12 clusters and maximum
cluster size is 15.
In the landmarks dataset [17], each node corresponds to an image of a landmark in Paris
or Barcelona, and the edge weights reflect the similarity of the two images. The landmarks
dataset consists of 266 nodes, 13 clusters and the maximum size of clusters is 43.
In the allsports dataset [23], the nodes correspond to images of athletes in one of several
sports, and the edge weights reflect the similarity of the two images. The pairs of images
across sports are easy to distinguish but the images within the same category of sport
are quite difficult to distinguish due to various angles of the body, face and uniform.
The allsports dataset consists of 200 nodes with 64 clusters and with a maximum size of
cluster being just 5.

Since the underlying graphs are weighted, we convert the edge weights to ±1 labels by
simply labeling an edge + if its weight is at least 1/2 and − otherwise (the edge weights
in all of the weighted graphs are in [0, 1]). We also perform experiments directly on the
weighted graphs [10] to show how the above rounding affects the results.

Oracle

For small datasets, we use the Gurobi (www.gurobi.org) optimizer to solve the integer linear
program (ILP) for correlation clustering [10] to obtain the optimum solution, which is then
used as an oracle. For larger datasets like skew, sqrtn and cora, ILP takes prohibitively long
time to run. For these large datasets,the ground-truth clustering is available and is used as
the oracle.

For practical implementation of oracles, one can use the available crowd-sourcing platforms
such as the Amazon Mechanical Turk. It is possible that such an oracle may not always
give correct answer. We also use such crowd-sourced oracle for experiments on real datasets.
Each question is asked 3 to 5 times to Amazon Mechanical Turk, and a majority vote is
taken to resolve any conflict among the answers. We emphasize that the same-cluster query
setting can be useful in practice because two different sources of information can produce
the edge signs and the oracle – for instance, the edge signs can be produced by a cheap,
automated computational method (e.g. classifiers), while the oracle answers can be provided
by humans through the crowd-sourcing mechanism explained above.

6.2 Results
We compare the results of our QueryPivot and RandomQueryPivot algorithm as well
as the prior algorithms BBC [7], ACN [1] and LP-Rounding [10]. For the algorithms that
are randomized (ACN, LP-Rounding and RandomQueryPivot), we report the average
of three runs. The algorithm of Bansal et al. [7] requires setting a parameter δ. We tried
several values of δ on several of the datasets and chose the value that seemed to give the
best performance overall.

ESA 2019
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Table 1 Results for Experiments on synthetic small datasets. BBC denotes the algorithm of
[7], ACN denotes the 3-approximation algorithm of [1], LP Rounding denotes the algorithm of [10],
QP denotes QueryPivot, and RQP denotes RandomQueryPivot(0.25). All numerical columns
except those marked as “Queries” give the number of mistakes made by the algorithm.

Mode
ILP

Oracle BBC ACN
LP

Rounding QP
QP

Queries RQP
RQP

Queries
N+I 100 271 205.67 100 100 113 104.33 63.3
N+II 48 104 70.0 48 48 47 56.33 27.33
N+III 93 201 130 123 93 91 97.67 66.0
D+I 100 100 267.0 100 100 86 100 83.33
D+II 48 48 144.33 48 48 57 48 40.67
D+III 64 64 216.33 64 64 71 64 75.0
S+I 100 969 206.0 100 100 136 100.67 92.0
S+II 60 831 100.67 61.67 60 71 63.67 58.67
S+III 137 913 297 141.33 137 159 139.33 107.33

Table 2 Results for Large Synthetic Datasets where Mistakes are measured with respect to
ground-truth clustering and the oracle is the ground-truth clustering.

Dataset/Mode
LP

Rounding BBC ACN QP QP Queries RQP RQP Queries
Skew (I) 8175 31197.67 0 17108 71.33 10051.33
Skew (II) 700 1182.33 60 668 282 558.0
Skew (III) 8175 12260.67 56 8977 293.0 4475.67
Sqrtn (I) 13050 36251.33 0 13171 9.67 7851.0
Sqrtn (II) 0 1484.67 0 748 0.0 711.0
Sqrtn (III) 13050 12711.33 0 6449 0.0 2693.33

Synthetic Datasets

Table 1 summarizes the results of different algorithms on small synthetic datasets.
As we observe, our QueryPivot algorithm always obtains the optimum clustering.

Moreover, RandomQueryPivot has a performance very close to QueryPivot but often
requires much less queries. Interestingly, the LP-rounding algorithm performs very well
except for N + III. ACN and BBC algorithms have worse performance than LP-Rounding,
and in most cases ACN is preferred over BBC.

For the larger synthetic datasets skew and sqrt, as discussed the ground-truth clustering
is used as an oracle. We also use the ground-truth clustering to count the number of mistakes.
On these datasets, the LP-rounding algorithm caused an out-of-memory error on a machine
with 256 GB main memory that we used. The linear programming formulation for correlation
clustering has O(n3) triangle inequality constraints; this results in very high time and space
complexity rendering the LP-rounding impractical for correlation clustering on large datasets.
Table 2 summarizes the results.

As we observe, QueryPivot algorithm recovers the exact ground-truth clustering in
several cases. RandomQueryPivot has a low error rate as well and uses significantly
fewer queries.
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Table 3 Results for Real-World Datasets where mistakes are measured with respect to ground-
truth clustering and the oracle is the ground-truth clustering. LP Rounding (weighted) refers to the
LP rounding of [10] applied to the weighted input graph.

Dataset/
Mode

LP
Rounding

LP
Rounding
(weighted) BBC ACN QP

QP
Queries RQP

RQP
Queries

Cora 62891 26065.0 4526 2188 4664.67 1474.33
Gym 221.0 332.67 449 301.67 8 150 82.67 97.33

Landmarks 29648.0 25790.0 31507 28770 3426 953 1124.67 1467.0
Allsports 230.0 226.33 227 253.33 217 41 223.67 21.0

Table 4 Running times (in seconds) for the results in Table 3. For randomized algorithms, the
time shown is the average over three trials.

Dataset/Mode
LP

Rounding

LP
Rounding
(weighted) BBC ACN QP RQP

Cora 1.58 0.16 2170.33 515.59
Gym 4.96 5.09 0.004 0.0014 0.33 0.27

Landmarks 190.96 9571.32 0.048 0.00067 1.96 2.82
Allsports 41.54 42.08 0.018 0.025 13.28 12.76

Real-World Datasets

The results for the real-world datasets are reported in Table 3, 5 and 6. It is evident from
Table 3 that our algorithms outperform the existing algorithms by a big margin in recovering
the original clusters. Table 3 also includes results for the LP-rounding algorithm applied to
the original weighted graph for the Gym, Landmarks, and Allsports datasets. We also report
in Table 4 the running times for the experiments in Table 3. These numbers show that the
BBC and ACN algorithms are substantially faster than the others, while our algorithms are
substantially faster than the LP-rounding algorithm.

Table 5 reports the results using a faulty crowd oracle. Contrasting the results of Table 3
and 5, we observe minimal performance degradation; that is, our algorithms are robust
to noise. The results in this table are important, as this setting is closest to the typical
real-world application of same-cluster queries. Note that the source of information that gives
the signs of the edges is different from that which is the crowd oracle. For the landmarks
dataset, the original edge weights are determined by a gist detector [21], while the oracle
used in Table 5 is given by high-quality crowd workers. For the gym and allsports datasets,
the original edge weights are determined by (lower quality) human crowd workers, but the
oracle used in Table 5 is based on high-quality crowd workers. Finally, in Table 6, we report

Table 5 Results for Real-World Datasets where mistakes are measured with respect to ground-
truth clustering and the oracle is the crowd.

Dataset/Mode QP QP Queries RQP RQP Queries
Gym 135 175 160.0 104.67

Landmarks 4645 1997 2172.33 1548.33
Allsports 218 41 223.67 21.0

ESA 2019
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Table 6 Results for Real-World Datasets where mistakes are measured with respect to the graph
and the oracle is the optimal ILP solution for the graph.

Dataset/Mode
LP

Rounding BBC ACN QP QP Queries RQP RQP Queries
Gym 276.0 464 338.0 207 171 211.0 112.67

Landmarks 4092.0 4995 5240.67 4092 267 4092.0 265.33
Allsports 33.33 65 40.67 28 36 30.33 18.67

the results using the optimum ILP solution as the oracle. For the larger datasets, it is neither
possible to run the ILP nor LP-Rounding due to their huge space and time requirements.
Again our algorithms perform the best, followed by the LP-rounding algorithm.
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