7 research outputs found

    Optimal Control for Torpedo Motion based on Fuzzy-PSO Advantage Technical

    Get PDF
    The torpedo is a nonlinear object which is very difficult to control. Via to manage the rudder angle yaw, the diving plane angle, and the fin shake reduction, the torpedo yaw horizontal, the depth vertical and roll damping of the system are controlled accurately and steadily. In this paper, the particle swarm optimization is used to correct the imprecision of architecture fuzzy parameters. The coverage width of membership function and the overlap degree influence of neighboring membership functions are considered in the method to adjust dynamically from the system errors. Thereby optimizing the control signal and enhancing the torpedo motion quality. The proposed method results in a better performance compared to the other control method such as adaptive fuzzy-neural that proved effective of the proposed controller

    Evolution strategies based coefficient of TSK fuzzy forecasting engine

    Get PDF
    Forecasting is a method of predicting past and current data, most often by pattern analysis. A Fuzzy Takagi Sugeno Kang (TSK) study can predict Indonesia's inflation rate, yet with too high error. This study proposes an accuracy improvement based on Evolution Strategies (ES), a specific evolutionary algorithm with good performance optimization problems. ES algorithm used to determine the best coefficient values on consequent fuzzy rules. This research uses Bank Indonesia time-series data as in the previous study. ES algorithm uses the popSize test to determine the number of initial chromosomes to produce the best optimal solution for this problem. The increase of popSize creates better fitness value due to the ES's broader search area. The RMSE of ES-TSK is 0.637, which outperforms the baseline approach. This research generally shows that ES may reduce repetitive experiment events due to Fuzzy coefficients' manual setting. The algorithm complexity may cost to the computing time, yet with higher performance

    Fuzzy adaptive interactive algorithm design for marine dynamic positioning system under unexpected impacts of Vietnam Sea

    Get PDF
    1764-1771The factors which affect vessel motion mainly come from environmental influences. In the actual conditions, each of the oceans will exhibit different characteristics. This paper aims todevelop a fuzzy adaptive interactive (FAI) algorithm for the marine dynamic positioning system (DPs) under unexpected impacts of the Vietnam Sea. The response error ξ between the ideal model and the actual model helps to estimate more accurately the variation amplitude caused by nonlinear components. Based on the response error ξ, the control signal of actual model which is adjusted suitably to the ideal model proceeds the DPs maintain the vessel in a position under the environmental conditions of Vietnam Sea. On the other hand, the impact parameters are explored by the actual conditions to increase the reliability of the proposed solution. Simulation results of the FAI are evaluated in comparison with other methods such as fuzzy. The FAI performs the desired response of DPs better than other in two case studies, that proved the effective for the proposed controller

    Review of dynamic positioning control in maritime microgrid systems

    Get PDF
    For many offshore activities, including offshore oil and gas exploration and offshore wind farm construction, it is essential to keep the position and heading of the vessel stable. The dynamic positioning system is a progressive technology, which is extensively used in shipping and other maritime structures. To maintain the vessels or platforms from displacement, its thrusters are used automatically to control and stabilize the position and heading of vessels in sea state disturbances. The theory of dynamic positioning has been studied and developed in terms of control techniques to achieve greater accuracy and reduce ship movement caused by environmental disturbance for more than 30 years. This paper reviews the control strategies and architecture of the DPS in marine vessels. In addition, it suggests possible control principles and makes a comparison between the advantages and disadvantages of existing literature. Some details for future research on DP control challenges are discussed in this paper

    Optimal control of Takagi-Sugeno fuzzy-model-based systems representing dynamic ship positioning systems

    No full text
    [[abstract]]Orthogonal function approach (OFA) and the hybrid Taguchi-genetic algorithm (HTGA) are used to solve quadratic finite-horizon optimal controller design problems in both a fuzzy parallel distributed compensation (PDC) controller and a non-PDC controller (linear state feedback controller) for Takagi–Sugeno (TS) fuzzy-model-based control systems for dynamic ship positioning systems (TS-DSPS). Based on the OFA, an algorithm requiring only algebraic computation is used to solve dynamic equations for TS-fuzzy-model-based feedback and is then integrated with HTGA to design quadratic finite-horizon optimal controllers for TS-DSPS under the criterion of minimizing a quadratic finite-horizon integral performance index, which is also converted to algebraic form by the OFA. Integration of OFA and HTGA in the proposed approach enables use of simple algebraic computation and is well adapted to the computer implementation. Therefore, it facilitates design tasks of quadratic finite-horizon optimal controllers for the TS-DSPS. The applicability of the proposed approach is demonstrated in the example of a moored tanker designed using quadratic finite-horizon optimal controllers
    corecore