6,747 research outputs found

    Optimal speed profile generation for airport ground movement with consideration of emissions

    Get PDF
    Emissions during the ground movement are mostly calculated based on International Civil Aviation Organisation (ICAO) emission databank. The fuel flow rate is normally assumed as a constant, hence the emission index. Therefore, no detailed discrimination of power settings during ground movement is considered to account for different emissions at different power settings. This may lead to a suboptimal and often unrealistic taxi planning. At the heart of the recently proposed Active Routing (AR) framework for airport ground movement is the unimpeded optimal speed profile generation, taking into account both time and fuel efficiency. However, emissions have not been included in the process of generating optimal speed profiles. Taking into account emissions in ground operations is not a trivial task as not all emissions can be reduced on the same path of reducing time and fuel burn. In light of this, in this paper, a detailed analysis of three main emissions at the airports, viz. CO, Total Hydrocarbon (HC), and NOx, are carried out in order to obtain a minimum number of conflicting objectives for generating optimal speed profiles. The results show that NOx has a strong linear correlation with fuel burn across all aircraft categories. For the heavy aircraft, HC and CO should be treated individually apart from the time and fuel burn objectives. For medium and light aircraft, a strong correlation between HC, CO and time has been observed, indicating a reduced number of objectives will be sufficient to account for taxi time, fuel burn and emissions. The generated optimal speed profiles with consideration of different emissions will have impact on the resulted taxiing planning using the AR and also affect decisions regarding airport regulations

    Towards a more realistic, cost effective and greener ground movement through active routing: a multi-objective shortest path approach

    Get PDF
    Based on the multi-objective optimal speed profile generation framework for unimpeded taxiing aircraft presented in the precursor paper, this paper deals with how to seamlessly integrate such optimal speed profiles into a holistic decision making framework. The availability of a set of non-dominated unimpeded speed profiles for each taxiway segment with respect to conflicting objectives can significantly change the current airport ground movement research. More specifically, the routing and scheduling function that was previously based on distance, emphasizing time efficiency, could now be based on richer information embedded within speed profiles, such as the taxiing times along segments, the corresponding fuel consumption, and the associated economic implications. The economic implications are exploited over a day of operation to take into account cost differences between busier and quieter times of the airport. Therefore, the most cost-effective and tailored decision can be made, respecting the environmental impact. Preliminary results based on the proposed approach are promising and show a 9%–50% reduction in time and fuel respectively for two international airports, viz. Zurich and Manchester Airports. The study also suggests that, if the average power setting during the acceleration phase could be lifted from the level suggested by the International Civil Aviation Organization (ICAO), ground operations may achieve the best of both worlds, simultaneously improving both time and fuel efficiency. Now might be the time to move away from the conventional distance based routing and scheduling to a more comprehensive framework, capturing the multi-facetted needs of all stakeholders involved in airport ground operations

    Preference-based evolutionary algorithm for airport surface operations

    Get PDF
    In addition to time efficiency, minimisation of fuel consumption and related emissions has started to be considered by research on optimisation of airport surface operations as more airports face severe congestion and tightening environmental regulations. Objectives are related to economic cost which can be used as preferences to search for a region of cost efficient and Pareto optimal solutions. A multi-objective evolutionary optimisation framework with preferences is proposed in this paper to solve a complex optimisation problem integrating runway scheduling and airport ground movement problem. The evolutionary search algorithm uses modified crowding distance in the replacement procedure to take into account cost of delay and fuel price. Furthermore, uncertainty inherent in prices is reflected by expressing preferences as an interval. Preference information is used to control the extent of region of interest, which has a beneficial effect on algorithm performance. As a result, the search algorithm can achieve faster convergence and potentially better solutions. A filtering procedure is further proposed to select an evenly distributed subset of Pareto optimal solutions in order to reduce its size and help the decision maker. The computational results with data from major international hub airports show the efficiency of the proposed approach

    A real-time active routing approach via a database for airport surface movement

    Get PDF
    Airports face challenges due to the increasing volume of air traffic and tighter environmental restrictions which result in a need to actively integrate speed profiles into conventional routing and scheduling procedure. However, only until very recently, the research on airport ground movement has started to take into account such a speed profile optimisation problem actively so that not only time efficiency but also fuel saving and decrease in airport emissions can be achieved at the same time. It is envisioned that the realism of planning could also be improved through speed profiles. However, due to the multi-objective nature of the problem and complexity of the investigated models (objective functions), the existing speed profile optimisation approach features high computational demand and is not suitable for an on-line application. In order to make this approach more competitive for real-world application and to meet limits imposed by International Civil Aviation Organization for on-line decision time, this paper introduces a pre-computed database acting as a middleware to effectively separate the planning (routing and scheduling) module and the speed profile generation module. Employing a database not only circumvents duplicative optimisation for the same taxiway segments, but also completely avoids the computation of speed profiles during the on-line decision support owing a great deal to newly proposed database initialization procedures. Moreover, the added layer of database facilitates, in the future, more complex and realistic models to be considered in the speed profile generation module, without sacrificing on-line decision time. The experimental results carried out using data from a major European hub show that the proposed approach is promising in speeding up the search process

    High speed research system study. Advanced flight deck configuration effects

    Get PDF
    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability

    Evaluation of flight efficiency for Stockholm Arlanda Airport using OpenSky Network data

    Get PDF
    Identification of causes of the delays within transition airspace is an important step in evaluating performance of the Terminal Maneuvering Area (TMA) Air Navigation Services: without knowing the current performance levels, it is difficult to identify which areas could be improved. Inefficient vertical profiles within TMA and deviations from the optimal flight paths due to bad weather conditions are the main sources of performance decline. In this work, we analyse punctuality and vertical efficiency of Stockholm Arlanda airport arrivals, and seek to quantify the fuel consumption impact associated with the inefficient vertical flight profiles within the Terminal Maneuvering Area (TMA). We use Opensky Network data for evaluation of the Stockholm Arlanda airport performance, comparing it to the DDR2 data provided by Eurocontol, outlining the advantages and disadvantages of both.Peer ReviewedPostprint (author's final draft

    Airspace analysis for greener operations: towards more adoptability and predictability of continuous descent approach (cda)

    Get PDF
    Continuous Descent Approach (CDA), also known as Optimized Profile Descent (OPD), is the advanced flight technique for commercial aircraft to descend continuously from cruise altitude to Final Approach Fix (FAF) or touchdown without level-offs and with- or near-idle thrust setting. Descending using CDA, aircraft stays as high as possible for longer time thereby expanding the vertical distance between aircraft\u27s sources of noise and ground, and thus significantly reducing the noise levels for populated areas around airports. Also, descending with idle engines, fuel burn is reduced resulting in reduction of harmful emissions to the environment and fuel consumption to air carriers. Due to safety considerations, CDA procedures may require more separation between aircraft, which could reduce the full utilization of runway capacity. Thus, CDA has been limited to low to moderate traffic levels at airports. Several studies in literature have used various approaches to present solutions to the problem of increasing the CDA implementation during periods of high traffic at airports. However, insufficient attention was given to define thresholds that would help Air Traffic Controllers (ATC) to manage and accommodate more CDA operations, strategically and tactically. Bridging this gap is the main intent of this work. This research focus is on increasing CDA operations at airports during high traffic levels by considering factors that impact its CDA adoption as they relate to airports\u27 demographics, and airspace around them {known as terminal maneuvering area (TMA)}. To capture the effect of these factors on CDA Adoptability (CDA-A), in general, and CDA Predictability (CDA-P), at the operational level, two (2) approaches are introduced. The CDA-A model defines and captures the maximum level of traffic threshold for CDA adoption. The model captures the factors affecting CDA in a single measure, which are designated collectively as the Probability of Blocking. It is defined as the fraction of time an aircraft\u27s request to embark on CDA is denied. The denial could emanate from safety concerns as well as other operational conditions, such as the congestion of the stacking space within the TMA. This metric should enhance ATC on the strategic level to increasing CDA operations during possibly higher traffic than normally the case. The other approach is for a CDA-P. This model is developed based on data-driven system approach. It extracts traffic features, such as aircraft type and speed, altitude, and rate of descent; from actual flights data to aid in further operational utilization of CDA in real time. By accurately predicting CDA instances during high traffic at airports, the CDA-P model should assist ATC manage adopting more CDA operations during periods of high demand. Through its framework, the CDA-P model utilizes Feature Engineering and Hierarchal Clustering Analysis, to facilitate descent profile visualization and labeling, for building, training, testing, and validation of CDA predictive models using Decision Trees with AdaBoost and Support Vector Machines (SVM). The CDA-P model is validated using actual flight data operated at Nashville Int\u27l Airport (BNA)

    A chance-constrained programming model for airport ground movement optimisation with taxi time uncertainties

    Get PDF
    Airport ground movement remains a major bottleneck for air traffic management. Existing approaches have developed several routing allocation methods to address this problem, in which the taxi time traversing each segment of the taxiways is fixed. However, taxi time is typically difficult to estimate in advance, since its uncertainties are inherent in the airport ground movement optimisation due to various unmodelled and unpredictable factors. To address the optimisation of taxi time under uncertainty, we introduce a chance-constrained programming model with sample approximation, in which a set of scenarios is generated in accordance with taxi time distributions. A modified sequential quickest path searching algorithm with local heuristic is then designed to minimise the entire taxi time. Working with real-world data at an international airport, we compare our proposed method with the state-of-the-art algorithms. Extensive simulations indicate that our proposed method efficiently allocates routes with smaller taxiing time, as well as fewer aircraft stops during the taxiing process
    • …
    corecore