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Abstract— Emissions during the ground movement are 
mostly calculated based on International Civil Aviation 
Organisation (ICAO) emission databank. The fuel flow rate is 
normally assumed as a constant, hence the emission index. 
Therefore, no detailed discrimination of power settings during 
ground movement is considered to account for different 
emissions at different power settings. This may lead to a 
suboptimal and often unrealistic taxi planning. At the heart of 
the recently proposed Active Routing (AR) framework for 
airport ground movement is the unimpeded optimal speed profile 
generation, taking into account both time and fuel efficiency.  
However, emissions have not been included in the process of 
generating optimal speed profiles. Taking into account emissions 
in ground operations is not a trivial task as not all emissions can 
be reduced on the same path of reducing time and fuel burn. In 
light of this, in this paper, a detailed analysis of three main 
emissions at the airports, viz. CO, Total Hydrocarbon (HC), and 
NOx, are carried out in order to obtain a minimum number of 
conflicting objectives for generating optimal speed profiles. The 
results show that NOx has a strong linear correlation with fuel 
burn across all aircraft categories. For the heavy aircraft, HC 
and CO should be treated individually apart from the time and 
fuel burn objectives. For medium and light aircraft, a strong 
correlation between HC, CO and time has been observed, 
indicating a reduced number of objectives will be sufficient to 
account for taxi time, fuel burn and emissions. The generated 
optimal speed profiles with consideration of different emissions 
will have impact on the resulted taxiing planning using the AR 
and also affect decisions regarding airport regulations.      

Keywords—Multi-objective optimisation, Active Routing, fuel 
consumption, emissions, speed profile generation, airport ground 
movement.  

I. INTRODUCTION 
Considering the carbon emissions from a typical EU hub 

airport such as Heathrow, in 2014, 27% of the total airport 
emissions were contributed by aircraft engines on the ground. 
While only a fraction of an aircraft’s journey consists of the 
Landing and Take-Off cycle (LTO), this make an excessively 
large contribution to the running cost of an aircraft. This is 
particularly the case at the larger airports and especially for 
short-haul flights, as jet-engines are designed to operate 
optimally at cruising speed, and are considerably inefficient in 
the standard LTO.  Moreover, a Eurocontrol report [1] has 
stated that there is an expected increase of 50% in flights in 

2035 when compared to 2013 equating to a 1.8% average 
annual increase.  This is unsustainable without a change in the 
way that airports operate. Moreover, the EU has a clear 
objective to reduce CO2 by 75%, NOx by 90% (per passenger 
and per km) in 2050 against a baseline year of 2020. It is worth 
noting that the level of complexity of meeting these set targets 
is further compounded due to the conflicting nature of HC, CO 
and NOx, which are directly linked to power settings but in a 
completely opposite way. Furthermore, the CO and HC present 
a very nonlinear correlation with the low power settings. All 
these factors could not be appropriately addressed in a 
conventional single objective decision making framework. The 
mentioned targets will not be achievable without more 
effective and more efficient airport operations. 

Although taxi operations are often one of the largest source 
of fuel burnt and emissions in a standard LTO around airports, 
many studies that focus on fuel consumption and emissions on 
the airport surface assume an average value for fuel flow 
during taxi, without explicitly accounting for fuel flow during 
idling, accelerating from a stop position, taxiing at constant 
speed, and turning. As a result, fuel burn, associated surface 
emissions, and airline’s cost are thought to be reduced on the 
same path while reducing the taxi times. As pointed out in [2], 
[3], the amount of fuel consumed is an important metric for 
benefit assessment of congestion control methods, and its 
detailed estimation plays an important role in calculating the 
environmental impact of air traffic operations. In light of this, 
recently, a moving trend has been observed, employing a data-
driven approach for modelling of fuel consumption and 
emissions [3], [4]. The aim is to distinguish contributions of 
different taxi phases to the total fuel consumed on the surface 
and its associated emissions. The conclusions drawn in [3] and 
[4] call for a more elaborated ground movement decision 
support system. Such a system should be able to address: 

1) The optimal number of acceleration events: reducing the 
number of acceleration events will lead to less fuel 
consumption.  

2) The optimal power setting and its duration:  it is worth 
pointing out that assumptions made in [3] for a fixed 
power setting for acceleration and its duration, when 
applied to routing and scheduling, is not realistic and will 
only lead to a constrained search space, consequently 
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suboptimal solutions; both of these two factors will 
determine collaboratively the durations spent on 
‘acceleration’ and ‘taxiing at constant speed’, two largest 
sources of surface fuel consumption; choosing an 
appropriate acceleration rate and its duration to reduce 
the amount of times spent on these two phases will 
greatly reduce fuel consumption and its associated 
environmental impact.  

As indicated in [3], there is a lack of consensus regarding 
what values of power settings and time required for each 
manoeuvre should be used. Moreover, the increase in 
breakaway thrust has little effect on total fuel and emission 
values, which implies that a slightly higher acceleration thrust 
may be beneficial in both time and fuel efficiency. Having a 
decision support system, which can take into account different 
acceleration thrust levels and their corresponding durations, 
will facilitate decision makers (DM) to evaluate the best 
possible practice and review regulations for a specific airport 
under investigation.  

In [5], [6], a new conceptual framework, namely the Active 
Routing and Scheduling (AR), has been proposed mainly to 
address the mentioned trade-off between the time and fuel 
efficiency. Emissions are assumed to be correlated either with 
the time or fuel burn objectives, and are not explicitly included 
in optimal speed profile generation. However, due to the highly 
non-linear correlation between HC and CO emission index and 
fuel flow rate, the mentioned assumption may not hold. In light 
of this, in this paper, a detailed analysis of three main 
emissions at the airports, viz. CO, Total Hydrocarbon (HC), 
and NOx, are carried out in order to obtain a minimum number 
of conflicting objectives for generating optimal speed profiles. 
The results reveal a rather complex answer with regards to the 
formation of optimal speed profiles: for aircrafts under 
different weight categories, a different optimisation strategy 
should be adopted. The generated optimal speed profiles with 
consideration of different emissions will have impact on the 
resulted taxiing planning using the AR and also affect 
decisions regarding airport regulations.     

The paper is organised as follows: Section II introduces the 
proposed multi-objective speed profile generation framework; 
introduction of models of aircraft motion, fuel consumption 
and emissions is also included in this section; computational 
results based on Manchester Airport are presented in Section 
III, where a systematic objective reduction procedure is carried 
out; finally, conclusions are drawn in Section IV.   

II. MULTI-OBJECTIVE OPTIMAL SPEED PROFILE 
GENERATION 

A. Problem description 
The problem presented in this paper intends to investigate how 
to taxi in an efficient manner, taking into account taxi time 
(objective g1), fuel consumption (objective g2), and emissions: 
HC (objective g3) and CO (objective g4). Although usually 
emissions of NOx have been considered in previous research, 
they are not included as a separate objective here as they are 
linearly correlated with fuel flow.  As a result, minimizing fuel 
consumption will minimize NOx at the same time. In order to 
systematically investigate different power settings affecting all 

these four mentioned objectives during taxiing, in the 
following sections, we first model the taxiing procedure as a 
discretized piece-wise linear speed profile. Given a speed 
profile, fuel consumption and emissions are estimated using 
the ICAO Emissions Databank [7]. The obtained decision 
variables, and objectives g1-g4 are then used in a multi-
objective artificial immune optimisation algorithm [8] to 
generate optimal speed profiles.                                   

B. Discretized Piece-wise Linear Speed Profiles 
In order to model unimpeded taxiing procedure along the 

given route as shown in Fig. 1, the route is further divided into 
large segments, each containing several edges. For example, 
several consecutive straight edges typically form one straight 
segment. The turning segment consists of consecutive edges 
between which there is an angle of at least 30 degrees.  
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Straight segment
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Fig. 1. An example of a taxiway at Manchester Airport, represented by 
segments consisting of edges. 

As aircraft can taxi with speed as a continuous function of 
time along each segment, it gives rise to infinite degrees of 
freedom. In order to further reduce the complexity of the 
speed profile optimisation problem, each straight segment of 
the route is decomposed into four parts, corresponding to four 
different aircraft taxiing phases, i.e. acceleration, travelling at 
constant speed, braking and rapid braking, representing a 
typical taxiing behavior as illustrated in Fig. 2. Therefore, 
further optimisation is reduced to only find out optimal 
switching times of different phases.  

 

 
Fig. 2. An example of a speed profile with four phases. 



The first phase is the acceleration phase in which an aircraft 
maintains a constant acceleration rate 𝑎1over the distance 𝑑1, 
thus increasing its speed from the initial speed 𝑣0 at the start 
of the segment to 𝑣1. During the second phase, an aircraft will 
traverse at the constant speed 𝑣1 until the end of the second 
phase 𝑑2  is reached. In the third and the fourth phases, an 
aircraft will decelerate from the speed 𝑣1 to the speed 𝑣4 at the 
end of the segment. The last two phases have different 
deceleration rates where, 𝑎4  is equal to the maximum 
deceleration rate which enables the speed to be quickly 
reduced to 𝑣4. As for the third phase, the deceleration rate 𝑎3 
will be uniquely determined by 𝑎4  and 𝑑4 , since 𝑣3  can be 
derived backwards given 𝑎4, 𝑣4, 𝑑4 and the length of the third 
phase is equal to 𝑑3 = 𝑑 − 𝑑1 −  𝑑2 −  𝑑4. 

For turning segments we assume that the aircraft will have a 
constant speed 𝑣𝑡𝑡𝑡𝑡 . The maximum speed on straight 
taxiways 𝑣𝑠𝑡𝑡𝑠𝑠𝑠ℎ𝑡 is restricted to 30 knots and turning speed 
𝑣𝑡𝑡𝑡𝑡 is set to 10 knots as in [9]. The consecutive segments are 
linked together so that the final speed 𝑣4  of the preceding 
segment is the initial speed 𝑣0  of the subsequent segment. 
Furthermore, the maximum acceleration and deceleration rate 
𝑎𝑚𝑠𝑚 is set to 0.98 m∙s-2 for passenger comfort, similar as in 
[10]. As a result, there are four independent variables 
𝑎1,𝑑1,𝑑2,𝑑4  which define a unique speed profile over a 
segment. By searching for values of these four variables, one 
can explore different speed profiles with different taxi time, 
fuel consumption, and emissions.  

The taxi time (𝑔1) needed to traverse a single segment is the 
sum of the time 𝑡𝑗 spent in the different phases.  

 
𝑔1 =  ∑ 𝑡𝑗4

𝑗=1 .                                        (1)             
 

C. Fuel Consumption Calculation 
In order to calculate fuel consumption ( 𝑔2 ) of the 

participating aircraft, its longitudinal motion model is derived 
in (2) by considering the following forces: thrust 𝑇 generated 
by the engines, normal force 𝑚 ∙ 𝑔, where 𝑔 = 9.81 m∙s-2 and 
rolling resistance of tyres 𝐹𝑡 . As the speed during taxiing is 
rather low, the aerodynamic drag is not considered here.  

 
𝑇 = 𝑚 ∙ 𝑎1 + 𝐹𝑡 .                             (2) 

 
Where, 𝐹𝑡 is proportional to the rolling resistance coefficient μ 
and normal force 𝑚 ∙ 𝑔  as given in (3). The coefficient μ is 
suggested to be around 0.02 for aircraft tyres [11]. In this 
paper,  μ is set to 0.015 for concrete surface. 

𝐹𝑡 = 𝜇 ∙ 𝑚 ∙ 𝑔.                                         (3) 
 
Given a particular speed profile, the associated thrust 𝑇 is 

defined by (2). Given 𝑇 and maximum power output 𝐹0 of the 
engine, the thrust level ε can be calculated: 

 

𝜀 =
𝑇
𝐹0

.                                             (4) 

 
  As mentioned in Section III.A, four phases are defined for 

a straight segment: acceleration, constant speed, braking and 
rapid braking. Equation (4) is used for acceleration and 
constant speed phase. During braking and rapid braking, we 
assume 𝜀 = 5%. For turning, 𝜀 = 7% . The fuel flow f 
corresponding to the thrust level 𝜀  is obtained by linear 
interpolation/extrapolation from ICAO Emissions Databank at 
7% and 30% similarly as in [3]. Finally, the fuel consumption 
(𝑔2) for the segment is obtained by multiplication of fuel flow 
𝑓𝑗 for the specific phase j and the time 𝑡𝑗 spent in this state: 

 
𝑔2 = ∑ 𝑓𝑗 ∙ 𝑡𝑗4

𝑗=1 .                              (5)  
  

D. Emissions estimation 
The ICAO Emissions Databank used for fuel consumption 

calculation lists emissions data for a majority of commercial 
engines. For each engine type, it provides values of fuel flow 
(kg/s) and emission indices (EI) (g of pollutant emitted per kg 
of fuel burnt) taken at 7%, 30%, 85% and 100% rated outputs 
as shown in Fig. 3. The pollutants included in the Databank are 
HC, CO, and NOx. Using reported values of EIs taken at 7%, 
30%, 85% and 100%, a curve can be fitted to model the 
relationship between EI and fuel flow. Specifically, HC and 
CO is modelled as exponential function whereas NOx is fitted 
with a linear function. Given a calculated fuel flow as 
described in Section II.C, the corresponding 𝐸𝐸𝑗

𝑝 for pollutant p 
during phase j can be obtained using the fitted curves. Then, 
the total value of emission emitted when traversing the 
segment is calculated as given in (6). 

𝑔3,4 = � 𝑓𝑗 ∙ 𝑡𝑗 ∙ 𝐸𝐸𝑗
𝑝

4

𝑗=1
.                              (6) 

 
 

Fig. 3. Emission indices as a function of fuel flow for a CFM56-5-A1 jet 
engine. Note: The four points on each trend line correspond to levels of 
engine thrust 7%, 30%, 85% and 100%, from left to right. 

E. A Population Adaptive Algorithm 
To solve the speed profile optimisation problem introduced 

in Section II.A, the Population Adaptive Immune Algorithm 



 

 

a) 

b) 

(PAIA) [8] is used to investigate different combinations of 
decision variables 𝑎1,𝑑1,𝑑2,𝑑4 . PAIA is briefly outlined in 
Fig 4. 

 
1: Generate the fastest speed profile for all segments; 
2: Generate initial population around this solution; 
3: Identify non-dominated solutions; 
4: For 𝑔𝑔𝑔 = 1 to 𝑔𝑔𝑔𝑚𝑠𝑚 do: 
5: Calculate the fitness of the solutions based on 

the distance from the reference solution; 
6: Select good solutions according to their fitness 

value and clone them; 
7: Mutate the Cloned solutions; 
8: Check mutated clones for constraints 

violations; 
9: Combine solutions, evaluate them and identify 

non-dominated ones; 
10: Re-select solutions which will be passed to the 

next generation; 
11: End 

Fig. 4. PAIA for optimal speed profile generation. 

In order to speed up the search, a solution with the shortest 
taxi time for the given route is first analytically derived in line 
1. The generated solution is then seeded into the initial 
population. The rest of the initial population is filled by 
solutions randomly generated around the seeded solution (line 
2). Solutions are evaluated in line 3 in terms of the taxi time 
and fuel consumption and non-dominated sorting is performed 
in order to identify non-dominated solutions. The algorithm 
iterates for 𝑔𝑔𝑔𝑚𝑠𝑚 iterations (lines 4-11). In line 5, one of the 
non-dominated solutions is randomly selected to be a reference 
solution for fitness calculation. Each solution is assigned a 
corresponding fitness which is the distance from the reference 
solution. The solutions are then selected for cloning based on 
their fitness values (line 6). The solutions with a good fitness 
value are cloned into more clones than worse solutions. The 
fitness value of solutions also affects their mutation in line 7. 
Good solutions undergo only small variation whereas worse 
solutions are mutated with a higher degree in order to explore 
new areas of the search space. Next, the mutated clones are 
checked for feasibility and constraints violations (line 8). The 
clones are combined with the previous solutions and evaluated 
(line 9). The non-dominated solutions are always selected to 
survive into the next generation and only if their number is less 
than the size of the initial population, solutions from the next 
fronts are chosen based on their fitness value.  The output of 
the algorithm is an approximation of the Pareto front. For 
detailed implementation and constraint handling, readers are 
referred to [5], [12]. 

III. COMPUTATIONAL RESULTS 
The algorithm was tested on a set of routes on Manchester 

Airport, the largest airport in United Kingdom outside London 
with 2 runways. Between each of 98 gate/stands and 4 runway 
exits for both departing and arriving aircraft, the shortest route 
are generated. In total, 98 ∙ 4 ∙ 2 = 784 routes are created. 
Then, for each route the speed profile optimisation problem 
was solved for each representative aircraft, defined as follows.  

Three representative aircraft were designated according their 
wake vortex separation requirements (light, medium, heavy). 
Specifications of the representative aircraft were used during 
the calculation. The specifications are summarized in Table I. 
The algorithm was implemented in Matlab® programming 
language. Pareto fronts of trade-off solutions yielded by 
solving the speed profile optimisation problem for 3 
representative aircraft taxiing on the generated routes are 
examined in the following sections. 

TABLE I.  SPECIFICATIONS OF THE RESPRESENTATIVE AIRCRAFT 

Weight category light medium heavy 
Representative aircraft Learjet 35A Airbus A320 Airbus A333 

Take-off weight m 8300 kg 78000 kg 230000 kg 
Engines TFE731-2-2B CMF56-5-A1 CF6-80E1A2 
Number of engines 2 2 2 
Rated output Fo 2×15.6 kN 2×111.2 kN 2×287 kN 
Rolling resistance Fr 1221 N 11.48 kN 33.84 kN 
Fuel flow at 7% Fo 0.024 kg.s-1 0.101 kg.s-1 0.228 kg.s-1 
Fuel flow at 30% Fo 0.067 kg.s-1 0.291 kg.s-1 0.724 kg.s-1 

 

A. Visual comparison of Pareto fronts 
By visually comparing the Pareto fronts of optimal 

solutions, the following conclusions can be made. Firstly, as 
shown in Fig. 5 for a light category aircraft, there is an 
apparent relation between HC, CO on one hand and taxi time 
or fuel consumption on the other. With lower fuel consumption 
values, HC and CO tend to be high and vice versa. Similarly, 
solutions with a short taxi time generate low emissions. 
Secondly, the obtained optimal solutions show a limited trade-
off in terms of emissions, this also holds for a medium 
category aircraft. On the other hand, Pareto front for a heavy 
category aircraft present a trade-off between different 
objectives, as shown in Fig. 6. The results suggest that the 
speed profiles with less taxi time and hence large acceleration 
yield lower emissions than the fuel efficient speed profiles with 
lower acceleration. 

Fig. 5. Pareto front for a light category aircraft, projected to g1-g3 (a) and g1-g2 
(b). 



 

a) 

b) 

Fig. 6. Pareto front for a heavy category aircraft, projected to g1-g3 (a) and g1-g2 
(b). 

In order to analyse the obtained optimal speed profiles, the 
solutions a, b from Fig. 6b are shown in Fig. 7 and their 
objective values are given in Table III. As can be seen in Fig. 
7, the two speed profiles differ considerably, notably in the 
acceleration phase. Longer acceleration in case of solution b 
resulted in higher fuel flow and hence fuel consumption, 
however, higher fuel flow also caused that HC and CO 
emissions are lower as emissions decrease with higher fuel 
flow values as shown in Fig. 3.  

Fig. 7. Optimal speed profiles given by solutions (a) and (b). 

 

TABLE II.  DIFFERENCE BETWEEN SOLUTIONS 

 Solution a Solution b 
Taxi time (s) 107.40 108.60 

Fuel (kg) 66.87 81.98 
HC (g) 448.50 292.50 
CO (g) 1882.10 1401.80 

 

The relationship between objectives is further examined in 
correlation analysis in the next section. 

B. Correlation between Objectives 
The obtained correlation matrix is shown in Table III. As 

can be observed from this matrix, taxi time and fuel 
consumption are negatively correlated, i.e., they are in conflict 
with each other, as noted in the previous research [3]. On the 
other hand, both HC and CO emissions are positively 
correlated with taxi time and negatively correlated with fuel. 
Furthermore, the values of correlation for HC and CO are very 
similar, proving the same behaviour of objectives g3, g4 as both 
pollutants are exponentially related to fuel flow. Secondly, all 
three objectives: taxi time, HC and CO are strongly correlated 
and non-conflicting. However, each of them is in conflict with 
the fuel consumption. Thus, this result indicates that HC and 
CO objectives are redundant in this problem, since they are 
correlated to taxi time. In the next section, we investigate if it is 
possible to omit HC and CO from the optimisation problem 
and how does it affect the DM in selecting solutions. 

TABLE III.  CORRELATION BETWEEN OBJECTIVES 

Light 
 Taxi time 

(s) 
Fuel (kg) HC (g) CO (g) 

Taxi time (s) 1 -0.8797 0.9939 0.9891 
Fuel (kg) -0.8797 1 -0.9143 -0.8200 
HC (g) 0.9939 -0.9143 1 0.9783 
CO (g) 0.9891 -0.8200 0.9783 1 

Medium 
Taxi time (s) 1 -0.8759 0.9954 0.9822 

Fuel (kg) -0.8759 1 -0.9004 -0.9365 
HC (g) 0.9954 -0.9004 1 0.9871 
CO (g) 0.9822 -0.9365 0.9871 1 

Heavy 
Taxi time (s) 1 -0.814 0.8547 0.8972 

Fuel (kg) -0.814 1 -0.931 -0.9407 
HC (g) 0.8547 -0.931 1 0.9914 
CO (g) 0.8972 -0.9407 0.9914 1 

 

C. Objective reduction 
The results in the previous section indicate that some of the 

objectives, namely HC and CO may be redundant in the speed 
profile optimisation problem and it may be sufficient to 
perform optimisation with regard to taxi time and fuel 
consumption only. However, the question arises if we omit 
some of the objectives, how the obtained optimal solutions 
would differ from the ‘truly’ optimal solutions w.r.t. to the 
original set of objectives.  

Suppose that Fig. 6 shows all Pareto optimal solutions 
(speed profiles) x ∈ X for the given aircraft and route, w.r.t to 
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objective functions g1-g4. The fact they are Pareto optimal 
means they are incomparable, i.e.  no solution is better than 
other in all objectives g1-g4. However, by considering only a 
subset of objectives, e.g. g1, g2, some solutions become 
comparable. For example, solutions a and b in Fig. 6 are 
incomparable as can be seen in Table III. Now, if we assume 
that only g1 and g2 are considered, as a result, solution a will 
dominate solution b, since a is better in g1 and g2.  Although, in 
reality, a does  not dominate b w.r.t. g1-g4, as g3(a) > g3(b) and 
g4(a) > g4(b). Formally, the difference between solutions 
obtained by optimisation w.r.t. to all objectives in set F and 
solutions obtained by optimisation with omitting objective gk, 
that is w.r.t. F-{gk}, can be defined as δk error measure [13]. 
Whenever a solution x dominates solution y w.r.t. F-{gk} the 
difference can be calculated as given in (7). 

𝛿𝑘 = 𝑔𝑘(𝑥) − 𝑔𝑘(𝑦).                                (7) 

In other words, δk specifies the additive term that has to be 
added to objective values of the obtained solutions such that 
the original dominance structure is maintained. In the given 
example case, by assuming that a dominates b, and 
subsequently choosing a as a solution that is going to be 
implemented, we make error δ3 = 448.50-292.50 = 156 g and 
δ4 = 1882.10-1401.80 = 480.3 g. Then, by computing the δk 
values for all solution pairs x,y ∈ X of all aircraft and all 
routes, we can then determine the maximum error. The 
meaning of the maximum δk value is that whenever the DM 
wrongly assumes that x weakly dominates y w.r.t. an objective 
subset F-{gk}, we also know that x is not worse than y in gk by 
an additive term of δk . To facilitate the comparison between 
different aircraft and routes, we calculate δk as a ratio to the 
objective value range for the given aircraft: 
 

𝛿𝑘% =
𝑔𝑘(𝑥) − 𝑔𝑘(𝑦)

max (𝑔𝑘(𝑥)) − min (𝑔𝑘(𝑦))
,   𝑥,𝑦 ∈ 𝑋.           (10) 

 

The values of maximum and mean δ3,4
%  for all 

representative aircraft and all generated routes are given in 
Table IV. As can be seen from the table, maximum and mean 
delta error for medium and light category aircraft are generally 
low, indicating that omitting g3 or g4 has little effect on the 
optimization results. Therefore, by performing optimisation 
considering only g1 and g2 objective and then calculating g3 
and g4 for resulting solutions is sufficiently accurate for the 
DM. However, for the heavy category aircraft higher values of 
maximum and mean δ error show that there is a clear trade-off 
between g1-g4. In this case, omitting g3 or g4 would result in 
bigger error, which in one case can be up to 54.61%. 

IV.  CONCLUSIONS 
In this paper, a detailed analysis of three main emissions at 
 

TABLE IV.  DELTA ERROR 

Weight cat. heavy medium light 
 Max δ Mean δ Max δ Mean δ Max δ Mean δ 

HC % 54.61% 17.13% 1.27% 0.42% 3.82% 2.02% 
CO % 35.35% 10.56% 5.69% 2.88% 1.76% 0.95% 

 

the airports (CO, HC, Nox), are carried out in order to obtain a 
minimum number of conflicting objectives for generating 
optimal speed profiles. The results show that NOx has a strong 
linear correlation with fuel burn across all aircraft categories. 
For the heavy aircraft, HC and CO should be treated 
individually apart from the time and fuel burn objectives. For 
medium and light aircraft, a strong correlation between HC, 
CO and time has been observed, indicating a reduced number 
of objectives will be sufficient to account for taxi time, fuel 
burn and emissions. The generated optimal speed profiles with 
consideration of different emissions will have impact on the 
resulted taxiing planning using the AR and also affect 
decisions regarding airport regulations. Furthermore, as the 
generated speed profiles consider taxiway configurations, the 
optimal airport layout could be investigated in the future. 
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