142 research outputs found

    Design of optimal reservoir operating rules in large water resources systems combining stochastic programming, fuzzy logic and expert criteria

    Full text link
    Given the high degree of development of hydraulic infrastructure in the developed countries, and with the increasing opposition to constructing new facilities in developing countries, the focus of water resource system analysis has turned into defining adequate operation strategies. Better management is necessary to cope with the challenge of supplying increasing demands and conflicts on water allocation while facing climate change impacts. To do so, a large set of mathematical simulation and optimization tools have been developed. However, the real application of these techniques is still limited. One of the main lines of research to fix this issue regards to the involvement of experts' knowledge in the definition of mathematical algorithms. To define operating rules in a way in which system operators could rely, their expert knowledge should be fully accounted and merged with the results from mathematical algorithms. This thesis develops a methodological framework and the required tools to improve the operation of large-scale water resource systems. In such systems, decision-making processes are complex and supported, at least partially, by the expert knowledge of decision-makers. This importance of expert judgment in the operation strategies requires mathematical tools able to embed and combine it with optimization algorithms. The methods and tools developed in this thesis rely on stochastic programming, fuzzy logic and the involvement of system operators during the whole rule-defining process. An extended stochastic programming algorithm, able to be used in large-scale water resource systems including stream-aquifer interactions, has been developed (the CSG-SDDP). The methodological framework proposed uses fuzzy logic to capture the expert knowledge in the definition of optimal operating rules. Once the current decision-making process is fairly reproduced using fuzzy logic and expert knowledge, stochastic programming results are introduced and thus the performance of the rules is improved. The framework proposed in this thesis has been applied to the Jucar river system (Eastern Spain), in which scarce resources are allocated following complex decision-making processes. We present two applications. In the first one, the CSG-SDDP algorithm has been used to define economically-optimal conjunctive use strategies for a joint operation of reservoirs andaquifers. In the second one, we implement a collaborative framework to couple historical records with expert knowledge and criteria to define a decision support system (DSS) for the seasonal operation of the reservoirs of the Jucar River system. The co-developed DSS tool explicitly reproduces the decision-making processes and criteria considered by the system operators. Two fuzzy logic systems have been developed and linked with this purpose, as well as with fuzzy regressions to preview future inflows. The DSS developed was validated against historical records. The developed framework offers managers a simple way to define a priori suitable decisions, as well as to explore the consequences of any of them. The resulting representation has been then combined with the CSG-SDDP algorithm in order to improve the rules following the current decision-making process. Results show that reducing pumping from the Mancha Oriental aquifer would lead to higher systemwide benefits due to increased flows by stream-aquifer interaction. The operating rules developed successfully combined fuzzy logic, expert judgment and stochastic programming, increasing water allocations to the demands by changing the way in which Alarcon, Contreras and Tous are balanced. These rules follow the same decision-making processes currently done in the system, so system operators would feel familiar with them. In addition, they can be contrasted with the current operating rules to determine what operation options can be coherent with the current management and, at the same time, achieve an optimal operationDado el alto número de infraestructuras construidas en los países desarrollados, y con una oposición creciente a la construcción de nuevas infraestructuras en los países en vías de desarrollo, la atención del análisis de sistemas de recursos hídricos ha pasado a la definición de reglas de operación adecuadas. Una gestión más eficiente del recurso hídrico es necesaria para poder afrontar los impactos del cambio climático y de la creciente demanda de agua. Para lograrlo, un amplio abanico de herramientas y modelos matemáticos de optimización se han desarrollado. Sin embargo, su aplicación práctica en la gestión hídrica sigue siendo limitada. Una de las más importantes líneas de investigación para solucionarlo busca la involucración de los expertos en la definición de dichos modelos matemáticos. Para definir reglas de operación en las cuales los gestores confíen, es necesario tener en cuenta su criterio experto y combinarlo con algoritmos de optimización. La presente tesis desarrolla una metodología, y las herramientas necesarias para aplicarla, con el fin de mejorar la operación de sistemas complejos de recursos hídricos. En éstos, los procesos de toma de decisiones son complicados y se sustentan, al menos en parte, en el juicio experto de los gestores. Esta importancia del criterio de experto en las reglas de operación requiere herramientas matemáticas capaces de incorporarlo en su estructura y de unirlo con algoritmos de optimización. Las herramientas y métodos desarrollados se basan en la optimización estocástica, en la lógica difusa y en la involucración de los expertos durante todo el proceso. Un algoritmo estocástico extendido, capaz de ser usado en sistemas complejos con interacciones río-acuífero se ha desarrollado (el CSG-SDDP). La metodología definida usa lógica difusa para capturar el criterio de experto en la definición de reglas óptimas. En primer lugar se reproducen los procesos de toma de decisiones actuales y, tras ello, el algoritmo de optimización estocástica se emplea para mejorar las reglas previamente obtenidas. La metodología propuesta en esta tesis se ha aplicado al sistema Júcar (Este de España), en el que los recursos hídricos son gestionados de acuerdo a complejos procesos de toma de decisiones. La aplicación se ha realizado de dos formas. En la primera, el algoritmo CSG-SDDP se ha utilizado para definir una estrategia óptima para el uso conjunto de embalses y acuíferos. En la segunda, la metodología se ha usado para reproducir las reglas de operación actuales en base a criterio de expertos. La herramienta desarrollada reproduce de forma explícita los procesos de toma de decisiones seguidos por los operadores del sistema. Dos sistemas lógicos difusos se han empleado e interconectado con este fin, así como regresiones difusas para predecir aportaciones. El Sistema de Ayuda a la Decisión (SAD) creado se ha validado comparándolo con los datos históricos. La metodología desarrollada ofrece a los gestores una forma sencilla de definir decisiones a priori adecuadas, así como explorar las consecuencias de una decisión concreta. La representación matemática resultante se ha combinado entonces con el CSG-SDDP para definir reglas óptimas que respetan los procesos actuales. Los resultados obtenidos indican que reducir el bombeo del acuífero de la Mancha Oriental conlleva una mejora en los beneficios del sistema debido al incremento de caudal por relación río-acuífero. Las reglas de operación han sido adecuadamente desarrolladas combinando lógica difusa, juicio experto y optimización estocástica, aumentando los suministros a las demandas mediante modificaciones el balance de Alarcón, Contreras y Tous. Estas reglas siguen los procesos de toma de decisiones actuales en el Júcar, por lo que pueden resultar familiares a los gestores. Además, pueden compararse con las reglas de operación actuales para establecer qué decisiones entreDonat l'alt nombre d'infraestructures construïdes en els països desenrotllats, i amb una oposició creixent a la construcció de noves infraestructures en els països en vies de desenrotllament, l'atenció de l'anàlisi de sistemes de recursos hídrics ha passat a la definició de regles d'operació adequades. Una gestió més eficient del recurs hídric és necessària per a poder afrontar els impactes del canvi climàtic i de la creixent demanda d'aigua. Per a aconseguir-ho, una amplia selecció de ferramentes i models matemàtics d'optimització s'han desenrotllat. No obstant això, la seua aplicació pràctica en la gestió hídrica continua sent limitada. Una de les més importants línies d'investigació per a solucionar-ho busca la col·laboració activa dels experts en la definició dels models matemàtics. Per a definir regles d'operació en les quals els gestors confien, és necessari tindre en compte el seu criteri expert i combinar-ho amb algoritmes d'optimització. La present tesi desenrotlla una metodologia, i les ferramentes necessàries per a aplicar-la, amb la finalitat de millorar l'operació de sistemes complexos de recursos hídrics. En estos, els processos de presa de decisions són complicats i se sustenten, almenys en part, en el juí expert dels gestors. Esta importància del criteri d'expert en les regles d'operació requereix ferramentes matemàtiques capaces d'incorporar-lo en la seua estructura i d'unir-lo amb algoritmes d'optimització. Les ferramentes i mètodes desenrotllats es basen en l'optimització estocàstica, en la lògica difusa i en la col·laboració activa dels experts durant tot el procés. Un algoritme estocàstic avançat, capaç de ser usat en sistemes complexos amb interaccions riu-aqüífer, s'ha desenrotllat (el CSG-SDDP) . La metodologia definida utilitza lògica difusa per a capturar el criteri d'expert en la definició de regles òptimes. En primer lloc es reprodueixen els processos de presa de decisions actuals i, després d'això, l'algoritme d'optimització estocàstica s'empra per a millorar les regles prèviament obtingudes. La metodologia proposada en esta tesi s'ha aplicat al sistema Xúquer (Est d'Espanya), en el que els recursos hídrics són gestionats d'acord amb complexos processos de presa de decisions. L'aplicació s'ha realitzat de dos formes. En la primera, l'algoritme CSG-SDDP s'ha utilitzat per a definir una estratègia òptima per a l'ús conjunt d'embassaments i aqüífers. En la segona, la metodologia s'ha usat per a reproduir les regles d'operació actuals basant-se en criteri d'experts. La ferramenta desenvolupada reprodueix de forma explícita els processos de presa de decisions seguits pels operadors del sistema. Dos sistemes lògics difusos s'han empleat i interconnectat amb este fi, al igual què regressions difuses per preveure cabdals. El Sistema d'Ajuda a la Decisió (SAD) creat s'ha validat comparant-lo amb les dades històriques. La metodologia desenvolupada ofereix als gestors una manera senzilla de definir decisions a priori adequades, així com per explorar les conseqüències d'una decisió concreta. La representació matemàtica resultant s'ha combinat amb el CSG-SDDP per a definir regles òptimes que respecten els processos actuals. Els resultats obtinguts indiquen que reduir el bombament de l'aqüífer de la Mancha Oriental comporta una millora en els beneficis del sistema a causa de l'increment de l'aigua per relació riu-aqüífer. Les regles d'operació han sigut adequadament desenrotllades combinant lògica difusa, juí expert i optimització estocàstica, augmentant els subministres a les demandes per mitjà de modificacions del balanç d'Alarcón, Contreras i Tous. Estes regles segueixen els processos de presa de decisions actuals en el Xúquer, per la qual cosa poden resultar familiars als gestors. A més, poden comparar-se amb les regles d'operació actuals per a establir quines decisions entre les possibles serien coherentsMacián Sorribes, H. (2017). Design of optimal reservoir operating rules in large water resources systems combining stochastic programming, fuzzy logic and expert criteria [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/82554TESI

    Operation of Multiple Reservoir Systems: A Case Study of the Upper Vistula System (An Introduction)

    Get PDF
    Water resource systems have been an important part of resources and environment related research at IIASA since its inception. As demands for water increase relative to supply, the intensity and efficiency of water resources management must be developed further. This in turn requires an increase in the degree of detail and sophistication of the analysis, including economic, social and environmental evaluation of water resources development alternatives aided by application of mathematical modeling techniques, to generate inputs for planning, design, and operational decisions. During the year of 1978 it was decided that parallel to the continuation of demand studies, an attempt would be made to integrate the results of our studies on water demands with water supply considerations. This new task was named "Regional Water Management" (Task 1, Resources and Environment Area). This paper is concerned with operational decision-making in the existing multiple reservoir systems. Following a short description of the case system, three different approaches to optimization of the system's operation are presented. First, the three-step stochastic implicit approach; second, the simulation approach; and third, the approach based on the concepts of hierarchical control systems. Distinction is made between the long-term reservoir operation rules and the short-term operational decisions using the real-time forecasts of reservoir inflows and water demands. The paper is part of a collaborative study on the operation of the Upper Vistula multiple reservoir system in Poland, carried out by the Institute for Meteorology and Water Management, Warsaw, Poland and IIASA

    A two stage Bayesian stochastic optimization model for cascaded hydropower systems considering varying uncertainty of flow forecasts

    Get PDF
    Copyright © 2014 American Geophysical UnionThis paper presents a new Two Stage Bayesian Stochastic Dynamic Programming (TS-BSDP) model for real time operation of cascaded hydropower systems to handle varying uncertainty of inflow forecasts from Quantitative Precipitation Forecasts. In this model, the inflow forecasts are considered as having increasing uncertainty with extending lead time, thus the forecast horizon is divided into two periods: the inflows in the first period are assumed to be accurate, and the inflows in the second period assumed to be of high uncertainty. Two operation strategies are developed to derive hydropower operation policies for the first and the entire forecast horizon using TS-BSDP. In this paper, the newly developed model is tested on China's Hun River cascade hydropower system and is compared with three popular stochastic dynamic programming models. Comparative results show that the TS-BSDP model exhibits significantly improved system performance in terms of power generation and system reliability due to its explicit and effective utilization of varying degrees of inflow forecast uncertainty. The results also show that the decision strategies should be determined considering the magnitude of uncertainty in inflow forecasts. Further, this study confirms the previous finding that the benefit in hydropower generation gained from the use of a longer horizon of inflow forecasts is diminished due to higher uncertainty and further reveals that the benefit reduction can be substantially mitigated through explicit consideration of varying magnitudes of forecast uncertainties in the decision-making process.National Natural Science Foundation of ChinaHun River cascade hydropower reservoirs development company, Ltd.UK Royal Academy of Engineerin

    The value of hydrological information in multireservoir systems operation

    Get PDF
    La gestion optimale d’un système hydroélectrique composé de plusieurs réservoirs est un problème multi-étapes complexe de prise de décision impliquant, entre autres, (i) un compromis entre les conséquences immédiates et futures d’une décision, (ii) des risques et des incertitudes importantes, et (iii) de multiple objectifs et contraintes opérationnelles. Elle est souvent formulée comme un problème d’optimisation, mais il n’existe pas, à ce jour, de technique de référence même si la programmation dynamique (DP) a été souvent utilisée. La formulation stochastique de DP (SDP) permet la prise en compte explicite de l’incertitude entourant les apports hydrologiques futurs. Différentes approches ont été développées pour incorporer des informations hydrologiques et climatiques autres que les apports. Ces études ont révélé un potentiel d’amélioration des politiques de gestion proposées par les formulations SDP. Cependant, ces formulations sont applicables aux systèmes de petites tailles en raison de la célèbre « malédiction de la dimensionnalité ». La programmation dynamique stochastique duale (SDDP) est une extension de SDP développée dans les années 90. Elle est l’une des rares solutions algorithmiques utilisées pour déterminer les politiques de gestion des systèmes hydroélectriques de grande taille. Dans SDDP, l’incertitude hydrologique est capturée à l’aide d’un modèle autorégressif avec corrélation spatiale des résidus. Ce modèle analytique permet d’obtenir certains des paramètres nécessaires à l’implémentation de la technique d’optimisation. En pratique, les apports hydrologiques peuvent être influencés par d’autres variables observables, telles que l’équivalent de neige en eau et / ou la température de la surface des océans. La prise en compte de ces variables, appelées variables exogènes, permet de mieux décrire les processus hydrologiques et donc d’améliorer les politiques de gestion des réservoirs. L’objectif principal de ce doctorat est d’évaluer la valeur économique des politiques de gestion proposées par SDDP et ce pour diverses informations hydro-climatiques. En partant d’un modèle SDDP dans lequel la modélisation hydrologique est limitée aux processus Makoviens, la première activité de recherche a consisté à augmenter l’ordre du modèle autorégressif et à adapter la formulation SDDP. La seconde activité fut dédiée à l’incorporation de différentes variables hydrologiques exogènes dans l’algorithme SDDP. Le système hydroélectrique de Rio Tinto (RT) situé dans le bassin du fleuve Saguenay-Lac-Saint-Jean fut utilisé comme cas d’étude. Étant donné que ce système n’est pas capable de produire la totalité de l’énergie demandée par les fonderies pour assurer pleinement la production d’aluminium, le modèle SDDP a été modifié de manière à considérer les décisions de gestion des contrats avec Hydro Québec. Le résultat final est un système d’aide à la décision pour la gestion d’un large portefeuille d’actifs physiques et financiers en utilisant diverses informations hydro-climatiques. Les résultats globaux révèlent les gains de production d’énergie auxquels les opérateurs peuvent s’attendre lorsque d’autres variables hydrologiques sont incluses dans le vecteur des variables d’état de SDDP.The optimal operation of a multireservoir hydroelectric system is a complex, multistage, stochastic decision-making problem involving, among others, (i) a trade-off between immediate and future consequences of a decision, (ii) considerable risks and uncertainties, and (iii) multiple objectives and operational constraints. The reservoir operation problem is often formulated as an optimization problem but not a single optimization approach/algorithm exists. Dynamic programming (DP) has been the most popular optimization technique applied to solve the optimization problem. The stochastic formulation of DP (SDP) can be performed by explicitly considering streamflow uncertainty in the DP recursive equation. Different approaches to incorporate more hydrologic and climatic information have been developed and have revealed the potential to enhance SDP- derived policies. However, all these techniques are limited to small-scale systems due to the so-called curse of dimensionality. Stochastic Dual Dynamic Programming (SDDP), an extension of the traditional SDP developed in the 90ies, is one of the few algorithmic solutions used to determine the operating policies of large-scale hydropower systems. In SDDP the hydrologic uncertainty is captured through a multi-site periodic autoregressive model. This analytical linear model is required to derive some of the parameters needed to implement the optimization technique. In practice, reservoir inflows can be affected by other observable variables, such snow water equivalent and/or sea surface temperature. These variables, called exogenous variables, can better describe the hydrologic processes, and therefore enhance reservoir operating policies. The main objective of this PhD is to assess the economic value of SDDP-derived operating policies in large-scale water systems using various hydro-climatic information. The first task focuses on the incorporation of the multi-lag autocorrelation of the hydrologic variables in the SDDP algorithm. Afterwards, the second task is devoted to the incorporation of different exogenous hydrologic variables. The hydroelectric system of Rio Tinto (RT) located in the Saguenay-Lac-Saint-Jean River Basin is used as case study. Since, RT’s hydropower system is not able to produce the entire amount of energy demanded at the smelters to fully assure the aluminum production, a portfolio of energy contacts with Hydro-Québec is available. Eventually, we end up with a decision support system for the management of a large portfolio of physical and financial assets using various hydro-climatic information. The overall results reveal the extent of the gains in energy production that the operators can expect as more hydrologic variables are included in the state-space vector

    Application of dynamic programming for the analysis of complex water resources systems : a case study on the Mahaweli River basin development in Sri Lanka

    Get PDF
    The technique of Stochastic Dynamic Programming (SDP) is ideally suited for operation policy analyses of water resources systems. However SDP has a major drawback which is appropriately termed as its "curse of dimensionality".Aggregation/Disaggregation techniques based on SDP and simulation are presented to analyze a complex water resources system. The system under consideration serves two major purposes: hydropower generation and irrigation. The identification of subsystems by their functional and physical characteristics was an important first step in the analysis. Subsequently each subsystem is represented by a hypothetical composite reservoir to arrive at an operation policy for the interface point of the subsystems. A more detailed analysis which considers the real configurations of the subsystems is performed by following this operation policy of the interface point. Two approaches: sequential optimization and iterative optimization are presented. In these approaches, each subsystem is individually analyzed using two-reservoir SDP models.The applicability of an Implicit Stochastic Approach in which the operation of the system is optimized for a number of deterministic hydrologic data series is also investigated. To complement the aggregation technique of the Composite Reservoir, subsequent disaggregation techniques are proposed. Three different techniques: (1) A statistical disaggregation, (2) An optimization/simulation-based technique, and (3) The disaggregation of the composite policy in the actual operation by incorporating a single-time-step optimization are tested.The accuracy of the sequential and iterative optimization approaches are evaluated by applying them to a subsystem of three reservoirs in a cascade for which the deterministic optimum pattern is also determined by an Incremental Dynamic Programming (IDP) model. In the case of the Implicit Stochastic Approach, the results are compared with the results of the explicit SDP approach and the deterministic optimum operation pattern, in addition to the historical operation pattern of the system. The results of the Composite Policy Disaggregation techniques are compared to the results obtained by real multireservoir optimizations carried out by the use of explicit SDP models

    Estimating the economic value of interannual reservoir storage in water resource systems

    Get PDF
    Reservoir operators face pressures on timing releases of water. Releasing too much water immediately can threaten future supplies and costs, but not releasing enough creates immediate economic hardship downstream. This paper examines how the economic valuation of end‐of‐year carryover storage can lead to optimal amounts of carryover storage in complex large water resource systems. Economic carryover storage value functions (COSVFs) are developed to represent the value of storage in the face of interannual inflow uncertainty and variability within water resource optimization models. The approach divides a perfect foresight optimization problem into year‐long (limited foresight) subproblems solved sequentially by a within‐year optimization engine to find optimal short‐term operations. The final storage state from the previous year provides the initial condition to each annual problem, and end‐of‐year COSVFs are the final condition. Here the COSVF parameters that maximize the interannual benefits from river basin operations are found by evolutionary search. This generalized approach can handle nonconvexity in large‐scale water resources systems. The approach is illustrated with a regional model of the California Central Valley water system including 30 reservoirs, 22 aquifers, and 51 urban and agricultural demand sites. Head‐dependent pumping costs make the optimization problem nonconvex. Optimized interannual reservoir operation improves over more cautious operation in the historical approximation, reducing the average annual scarcity volume and costs by 80% and 98%, respectively, with more realistic representation of hydrologic foresight for California's Mediterranean climate. The economic valuation of storage helps inform water storage decisions

    Integrating climatic information in water resources modelling and optimisation

    Get PDF

    Evaluation of data-driven and process-based real-time flow forecasting techniques for informing operation of surface water abstraction

    Get PDF
    This paper presents an approach to managing surface water abstraction utilizing real-time flow forecasting and control techniques. To evaluate the effectiveness of alternative data-driven and process-based methods, flow forecasts at a case study site (River Dove, UK) using (1) a probability-distributed rainfall-runoff model (PDM), (2) PDM coupled with an autoregressive integrated moving average (ARIMA) error predictor, and (3) a long short-term memory (LSTM) neural network are integrated into a water resources management model coupled with genetic algorithm optimization to simulate and compare water abstractions, reservoir storage, downstream river flows, and pumping energy costs. When compared to historical data, results show that both PDM plus ARIMA and LSTM forecasts led to improved water abstraction operations, i.e., increased water abstraction volumes during dry periods while maintaining river environmental flows, as well as reduced pumping costs. Cost savings were found to be sensitive to the accuracy of the forecasting technique only within specific flow ranges. This study demonstrates the water resource benefits of real-time flow forecasting in supporting flexible water pumping schedules and further discusses the benefits of alternative modeling approaches in the specific context of controlling water abstraction

    Multi reservoir systems optimisation using genetic algorithms

    Get PDF
    corecore