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Abstract 

The operation of multiple reservoir systems for sometimes conflicting purposes can be a 

complex process because of the involvement of a large number of decision variables and 

constraints. Dynamic programming (DP) has long been recognised as a powerful approach 

in the analysis of water resource systems. The usefulness of DP for multi reservoir systems 

is, however, limited by the huge demand that it can induce on computational resources. 

Many forms of DP have been developed to alleviate the problem of dimensionality with 

varying degrees of success, but no general algorithm exists. This thesis describes the 

development and application of genetic algorithms (GAs) for the optimisation of multi 

reservoir systems. 

The GA approach is validated through application to a number of problems with known 

solutions. Several alternative formulations of a GA for reservoir systems are evaluated using 

the four reservoir problem. This has been done with a view to presenting fundamental 

guidelines for implementation of the approach to practical problems. Alternative 

representation, selection, crossover, and mutation schemes are considered. The most 

promising GA approach comprises real-value coding, tournament selection, uniform 

crossover, and modified uniform mutation. A non-linear four reservoir problem was also 

solved, along with a problem with extended time horizons. A more complex ten reservoir 

problem was also successfully solved. 

The practicality of the developed GA approach in the determination of optimal reservoir 

operating rules is considered through application to a reservoir system in Indonesia. Optimal 

operating rules have been derived for the existing development situation in the basin, and for 

two future water resource development scenarios, using critical period hydrology. A 

comparison of the GA results with those produced by discrete differential DP (DDDP) is 

also presented. The application of GA approach to real time operations with stochastically 

generated inflows is also demonstrated for the Equatorial Lakes system in Africa. A 

methodology for forecasting reliable power that can be produced over different durations of 

time has also been developed using a GA. For the problems considered in this study, the GA 

solutions are very close to the optimum. The results demonstrate that the approach is robust 

and is easily applied to complex systems. It has potential as an alternative to stochastic DP 

approaches. 
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1. INTRODUCTION 

1.1 Introduction 

Water is the most essential resource of all life on Earth. The spatial and temporal 

distribution of water is highly variable and is dependent upon the climatic factors that are 

beyond human control. Due to tremendous population growth and extensive industrial and 

agricultural development, the demand on water resources is increasing everywhere in the 

world. In some parts, the characteristics of water supply and demand pose few problems for 

agricultural, domestic, and industrial users. In other areas, including much of the developing 

world, physical, social and political factors make effective water resource management vital. 

The situation is critical in developing countries as the gap between water demand and 

supply has been continuously widening. This has led to an increased emphasis on the 

optimal management of the available resources. Rigorous planning and management of 

water resources is required for long term sustainable resource development. The need for 

optimal management of existing water resource systems as well as the optimal development 

of the new ones is now universally acknowledged. Water resource systems are an important 

part of the infra-stmcture of every country, particularly the developing ones. In addition to 

the basic purpose of supporting life, they serve a multitude of water uses such as water 

supply, hydropower generation, recreation, irrigation, flood control, navigation and wild life 

maintenance. 

Optirrnsing the economic benefits of water resource systems is a classical and persistent 

problem. The solution to the problem is difficult because of the large number of variables 

involved, the non-linearity of system dynamics, the stochastic nature of future inflows, and 

other uncertainties of the system. Nevertheless, a number of mathematical programming 

techniques have been developed to aid derivation of optimal operating strategies for water 

resource systems. Most of these techniques perform satisfactorily for the problems they are 

developed for. A generic methodology that can handle problems in their general form has 

not yet been identified however. For this reason, there is a continuing need to improve and 

extend existing optimisation techniques as well as to explore new ones. 
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Introduction 

The rest of this chapter is organised as follows. Section 1.2 presents a brief survey of the 

current state of research in the area of reservoir systems optimisation. Following this, 

section 1.3 gives an exposition of the principal motivation behind the research undertaken in 

this thesis. Section 1.4 gives an outline of the objectives of this research. The contributions 

made in this thesis are outlined in section 1.5. At the end, section 1.6 presents the thesis 

layout. 

1.2 Background 

The planning and operation of reservoir systems for sometimes conflicting purposes can be 

a complex process. This is primarily because the potential benefits and risks associated with 

the operation of reservoir systems can be large. Maximum benefits, which are usually 

defined in some economic terms, need to be achieved without reducing the reliability of the 

system, thus making the whole process even more complicated. Risk is inherent in all 

reservoir operations, be it risk of emptying or the risk associated with flood releases, and 

require careful attention by reservoir managers. Because of the complexities of multi 

reservoir systems, optimisation models are often used to determine optimal operating 

policies. Simulation models have also been widely used for this purpose. Optimisation 

models can be used in planning to determine the optimum size of reservoir to construct, or in 

operations to determine optimal release policies. 

During the last three decades, one of the most important advances made in the field of water 

resources engineering has been the development of optimisation techniques for planning, 

design and management of complex water resource systems. The recent rapid increase in 

computer technology has made the development of sophisticated mathematical models for 

the analysis of water resource systems possible. These models are increasingly being used 

by system managers to determine decision alternatives which are optimal in some defined 

sense. The optimisation of reservoir systems operation usually involves the search through 

large decision spaces for optimal parameter sets. Often, the decision space is too large for a 

complete search. This has motivated the development of various optimisation procedures. 

However, despite the extensive research carried out in the last three decades, reservoir 

control still remains an active research field. 
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Introduction 

Most optimisation procedures are based upon some type of mathematical progranmiing 

technique such as linear programming (LP), non-linear programming (NLP), or dynamic 

programming (DP). DP (Bellman 1957; Bellman and Dreyfus 1962) has long been 

recognised as a powerful approach in the analysis of water resource systems. The major 

reason DP is so attractive is that it can handle non-convex, non-linear and discontinuous 

objective functions without difficulty. Constraints on both decision and state variables 

introduce no difficulties. Hall and Buras (1961) were the first to propose the application of 

DP to determine the optimal returns from the reservoir systems. Young (1967) developed 

optimal operating rules for a single reservoir using DP. Since then, DP has been the most 

widely used technique for reservoir systems operation. The technique, however, becomes 

computationally bounded for large systems due to the "curse of dimensionality", a term used 

for huge memory and computational time requirements of a multidimensional problem 

(Bellman 1957). 

Many forms of DP including decomposition, aggregation, and successive approximation 

have been developed to alleviate the problem of dimensionality with varying degrees of 

success. The most regarded and widely used variant of DP is the discrete differential 

dynamic programming (DDDP). The technique was first proposed by Larson (1968) under 

the nomenclature of incremental dynamic programming (JDP). Another approach that 

overcomes the dimensionality problem is the DP successive approximation (DPSA) 

technique (Larson 1968; Trott and Yeh 1973). Murray and Yakowitz (1979) have developed 

differential DP (DDP) for multi reservoir control problems. Turgeon (1981 a) has reported 

the use of progressive optimality algorithm (POA), which can handle large scale systems. 

The implementation of DDP and the POA is more complicated than that of DDDP and 

DPSA. Although DDP appears free from dimensionality problems, it requires that the 

objective function be differentiable and that the constraints are linear. 

Approaches based on optimal control theory (Pontryagin et al. 1962) (OCT) have also been 

used for reservoir systems optimisation. These approaches do not suffer from dimensionality 

problems but require that the objective function should be differentiable. OCT was 

originally developed for unconstrained problems. To handle the constraints of the problem, 

a penalty function approach is required. Wasimi and Kitanidis (1983), Papageorgiou (1985), 

Georgakakos and Marks (1987), Georgakakos (1989), McLaughlin and Velasco (1990), and 
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Mizyed et al. (1992) have all reported the use of the approach. Many other optimisation 

techniques have been developed with their own merits and demerits. 

1.3 Motivation for Work 

This section outlines the need for undertaking this research. The increasing gap between the 

demand and supply of water in most parts of the world has made it imperative to optimise 

the utilisation of available water resources. As water resource systems have grown larger 

and more complex, the importance of optimal operation and planning of these systems has 

increased. The investment costs and operating expenses are often so large that even small 

improvements in system utilisation can result in substantial financial gains. Although the 

existing systems are being managed with some type of optimisation techniques, there is 

potential for improvement in the operation schemes. 

The usefulness of DP for multi reservoir systems is limited by the huge demand it induces 

on computational resources. With the conventional DP procedure it is usually not possible to 

consider the simultaneous operations of more than two reservoirs due to the curse of 

dimensionality (Yakowitz 1982). Discretization of state space is required to solve the 

reservoir operation problems by DP and this is the major reason for the problem of 

dimensionality. Recently, the emphasis has shifted from DP based methods to those which 

do not require discretization of state space. DDP (Murray and Yakowitz 1979) and OCT 

approaches (Wasimi and Kitanidis 1983; Georgakakos and Marks 1987; Georgakakos 1989) 

are among such methods. Many successful applications of these techniques have been made 

in reservoir operation and planning studies but no general algorithm exists. 

Many optimisation algorithms have been developed to obtain approximate solutions to 

complex operating and planning problems associated with the reservoir systems. Most of 

these algorithms have their own limitations. Some require discretization of the state and 

decision space while others require that the objective function is differentiable. A major 

drawback of most DP based iterative methods, such as DDDP and DPSA, is that they may 

converge to a local optimum, or may not converge at all, unless the problem itself satisfies 

some stringent conditions. Solution of multi reservoir systems with high dimensionality and 

complex objectives still poses a challenge to researchers and no generalised technique is 

available which can fully solve problems of all types. For this reason, there arises a need for 
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research into robust and more efficient algorithms to overcome the problem of 

dimensionality and the limitations associated with existing techniques. This has been the 

focus of much recent research (Papageorgiou 1985; Hiew 1987). 

To address the above, optimisation based on the genetic algorithm (GA) approach is 

investigated in this thesis. The development of GA procedures for reservoir control 

problems is largely motivated by the dimensionality problems associated with the 

conventional DP approach. GAs are a class of search algorithms which have considerable 

potential for employment in the planning and analysis of water resource systems. GAs are 

theoretically and empirically proven to provide a robust search in complex spaces 

(Goldberg 1989). Many works (DeJong 1975; Michalewicz 1992) have established the 

validity of the GA technique in function optimisation. A growing number of researchers are 

showing an interest in the field of GAs due to the relative simplicity of use of these 

algorithms. Although the algorithm is simplistic in nature, it is powerful. GAs can easily 

accommodate discontinuous, non-differentiable and multimodal functions, and it is in this 

area that the strength of GAs lie. 

GAs are a class of combinatorial optimisation methods that searches for solutions of 

complex problems using the mechanics of natural selection. They use a stochastic search 

procedure inspired by biological evolution to obtain better solutions to survive and 

propagate to successive generations. The execution time for GAs increase at a significantly 

lower rate compared to traditional methods like DP (Goldberg 1989; Esat and Hall 1994). 

As the complexity of a problem increases, GAs are expected to be computationally efficient. 

The use of GAs is increasing at a rapid rate for solving problems that have been found 

difficult to solve by traditional optimisation techniques. Davis (1991), Michalewicz (1992), 

and Dasgupta and Michalewicz (1997) have reported many successful applications of GA to 

real-world problems from a wide spectrum of fields. GAs have had a relatively slow uptake 

in water resources systems optimisation compared to other disciplines. The literature 

describing the application of the GA technique to the operation of reservoir systems is not 

extensive. 
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1.4 Thesis Objectives 

The main objective of this research is to develop and evaluate the GA approach for the 

operation of multi reservoir systems. Specific objectives are as follows: 

• to survey the use of optimisation techniques for the operation of multi reservoir systems; 

• to develop and apply the GA approach to problems with known solutions and compare 

the performance with other techniques; 

to apply the developed approach to real world problems with deterministic and stochastic 

inflows; 

• based upon the above studies, identify the merits and the limitations of the approach. 

The first objective is achieved through review of literature focusing on the use of 

optimisation models in the operation of large scale systems, and is presented in chapter 2 of 

this thesis. Particular attention has been given to techniques that aim to alleviate the 

dimensionality problem posed by DP. The second objective is achieved through the 

application of the GA technique to a four reservoir problem formulated by Larson (1968). 

Further verification of the GA model is carried out by applying the approach to a modified 

four reservoir problem, and to a ten reservoir problem introduced to the literature by Murray 

and Yakowitz (1979). These problems were chosen because they offered an opportunity to 

test the performance of GA against the known global optima. 

The practicality of the developed GA approach is evaluated through application to a 

reservoir system in Indonesia. Finally, real time operation of the Equatorial Lakes system on 

the River Nile in Africa is considered using the GA approach. Based on the results of these 

applications, the merits and limitations of the GA approach have been identified and 

discussed, thus constituting the last objective of this research. 

1.5 Thesis Contributions 

This section outlines some of the major contributions of the research presented in this thesis. 

A generic methodology based on the GA approach has been developed for optimisation of 

multi reservoir systems. The approach developed here does not require discretization of state 
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variables and is equally applicable to problems with discontinuous and non-differentiable 

objective functions. The GA approach leads to a computational procedure that has memory 

and computational requirements significantly less than those of conventional procedures for 

large reservoir systems. These computational and memory savings are obtained without any 

loss in the generality of the problems that can be solved. 

The well known four reservoir problem is solved first and the solution has been compared to 

that obtained in the past by different researchers. Evaluation of alternative GA formulations 

have been carried out, and sensitivity of GA performance to different parameters is also 

analysed. A non-linear four reservoir problem has been solved, along with a problem with 

extended time horizons. A ten reservoir problem has also been solved satisfactorily. For the 

non-linear four reservoir problem, the optimum was obtained thus indicating that a GA can 

indeed reproduce an optimum. 

After the GA approach has been verified, it is applied to a case study of a practical reservoir 

system in Indonesia. In this study, a deterministic finite horizon reservoir operation problem 

has been solved. Optimal operating rules have been derived for the existing development 

situation in the basin, and also for two future water resource development scenarios using 

the critical period hydrology. Subsequently, the methodology for real time operation of 

reservoir systems is developed and applied to the Equatorial Lakes system of the River Nile 

in Africa. In all the cases considered, the GA results have been compared to those obtained 

by other techniques, and have been found to be satisfactory. DDDP models have also been 

developed for the four reservoir problem, the Brantas Basin and the Equatorial Lakes 

system. Simulation models have been used to evaluate the economic performance of the 

Brantas Basin system and the Equatorial Lakes system for a number of operating criterion. 

GAs have some distinct practical advantages over traditional optimisation techniques. With 

GA, discretization of storage space is not required thereby eliminating one of the major 

causes of dimensionality problem associated with DP. A GA requires only a numerical 

measure of the solution, and therefore can easily handle discontinuous and indifferentiable 

objective functions. The computational complexity for GA grows at a significantly slower 

rate than for the DP. Savings in terms of execution time and memory requirements are 

realised when compared to DP and to its variants such as DDDP for large systems. GAs 
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generate a number of alternative solutions close to the optimum which gives added 

flexibility to the operator of a complex reservoir system. 

1.6 Thesis Organisation 

The rest of the thesis is organised in 8 Chapters and three appendices. 

Chapter 2 provides a review of the optimisation models used in reservoir operation studies. 

The basic concepts of commonly used mathematical programming techniques for reservoir 

systems optimisation are also explained in this chapter. 

Chapter 3 presents the theory and fundamentals of the GA approach. The procedure for 

problem formulation, different representation schemes, and reproduction operators are also 

described. Subsequently, a brief review of the application of GA to water resources problem 

in general and reservoir operations in particular is presented. 

Chapter 4 describes the application of the GA approach to the well known four reservoir 

problem. Several alternative formulations of GA have been evaluated and sensitivity of GA 

performance to various parameters has been analysed. The application of GA to a non-linear 

four reservoir problem and to a ten reservoir problem is also described in Chapter 4. A four 

reservoir problem with extended time horizon is also considered. 

Chapter 5 describes the Brantas Basin located in Indonesia and also gives the details of a 

simulation model of the basin. The application of GA in the determination of optimal 

reservoir operating rules for the Brantas Basin is presented in chapter 6. In chapter 7, the 

methodology for real time operation of multi reservoir systems is developed and 

demonstrated through application to the Equatorial Lakes system on the River Nile in 

Africa. 

Chapter 8 provides the conclusions of the research. The chapter lists the achievement of the 

research and outlines the limitations of the work carried out. Recommendations for further 

research in the application of GAs to water resource systems are also provided. 
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2. LITERATURE REVIEW 

2.1 Introduction 

This thesis describes the development and application of genetic algorithms (GAs) for 

optimisation of multi reservoir systems. The optimal operation of multi reservoir systems is 

a subject of great practical and economic significance in the field of water resources 

engineering. This is reflected in the abundance of literature in the field. The continuing 

research effort is sustained because the outputs generated by reservoir systems have an 

influential social, economic, and environmental impact. In order to establish the context and 

the need of the research undertaken clearly and coherently, it is necessary to discuss various 

optimisation techniques that have been used in the past by different researchers. This 

chapter discusses these techniques and presents a review of optimisation models used in 

reservoir operation problems. 

Following this introduction, section 2.2 describes mathematical programming techniques 

commonly used in reservoir systems optimisation. A review of applications of these 

techniques to multi reservoir operation problems is presented in the same section. 

Applications of different techniques to real time operations is presented in section 2.3. Non-

conventional optimisation approaches used in engineering applications are briefly discussed 

in section 2.4. Finally, section 2.5 provides the concluding remarks. 

2.2 Mathematical Programming Techniques 

Most optimisation models are based on some type of mathematical programming technique. 

Many successful applications of these techniques to reservoir operation studies have been 

reported in the literature, but no universally proven technique exists. Excellent treatment of 

these techniques can be found in the works by Loucks et at. (1981) and Mays and Tung 

(1992). A survey of dynamic programming (DP) models applied to water resources planning 

problems was presented by Yakowitz (1982). The application of various optimisation 

models to reservoir operation problems has been reviewed by Simonovic (1992) and Wurbs 

(1993). Yeh (1985) provides an excellent state-of-the-art review of reservoir management - 
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and operation models. According to Yeh (1985), the techniques being commonly used by 

the researchers can be broadly classified as follows: 

Linear programming (LP) 

Non-linear programming (NLP) 

Dynamic programming (DP) including, discrete differential DP (DDDP), differential DP 

(DDP), successive approximation DP (SADP), and stochastic DP (SDP) 

Simulation 

2.2.1 Linear Programming 

In a problem where all the objective and constraint functions are linear, LP can be used in 

the optimisation of reservoir systems. It has been one of the most widely used techniques in 

water resources management due to its simplicity and adaptability. 

A typical LP model is 

Minimise or Maximise Z = CTX 	 (2.1) 

subject to 	 AX ~t b 	 (2.2) 

where X ~t 0 is a n dimensional vector of decision variables, C is a n dimensional vector of 

objective function coefficients; b is a m dimensional vector of right hand side of (2.2); A is a 

m X n matrix of constraint coefficients; and T represents the matrix transpose operation. 

Dorfman (1962) demonstrated the application of LP to a water resource problem with three 

versions of a model, each with increasing complexity. The objective was to maximise the 

economic benefits of water use while satisfying the constraints of the problem. In all the 

three versions, both storage capacities and target releases were treated as decision variables. 

The first version of model involved a simple LP application to a simplified river basin 

planning problem. In the second version, critical period hydrology was used. In the third 

version, the model treats inflows stochastically. 

Shane and Gilbert (1982) and Gilbert and Shane (1982) describe a model called 

HYDROSIM used to simulate the Tennessee Valley Authority reservoir system based on 
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established operating strategies. The model employed LP to compute reservoir storages, and 

hydropower generation for each period of operating horizon. Palmer and Holmes (1988) 

incorporated a LP model in the Seattle Water Department integrated drought-management 

expert system. The model was used to determine optimal operating policies and system yield 

based upon the objectives of maximising the yield, and minimising the economic losses 

associated with deficits from a specified target. 

Randall et al. (1990) used LP to study the operation, during drought, of a water resource 

system consisting of multiple reservoirs, groundwater, treatment plants, and distribution 

facilities. The objectives was to maximise the net revenues, which were the difference 

between the cost of production and the selling price of water; maximise reliability, 

expressed as the minimum of the ratios of consumption to demand for each water use 

deficit; maximise reservoir storage at the end of the operating horizon; and maximise the 

minimum flows in the streams. Crawley and Dandy (1993) used LP to develop a planning 

and operational model for the Adelaide headworks system in South Australia. The objective 

was to determine optimal sequences of pumping and transfers for the system so as to 

minimise pumping cost while maintaining a satisfactory level of reliability within the 

system. Martin (1995) describe an optimisation procedure based on LP to maximise the 

power generation over a 24-hr period from the Highland Lakes of Lower Colorado river in 

Texas. 

The application of LP requires the linearisation of constraints and of the objective function, 

which for most of the practical reservoir systems are non-linear functions. This limits the 

application of LP to problems with linear functions. Non-linear functions can be 

approximated by linear functions, and successive LP (SLP) can be used to approximate the 

solutions. Grygier and Stedinger (1985) and Hiew (1987) describe the application of SLP, 

among many other techniques, to multi reservoir optimisation problems. Reznicek and 

Simonovic (1990) describes the application of SLP to Manitoba Hydro system in Canada. 

The objective was to maximise the power production from the system. Since the power was 

not linearly related to the release, Taylors series expansion was used to linearise the power 

function. Such simplification may, however, lead to reduction in the value of the 

optimisation results. 
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2.2.2 Non-linear Programming 

NLP technique can be applied where either the objective function or constraints are non-

linear. NLP can effectively handle a non-separable objective function and non-linear 

constraints. A general NLP problem can be expressed in the form 

Minimise 	F=f(x1 ,x 2 ,...,x) 
	

(2.3) 

subject to 	g.(x) = 0 	i = 1, m 	 (2.4) 

where 	x !~ X
i

!!~ x, 	j = 1, n 	 (2.5) 

in which F is to be minimised subject to m constraints expressed by function g(x), n is the 

number of decision variables, and (2.5) is a bound constraint for the jth decision variable x3  

with xi and xj being the lower and upper bounds, respectively. 

NLP has not been very popular due to the computational complexity of the approach for 

multi reservoir systems optimisation. Lee and Waziruddin (1970) applied NLP to a 

theoretical system of three reservoirs in series with the objective of maximising a non-linear 

function of irrigation releases and storages in the reservoirs. Applications of NLP have also 

been reported by Simonovic and Marino (1980), Rosenthal (1981), and Guibert et al. (1990). 

A special case of NLP is quadratic programming (QP) where the degree of various terms in 

the objective function is 2, 1, or 0. A quadratic optimisation model for the California Central 

Valley Project (CCVP) has been presented by Marino and Loaiciga (1985). The model was 

compared with an LP model, and it was found that a significant increase in the total energy 

production could be obtained using the QP model. Diaz and Fontane (1989) applied 

sequential QP (SQP) to determine optimal economic returns from hydropower generation 

for a multi reservoir system in Argentina. The SQP approach was found to be superior to 

SLP in terms of the execution time and the value of the objection function achieved. 

Wardlaw et al. (1997) used QP to solve water allocation problem to the Lower Ayung 

irrigation system on the island of Bali in Indonesia. The objective was to maximise crop 

production while maintaining equity in water supply between irrigation schemes and the 

irrigation blocks within the schemes. 

12 
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A large number of NLP software packages are commercially available. Most commonly 

used packages include GAMS, INRIA, LINDO, LINGO, Mathworks, NAG and OSL. For 

multiple reservoir systems, the number of constraints is large because they deal with similar 

subsystems repeated in time or location. Therefore, NLP requires large amount of storage 

and execution time when compared to other methods limiting its applicability to large 

systems (Yeh 1985). The use of NLP is further limited to problems that are smooth and 

continuous because it requires the calculation of derivatives for its search procedure. 

2.2.3 Dynamic Programming 

DP (Bellman 1957) is the most commonly used method for the optimisation of reservoir 

systems as these are characterised by large number of non-linear and stochastic features that 

can be translated into a DP formulation. DP is an enumeration procedure used to determine 

the combinations of decisions that optimises overall system effectiveness as measured by a 

criterion function. It is capable of treating non-convex, non-linear and discontinuous 

objective and constraint functions, and this is the greatest advantage of DP. Constraints on 

both decision and state variables introduce no difficulties. In fact, the constraints speed up 

the computational procedure. 

The key feature of DP application is that it is usually identified as serially or progressively 

directed for an operational or planning problems, respectively. The operation of reservoirs is 

a multistage decision process and DP is particularly suited to such problems. The problem is 

divided into stages with a decision required at each stage. The stages usually represent 

different points in time and each stage should have a finite number of states associated with 

it. In reservoir operation studies, the state usually represents the amount of water in the 

reservoir at a given stage. If DP is used for determination of reservoir releases, these form 

the decision variables. The stage to stage transformation is carried out by the continuity 

equation subject to constraints on storages and releases. The recursive equation of DP can 

be written as 

F (sn ) = max [V (s , d) + F (s_3 )] 

	

(2.6) 
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where s,, is the state variable, dn is the decision variable, V,, (s m  d) is the objective function 

value, F (Sn)  is the cumulative return at stage n with F (s0 ) known, and S n+i = g(s , d) 

is the stage to stage transformation function. 

Given a starting state, the DP model calculates the vector of states reached in the next stage 

for all possible combinations of states. This require exhaustive searching over all possible 

states in the next stage because the next state can lie anywhere in the space of admissible 

states. The decision variables may not be discretized in a DP algorithm. Rather than using 

the state in the current stage and a decision set to calculate the states in the next stage, the 

decisions that would be required for the states in the current stage to go forward to feasible 

states in the next stage are computed. This eliminates the need for interpolation and results 

in considerable reduction in computing time. For each state reached in the next stage, the 

cumulative return based upon the objective function is calculated and the value assigned to 

the new state reached. As the same state can often be reached from several different 

preceding states, each having a different return, only the maximum return is stored with the 

preceding state also being recorded. The model then moves to the next stage and repeats the 

process for all states with a non-zero return. When the final stage is reached the model traces 

back through each stage to find the sequence of states and releases that generated the 

maximum return at each stage. 

DP has been successfully used by many researchers for optimisation of water resource 

systems. Hall and Buras (1961) were the first to propose the application of DP to determine 

optimal returns from reservoir systems. Young (1967) developed optimal operating rules for 

a single reservoir using DP. A series of synthetically generated inflow sequences were used 

to derive a set of optimal release trajectories. These trajectories were then related to various 

system variables through regression analysis. As a result, an operating rule expressed as a 

function of a set of system variables was obtained. Allen and Bridgeman (1986) used DP for 

optimal scheduling of hydroelectric power. Applications of DP to reservoir operation 

problems have also been reported by Opricovic and Djordjevic (1976) and Collins (1977). 

Extensive review of DP applications to reservoir systems can be found in the works by 

Yakowitz (1982) and Yeh (1985). 

The disadvantages associated with DP are the huge requirements in terms of computer 

memory and execution time. The approach breaks down on the problems of moderate size 
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and complexity, suffering from a malady labelled the 'curse of dimensionality' by its creator 

Bellman (1957). For a system with n state variables and k levels of discretization, there 

exists A' combinations that need to be evaluated at each stage of analysis. The usefulness of 

DP when applied to multiple reservoir systems is therefore limited by the "curse of 

dimensionality" which is a strong function of the number of state variables and the levels of 

discretization used. The application of DP to problems with more than two or three state 

variables still remains a challenging task on present day computers. 

A traditional and simplistic procedure for reducing computational effort in DP is the 

iterative coarse grid method. The problem is first solved using a coarser discretization of the 

state variables. Based upon the resulting solution, revised bounds on the state variables are 

defined and the grid size is then reduced. The iterative procedure is repeated until the grid 

size has been reduced to a desired precision. The algorithm is stopped when no further 

improvement in the value of the objective function can be obtained. This procedure, 

however, cannot guarantee a global optimum. Besides, it also does not resolve the 

dimensionality problem. 

To overcome the dimensionality problem imposed by DP to some extent, use of LP in 

combination with DP has been reported by many researchers. In a combined LP-DP 

procedure, the stage to stage optimisation is carried out by LP, and DP is used for 

determining optimal policy over a number of stages. Becker and Yeh (1974) applied a 

combined LP-DP approach to optimal real time operations associated with CCVP. The LP 

minimised the loss in potential energy of the stored water in the reservoirs resulting from 

any release policy in each period. The multiperiod optimisation was carried out by 

embedding the LP solutions in a deterministic forward DP. The LP-DP combination has also 

been used by Takeuchi and Moreau (1974), Becker et al. (1976), Yeh et al. (1979), Yeh and 

Becker (1982), and Marino and Mohammadi (1983). The non-linearities are handled using 

an iterative technique, such as SLP. Grygier and Stedinger (1985) describe the application of 

SLP, an optimal control algorithm (Pontryagin et al. 1962), and a combined LP-DP 

algorithm to a multi reservoir system. The optimal control algorithm is based on 

Pontryagin' s maximum principle (Pontryagin et al. 1962) and involves the solution of Kuhn-

Tucker necessary conditions of optimality. The optimal control algorithm for the problem 

solved by Grygier and Stedinger (1985) executed five times faster than the SLP. The LP-DP 

algorithm took longer to execute and produced comparatively inferior solutions. 
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2.2.4 Discrete Differential Dynamic Programming 

Many variants of DP have been developed over time to alleviate the problems of 

dimensionality. Notable among these are incremental dynamic programming (IDP), DPSA 

and DDDP. These are iterative techniques and start with the assumption of a trial trajectory. 

DDDP is specifically designed to overcome the dimensionality problem posed by DP. The 

technique uses the same recursive equation as DP to search among the discrete states in the 

state-stage domain. Instead of searching over the entire state-stage domain for the optimum, 

the optimisation is constrained only to a part of the state-stage domain saving computer time 

and memory. The method starts with the selection of a trial state trajectory satisfying the 

boundary conditions. Several states, located in the neighbourhood of a trial trajectory can be 

introduced to form a band called a corridor around the trial trajectory. The traditional DP 

approach is applied to optimise within the defined corridor. Consequently, an improved 

trajectory is obtained which is adopted as the new trajectory to form a new corridor. This 

process of corridor formation, optimisation with respect to the states within the corridor and 

trace back to obtain an improved trajectory for the system is called an iteration. The 

procedure is repeated for a number of iterations until no further improvement in the value of 

the objective function can be obtained. 

Larson (1968) obtained the solution to the four reservoir problem using IDP. Hall et al. 

(1969) used a different version of IDP and solved a two reservoir system. The major 

difference between the two versions is that the time interval used in the computation is 

variable in the former and fixed in the latter. Another version called DDDP was developed 

by Heidari et al. (1971) which could be seen as a generalisation of IDP. They solved the four 

reservoir problem formulated by Larson (1968). The terms IDP and DDDP have been used 

interchangeably in water resources applications. In the standard TDP of Larson (1968), the 

number of discretizations are limited to three per state variable. The computational burden 

and memory requirements for such an approach is a function 3,  where n is the number of 

state variables. IDP does overcome the dimensionality problem to a large extent but requires 

stringent conditions to be satisfied for implementing the procedure. The IDP method require 

that there must exist a function g (s, , s +1) such that for every pair of states s and S 4.J, 

g(s,s 1 ) = 	 (2.7) 
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where rt  is the release in time step t such that s1 = f, (s , r) 	 (2.8) 

In IDP, an optimal solution can only be obtained if all the states in the corridor are 

accessible from one stage to another. When the optimisation is restricted to three states in 

each stage, the above condition may not be satisfied and IDP may converge to a non-optimal 

solution. When the optimisation is carried out over the entire decision space, the method 

becomes time consuming and memory requirements are also high but the likelihood of 

locating the optimum is increased. Turgeon (1982) demonstrated that IDP may lead to non 

optimal solutions. Suggestions were then made to adjust the increment sizes in each stage to 

obtain the desired results. The choice of initial trial trajectory is vital for good convergence 

in all iterative algorithms. For complex systems, the determination of feasible trial state 

trajectories is not a trivial task. 

Another approach which overcomes the dimensionality problem is the DP successive 

approximation technique (DPSA). The technique was first proposed by Larson (1968). Trott 

and Yeh (1973) used successive approximation technique in combination with IDP. The 

original multiple state variable DP problem was decomposed in a series of subproblems of 

one state variable. To demonstrate the technique, a six reservoir problem was solved. The 

optimisations were carried out with respect to a single reservoir while keeping the states in 

the other reservoirs fixed. The procedure is repeated for other reservoirs until the 

convergence criteria is satisfied. Successive approximation is one-at-a-time optimisation 

technique and its common drawback is convergence to a local optimum. Extension to 

successive approximation technique has been reported by Nopmongcol and Askew (1976), 

who suggested higher level combinations, such as two or three-at-a-time combinations. The 

technique was demonstrated through application to the four reservoir problem. 

The requirement that the state variables be discretized is a major cause of computational 

complexity. Jacobson and Mayne (1970) developed differential DP (DDP) for multi state 

problems. Murray and Yakowitz (1979) applied DDP to multi reservoir control problems. 

The important feature of the technique is that discretization of state and decision space is not 

required. The method requires a quadratic approximation of the objective function. 

Application of the method to a ten reservoir problem by Murray and Yakowitz (1979) has 

demonstrated its effectiveness. Murray and Yakowitz (1979) also solved the four reservoir 

problem using DDP and showed that the global optimum was obtained in much lesser 
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number of iterations than in DDDP. Application of DDP to estuary management has been 

reported by Li and Mays (1995). However, the technique requires that the objective function 

is differentiable and that constraints are linear. 

Howson and Sancho (1975) developed a progressive optimality algorithm (POA) for 

multistate problems. Turgeon (1981b) applied the algorithm to an example system 

consisting of four reservoirs in series. The most promising aspect of the approach is that the 

state variables do not have to be discretized. The algorithm, however, required 823 iterations 

to converge to an optimal solution for the simple example considered. The approach has 

merit in that it overcomes the dimensionality problem. A binary state DP algorithm has 

been developed by Ozden (1984) in which the optimisation is constrained within a subset 

consisting of only two states at each stage. One of the-states is the component of the optimal 

trajectory found in the previous iteration. The second value is defined according to the 

shifting direction of the optimal trajectory in the state space at previous iteration. This 

procedure differs from DDDP in the manner in which the states are chosen for next 

iteration. 

2.2.5 Optimal Control Theory 

Optimal control theory (OCT) also provides an efficient means of overcoming the 

dimensionality problem. State and release variables need not be discretized in such 

approaches. The requirement that the objective function must be differentiable limits the 

application of approach to some extent. Storage constraints are not automatically satisfied 

but can be handled by use of appropriate penalty functions. Wasimi and Kitanidis (1983) 

used linear quadratic Gaussian (LQG) approach based on OCT to solve a multi reservoir 

control problem. They used a set of differential equations to describe the dynamics of a 

reservoir system and employed a quadratic penalty function to keep the state variables 

within bounds. Papageorgiou (1985) solved a ten reservoir problem using the same 

approach. Georgakakos and Marks (1987) modified the LQG approach to include the non-

linear dynamics and applied it to the operation of High Aswan dam. Further extensions to 

the approach were made by Georgakakos (1989) to handle non-Gaussian features that 

frequently characterise reservoir inflows. An LQG model has also been developed by 

McLaughlin and Velasco (1990) for stochastic monthly operation of a two reservoir system. 

Hooper et al. (1992) describe application of ELQG to Salt River project, Arizona. The use 

of ELQG to reservoir operation problems has also been reported by Georgakakos et al. 

18 



Literature Review 

(1997). Zhao and Mays (1995) describe an estuary management model based on stochastic 

LQG control. 

2.2.6 Simulation 

Simulation is a modelling technique used to approximate the behaviour of a system on a 

computer, representing all the characteristics of the system largely by a mathematical or 

algebraic description. Simulation models provide the response of the system to certain 

inputs, which include decision rules that allow the decision makers to test the performance 

of existing systems or a new system without actually building it. A typical simulation model 

for a water resources system is simply a model that simulates the interval-by-interval 

operation of the system with specified inflows at all locations during each interval, specified 

system characteristics and specified operating rules. 

Optimisation models aim to identify optimum decisions for system operation that maximises 

certain given objectives while satisfying the system constraints. On the other hand, 

simulation models are used to explore only a finite number of decision alternatives so that 

the optimum solution may not necessarily be achieved. However, many simulation models 

now involve a certain degree of optimisation and the difference between the optimisation 

and simulation models is becoming less distinct. For a given operating criteria, the 

performance of a reservoir system may be evaluated by analysing the computed time 

sequence of levels, storage, discharges, hydropower etc. The procedure can be repeated for a 

number of inflow sequences to arrive at a statistical measure of the system. 

Simulation models have been routinely applied for many years by water resource 

development agencies. Yeh (1985) and Wurb (1993) present reviews of a number of such 

models. An excellent treatment of the subject of computer simulation in hydrology has been 

provided by Fleming (1975). A total of 19 simulation models have been presented in the 

text. The background and structure of each model is discussed, and the functions used to 

represent the major processes involved are described. The input/output requirements and the 

range of application of models is also discussed. Simulation models have also been 

extensively used in combination with optimisation models. Karamouz and Houck (1982) 

describe an algorithm that cycles through an optimisation model, a regression analysis and a 

simulation model to develop reservoir operating rules. Labadie et al. (1987) presents an 
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application of a simulation model in estimating the reliable power capacity of a reservoir 

system. 

Recently, researchers have tried to incorporate optimisation methods within the simulation 

models. Wardlaw (1993) has developed a simulation model which incorporates economic 

functions for hydropower, agriculture and fisheries production. The model was used to 

assess the economics of alternative strategies for water resources development in the 

Brantas Basin in Indonesia. Jain et al. (1996) describe the application of a simulation model 

to reservoir operation studies of Sabarmati system in India. Operating procedures were 

derived for all the four reservoirs of the system. 

2.3 Applications to Real Time Operation 

This section presents a review of optimisation models applied to real time operations in 

particular. Real time operation of reservoir systems can be a formidable task due to the large 

scale of some systems, and the non-linearity and complexity of the objective functions often 

encountered in practice. The literature describing real time reservoir operations is vast. It is 

astonishing to note that the first application of stochastic reservoir operation model was 

reported by Little (1955). Since then, a large number of applications have been reported in 

the literature. Yakowitz (1982) remarked that two reservoir systems are the largest to be 

solved by stochastic DP. On the other hand, applications of variants of DP to deterministic 

problems have been reported for systems of upto 10 reservoirs, for example, by Murray and 

Yakowitz (1979). This is not totally unexpected as the dimensionality problem is much more 

severe for stochastic problems than for the deterministic ones. However, problems with 

larger dimensions have been tackled by Turgeon (1981a; 1981b), and Archibald (1997) 

using variants of DP. 

SDP was. used by Louks and Falkson (1970), Dudley and Burt (1973), Torabi and 

Mobasheri (1973), Mawer and Thorn (1974), and Stedinger et al. (1984). Lee et al. (1992) 

describes the application of a SDP model to Lake Shelbyville in illinois. Becker and Yeh 

(1974) used DP in combination with LP for real time operation of multiple reservoir 

systems. Turgeon (1980) describes two variations of DP to a system of reservoirs all in 

parallel using stochastic inflows. In the first version, the original problem was divided into a 

series of problems with a single state variable. The solution to such a problem leads to an 
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optimal local policy for each reservoir. In the second version, the original n state problem is 

decomposed in n subproblems of two state variables resulting in a suboptimal operating 

policy for the whole system. Turgeon (198 ib) describes another decomposition method for a 

system of reservoirs in series. The original n state problem is decomposed in n-i problems 

of two state variables which are solved by DP. Archibald et al. (1997) describe an aggregate 

SDP model of multi reservoir systems. The method uses a three dimensional representation 

of the system which consists of a detailed model of the focus reservoir, an approximate 

model of reservoirs whose releases can reach that reservoir, and an approximate model of 

the remainder of the system. SDP is then used to solve the subproblems routinely. 

Turgeon' s algorithms were developed for a system of reservoirs either all in parallel 

(Turgeon 1980) or all in series (Turgeon 1981b). Poonambalam and Adams (1996) 

developed a technique, called the multilevel approximate DP (MAM-DP), to accommodate 

any type of reservoir system configuration. In Turgeon's algorithms two state variables were 

used to represent the reservoir system while in MAM-DP the number of state variables to be 

used depend upon the size of the problem and the computing resources available. 

DDDP has also been used with stochastic inflows. Application of DDP to a problem with 

stochastic inflows has been described by Trezos and Yeh (1987). They employed a solution 

procedure similar to that of Murray and Yakowitz (1979) but used stochastic inflows rather 

than deterministic inflows. Kuo et al. (1990) reported application of stochastic DDDP to a 

two reservoir system in the Tanshui River Basin, China For the forecast sequence of 

streamflows, an initial feasible release policy was determined using a simulation model. 

DDDP is then used to improve the policy determined from the simulation model. 

Marino and Loaiciga (1985a) presented a methodology for obtaining optimal reservoir 

operation policy for a large scale reservoir system using a sequential dynamic 

decomposition algorithm. Marino and Loaiciga (1985b) also describe a QP model for the 

CCVP. The results of QP showed an increase in energy generation over that achieved using 

LP. Karamouz et al. (1992) describe a three-step procedure for deriving operating rules for a 

multi reservoir system. The optimisation model is used to generate optimal solutions for 

different synthetically generated sequences. The solutions are analysed in a regression 

procedure to obtain a set of operating rules. A simulation model is then used to evaluate the 
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performance of these rules. Similar procedures have also been reported by Bhaskar and 

Whitlach (1980), and Karamouz and Houcks (1982). 

2.4 Other Optimisation Approaches 

A number of other optimisation approaches are in use to solve difficult engineering 

problems. These include simulated annealing (SA), neural networks (NNs) and evolutionary 

computation (EC). All such approaches are based upon the mechanics of natural processes. 

2.4.1 Simulated Annealing 

Simulated annealing (SA) is a technique inspired by the formation of crystals in solids 

during cooling. It is based on the principle that the slower the cooling, the more perfect is 

the crystal formed. SA has been applied to a vast variety of difficult problems. One classical 

example is the travelling salesperson problem (Goldberg 1989; Michalewicz 1992). 

The algorithm starts with an initial trial solution and its fitness value. The neighbourhood of 

this solution is searched for better solutions. Once a better solution is found, it becomes the 

centre of search for the next iteration. The process continues until the acceptable tolerance 

level is reached. The search distance from the centre point is gradually reduced as the 

method progresses. The most important characteristic of SA is that it allows traversal in the 

solution space, which implies that if the algorithm is run for a long enough time, it can 

hopefully come up with an acceptable (near optimal) solution. The same may not be true for 

many other iterative algorithms that converge to a local optimum quickly and get stuck 

there, reducing the chances of improving the existing solution. The direction of possible 

application of simulated annealing in reservoir systems optimisation is still unclear although 

the technique has been successfully applied to problems from diverse fields. Kirkpatrick 

et al. (1983), and Carny (1985) used simulated annealing to solve a classic traveling 

salesperson problem. Cunha and Sousa (1999) have developed a simulated annealing-based 

approach to obtain the least-cost design of a looped water distribution network. 

2.4.2 Neural Networks 

The human brain is an immensely complex network of neurons and it is beyond our 

capabilities to model the precise structure of brain. However, mathematical models capable 
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of working in a manner similar to the brain have been developed. Such models are known as 

neural networks (NNs). Sometimes, they are also known as artificial brains. 

NNs have evolved from the development of pattern recognition systems for remotely sensed 

data. A NN consists of many simple processors, each possibly having a small amount of 

local memory. The processors are interconnected and operate on their local data and on the 

inputs they receive via the connections. A NN can be trained to learn from certain patterns 

in input. Once trained, they can be expected to exhibit some capability for generalisation 

beyond the training data. 

Saad et al. (1994) described a NN based disaggregation technique for the operation of multi 

reservoir systems. First, the reservoir system is aggregated to form a single equivalent 

reservoir by lumping all the reservoirs together. The NN is then trained using a large number 

of deterministic optimisations for equally likely sequences of streamfiows to give, for an 

aggregated storage level, the storage level of each reservoir of the system. After the training 

stage, the optimal policy obtained by SDP for the unique aggregated reservoir can be used as 

an input to the NN. The output of the NN is in the form of policies for different reservoirs of 

the system. 

Raman and Chandramouli (1996) describe a DP-NN model to obtain operating policies for 

the Aliyar Dam in India. The input pattern to the NN is the initial storage, inflow, and 

demand while the output pattern is optimal releases determined by the DP. After the training 

process, the performance of the trained network is assessed using the simulation model of 

the system. Applications of fuzzy logic programming in deriving reservoir operating rules 

have been reported by Shrestha et al. (1996), and by Russell and Campbell (1996).. 

2.4.3 Evolutionary Algorithms 

Evolutionary algorithms (EAs) are general purpose search procedures based on the natural 

processes and population genetics. EAs include GAs, evolution strategies, evolutionary 

programming and genetic programming. In 1950s and in the 1960s, several computer 

scientists began to study evolutionary systems with the idea that the process of natural 

evolution could be used as a basis of optimisation of complex engineering systems. 

Rechenberg (1973) introduced a technique based upon evolution strategies to optimise the 

real-valued parameters for airfoils. Since then, a considerable amount of work has been done 

23 



Literature Review 

on evolutionary computation which is reflected in the numerous applications of EAs to 

complex engineering systems during the last decade. The popularity of EAs may be 

attributed to the fact that these algorithms are easy to apply and may be used for problems 

which are intractable by traditional optimisation algorithms (Michalewicz 1992). 

Many variants of EAs exist and there are many hybrid systems which incorporate one or 

more features of EAs. However, the structure of EAs is very much the same. Each EA 

begins the search process by starting from a set of potential solutions to the problem. In  

genetic terminology, these solutions are also known as chromosomes or individuals. The 

solutions are evaluated by substituting the parameter values into the objective function to 

give some measure of their fitness. Then a selection process determines the individuals that 

will enter the new generation. Some members of the new population undergo 

transformations by means of genetic operators to produce new solutions. The process is 

repeated for a number of generations and at the end of the algorithm, a reasonably good 

solution should be obtained. It must be noted that the aim of EAs is not always to find the 

optimum solution but to find a better solution than can be found by other known techniques 

in a reasonable computation time. The use of evolutionary computation has been found to be 

particularly useful for problems with vast search space. Vast search space means the one 

where it is difficult or nearly impossible to enumerate all the possible solutions to the 

problem. 

EAs are increasingly being used with success to diverse engineering fields like architecture, 

structural engineering, factory job scheduling, pipe networks, electronic circuit designs, 

signal processing, robotic controls etc. The application of evolution strategies, evolutionary 

programming or genetic programming to water resources problems has not been reported so 

far. The application of GAs has, however, seen some application. A considerable potential 

exists for application of EAs to water resource problems, and should be utilised. 

2.5 Conclusions 

In this chapter the basic concepts of mathematical programming techniques were described 

and application of these techniques to reservoir operation problems reviewed. It is evident 

from the literature review that a large number of techniques have been developed and 

applied to the studies of multi reservoir operations problems. A general methodology that 
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can handle reservoir operations without simplifying assumptions is still lacking. There is a 

need for research into algorithms that have the potential of overcoming the limitations of DP 

and other DP based algorithms. The DDDP technique described in this chapter will be used 

in the subsequent chapters to compare the results obtained by using the GA approach. The 

GA technique is described in the next chapter along with the review of the applications of 

GA to civil engineering problems in general and water resources problem in particular. 
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3. GENETIC ALGORITHMS 

3.1 Introduction 

Despite intensive research carried out during the last three decades, a generic technique for 

the optimisation of multi reservoir systems is yet to be identified. In recent years, genetic 

algorithms (GAs) have gained growing popularity among researchers as a robust and general 

optimisation technique. The approach has been successfully applied to a wide variety of 

problems from diverse fields. The results of employment of GAs to various difficult 

optimisation problems have indicated considerable potential in the optimisation of multi 

reservoir systems. This chapter discusses the basic concepts, theory and working procedures 

of a GA. 

The chapter organisation is as follows. Section 3.2 gives the definition and historical 

background of the development of GAs. Alternative representation schemes are discussed in 

section 3.3. The reproduction operators of a GA are described in section 3.4. A coherent 

review of GA applications in water resources systems in general and reservoir operations in 

particular is presented in section 3.5. The chapter ends with the concluding remarks. 

3.2 Overview of Genetic Algorithms 

A genetic algorithm is a technique in which a population of abstract representations of 

candidate solutions to an optimisation problem are stochastically selected, recombined, 

mutated, and then either eliminated or retained, based on their relative fitness. 

In the "Origin of Species", Darwin (1859) stated the theory of natural evolution. Over many 

generations, biological organisms evolve according to the principles of natural selection like 

the "survival of the fittest" to reach some remarkable forms of accomplishment. In nature, 

individuals in a population have to compete with each other for vital resources such as food 

and shelter. Because of this, the least adaptable individuals are eliminated from the 

population while the fittest or the most adaptable individuals reproduce a larger number of 

offsprings. During reproduction, a recombination of the good characteristics of each parent 

can produce offsprings whose fitness is greater than either of the parents. After a number of 

generations, the species evolve spontaneously to become more and more adapted to their 
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environment. Holland (1975) developed this idea in "Adaptation in Natural and Artificial 

Systems" and laid down the first GA. Since then, GAs have developed into a powerful 

technique for identifying optimal solutions to complex problems. Excellent introductions to 

GAs are given by Goldberg (1989) and by Michalewicz (1992). Application of GAs to many 

complex real problems can be found in the works by Davis (1991), Michalewicz (1992) and 

Dasgupta and Michalewicz (1997). 

GAs are a class of artificial intelligence techniques based on the mechanics of natural 

selection and natural genetics directly derived from the theory of natural evolution. GAs 

simulate mechanisms of population genetics and natural rules of survival in pursuit of the 

ideas of adaptation and use a vocabulary borrowed from natural genetics. To surpass the 

traditional methods, GAs must differ in some very fundamental ways. Goldberg (1989) 

identifies the following as the significant differences between GAs and more traditional 

optimisation methods. GAs 

• work with a coding of the parameter set, not the parameter themselves; 

• search from a population of points, not a single point; 

• use objective function information, not derivatives or other auxiliary knowledge; 

• use probabilistic transition rules, not deterministic rules. 

A GA is a robust method of searching for the optimum solution to a complex problem. It is 

basically an automated intelligent approach to find a solution to a problem, although it may 

not necessarily lead to the best possible one. Consider an optimisation problem with 10 

parameters with each parameter taking on 100 values. The number of possible combinations 

of parameters would be 10010.  Since the search space is huge, it is not possible to quickly 

enumerate all the possible solutions. In the past, such problems were tackled by making 

intelligent guesses about the values of the parameters and a solution obtained by trial and 

error procedure. But with the advent of GAs, a fairly good solution to such problems can be 

found within an affordable computing time. 

A GA represents a solution using strings of variables that represent the problem. In 

biological terminology such strings are also known as chromosomes or individuals. Coding 

components of possible solutions into a chromosome is the first part of a GA formulation. 
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Each chromosome is a potential solution and comprises of sub-strings or genes representing 

decision vanables which can be used to evaluate the objective function of the problem. The 

fitness of a chromosome as a candidate solution to a problem is an expression of the value of 

the objective function represented by it. It is obtained using an evaluation function, which is 

a link between the GA and the problem to be solved. The fitness is also a function of 

problem constraints and may be modified through the introduction of penalties when 

constraints are not satisfied. 

A GA starts with a set of chromosomes representing potential solutions to the problem. 

These chromosomes are combined through genetic operators to produce successively fitter 

chromosomes. The genetic operators used in the reproductive process are selection, 

crossover, and mutation. Combination is achieved through the crossover of pieces of genetic 

material between selected chromosomes. Chromosomes in the population with high fitness 

values have high probability of being selected for combination with other chromosomes of 

high fitness. Mutation allows for the random mutations of bits of information in individual 

genes. The fitness of chromosomes should progressively improve over the generations. The 

whole GA procedure is allowed to evolve for a sufficient number of generations, and at the 

end of the evolution process a chromosome representing an optimal (or a near optimal) 

solution to the problem should be obtained. 

3.3 Representation Schemes 

The choice of an appropriate coding scheme to represent the potential solutions to a 

particular problem is the key to success for any GA. To apply GA to a specific problem, an 

appropriate genetic representation for the solution of the problem must be defined. In early 

GAs (Holland 1975; Deiong 1975; Goldberg and Kuo 1987) binary coding was used. Real-

value coding is now starting to gain recognition and is being used by many researchers. 

Davis (1991) and Michalewicz (1992) describe man applications of real-value coding. 

3.3.1 Binary Representation 

Traditionally, binary coding has been used as a representation that can fit all kinds of search 

spaces. A string of bits can encode integers, real numbers or whatever else is appropriate to 

the problem. Moreover, binary strings are very simple to operate upon. Each chromosome as 

a potential solution is represented as a binary string of length 
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L=m, 	 (3.1) 

The first m1 bits map into a value from the range [a j, b1],  the next group of m2 bits maps into 

a value from the range [a 2, b2
] and so on. The last group of mk bits map into a value [ab  bk], 

k being the number of decision variables. Then, choosing the parameter values randomly 

throughout the search space, a set of initial potential solutions, also known as chromosomes, 

is created. The GA evaluates the initial solutions and computes a measure of fitness of each 

string in the population. This is achieved by decoding binary strings into parameter values, 

substituting them into the objective function and computing the value of the objective 

function for each of the strings. 

Binary coding has been found to perform well on a variety of problems but it may not be 

appropriate for problems where the number of variables is large or where a high precision is 

required. Bit strings are used with some type of decoding function but that has difficulty 

ensuring even coverage of the search space because of the way in which the real values are 

encoded. Additionally, the use of bit strings causes non-uniform effects because mutating 

the leading bits of strings has a greater impact than mutating the tail bits. 

3.3.2 Gray Representation 

In Gray coding, any two adjacent points in the problem space differ by one bit only 

(Hollstein 1971). An increase of one step in the parameter value corresponds to a change of 

a single bit in the code. Table 3.1 shows the correspondence between coded substrings for 

binary and Gray coding schemes. It can be observed from the table that in Gray coding only 

1 bit changes between adjacent substnngs of 001, 011, and 010 etc. On the other hand, 

adjacent substrings in binary coding may differ by any number of bits. For example, 

adjacent substrings 011 and 100 differ by 3 bits. 

In a binary coded string, a single mutation in the most significant bit may significantly 

change the number. Also, the effect of mutating tail bits is more than that of mutating 

leading bits. In a Gray coded string, the bitwise mutation operator causes less disruption to 

the solution because the effect of flipping a single bit in a string is small most of the time. 

Gray coding can therefore increase a mutation operator's chance of making incremental 

improvements and thus enhance the performance of GA. 
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Table 3.1 Correspondence between binaty and Gray coding schemes 

Binary Code Gray Code Decimal Value 

000 000 0 

001 001 1 

010 011 2 

011 010 3 

100 110 4 

101 111 5 

110 101 6 

111 100 7 

3.3.3 Real-value Representation 

A problem specific representation, can be used to give more coherence and efficiency to the 

algorithm. For the problems where the function arguments are integer or real values, integer 

or real-value representation may be used. The integer or the real-value representation has the 

property that two points close to each other in the representation space are also close in the 

problem space and vice versa. 

In real-value representation, the genes of chromosomes are initially allocated values 

randomly within the feasible limits of the decision variables. Hence, no time is wasted in 

decoding the binary values into decimal values and in mapping them within the desired 

range. A significant advantage of this type of coding scheme is that no discretization of the 

decision variable space is required. In addition, the real-value coding is capable of 

representing quite large domains. On the other hand, binary coding sacrifices precision with 

an increase in domain size for a fixed string length. The precision of binary coding can be 

extended by introducing more bits in the string, but this slows down the algorithm 

considerably. Michalewicz (1992) indicates that for real-valued numerical optimisation 

problems, real-value representation outperforms binary representation because it is more 

consistent, more precise, and leads to faster execution. 
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3.4 Reproduction Operators 

The reproduction operation is the basic engine of Darwinian natural selection and survival 

of the fittest. In a GA, the reproduction mechanism comprises of the following three 

operators: selection, crossover, and mutation. 

3.4.1 Selection 

Selection is the procedure by which the chromosomes from one generation are chosen for 

the next generation. The process is carried out using an appropriate selection scheme. 

Alternative selection schemes are described below. 

3.4.1.1 Proportional Selection Scheme 

The most popular and the commonly used selection method has been fitness proportional 

selection (Goldberg 1989). The selection of chromosomes in a simple GA is based directly 

on its fitness which is computed using the objective function of the problem. Given a 

population of chromosomes, the probability of a particular chromosome passing its gene to 

the next generation is directly proportional to its fitness. The probability Pi of selection of 

chromosome i, to go into the next generation is given by 

- 
fi 

Pi - N 

fi 

(3.2) 

where f i  = fitness of string i and N is the population size. Such a scheme is also known as 

roulette wheel selection. A roulette wheel for a population size of 4 is shown in Figure 3.1. 

The slots in the roulette wheel are sized according to the fitness of chromosomes 1-4. The 

roulette wheel is spun 4 times, and each time a single chromosome is selected for the new 

population. In the example considered, the probability of selection of the best chromosome 

(chromosome 4) is 55% whereas the worst chromosome (chromosome 1) has a selection 

probability of only 5% (Figure 3.1). At the end of four spins, the chances of the best 

chromosome having more than a single copy are quite high. On the other hand, the worst 

chromosome is unlikely to enter the next generation. 
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Figure 3.1 Roulette wheel selection 

The fitness proportional selection scheme is likely to lead to premature convergence due to 

lack of selective pressure. Whitley (1989) identifies that population diversity and selective 

pressure are two important issues in the genetic search process. Population diversity means 

that the already discovered good individuals are exploited while still exploring the search 

space for promising new areas. The diversity in the population depends upon the selective 

pressure which determines the degree to which the best individuals are favoured. These 

factors are strongly related; a high selective pressure may lead to a rapid convergence, often 

to a sub-optimal point. On the other hand, low selective pressure may unnecessarily delay 

the process of reaching the desired point in. the search space. Therefore an ideal selection 

scheme would be one which maintains the selective pressure and the population diversity at 

the same time. Yang and Soh (1997) provide an interesting discussion on this topic. 

3.4.1.2 Rank Selection Schemes 

In rank selection schemes, the chromosomes are selected according to their rank rather than 

actual fitness values. Such approaches have been shown to improve GA performance but 

have apparent drawbacks. They ignore the information about the relative fitness of different 

chromosomes and treat all cases uniformly regardless of the magnitude of the problem. On 

the other hand, these schemes control the selective pressure better and provide the search 

with a greater focus. 

The rank selection schemes operate by sorting the population according to the fitness and 

then assigning a probability of selection based upon the rank. A constant selection 

differential is thus maintained between the worst and the best individuals. In linear ranking 

32 



Genetic Algorithms 

schemes, the probability of selection of a chromosome in a single selection is assigned 

according to the following linear assignment function. 

p(n)=q—(n-1)xr 	 (3.3) 

where p(n) is the probability of an individual ranked in position n to be selected in a single 

selection, and q and r are user defined parameters which control the selective pressure. 

Finally, proportional selection is performed based on the probabilities of selection assigned 

according to (3.3). 

3.4.1.3 Tournament Selection Scheme 

The tournament selection is a very aggressive type of selection scheme. Goldberg and Deb 

(1991) observed that it eliminates random noise from the selection process and improves the 

efficiency of the GA search algorithm. Two or more chromosomes are randomly picked 

from the population and then the best one is selected from this group for further genetic 

processing. This procedure is repeated appropriate number of times to obtain the required 

number of chromosomes for the next generation. The approach had originally been 

developed with groups of two individuals and was called binary tournament selection, but 

larger groups lead to greater diversity and a smoother progression to a solution. 

3.4.2 Crossover 

Crossover is a distinguishing feature of a GA. Through crossover, genetic information is 

exchanged between parents to produce offsprings. The offsprings then replace parents in the 

new population in order to keep the population size constant. if the mating does not take 

place, the parent strings survive into the next generation. The general theory behind the 

crossover operation is that by exchanging important genes between the parents that perform 

well, the GA attempts to produce children that have the best characteristics from both 

parents and therefore perform even better than the parents. 

The crossover operator creates variation in the population by producing offsprings that 

consist of genes taken from each parent. Crossover occurs with some specified probability, 

usually in the range of 0.5 - 1.0, which controls the number of parents that undergo 

crossover. A crossover probability of 0.7 implies that crossing over pairs of chromosomes 

from the previous population creates about 70% of the chromosomes in the new population. 
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The other 30% or so pass to the next generation without being crossed over. Goldberg 

(1989) describes several methods of performing the crossover operation. 

3.4.2.1 One Point Crossover 

The most straightforward method of crossover is one point crossover. Pairs of chromosomes 

are randomly selected and a crossover point c is also selected along the length L of the 

chromosomes. Two new chromosomes are created by swapping all genes between position c 

and L inclusively (Figure 3.2). An important feature of one point crossover is that it can 

produce children that are radically different from their parents. With one point crossover, 

the head and tail of one chromosome cannot be passed together to the offspring. If both the 

head and tail contain good genes, the offsprings may not share those genes at the same time. 

This drawback can be overcome by using a two point crossover. 

3.4.2.2 Two Point Crossover 

Two chromosomes are randomly selected as in one point crossover. This operator is similar 

to one point crossover except that two cut points rather than one are selected at random 

along the length of the chromosome (Figure 3.2). The current genes between the two cut 

points are swapped thus creating two children. The parents are then replaced in the new 

population by the children. This type of crossover leads to greater diversity than the one 

point crossover. 

3.4.2.3 Uniform Crossover 

In uniform crossover, individual genes are exchanged rather than a block of genes. Two 

parents are randomly selected to take part in crossover. Each gene in the offspring is created 

by copying the corresponding gene from one or the other parent. For each gene or bit in the 

first offspring, the operator performs a probability check and decides which parent will 

contribute its gene in that position. The second offspring receives the gene from the other 

parent (Figure 3.2). 

The use of uniform crossover is likely to lead to greater diversity in the population than 

either the one point or the two point crossover. Syswerda (1989) carried out experiments to 

evaluate the performance of uniform crossover operator. It was observed that the ability of 
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the operator to combine the genes irrespective of their location in the chromosome 

outweighs the disturbance that it may cause when used on radically dissimilar chromosomes. 

One point crossover 

Parent 1  

Parent 2 P P IL 	P 

Child 1 

'l\vjint crossover 

Parenti 

Parent2 	 I  

Child 1  

Child 2  

Uniform crossover 

Parent 1  

Parent 2 	TJ 	P 

Childi 1IHPPPPP 
Child2 

Figure 3.2 Approaches to crossover 
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3.4.3 Mutation 

Mutation plays a vital role in genetic optimisation introducing new genetic material in a 

heterogeneous population. The mutation operator can be useful in reintroducing diversity in 

a population that may be tending to converge prematurely. Mutation occurs with some 

specified probability which is usually very low (0.1 - 0.001) for each bit in the strings. In  

binary coding, the bitwise mutation operator changes the value of the bit to the opposite 

value i.e. 0 to 1 or 1 to 0. Figure 3.3 illustrates this scheme. Various mutation operators are 

in use these days. The most important types are uniform mutation and non uniform mutation. 

3.4.3.1 Uniform Mutation 

The most common type of mutation used in integer or real-value representation is the 

uniform mutation. This operator requires an individual y and produces a child y ' . The 

operator selects a random component j E (1, n) of the vector y = (y, .. .,y1, . . .y) and produces 

= (yi,...,y 'p ... yn)  where yj  is a random value of the component j between the upper and 

lower bounds. 

The value of component Yj  is obtained as follows. 

y+/3 	if r=0' 	 (3.4) 
yj = 1 

y—f3 	if r=1 

where r is a randomly generated binary digit, and 0 is small change in the value of the 

component j. 

Gene Selected for Mutation 

s1 
BeforeMutation 	 _ 	 ____________ 

After Mutation 	 : L __i 	______ 

Figure 3.3 Mutation process 
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3.4.3.2 Non Uniform Mutation 

Non uniform mutation operator selects a gene to mutate with a specified probability, and 

then replaces it with a value between predefined upper and lower limits. The values of upper 

and lower limits vary as the GA run progresses. This operator has been found useful in 

searching the decision space fairly uniformly during early stages of run and locally during 

the later parts of the run (Michalewicz 1992). The operator has the effect of further 

improving already found good solutions during the later part of the run without causing 

much disruption. 

The application of genetic operators to the current population of chromosomes produces a 

new population. The whole process continues for a number of generations and an optimal or 

a near optimal solution should be obtained in a reasonable computation time. 

3.5 Application of GAs to Engineering Problems 

This section presents a brief review of GA applications to engineering problems with 

particular emphasis on water resources problems. In recent years researchers have used GAs 

for solving complicated engineering problems. Goldberg and Kuo (1987) applied a GA to 

the optimisation of the operation of a steady state serial gas pipeline. Their pioneering work 

paved the way for application of GAs to more complicated engineering problems. 

Wang (1991) applied a GA to the calibration of a conceptual rainfall-runoff model for a 

particular catchment. Conceptual rainfall-runoff models usually consist of a number of 

parameters. Their model had seven calibration parameters, the values of which were 

optimised by minimising the sum of squares of differences between computed and observed 

discharge. Of the 10 runs of the GA model, each starting from a different set of randomly 

selected initial points in the search space and with 5000 objective function evaluations, eight 

runs were able to locate the global peak. The value obtained from other two runs was only 

marginally inferior to the global optimum. Similar work has been reported by Franchini 

(1996), who used a local search method called Sequential QP (SQP) in combination with 

GA for the calibration of a conceptual rainfall-runoff model. It was concluded that GA-SQP 

algorithm is a practical and efficient technique and performs better than a simple GA. 

There have been several applications of GAs to pipe network problems. Goldberg and Kuo - 

(1987) were the first to use GAs for pipeline optimisation. Murphy et al. (1993) developed a 
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methodology for optimisation of a water supply network using a simple GA. The objective 

was to find the combination of pipe sizes that minimised the cost of water distribution 

network. Simpson et al. (1994) compared the performance of complete enumeration, non-

linear programming (NLP) and a GA for an example pipe network. They concluded that the 

GA was capable of finding acceptable solutions within affordable computing time. For the 

example considered, the GA was not as fast as NLP but it was faster than the direct 

enumeration. 

Davidson and Goulter (1995) used GAs to optimise the layout of a branched rectilinear 

network, such as a natural gas or water distribution system. They demonstrated that GA is 

able to generate better solutions than a heuristic technique. An improved GA has been 

developed by Dandy et al. (1996) for pipe network cost optimisation problem and was found 

to perform better than the traditional optimisation methods and a simple GA. The solution 

found by improved GA is the lowest cost design for the New York City water supply 

network yet presented in the literature for that particular problem. Savic and Walters (1997) 

describe the development of the computer model GANET for the least cost design of a water 

distribution networks, again demonstrating that in certain cases GAs may yield better results 

than other optimisation techniques. 

Halhal et al. (1997) have described a multiobjective optimisation approach, using capital 

cost and benefit as dual objectives to, the problem of network rehabilitation. They used a 

structured messy GA (SMGA) which has some additional features like variable string length 

which increases during the evolution of designs. They compared the performance of SMGA 

with a standard GA, concluding that SMGA was much better for a large network. 

Ritzel et al. (1994) solved a multiple objective groundwater pollution problem using GAs. 

Cieniawski et al. (1995) used GAs to solve a multi objective groundwater monitoring 

problem. The work by Cieniawski et al. (1995) dealt with the optimal location of a network 

of groundwater monitoring wells under conditions of uncertainty. The GA approach allowed 

the maximisation of reliability of well location and minimisation of contaminated area, 

separately yet simultaneously. McKinney and Lin (1994) have also used GAs for the 

solution of groundwater management models. 

There have been many applications of GAs to other civil engineering problems. An 

increasing number of researchers are using GAs to solve civil engineering problems which 
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are difficult with traditional techniques. Koumousis and Georgiou (1994) applied GA to the 

optimisation of steel truss roofs. Soh and Yang (1996) used GAs in combination with fuzzy 

logic for structural shape optimisation problem. Rajeev and Krishnamoorthy (1992; 1997), 

Jenkins (1991; 1992), and Adeli and Cheng (1993; 1994) have also reported applications to 

structural engineering design problems. A methodology based on GAs has been developed 

by Li and Love (1998) for optimising the layout of construction site level facilities such as 

warehouses, offices, various workshops and batch plants. Navon and Mcrea (1997) used the 

GA approach for selection of construction robots. Feng et al. (1997) applied GA to the 

problem of cost-time trade-offs in construction projects. Applications of GA to 

transportation engineering problems have been described by Ng (1995), Fwa et al. (1996), 

Liu et al. (1997), and Cheu et al. (1998). 

GAs have so far had very little application in reservoir systems optimisation. Fahmy et al. 

(1994) used GAs for optimisation of reservoir systems operation. They compared the 

performance of a GA with that of DP for a hypothetical system and concluded that GAs had 

potential in application to large river basin systems. Esat and Hall (1994) solved the four 

reservoir problem using GA. The paper by Esat and Hall (1994) showed the significant 

potential of the GAs in water resources systems optimisation, and clearly demonstrated the 

advantages of GAs. Oliveira and Loucks (1997) used a GA for the determination of effective 

operating policies for multi reservoir systems. Significant benefits were perceived to lie in 

the freedom afforded by GAs in the definition of operating policies and their evaluation. 

3.6 Conclusions 

In this chapter the essentials of the GA approach have been described. An introduction to 

different representation schemes, and genetic operators was provided. A short review of the 

application of GAs to water resources problems was also presented. It is concluded that a 

wide variety of problems from diverse fields have been solved using the GA technique, and 

an increasing number of researchers are using the technique to solve difficult engineering 

problems. There have been, however, only a limited number of applications of GAs to 

reservoir operation problems. The GA approach introduced in this chapter is applied in the 

subsequent chapters to optimise the operation of multi reservoir systems. 
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4. APPLICATION OF GENETIC ALGORITHMS TO THE 

FOUR RESERVOIR PROBLEM 

4.1 Introduction 

The primary objective of this chapter is to explore the potential of alternative GA 

formulations in application to reservoir systems. The theory, and a brief review of GA 

applications to engineering problems, have been presented in the previous chapter. The 

review of literature indicates that GAs have had limited application in water resources 

planning and management. Applications have been reported in the literature for water 

distribution network problems, groundwater pollution problems and calibration of rainfall-

runoff models, but there have been only a few applications to reservoir systems. GAs may 

be set up in a number of ways, but as yet there is little guidance in the literature on the type 

of formulation most appropriate for reservoir systems. This gap is addressed through 

consideration of the application of GAs to the well-known four reservoir problem, which has 

become a benchmark for water resources system optimisation algorithms. The results 

produced by GA model have been verified by comparing to those obtained from the discrete 

differential dynamic programming (DDDP) and linear programming (LP) models. 

The rest of this chapter is organised as follows. Section 4.2 gives the description of the four 

reservoir problem. Section 4.3 describes the procedure for formulation of a GA to solve a 

multi reservoir optimisation problem. Different representation schemes are described in 

section 4.4. In section 4.5, the LP solution to the four reservoir problem is presented. The 

development of DDDP computer code for the four reservoir problem is described in section 

4.6, and in section 4.7, the procedure for obtaining a solution to a problem using a GA is 

outlined. Evaluation of alternative GA formulations has been carried out in section 4.8. In 

section 4.9, the four reservoir problem with an extended time horizon is solved. The 

modified four reservoir problem is solved in section 4.10, and the application of the GA to a 

ten reservoir problem is demonstrated in section 4.11. Conclusions are presented in section 

4.12. 
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4.2 The Four Reservoir Problem 

This section gives the details of the four reservoir problem which was formulated by Larson 

(1968). The problem was first solved by Larson (1968) using LP and by state incremental 

dynamic programming (IDP). Heidari et al. (1971) solved the same problem using the 

DDDP approach. Chow et al. (1975) used the four reservoir problem as one of the test cases 

for estimation of execution time and memory requirements of DDDP. Murray and Yakowitz 

(1979) illustrated the differential dynamic programming (DDP) algorithm using the four 

reservoir problem and Nopmongcol and Askew (1976) tested multi level IDP on the same 

problem. The four reservoir problem has been chosen for solution by GA so that the 

performance of the GA could be evaluated against a known global optimum, and that 

sensitivity analyses could be performed. The same problem has been previously tackled 

using a GA by Esat and Hall (1994). Little detail was given by Esat and Hall (1994) on their 

GA formulation. The approach outlined in this study is different from the one used by them. 

The system consists of four reservoirs having series and parallel connections, as shown in 

Figure 4.1. 

Legend 

A 	 '2  
/ \ Reservoir 
LIJ Power Station 

Ii 	
/2 

R2 

/ 3 

R1 	 I R3 

4 

Figure 4.1 The four reservoir system 	 - 
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Reservoir releases from the system are used for hydropower generation and irrigation. 

Hydropower generation is possible from each reservoir, and releases from reservoir 4 can 

also be diverted for irrigation after passing through the turbines. The objective is to 

maximise hydropower and irrigation benefits from the system over 12 two-hour operating 

periods. The inflows 1, and 12 to the reservoirs 1 and 2 during all time steps are 2 and 3 units 

respectively. The state variables for the problem are the storages S i  contained in the 

reservoirs i = 1, 4 expressed in standardised units. The decision variables are the releases 

R1(t), i= 1,4; andt= 1,12. 

The maximum water level in each reservoir is limited by flood control considerations, 

thereby leading to the following constraints on the storage during any operating periods. 

0!~ S1,S2,S3:~ 10 	 (4.1) 

0:~ S4:!~ 15 	 (4.2) 

The initial contents of each of the four reservoirs is 5 units whereas the target ending 

storages are 5 units for reservoir 1-3 and 7 units for reservoir 4. The turbine capacities 

determine the maximum flows from each reservoir and conservation requirements 

downstream set the minimum release requirements as described below. 

0:!~ R1<3 	 (4.3) 

0:!~ R2,R3<4 	 (4.4) 

0:!~ R4<7 	 (4.5) 

These constraints apply in all time steps. 

The dynamic behaviour of the system at any stage t = 1, 12 is described by the following 

mass balance equation. 

S1 (t+1) = S,(t)+I(t)+1vtR(t) 	 (4.6) 

where S 1(t) = vector of reservoir storages at time t in reservoirs i=1, n; 1(t) = vector of 

reservoir inflows in time period t to reservoirs i=1, n; R1(t) = vector of reservoir releases in 
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time period t from reservoirs i = 1, n ;  and M = n X n matrix of indices of reservoir 

connections. 

The matrix M has -1 along the diagonal and +1 in the position ith column and jth row if the 

release from reservoir i goes into reservoirj. The rest of the martrix elements are zero. From 

this consideration, the matrix M for the four reservoir system can be written as 

—1 0 0 0 

o —1 0 0 
M= 

o i —1 0 

1 0 1 —1 

The performance criterion also includes a penalty if the storage falls below tIe target level 

d1 , i = 1, 4 at the end of 12 operating periods. The following penalty function used by 

Larson (1968) has been adopted in this study. 

9,[s1 (13), d,] 
= J_40[si(13)_d1]2 if s.(13) d1 	 (4.8) 

[o 	 zfs(13)>d1 

The penalty function is not needed in LP since the boundary conditions can always be set up 

as constraints in the LP model. 

The performance criterion to be maximised is the sum of returns due to power generated by 

the four reservoirs and the return from the diversion of L(k) to the irrigation project. The 

objective function may be expressed as: 

Maximise F = I I b. (t). R, (t) + I b5  (t). R4  (t) + gi  [s, (13), d1] 	('4.9) 

j=1 t=I 	 t=1 

where F is the total benefit obtained from the system after 12 operating periods and b1(t) is 

the unit return due to activity i = 1, 5 for the operating period t. The coefficients b,(t) are 

based on the values provided by Larson (1968) and Heidari et al. (1971). 

(4.7) 

43 



Application of GA to the Four Reservoir Problem 

4.3 Formulation of GAs 

To solve the four reservoir problem using a GA, it is necessary to construct a chromosome 

representing all four reservoirs in all twelve time steps. Since the objective function is based 

on reservoir releases in each time step, releases should be the decision variable on which the 

GA is based. With four reservoirs and twelve time steps, there are thus 48 discrete variables 

to be represented in a GA. Each of these is considered as a gene and a chromosome 

comprising of these genes represents a possible solution to the problem. 

Each chromosome consists of genes, which are made up of alleles. In binary and Gray 

coding, an allele represents a binary bit (0 or 1), whereas in real-value coding it represents a 

real or integer value of the variable defined between the upper and lower bounds. For the 

four reservoir problem, reservoir releases are to be considered as integer quantities. This is a 

definition of the problem and not a limitation of GAs. GAs work equally well with non 

integer decision variables. In binary and Gray representation, 3 alleles or digits are required 

to cover the range of releases for the problem. With this approach the total length of 

chromosome in binary coding is 144. Esat and Hall (1994) used only binary coding and refer 

to a chromosome length of 16. It is unclear how these chromosomes were made up. In real-

value coding a gene consists of only a single allele, and the length of a chromosome in terms 

of number of genes is 48 (12 time steps and four reservoirs). 

The manner in which genes are grouped within the chromosome is also important. There are 

two basic approaches. One would be to group releases by time step, such that the 

chromosomes contained 12 groups of 4 genes representing the releases from each reservoir 

in a particular time step. The alternative is to have 4 groups of 12 genes, with each group 

containing the time series of releases from an individual reservoir. The former approach is 

used in this study as it keeps more closely related material together. 

4.4 Representation Schemes 

This section describes alternative representation schemes. GAs can be set up in a number of 

ways as outlined in the previous chapter but there is no standard procedure of doing so. 

Therefore, alternative coding schemes: binary, Gray and real-valued have been used for this 

problem. 
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4.4.1 Binary Representation 

In binary representation, the decision variables of the problem are encoded as sub-strings of 

binary bits. These sub-strings of decision variables are concatenated to form longer strings 

or chromosomes representing a solution. Since the objective function for the four reservoir 

problem is based on reservoir releases in each time step, releases should be the decision 

variables on which the GA is based. 

Each decision variable for this problem is encoded as a binary number consisting of three 

digits as shown in Table 4.1. The use of a 3 bit binary coding to represent release for each 

stage allows the decision variable to be discretized into 2 = 8 points. This is sufficient for 

the range of releases defined for the four reservoir problem. With this approach, the total 

length of sub-string representing a potential solution becomes 12 x 4 x 3 = 144. 

Table 4.1 Coding of releases for the four reservoir problem 

Binary 	Gray Decimal Release 1 Release 2 Release 3 Release 4 

Code 	Code 	value 

000 000 0 0.00 0.00 0.00 0.00 

001 001 1 0.43 0.57 0.57 1.00 

010 011 2 0.86 1.14 1.14 2.00 

011 010 3 1.29 1.71 1.71 3.00 

100 110 4 1.71 2.29 2.29 4.00 

101 111 5 2.14 2.86 2.86 5.00 

110 101 6 2.57 3.43 3.43 6.00 

111 100 7 3.00 4.00 4.00 7.00 

For the four reservoir problem, the chromosomes must consist of sub-strings representing 

releases from each reservoir in each time step. This formulation was not used by Esat and 

Hall (1994). They refer to strings of length 16, which could represent releases for a single 

stage only. The strings used by them cannot represent a solution to the problem, although 

this is the basic requirement for obtaining a solution to a problem by GA. It appears that 

they have not included every decision variable of the problem in their formulation. It 

remains unclear how these strings of length 16 were made up. 
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4.4.2 Gray Representation 

Standard binary coding permits large jumps in the value of variables, as the effect of 

mutating the tail bits is large compared to mutating the leading bits. This problem can be 

overcome to some extent by the use of Gray coding (Goldberg 1989) in which the binary 

representation of a variable value changes by only one binary digit between generations. 

Discretization of the decision variable space is required with binary and Gray coding. The 

length of sub-string required to represent a variable depends upon the level of precision 

required. String length can be increased to achieye desired accuracy in the solution and 

satisfactory mapping of the variable space can normally be achieved. 

Gray code representation can increase a mutation operator's chance of making incremental 

improvements and thus enhance the performance of GA. The bitwise mutation operator 

causes less disruption to the solution in Gray coding because the effect of flipping a single 

bit in a string is small most of the time. However, occasionally Gray coding can lead to a big 

change and this is the drawback associated with it. For example, a single mutation of the left 

most bit in 000 changes the decimal value to 7 (100) and vice versa. 

4.4.3 Real-value Representation 

An alternative approach to the formulation of GA is to use a representation appropriate to 

the components of the problem. Real-value chromosomes have been used with success by 

various authors (e.g., Michalewicz 1992; Davis 1991; Oliviera and Loucks 1997). In real-

value representation, the genes consist of single allele only and are themselves the parameter 

values. The chromosome representing the solution to the four reservoir problem thus 

consists of 48 genes with each gene initially allocated a random value between the upper 

and lower bounds of the variables of the problem. With real-value coding, discretization of 

decision variables is not required. 

4.5 Solution Procedure Using LP 

Since the objective function and the constraints for the four reservoir problem are linear, it 

is solvable by LP. The solution to the problem was obtained in a spreadsheet using 

Microsoft Excel solver (MES). The spreadsheet set up to solve the four reservoir problem 

using LP is shown in Figure 4.2. Column A of the spreadsheet shows the time steps of the 

problem. The inflows to reservoir 1 and 2 are shown in columns B and C respectively. The 
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storges in reservoirs are obtained using the continuity equation, and are shown in columns D 

to G. Colunm H to K contains the decision variables (releases) of the problem. The benefit 

functions are shown in columns L to P. Using these benefit functions and the releases made 

from the reservoirs, the return at each time step is computed. This is shown in column Q of 

the spreadsheet. 

'A 1*1*C*1D*1E*l*F*T*GTHI rrrTr I L 	I MIN 0 1 	p 

1 LINEAR PROGRAMMING SOLUTION TO THE 

:iri 
 FOUR RESERVOIR PROBLEM 

2 
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4 STAGE Ti 	Y2 	SI 	52 	53 1 54 1 RI R2 	R3 RI bi b2 163 b4 	165 	RETURN 

3 	 5 	5 	5 1 4 0 0 1.1 1.4 1 1 	1.6 	6.7 
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1 3 3 	 6 	ID 	4 0 0 4 7 1 1 1.2 1.8 	1.830 
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10 
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8 
7 
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Figure 4.2 Spreadsheet to solve the four reservoir problem 

The MES requires that the target cell that is to be maximised or mininiised is specified. For 

the four reservoir problem the target cell contains the value of the total return obtained from 

the operation of the system for 12 time steps. The target cell is shown in the bottom right 

corner of the spreadsheet (cell Q18). The constraints of the problem can also be easily set up 

in MES. The cells containing the decision variables of the problem are specified, and these 

cells (column H to column K) are adjusted by the MES until an optimal solution is found. 

After solving the problem, a report that summarises the results of a successful solution 

process can be created. The report produced by the MES for the four reservoir problem is 

shown below. 
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Microsoft Excel 5.0 Answer Report 
Worksheet: [4R_12.XLS]Sheetl 
Report Created: 15/8/99 12:27 

Target Cell (Max) 

Cell Name 	Original Value Final Value 
$Q$18 	REFURN 203 401.3 

Adjustable Cells 

Cell Name 	Original Value Final Value 
$H$5 Ri 2 1 
$I$5 R2 2 4 
$J$5 R3 2 0 
$K$5 R4 2 0 
$H$6 Ri 2 0 
$I$6 R2 2 1 
$J$6 R3 2 0 
$K$6 R4 2 2 
$H$7 Ri 2 0 
$I$7 R2 2 0 
$J$7 R3 2 4 
$K$7 R4 2 7 

$H$8 Ri 2 2 
$I$8 R2 2 2 
$J$8 P.3 2 4 
$K$8 R4 2 7 
$H$9 Ri 2 3 
$I$9 R2 2 3 
$J$9 P.3 2 4 
$K$9 R4 2 7 
$H$iO Ri 2 3 
$I$10 R2 2 4 
$J$iO R3 2 4 
$K$iO R4 2 7 
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$H$li 	Ri 	 2 	 3 
$I$ll 	R2 	 2 	 4 
$J$11 	R3 	 2 	 4 
$K$11 	R4 	 2 	 .7 
$H$12 	Ri 	 2 	 3 
$I$12 	R2 	 2 	 4 
$J$12 	R3 	 2 	 4 
$K$12 	R4 	 2 	 7 
$H$13 	Ri 	 2 	 3 
$I$13 	R2 	 2 	 4 
$J$13 	R3 	 2 	 4 
$K$13 	R4 	 2 	 7 

$H$14 	Ri 	 2 	 3 
$I$14 	R2 	 2 	 2 
$J$14 	R3 	 2 	 4 
$K$14 	R4 	 2 	 7 
$H$15 	Ri 	 2 	 3 
$I$15 	R2 	 2 	 4 
$J$15 	R3 	 2 	 4 
$K$15 	R4 	 2 	 0 
$H$16 	Ri 	 2 	 0 
$I$16 	R2 	 2 	 4 
$J$16 	R3 	 2 	 0 
$K$16 	R4 	 2 	 0 

4.6 Solution Procedure Using DDDP 

The memory and execution time needed for DP are huge for problems of moderate size and 

complexity. Consider a two reservoir system with storage discretized into 100 states each. 

The number of possible combinations of states in each reservoir would be 100 x 100 per 

stage. For a two reservoir system, the combinations become 100 4  = 100 million requiring 

huge computational resources. For this reason, it could be safely concluded that DP becomes 

computationally bounded for problems of moderate dimension and complexity. One of the 

highly regarded methods of alleviating the dimensionality problem associated with DP is 

DDDP. In DDDP, the recursive equation of DP is solved for only a limited number of states. 

Heidari et al. (1971), Chow and Cortes-Rivera (1974), and Turgeon (1982) tested three 

states at each stage of the problem. Higher number of states may be tested at each stage but 
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this leads to increased computational complexity. With only three states to be considered in 

the current time step and three in the next time step, there are consequently only nine 

possible passages from one stage to another. The amount of memory required to store the 

solutions is also drastically reduced compared to DP. DDDP therefore leads to a 

computational procedure that has significant advantages in terms of memory and 

computational requirements. These savings are achieved without any compromise in the 

generality of problems that can be treated. 

In this research, a computer code based on the DDDP approach has been developed for the 

four reservoir system so that the comparisons of solutions with LP and GA could be made. 

The DDDP computer code used to solve the four reservoir problem is written in Microsoft 

Visual C++, and is presented in appendix C of this thesis. For the four reservoir problem, 

there are 21,296 combinations of reservoir storage states at each stage. If the release 

increment is chosen as one unit, then the total number of combinations of decisions that 

must be tested with DP at each state of each stage is 4 x 5 x 5 x 8 = 800. Due to huge 

computing requirements, the application of DP to this problem is ruled out. The problem is 

instead solved using DDDP. 

The application of DDDP to the four reservoir problem requires that the problem be divided 

into states and stages. The state corresponds to the storage in the reservoir and the stage 

represents the time period. Further, each stage must have a finite number of states associated 

with it. For the development of reservoir states, the storage volume of each reservoir has 

been discretized in increments of 1 unit each. This gives 11 states for reservoirs 1-3, and 16 

states for reservoir 4. The release increment is chosen as 1 unit since the releases are 

allowed to assume integer values only. To initiate the DDDP procedure, trial state 

trajectories are required for each reservoir. The trial state trajectories were obtained by 

setting releases to inflows in all time steps. The exeception to this occurs in the last time 

step when the boundary conditions have to be taken into account. After the determination of 

trial trajectory, a corridor is constructed around it which specifies the limiting values of the 

state variables within which the optimization is to be carried out. For this problem, one state 

below and one above the trial state trajectory were used to define the corrodor. This results 

in a significant reduction in the execution time as only a small subset of all feasible states at 

each stage is analysed. An improved trajectory that optimises the objective function given 

by (4.9) is obtained after each iteration and used as a trial trajectory for the next iteration. 

50 



Application of GA to the Four Reservoir Problem 

The procedure continues until no further improvement in the value of objective function is 

obtained. With DDDP, a solution identical to that obtained from LP was produced. The state 

trajectories produced by DDDP and by LP for the four reservoir problem are presented in 

section 4.8. In the same section, the GA solution is also presented. 

Clearly, there are advantages associated with the DDDP approach in terms of computing 

resources but as the dimensionality of the system increases the method too becomes 

computationally bounded. There are a few drawbacks of the approach even for small 

systems. Stringent conditions must be satisfied to achieve optimal solutions (Turgeon 1982). 

The choice of state increments is also important. Using a large state increment could result 

in local optimal solutions. On the other hand, if the state increment is too small, a large 

number of unnecessary computations are performed. Furthermore, an initial trial state 

trajectory is needed for each reservoir to initiate the DDDP procedure, the determination of 

which could be cumbersome. Also, if the initial trial trajectory is far from the optimal 

region, then the convergence may be to a local solution. With GA, however, no trial state 

trajectories are required. This is another indicator of the robustness of the search procedure 

that underlies the GA approach. Further, the development of a general purpose DDDP code 

is complicated and requires significant effort. On the other hand, a GA is easy to program in 

generic form. Many general purpose commercial GA packages are available and can be 

easily applied to multi reservoir optimization problems. This could be regarded as an 

encouraging sign for the practitioners in the field, who are not always provided with well 

documented and decipherable techniques (Yeh 1985). 

4.7 Solution Procedure Using GA 

4.7.1 The Solution Procedure 

The steps involved in the genetic optimisation of the problem under consideration are as 

follows. 

1. Initialisation: A population of chromosomes, each representing a possible solution to 

the problem is generated randomly. The genes comprising the chromosomes are allocated 

values between the upper and lower bounds of the variable values. The initial population 
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must offer a wide diversity of genetic materials. With a sufficiently large population size, 

adequate representation will be achieved. 

Decoding: In real-value representation, no decoding is required. In binary representation, 

the strings are decoded to obtain decimal values which are then mapped between the limits 

of decision variables to obtain the parameter values (Table 4.1). For these parameter values 

(releases) the storage values are computed from the systems equation and checked against 

the storage constraints. 

Evaluation: For each chromosome, the fitness is computed using an evaluation function, 

which is a link between the GA and the problem to be solved. For the four reservoir 

problem, fitness corresponds to the total benefit obtained over the operating horizon from 

hydropower and irrigation production. The fitness function also includes a penalty if the 

storage falls below the target level at the end of 12 operating period. 

Elitism: The best chromosome of the previous generation is preserved such that it is not 

lost between generations. If the best chromosome of the current generation is worse than the 

best chromosome of the previous generation, the latter one replaces the worst chromosome 

of the current population. 

Selection: Each chromosome has an associated value corresponding to the fitness of the 

solution it represents. For the problem under consideration, the total benefit obtained after 

the end of 12 operating periods is used as a measure of the fitness of the solution. Based 

upon this value, chromosomes are selected for participation in the next generation using the 

tournament selection scheme. This method randomly picks two or more chromosomes from 

the population and selects the best one into the next generation. The procedure is repeated 

for a same number of times as the population size. A discussion on tournament selection 

scheme is presented in chapter 3. 

Crossover: Pairs of chromosomes are randomly selected and genetic information is 

exchanged between these chromosomes to produce new chromosomes. The crossover 

probabilities are usually set in the range of 0.5 - 0.95. One point, two point and uniform 

crossover has been used for this problem. Different crossover schemes are described in 

chapter 3. 
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Mutation: GAs work by eliminating chromosomes with poor fitness values in each 

generation and in doing so may lose some important genetic information. This might lead 

GAs to converge prematurely to a local optimum. To maintain diversity in the population, 

some of the genes are randomly mutated to keep the population from converging too 

quickly. Mutation occurs with specified probability which is usually very low (0.1 - 0.001). 

In binary or Gray representation, mutation simply means changing a 1 to a 0 or vice versa. 

Mutation probability of 0.01 implies that approximately 1 in every 100 bits is mutated. In 

this study, uniform mutation and modified uniform mutation have been used. Details of 

these mutation schemes are presented in chapter 3. 

Replacement: A new population of chromosomes is obtained for further genetic 

processing after application of reproduction, crossover and mutation operators. These new 

chromosomes replace the chromosomes from the old population. 

The GA repeats steps 2 to 8 to produce successive generations and to obtain improved 

solutions. The basic GA code which implements the procedure outlined above is presented 

in appendix B. The code is developed using Microsoft Visual C++. 

4.7.2 The Penalty Function Approach 

In a GA, the boundary conditions may not necessarily be satisfied as in LP. In the GA 

approach the release sequences are generated randomly and therefore it is possible that some 

release sequences may not satisfy the constraints on storages. Chromosomes failing to meet 

the constraints could be excluded from subsequent participation in the evolutionary process, 

but this may lead to useful genetic material being lost. Alternatives to exclusion are 

successive regeneration of chromosomes until they meet constraints, or imposing a penalty 

to reduce the fitness of chromosomes failing to meet constraints. The former approach 

disrupts the GA process. In this research, a penalty function approach has been used. The 

penalty function is quadratic, and is based upon the degree of constraint violation. This is 

particularly useful in dealing with long chromosomes representing a time series in which the 

constraints are violated in only a small part. Also, potentially good genetic material is 

allowed to contribute to subsequent generations when violations are small. 
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4.8 Evaluation Of Alternative GA Formulations 

GAs are considered to be general purpose search procedures inspired by the process of 

natural evolution, and near optimum value of the objective function should be achieved after 

several repetitions of the generation cycle. In practice, the performance of GAs has been 

found to be sensitive to the GA parameters (DeJong 1975). A series of sensitivity analyses 

have been carried out to determine appropriate parameter settings under binary, Gray and 

real-valued coding, prior to evaluation of the alternative codings themselves. The 

tournament selection scheme has been used for all the GA formulations. Goldberg and Deb 

(1991) carried out a comparative analysis of various selection schemes and seem to favour 

the tournament selection scheme. Binary tournament selection has been used by Cieniawski 

et al. (1995) in their groundwater monitoring problem. Yang and Soh (1997) have also used 

the same approach for the structural optimisation of trusses. 

4.8.1 Sensitivity to Crossover Probability 

In many practical problems GA results are found to be sensitive to crossover and mutation 

probabilities. This is due to the fact that a particular bit appearing at a particular position on 

an individual string may disappear at an early stage of the run due to mutation or crossover. 

Due to the complexity of the problem, the now extinct bit may be precisely what is needed 

to achieve optimal performance at a later stage of the run. The sensitivity of results to 

crossover probability has been analysed and the results are presented in Figure 4.3. 

Various researchers (e.g., DeJong 1975; Goldberg 1989) have suggested that good 

performance may generally be achieved using a high crossover probability and low mutation 

probability. It has been observed from initial test runs that for the four reservoir problem 

good results will be achieved when mutation is restricted to about one gene per chromosome 

on average. Since the chromosomes for the four reservoir problem are made up of 48 genes, 

it was decided to set the initial mutation probability at 0.02 (approximately 1/48). Sensitivity 

of the GA to crossover probability was examined with a mutation probability of 0.02 using a 

population size of 100. The tournament selection scheme with uniform crossover, and a 

modified uniform mutation operator was adopted for real-valued representation. Crossover 

probabilities in the range of 0.50 to 1.0 were considered through runs with a fixed length of 

500 generations. Figure 4.3 shows the sensitivity of GA performance to crossover 

probability for different coding schemes. The results showed that the optimum benefit 
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achieved was always within the neighbourhood of the known global optimum for each of the 

three coding schemes. 
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Figure 4.3 Sensitivity to crossover probability 

The real-valued coding provides the best performance over a wide range of crossover 

probabilities. The GA was able to locate promising points in the neighbourhood of the 

known global optimum for a wide range of crossover probabilities. The best values were 

achieved for the crossover probabilities in the range of 0.7 to 0.8. It can be observed from 

Figure 4.3 that binary coding is apparently more sensitive to crossover probability than 

either the real-valued or Gray coding. The peak performance is achieved with a crossover 

probability of 0.7 but beyond this value, ,there is progressive deterioration in performance. 

The analysis showed that the performance of GA might not be good if too high or too low 

values of crossover probabilities are used. 

A total of ten runs were carried out for each of the different values of crossover probabilities 

and in each case for the real-value and Gray coding, the best value achieved was more than 

99% of the known global optimum. The moderate crossover probabilities in the range of 0.6 

to 0.8 produce better results as they allow some chromosomes to undergo mutation only. 

This is particularly helpful in the later stages of the run when only slight changes to the 

existing chromosomes are required to improve them. The results demonstrate clearly that the 

GAs are robust with reasonable results being achieved over a fairly wide range of crossover 

probabilities and representation schemes. The results also demonstrate that real-value coding 

is more robust and produces better results than either of the binary or Gray code 

representations. 
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4.8.2 Sensitivity to Mutation Probability 

The sensitivity of the objective function to mutation probability for different representation 

schemes was also investigated. Since the best value of objective function was achieved with 

a crossover probability of 0.7, the sensitivity to mutation probability was analysed using this 

value. The mutation probability may be expressed as 

k 
P mutate = 

Clength 

(4.10) 

where Pmutate  is the mutation probability, k is the number of mutations, and Clength  is the 

chromosome length in genes. Numbers of mutations in the range of 0.1 to 10 per 

chromosome have been considered. Since the chromosome length for this problem is 48, 

mutation probabilities in the range of 0.002 to 0.208 have been used. Figure 4.4 shows the 

results of sensitivity analysis. 
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Figure 4.4 Sensitivity to mutation probability 

Clearly, with real- value coding best results are achieved when k 1. In binary coding, the 

best result was achieved with 1.5 mutations per chromosome, but it is clear that there is 

more variability in binary coding than in real-value coding. if the number of mutations per 

chromosome is large, say more than 4, the performance is likely to be poor. Clearly, the real-

valued coding outperforms the binary and Gray coding. There is again an indication of 

robustness, and 0.6 to 2 mutations per chromosome produces reasonable results. The results 

- of sensitivity analysis for mutation probability showed that too high or too low a mutation 

probability does not produce good results. A proper choice of mutation probability is vital 
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for good performance of a GA. It should be noted that the results are more sensitive to 

mutation probability than to crossover probability. 

4.8.3 Analysis of Representation Schemes 

The performance of GA depends upon the proper choice of GA parameters such as 

crossover probability and mutation probability. The results of sensitivity analysis presented 

in Figure 4.3 and Figure 4.4 indicate that the real-valued representation is less sensitive to 

the values of crossover and mutation probabilities used. It can be observed that the best 

values of objective functions are produced with a crossover probability of 0.7. Also, a 

mutation probability corresponding to one mutation per chromosome appears to be optimal. 

Based upon these values, an evaluation of binary, Gray and real-value representation 

schemes has been carried out. 

The variation of best-of-generation maximum fitness with the number of generations for 

each of the coding schemes is shown in Figure 4.5. The trend of variation is similar for each 

of the schemes, although it is apparent that the real-valued representation produces a 

smoother curve, perhaps indicating greater robustness. The real-value representation 

exhibits a slower rate of improvement in fitness in the mid-generation period of the run, but 

sustains its rate of improvement for longer. The binary representation makes more erratic 

progress towards better fitness than do either the Gray code or real-value representations. 

All three schemes quickly approach the neighbourhood of the optimum within the first 50 

generations. The real-value representation maintains a steadier rate of improvement than the 

other schemes. It appears that the binary and Gray code become restricted partly through 

mutation. Mutation may occur in any part of a gene, and while this is helpful in early 

generations, it can be disruptive in later ones. Since elitism is used which ensures that the 

best individual is never lost between generations, a high and improving normalised 

maximum fitness is maintained. 
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Figure 4.5 Maximum fitness with alternative representation schemes 

Plots of average fitness in the population with generation number are shown in Figure 4.6. 

Clearly, the variability in average fitness is best for the real-value representation. This may 

be attributed to the improved manner in which mutation has been dealt with. The modified 

uniform mutation operator changes the genes by a small amount compared to the original 

uniform operator in which the changes could be large. With binary and Gray coding, the 

average fitness does not improve significantly after about 100 generations. This is partly 

because if an infeasible solution is generated as a result of crossover or mutation, a penalty 

is assigned to it and the average fitness of the population goes down. 
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Figure 4.6 Average fitness of population with alternative representation schemes 

The maximum values of the objective function achieved after 500 generations with each 

coding are given in Table 4.2. The known global optimum for the problem is 401.3. The 

values achieved by each of the coding schemes are very close to the known optimum. Real- 
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value coding has a number of advantages over both binary and Gray coding which can be 

summarised as: 

a higher fitness value is achieved; 

• a smoother convergence to solution is obtained; 

• formulation is straightforward, no mapping is required; 

• average fitness of the population generated is much higher than with binary or Gray 

coding; 

• execution time is less. 

The results of GA could be further improved by allowing the evolution process to run for 

some extra number of generations. It was possible to obtain the known global optimum for 

the four reservoir problem after 750 generations using the real-value representation. With a 

population of 200, the optimum was achieved in 500 generations. A comparison of 

execution time for each coding scheme is shown in Table 4.2. The real-value representation 

completed 500 generations two and a half times faster than the binary representation and 

four times faster than the Gray code representation. The speed advantage associated with 

real-value coding could be of importance for larger problems. 

Table 4.2 Normalised and actual fitness values after 500 generations 

Coding Normalised Actual Execution Time 

Fitness fitness (seconds) 

Binary 0.995 399.0 120 

Gray 0.995 399.0 175 

Real-value 0.998 400.5 45 

4.8.4 Influence of Population Size 

Consideration has been given to the influence of population size on the performance of GA. 

The real-value representation was adopted, and the GA was run with different population 

sizes for 500 generations. The sensitivity of achieved maximum fitness to population size is 

shown in Figure 43. Acceptable results are produced with a population of 100, but by 

increasing the population size to 200, it was possible to reproduce the known global 
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optimum. A decrease in population size decreases the total number of evaluations 

performed, and hence desired results may not be achieved with smaller population sizes. 

Moreover, smaller population size cannot maintain diversity in the population. The choice 

of proper population size depends upon the judgement and experience of the user. 
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Figure 4.7 Influence of population size on fitness 

4.8.5 Influence of Crossover and Mutation Schemes 

The influence of crossover and mutation schemes on .the performance of GA has also been 

analysed. Table 4.3 presents the results of analysis. Uniform crossover appears to be the best 

crossover operator although one point and two point crossover give similar performance. For 

this particular problem, the effect of crossover schemes is found to be insignificant although 

slightly better results are achieved using uniform crossover. This might be expected as 

uniform crossover is likely to lead to greater diversity within the population than either the 

one point or two point crossover. 

Mutation seems to effect the GA process significantly. Uniform mutation operates by 

replacing the selected gene value by another gene value from a pool of all possible values. 

This may, at times cause large changes to the existing genes which may lead to loss of good 

genetic material. On the other hand, the modified uniform mutation operator causes fixed 

mutations rather than random mutations to the gene values. This dampens the impacts of 

mutation, and leads to better final solutions as the disruption to the solution is less. 
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Table 4.3 Evaluation of crossover and mutation schemes 

Scheme Adopted Normalised Maximum Fitness 

Crossover Schemes 

Uniform Crossover 0.998 

One Point Crossover 0.997 

Two Point Crossover 0.994 

Mutation Schemes 

Uniform Mutation 0.983 

Modified Uniform Mutation 0.998 

4.8.6 Storage Trajectories 

Comparisons of the state trajectories produced by LP, DDDP, and by real-valued GA are 

presented in Figure 4.8 to Figure 4.11. The GA results are based on the best parameter set 

resulting from sensitivity analysis, and are given for a population size of 100 at the end of 

500 generations. For reservoir 1, and 4, there is an exact reproduction of the optimal 

trajectories. There are minor shifts in trajectories for reservoir 2 and 3. The trajectories 

produced after running the GA process for 750 generations exactly matched the optimal 

trajectories obtained by LP and DDDP. It can be observed from the trajectories that for each 

reservoir the GA was able to find solutions which satisfied the boundary conditions. 
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The GA was also run with different seeds in the stochastic generators than had been used in 

the sensitivity runs. In 5 out of 10 runs with 750 generations, the optimal solution was 

produced. The values produced by other runs were only marginally lower than the optimum 

(0.999 for three of them and 0.998 for the other two). It can therefore be concluded that the 

results are relatively stable with respect to particular random number sequences. 

4.9 Applications to Extended Time Horizons 

As the number of time steps in the operating horizon increases, the length of chromosomes 

increases, and it may become difficult to achieve solutions that satisfy constraints 

throughout the length of chromosomes. This potential limitation has been investigated by 

extending the four reservoir problem to incorporate up to 96 stages instead of the original 

12. Results for the problem with extended time horizons produced with the GA have been 

compared with those produced by DDDP, and are presented in Table 4.4. 

Table 4.4 GA performance with extended time horizons 

Stages DDDP GA with a Population of 100 GA with a Population of 200 

Return Return % of DDDP Gen. Return % of DDDP Gen. 

12 401.3 400.5 99.80 500 401.3 100 500 

24 810.6 808.7 99.70 1300 808.9 99.79 900 

36 1220.1 1219.1 99.92 2400 1218.6 99.89 1900 

48 1629.6 1621.2 99.48 2600 1626.5 99.81 2100 

72 2448.6 2439.2 99.62 4200 2446.0 99.89 4100 

84 2858.1 2842.5 99.45 4700 2847.5 99.63 4400 

96 3267.6 3253.3 99.56 5300 3259.8 99.76 5500 

Note : Gen. stands for the number of generations required to reach the convergence 

condition. 

With longer chromosomes, a larger population size should be used in order to maintain 

diversity in the population. It is clear from Table 4.4 that the GA maintains high fitness, and 

that the deterioration in fitness at longer time horizons is not significant. The number of 

generations included in Table 4.4 are those required for GA to converge to a state at which 

the change in fitness over 100 generations is less than 0.1 (0.025%). The results indicate that 
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a larger population does produce better overall fitness, although interestingly, the number of 

generations required with a larger population is very similar to the number required with a 

smaller population. 

4.10 The Modified Four Reservoir Problem 

The application of GAs to the four reservoir problem has demonstrated their ability to find 

optimal or near optimal solutions. GAs have considerable flexibility in application to non-

linear problems. To demonstrate this, the four reservoir problem has been modified to 

include a non-linear objective function and has been solved by GA. The hydropower 

generated from each of the reservoirs was assumed to be a non-linear function of storage and 

release from the reservoir. The head-storage relationship for each of the reservoirs was 

assumed to be of the following form. 

H=KS" 
	

(4.11) 

where H is the water level corresponding to storage S in standardised units and K and n are 

constants. The values of K and n used for this problem are 3 and 0.4 respectively. Figure 

4.12 shows the relationship between water head and storage. 
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Figure 4.12 Elevation versus storage relationship for the modified four reservoir problem 

The objective is to maximise the economic returns from the production of hydropower from 

the reservoirs subject to the constraints described for the four reservoir problem. 

Mathematically, the objective function for the modified problem could be expressed as: 
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4 12 	 4 

Maximise F = 	b, (t). p, (t) + 	g, [s, (13), d.] 	 (4.12) 
1=1 t=1 	 j=1 

where p(t)=f [s,(t), u,(t)J is the power generated from reservoir i in time step t. This is a non-

linear function due to the non-linear relationship between the water level and the storage 

given by (4.11). The constraints on storages, releases, and initial and target storages are 

same as that for the original problem. 

4.10.1 Solution Procedure and Results 

The original problem formulated by Larson (1968) is solvable by LP. The modified four 

reservoir problem has been solved using DDDP and using the GA technique. The DDDP 

procedure does not require penalty functions to satisfy the terminal state conditions of the 

problem because it is possible to trace back those trajectories that have the required final 

state. However, a penalty function is required in the GA approach in order to satisfy the 

terminal conditions. For the GA, the penalty function used with the linear four reservoir 

problem has been adopted. The GA was set up with real value representation, tournament 

selection, elitism, uniform crossover and modified uniform mutation. The same procedure as 

used for the original four reservoir problem has been used for this problem to obtain a 

solution by the GA technique. The problem has been solved retaining a population size of 

100. The same GA computer code as used for the original four reservoir problem has been 

used and only the evaluation function needed to be modified to incorporate the non-linear 

power function. 

With the parameters adopted, the optimal return for the problem found using DDDP was 

1901.39. The DDDP procedure was started with an initial trial state trajectory having a 

return of 1475.90. After 10 iterations, there was no further improvement in the value of 

objective function, and the DDDP procedure terminates. Figure 4.13 shows the 

computational results for the DDDP technique. The GA was able to produce the same 

optimum within 500 generations. As expected the non-linearity of the objective function 

does not effect the performance of GA in any way. Figure 4.14 shows the manner in which 

the GA approached the solution for a population size of 100, a probability of crossover of 

0.70 and a probability of mutation of 0.02. These parameters have been chosen based upon 

the results of original four reservoir problem. It can be observed from Figure 4.14 that the 

GA quickly approached the optimum for this problem, after about 450 generations. The 
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average fitness of the population was very high indicating that a large number of alternative 

solutions close to the optimum have been produced. 

Initial trial trajectories for the DDDP and the optimal trajectories obtained using DDDP and 

GA are shown in Figure 4.15 to Figure 4.18. The state trajectories produced by GA match 

exactly to those produced by DDDP. The GA executed almost three times faster than the 

DDDP, and required no initial trial trajectories to be set. The execution time for GA was 45 

seconds compared to 125 seconds for the DDDP. 
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Figure 4.13 Computational results using DDDP for the modified four reservoir problem 
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Figure 4.18 State trajectories for reservoir 4, modified four reservoir problem 

4.11 The Ten Reservoir Problem 

A ten reservoir problem was formulated and introduced to the literature by Murray and 

Yakowitz (1979). The problem is complicated not only in terms of size, but also because of 

many time-dependent constraints on storage. Murray and Yakowitz (1979) presented a 

solution to the problem using constrained DDP. The problem is beyond the capacity of DP 

and it is even difficult with variants such as DDDP. The problem was formulated such that it 

remained solvable by LP. This is particularly useful for evaluating the results obtained by 

other optimisation techniques. 

The schematic of the ten-reservoir problem is shown in Figure 4.19. The system comprises 

of reservoirs in series and parallel. The releases from the upstream reservoirs are passed on 

to the downstream reservoirs, and a reservoir may receive supplies from one or more 

upstream reservoirs. The releases from the reservoirs are used for generating hydropower. 

Operation of the system is to be optimised over 12 operating periods to maximise the returns 

from hydropower production. The benefit function is a linear function of release and is 

based upon the numerical values provided by Murray and Yakowitz (1979). 

The decision variables for the problem are the releases from the resevoirs and the state 

variables are represented by the storages contained in the reservoirs i = 1, 10. The upper and 

lower bounds on storages are defined for each reservoir and for each operating period. The 

inflows have been defined for the entire time series for the upstream reservoirs 1,2,3,5,6 and 

8. The storage constraints, benefit functions and the inflows have been tabulated by Murray 

M. 
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and Yakowitz (1979). The initial and target storages are same for all the reservoirs, and are 

given in Table 4.5. The minimum allowable storages and the constraints on the release are 

also defined for each reservoir and are shown in Table 4.5. Details of the problem can also 

be found in the work by Murray and Yakowitz (1979). 
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Figure 4.19 The ten reservoir system 
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Table 4.5 Bounds on releases and storage 

Reservoir 	Release 	 Storage 

Minimum Maximum Minimum Initial Target 

1 0.005 4.0 1 6 6 

2 0.005 4.5 1 6 6 

3 0.005 2.12 0.3 3 3 

4 0.005 7.0 1 8 8 

5 0.006 6.43 1 8 8 

6 0.006 4.21 1 7 7 

7 0.01 17.1 1 15 15 

8 0.008 3.1 1 6 6 

9 0.008 4.2 0.5 5 5 

10 0.01 18.9 1 15 15 

Note: These constraints apply in all time-steps 

The dynamic behaviour of the system at any stage t = 1, 12 is described by the following 

continuity equation. 

S,(t+1) =S1(t)+I(t)+MR(t) 	 (4.13) 

where S,(t) = vector of reservoir storages, I(t) = vector of reservoir inflows, R,(t) = vector 

of reservoir releases in time period t=1, N from reservoirs i=1,n; and M = n x n matrix of 

indices of reservoir connections, N is the number of time steps considered, and n is the 

number reservoir included in the model. 

The matrix M is a n order square matrix with -1 along the diagonals and +1 in the position 

ith column and jth row if the release from reservoir i goes into reservoir j. The rest of the 

martrix elements are zero. From this consideration, the matrix M could be expressed as 

follows. 
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1 0 0 0 0 0 0 0 0 0 (4.14) 
o -1 0 0 0 0 0 0 0 0 

o o -1 0 0 0 0 0 0 0 

o 1 1 -1 0 0 0 0 0 0 

0 0 0 0 -1 0 0 0 0 0 M- 
- 

o o - o 
1 0 0 I I 1 -1 0 0 0 

o 0 0 0 0 0 0 -1 0 0 

o o 0 0 0 0 0 1 -1 0 

o o 0 0 0 0 1 0 1 -1 

The performance criterion to be maximised is the sum of returns due to power generated by 

the reservoirs. The performance criterion also includes a penalty if the storage in a reservoir 

falls below its target level at the end of N operating periods. The penalty function was 

assumed to be of the following form: 

9j[sj(13),dj]= J60[Si (13)_1 	if s,(13)!~ d1 1 	(4.15) 

0 	 if s(l3)>dJ 

The penalty function is not required in LP since the boundary conditions can be set up as 

constraints but it is needed in the GA approach. It was found that with the ten reservoir 

problem, a more severe penalty function was required than with the four reservoir problem. 

Mathematically, the objective function can be expressed as: 

10 12 	 10 

Maximise 	 (4.16) 

1=1 t=1 	 j=1 

where F is the total benefit obtained from the system after 12 operating periods and, b(t) is 

the unit return from reservoir i = 1, 10 in time period t. 

4.11.1 Solution Procedure and Results 

Unlike the four reservoir problem, the components of solution vectors for the ten reservoir 

problem are non-integer continuous values. This implies that the genes representing the 

releases can take any possible value between the defined upper and lower limits. The 

important advantage of GAs is that although the decision variables are real values, no 

discretization is required when real-value representation is used. For the particular case of 

four reservoir problem, the genes were constrained to take on integer values only by using a 
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random number generator which returned only integer values. This was the requirement for 

the four reservoir problem. For the ten reservoir problem, the random number generator was 

easily modified to return real values between the predefined lower and upper limits thus 

ensuring that the decision variables are assigned continuous variables and the whole search 

space is covered. The number of genes in the chromosomes depends upon the number of 

reservoirs and the time-steps considered in the model. For the ten reservoir problem with 12 

time steps, there are 120 decision variables to be represented in a GA. Each chromosome 

representing a potential solution to the problem thus consists of 120 genes compared to 48 

genes for the four reservoir problem. The ten eservoir problem has been solved using the 

same GA code as used for the four reservoir problem, with modification only to the 

evaluation function and the data file. 

A higher population size of 500 has been used so that the desired level of genetic diversity 

could be maintained for initial and subsequent populations. Based on the results of 

sensitivity analysis carried out for the four reservoir problem, a crossover probability of 0.7 

was chosen. Initial test runs were carried out to determine the best value of mutation 

probability. The mutation probabilities corresponding to around 1 mutation per chromosome 

were considered. The best value was achieved using a mutation probability of 0.005. The 

GA was allowed to run for 2500 generations and took 25 minutes to run on a Pentium based 

PC. The variation of maximum and average fitness with the generation number is shown in 

Figure 4.20. It can be observed from the plot that the GA continuously improves the solution 

although it appears that the rate of improvement is slow during the later part of the run. The 

variability in average fitness over generations is low and during the end of the run, average 

fitness of the population approaches the maximum fitness. This shows that the population 

has matured and that very little improvement in the fitness values could be obtained even if 

the algorithm is run for many more generations. 

The optimal return for the problem using LP is 1194. Murray and Yakowitz (1979) obtained 

a value of 1190.652 using constrained DDP. The value obtained by GA approach is 1190.25, 

which is around 99.7% of the known global optimum for the problem. Given the size and 

complexity of the problem, the results of GA are highly satisfactory. The trajectories 

produced by GA matched closely with those produced by LP (Figure 4.21 to Figure 4.30). 

The execution time for the GA was 8 times longer than that of the LP on a Pentium based 

PC. Introduction of non-linear objective function or constraints would not, however, have 
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influenced the execution time of the GA. This is an advantage for complex systems. The 

purpose of this application has been to demonstrate that GAs are capable of addressing large 

problems. Further complexity introduced through non-linearities in any part of the system 

would not present any difficulty for the GA approach, and this is a particular strength of the 

approach. 
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Figure 4.20 Generation versus fitness for the ten reservoir problem 
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4.12 Conclusions 

The four reservoir problem has been solved satisfactorily using the GA approach. Several 

possible formulations have been considered along with their sensitivity to various 

parameters. It is concluded that for the four reservoir problem solved here, a real-value 

representation incorporating tournament selection, elitism, uniform crossover and modified 

uniform mutation will operate most efficiently and will produce the best results. Sensitivity 

analysis on GA parameters showed that a crossover probability of 0.70 and a mutation 

probability corresponding to one mutation per chromosome is most appropriate. A solution 

very close to the known global optimum can be achieved within 500 generations with a 

population of 100. With a population of 200, the known global optimum can be achieved in 

500 generations, and with a population of 100, the known global optimum can be achieved 

in 750 generations. 

Application of the approach to the modified four reservoir problem demonstrated that GAs 

can easily be applied to non-linear problems. It has also been demonstrated that large 

problems such as the ten reservoir problem could also be solved using the developed GA 

approach. It has been shown that acceptable results can be produced over longer time 

horizons. Furthermore, considerable economy in execution time can be achieved by 

performing the function evaluations in a parallel fashion since these evaluations are not 

interdependent. GAs are by nature highly parallel but have traditionally been run on serial 

machines only because of the limited availability of parallel computers. 

The results presented in this chapter indicate that there is potential for application of GAs to 

large finite-horizon multi reservoir systems problems, as well as to stochastic optimisation 

problems. A significant advantage of the GA approach is that no initial trial release policy is 

required as in DDDP, for example. The approach is easily applied to non-linear problems 

and to complex systems. Another significant advantage of GA is that it produces a range of 

feasible solutions within the neighbourhood of the optimal solution, thereby providing more 

choice and flexibility to the decision maker. The results indicate the robustness of the search 

method that underlies the GA approach and the flexibility of the formulation itself. 
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5. THE BRANTAS BASIN 

5.1 Introduction 

The practicality of the developed GA approach is investigated through application to a real 

reservoir system in Indonesia. In this chapter, the characteristics of the Brantas Basin are 

described. The details of the simulation model of the basin are also presented. The 

development of water resources in the basin dates back to middle of 19th century with the 

construction of facilities for supplemental wet season irrigation. The basic system of the 

existing irrigation network was completed in the 1930's. Mott MacDonald (1981) carried 

out a comprehensive water resource availability study for Brantas Basin. The study showed 

that water resources in the basin are fast approaching their limits, but the demand for potable 

water is increasing rapidly. It is therefore important that the available water resources are 

managed in the best possible manner. 

Following this introduction, section 5.2 describes the characteristics of the basin and those 

of storage reservoirs. The previous studies carried out in the basin are also discussed in the 

same section. Section 5.3 discusses the existing water use in the basin. The structure of an 

existing simulation model is described in section 5.4. Results of some simulation model runs 

are presented in section 5.5. The conclusions are presented in section 5.6. 

5.2 The Basin 

This section describes the characteristics of the Brantas Basin in Indonesia and is based on 

the reports of Mott MacDonald (1988). The Brantas Basin is located in East Java, the largest 

province of Java, Indonesia. Figure 5.1 shows the main features of the Brantas Basin. The K. 

Brantas is the second largest river in Java and has a total catchment area of 12000 km 2  and a 

main stream length of 341 km. Almost half of the total basin area is under cultivation. The 

main stream of the Brantas irrigates 81,000 hectares (ha) of high intensity agriculture 

whereas the total land irrigated in the basin is about 200,000 ha. The K. Brantas forms a 

spiral around the G. Batuk, G. Kelud and G. Arjuno: G. Kelud is an active volcano. Finally, 

the K. Brantas flows into the Indonesian Ocean south of the City of Surabaya. 
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Figure 5.1 The schematic of the Brantas Basin 

5.2.1 Previous Studies 

The first major study of water resources in the basin was carried out by Nippon Koei (1961). 

The study focused largely on flood control, but came up with an overall development plan 

for the basin. The 1961 overall plan was reviewed by the Japanese Overseas Technical Co-

operation Agency (1973), and a Master Plan formulated for further water resource 

development in the basin. 

A comprehensive water resource availability study was carried out by Mott MacDonald 

(1981). The study dealt with water use in the K. Surabaya and with water resource 

availability for expansion of city's water treatment facilities. The study concluded that water 

resource development in the basin had reached its limits and recommended a revision of the 

operation rules of Karangkates reservoir. 

Japan International Co-operation Agency (1985) completed a water resource development 

and management plan for the basin. The study reviewed the 1973 Master Plan and analysed 
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the opportunities for future development. An action plan was prepared covering all aspects 

of integrated development in the basin. 

Mott MacDonald (1988) carried out a major water resources Master Plan study for water 

supply for East Java Province. As part of the project, a simulation model was developed for 

the Brantas Basin. Wardlaw (1993) describes the development of the model and the diverse 

ways in which the past developments have influenced the hydrological records in the basin. 

5.2.2 The Climate Conditions 

The Brantas Basin lies in the Southern Hemisphere and has a tropical climate. The mean 

annual rainfall over the basin is about 2000 mm varying from 1500-1800 mm in the delta 

area to over 3000 mm on the south western slopes of G. Kelud. The climate is monsoonal 

and the wet season is associated with the northwest monsoon which generally extends from 

November through April. During this period, 80 percent of the annual rainfall can be 

expected. This seasonal nature of rainfall leads to marked seasonality of streamfiow in the 

K. Brantas. The mean daily temperature is generally around 23.80  C in Malang and around 

27.5 
0 
 C in the Brantas Delta. Temperature varies little throughout the year. The relative 

humidity is high at all times at about 60-80%. 

5.2.3 Karangkates Reservoir 

Karangkates reservoir is the most important reservoir in the Brantas Basin. It has a total 

catchment area of 2200 km2  and regulates flows during the dry season. The effective storage 

capacity is 267 Mm3  and although this is less than 4 percent of mean annual basin runoff, its 

regulating effect on dry season flows is significant. The releases from Karangkates reservoir 

are used for generating hydropower, for irrigation and for supplying drinking water to the 

City of Surabaya. For power production, Karangkates reservoir is very important. It has a 

total installed capacity of 105 mega watts (MW) and in 1987 accounted for 17.5 percent of 

the total installed capacity in East Java. 

The characteristics of Karangkates reservoir are summarised in Table 5.1 and the elevation 

versus area and storage data is presented in Table 5.2. 
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Table 5.1 Characteristics of Karangkates dam and reservoir 

Dam Characteristics 

Type Rock Fill 

Height 100.0 m 

Crest Elevation 279.0 m 

Crest Length 810.0 m 

Reservoir Characteristics 

Catchment Area 2050 km2  

Normal HWL 272.5 m 

Normal LWL 246.0 m 

Design HWL 275.5 m 

Abnormal HWL 277.5 m 

Surface Area (HWL) 15.0 Km2  

Gross Storage Capacity 350.11 Mm3  

Effective Storage Capacity 267.0 Mm3  

Power Characteristics 

Type of Turbine Vertical Francis 

Installed Capacity 3 x 35 MW 

Maximum Turbine Discharge 51.4 m3/s 

Minimum Turbine Discharge 25.0 m3/s 

Table 5.2 Elevation versus storage and area data for Karangkates reservoir 

Elevation (masi) Storage (Mm3) Area (Km2) 

215 0.922 0.37 

220 4.18 1.01 

225 10.40 1.62 

230 20.02 2.38 

235 33.76 3.30 

240 52.61 4.54 

245 77.34 5.78 

246 83.40 5.98 
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250 107.67 6.80 

255 143.77 8.15 

260 186.94 9.76 

262.5 212.56 11.13 

265 241.10 12.65 

267.5 273.51 14.12 

270 309.73 15.70 

272.5 350.11 17.46 

5.2.4 Wonorejo Reservoir 

Wonorejo Dam is being constructed on the K. Gondang to the west of Tulungagung. The 

location of Dam is shown in Figure 5.1. An inter-basin transfer will be provided from the K. 

Song by Segawe Weir which will have the effect of increasing the catchment area of the 

reservoir to 126 km 2. Wonorejo Dam will be a full storage reservoir producing only offpeak 

power, as there is no re-regulation downstream of Wonorejo. The principal characteristics 

are summarised in Table 5.3 and the area versus storage and elevation data is given in Table 

5.4. 

Table 5.3 Characteristics of Wonorejo dam and reservoir 

Dam Characteristics 

Type Rock Fill 

Height 97.0 m 

Crest Elevation 187.0 m 

Crest Length 500.0 m 

Reservoir characteristics 

Catchment Area 126.3 km2  

Normal HWL 183.0m 

Normal LWL 141.0m 

Surface Area (HWL) 3.4 Km2  

Gross Storage Capacity 122.0 Mm3  

Effective Storage Capacity 106.0 Mm3  
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Power Characteristics 

Type of Turbine 	 Vertical Kaplan 

Installed Capacity 	 1 x 6.2 MW 

Maximum Turbine Discharge 	10 m3/s 

Minimum Turbine Discharge 	4.0 m3/s 

Table 5.4 Elevation versus storage and area data for Wonorejo 

Elevation (masi) Storage (Mm 3) Area (Km2) 

130 6 0.6 

135 9 0.9 

140 14 1.2 

145 21 1.5 

150 30 1.8 

155 40 2.1 

160 50 2.4 

165 63 2.7 

170 78 3.0 

175 93 3.3 

180 110 3.6 

183 122 3.8 

5.2.5 Beng Reservoir 

Beng reservoir is planned on the K. Beng about 5 Km from its confluence with the K. 

Brantas (Figure 5.1). The available storage capacity is quite high at the site. In order to 

utilise its full potential, the reservoir would be operated as an offstream storage for the K. 

Brantas. During periods of high flows, the water from the main stream will be pumped back 

to Beng and during periods of shortage water could be withdrawn from Beng to satisfy the 

irrigation demands. 

Only offpeak power could be generated from Beng as the releases downstream of the 

reservoir cannot be regulated. A combined efficiency of 85% and a minimum turbine 

discharge of 2 m3/s have been assumed for the power plant. The characteristics of Beng dam 

and reservoir have been described in Table 5.5. 
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Table 5.5 Characteristics of Beng dam and reservoir 

Dam Characteristics 

Type Earth Fill 

Height 48 m 

Crest Length 170.0 m 

Reservoir Characteristics 

Catchment Area 134 km2  

Normal HWL 73.0 m 

Normal LWL 52.0 m 

Surface Area (HWL) 13.0 j2 

Gross Storage Capacity 160.0 Mm3  

Effective Storage Capacity 147.0 Mm3  

Power Characteristics 

Type of Turbine - 

Installed Capacity 1 x 12 MW 

Maximum Turbine Discharge 48.0 m3/s 

Maximum effective Head 31.0 m 

Tail Water Level 35.0 m 

Pumping Characteristics 

River to Canal 

Maximum Pumping Head 6.5 m 

Pump Capacity 0.83 MW 

Maximum Discharge 9.67 m3/s 

Pipe Length 37.5 m 

Pipe Diameter 2.5 m 

Canal to Reservoir 

Maximum Pumping Head 36.0 m 

Pump Capacity 5.1 MW 

Maximum Discharge 9.67 m3/s 

Pipe Length 2000 m 

Pipe Diameter 23 m 
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The area versus elevation and storage data for the reservoir is shown in Table 5.6. 

Table 5.6 Elevation versus storage and area data for Beng 

Elevation (masi) Storage (Mm3) Area (Km2) 

45 2 1.0 

50 9 2.0 

60 45 5.6 

65 76 8.0 

70 124 11.0 

73 160 12.0 

The upper and lower bounds on storages and releases from the reservoir are presented in 

Table 5.7 below. 

Table 5.7 Lower and upper bounds for storages and releases 

Reservoir Allowable Storage (Mm) Allowable Release (m 3/s) 

Minimum Maximum Minimum Maximum 

Karangkates 83.4 350.11 25.0 155.0 

Wonorejo 15.4 122.0 1.0 10.0 

Beng 16.2 160.0 5.0 45.0 

5.3 Water Use in the Basin 

This section describes the main uses of water in the basin. 

5.3.1 Irrigation 

The primary use of water in the basin is for irrigated agriculture. The annual diversion 

requirement for schemes fed by the Brantas main stream alone is 1600 Mm 3 . The irrigation 

water requirements from the basin were evaluated during Surabaya Water Use Study carried 

out by Mott MacDonald (1981). The study was based partly on the historic usage and partly 

on the cropping pattern in 1980. - 
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5.3.2 Industrial Water Use 

The Surabaya Water Use Study conducted by Mott MacDonald (1981) had put the industrial 

water use by direct abstraction from the K. Surabaya at 1.0 m 3/s after allowing for 

unlicensed abstractions and inaccuracies in the estimates of actual consumptive use. 

5.3.3 Potable Water Demand 

Surabaya is the commercial and industrial centre of East Java. The city has been expanding 

rapidly and so is the demand for potable water supplies. The demand projection for the City 

of Surabaya is shown in Figure 5.2. By the year 2000, the potable water demand was 

expected to rise to 9 m3/s (Mott MacDonald 1988). 
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Figure 5.2 Potable water demand forecasts for City of Surabaya 

5.3.4 City Water Way Flushing 

Regular Flushing of canals in the urban and the semi urban parts of Surabaya is required to 

maintain an acceptable level of water quality and to prevent the deposition of organic matter 

on the bed of the canals. The demand for flushing irrigation canals in the City of Surabaya 

has been estimated to be of the order of 120 Mm 3  annually. 

For the present research, it is the total demand from the river that is of importance. This 

includes the industrial demand, potable demand, flushing demand, evaporation, 

evapotranspiration and seepage losses. For the present time (1998/99), a potable demand of 

8 m3/s may be used. This gives a total demand of 16.5 m3/s for non irrigation uses. 

86 



The Brantas Basin 

5.4 The Brantas Basin Simulation Model 

General-purpose system simulation models are available (e.g., IIEC-6, BTA-155 etc.) but 

they cannot be expected to cater to the needs of all types of river systems. A specific model 

for the basin was developed by Mott MacDonald (1988) as part of the East Java Provincial 

Water Resources Master Plan study for water supply. Wardlaw (1993) has described the 

development and application of the model for investigating alternative strategies for water 

resource development in the basin. The requirements of the model were that it should be 

able to evaluate the water resources in the basin under various scenarios of future 

development. Such scenarios included: 

• changes in potable water demands; 

• changes in irrigation water use; 

• changes in water management techniques; 

• changes in reservoir operation criteria; 

• introduction of new storage schemes. 

The model works by effectively routing a series of inflows through the network of natural 

river channels and reservoirs. It uses a network comprising nodes and reaches. At any node, 

flows may be diverted out of the system for irrigation or potable supplies subject to the 

availability of water. The influence of such diversions on downstream users is implicit in the 

modelling procedure. The model operates the reservoirs using predefined operating rules 

keeping track of reservoir levels, storages and surface areas for each 10 day time step. Based 

upon these values, the model can then work out the hydropower benefits and agriculture 

benefits in economic and financial terms for a specified reservoir operating strategy 

(Wardlaw 1993). There is a provision in the model to analyse the effect of introducing new 

storage schemes in the basin. Model runs can be carried out by including one or more 

potential reservoirs in the system and the performance of the system can be analysed. 

5.4.1 Major Model Components 

The simulation model consists of following components: 

• reach inflows; 

• storage reservoirs; 
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• run of river hydropower installations; 

• pumping stations; 

• irrigation diversions; 

• potable water supply diversions; 

• aqua culture diversions. 

A model schematic representation of the river system without Wonorejo or Beng reservoirs 

is shown in Figure 5.3. 

Reach inflows are natural local inflows to specific sections of the main river system and 

forms the driving data for the simulation model. These were evaluated using the existing 

streamflow and irrigation diversion records (Mott MacDonald 1988). 

Storage reservoirs are those that have a regulating influence on the river and the physical 

characteristics of such reservoirs must be supplied to the model. For the Brantas Basin, 

Karangkates, Wonorejo and Beng are treated as storage reservoirs. Of these the effect of 

Karangkates on the river regulation is much more significant than the other two. The model 

performs a water balance on storage reservoirs during each time step of the simulation. 

Run of river installations include Wlingi, Lodoyo Afterbay, Wangi and Sengguruh. Due to 

small effective storage at these installations, only single day regulation of river flows is 

possible. The only output from run of river hydropower nodes is peak and offpeak energy 

generated in each time step of the simulation. 

Pumping schemes like the Ngrowo Push Back Scheme and Beng dam involve large pumping 

stations. At these nodes the model is required to compute the pump discharge and the energy 

required for pumping. 

Irrigation schemes are represented as variable demand nodes in the model. At such nodes, 

the model attempts to satisfy the irrigation water demand in the current time step subject to 

water availability. Based on the actual water supplies, the model computes the agricultural 

production and the corresponding economic returns. 

Potable water supply demands are also an input to the model. In periods of water shortage, 

priority is given to potable water supply over all other demands. Demands for aquaculture 

are treated by the model as a variable demand in a manner similar to the irrigation demands. 
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The model evaluates the fisheries production as a function of actual water supplied to the 

fisheries. 
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5.4.2 Types of Nodes Included in the Model 

In all, 11 different node types have been included in the model 

Variable inflow node 

Confluence node 

Multiple diversion node 

Fixed head pumping node 

Variable head pumping node 

Storage reservoir node 

Run-of-river hydropower node 

Irrigation or fisheries demand node 

Potable water supply demand node 

Total demand node 

Decision node 

The inflows must be described for each variable inflow node. The model does not carry out 

any computation at such nodes. At a confluence node, the model combines all the inflows to 

it from the specified upstream nodes and then passes a single outflow downstream. The 

model allows for upto five upstream nodes to contribute to a confluence node. 

At a multiple diversion node, water is diverted to irrigation demand nodes and to potable 

water demand nodes. For irrigation and potable water demand nodes the model attempts to 

satisfy the specified demand of the node in the• current time step, subject to water 

availability. The residual is passed on downstream after satisfying the demands. 

At the fixed pumping head node, the model computes the energy required for pumping the 

water to schemes like Ngrowo Push Back and Beng Pumped Storage Scheme. At a variable 

pumping node, the delivery is to a reservoir in which the water level will vary from one time 

step to another. The model receives the current reservoir level from the delivery node, and 

computes the pumping head. 

At a storage reservoir node, full water balance is carried out on the reservoir taking into 

account the physical characteristics of the reservoir and the operational criteria. The outflow 

from the reservoir is passed on to the next node downstream. Karangkates, Wonorejo and 

Beng are treated by the model as storage reservoirs. 
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For mn-of-river hydropower nodes, a water balance for each time step is carried out usmg 

average climatic data at the site. All the inflows into the nodes are summed up and outflow 

is computed by taking off the reservoir losses. 

At potable water supply nodes, the model does not take any computational action and such 

nodes act only as demand from the main system that must be met. At a diversion node, the 

model allows diversions to be made from the main network to satisfy a combination of water 

demands. These may include water supply, irrigation, river flushing etc. Priorities can be 

specified for each of these uses and in periods of shortage, allocations made accordingly. 

A decision node is a node at which the model must make decisions based upon the given 

criteria, whether or not certain diversions are to be made and whether pumping from a 

particular node is to be invoked. Decision nodes are linked to the dynamic mode of 

operation in the model with which reservoir releases and pump station operation are made in 

consideration of the forecast of expected catchment response for the next time step. 

5.5 Simulation Model Runs 

This section presents some simulation model runs. The Brantas Basin simulation model was 

set up to run in a continuous simulation mode for the entire period of available streamflow 

data (1950 - 1986). The existing situation in the basin (in 1987) was represented by the 

network shown in Figure 5.3. It was assumed that for the existing situation in the basin, the 

operation of Karangkates reservoir is according to a rule curve derived in 1978 (Nippon 

Koei 1978). This rule curve is known as 1978 rule curve, and is shown in Figure 5.4. The 

rule curve specifies the target levels to be maintained at the end of each 10-day time step. To 

evaluate the existing situation in the basin, a base run employing the 1978 rule curve was 

carried out using the calculated theoretical irrigation requirements for present day cropping 

practices. The results are presented in Figure 5.5 to Figure 5.8. 

Figure 5.5 shows the simulated irrigation deficits at various exceedence probabilities with 

the current operating rule. The model evaluates deficits in each 10 day time-step by 

satisfying all demands from upstream to downstream and then comparing the demands of the 

Brantas Delta with the available river flow. From Figure 5.5 it is clear that during dry 

periods there are large deficits even with 80% exceedence probabilities. 
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Figure 5.5 Simulated irrigation deficits at different exceedence probabilities with 1978 rule 

curve 

Figure 5.6 shows the simulated water levels in Karangkates reservoir with the 1978 rule 

curve, from which it appears that reservoir storage is not fully utilised. It was seen that with 

the 1978 rule curve there is a failure to realise full potential of agricultural production, and 

the mean annual damages are of the order of 5000 million Rupiah. The 1978 rule curve was 

intended primarily to stabilise power production and in that respect it has served its purpose 

well. Figure 5.7 and Figure 5.8 show offpeak and peak power production at Karangkates 

with the 1978 rule curve. 
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Figure 5.7 Karangkates offpeak power, base run 
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The Brantas Basin 

5.6 Conclusions 

In this chapter, the characteristics of the Brantas Basin and the storage reservoirs in the 

basin were described. A brief survey of the past water resource development studies in the 

basin was also presented. The development of the simulation model has also been described 

in this chapter. Model runs carried out in the evaluation of the existing situation in the basin 

were also presented. In the next chapter, a number of development options in the basin given 

by Mott MacDonald (1988) are considered. The development of optimal operating rules for 

two such future water resource development scenarios in the basin is also described. The 

simulation model described here is used in the next chapter for assessing long term 

economic impacts of alternative scenarios of water resource development, and in this sense 

is used conjuctively with the optimisation models. 
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6. APPLICATION OF GENETIC ALGORITHMS TO THE 

BRANTAS BASIN 

6.1 Introduction 

This chapter describes application of the GA and DDDP approaches to the operation of the 

Brantas Basin reservoir system in Indonesia. The main objective in applying the GA to the 

Brantas Basin was to investigate the practicality of the approach in the optimisation of 

control curves for a real reservoir system. A series of sensitivity analyses have also been 

carried out to determine appropriate parameter settings for the GA. The characteristics of 

basin and of the storage reservoirs, along with the details of the simulation model for the 

basin have been described in the previous chapter. 

The pressure on the available water resources in the basin has been increasing at a rapid rate 

as a result of large scale industrial and commercial development. This has led to an 

increased emphasis on the development of optimal operating strategies for the basin. 

Various development schemes were proposed by Mott MacDonald (1988), and these are 

shown in Figure 6.1. In this case study, operating rules have been derived for the existing 

development situation in the basin, and also for two future water resource development 

scenarios using the GA approach. Comparison of results achieved by using the GA approach 

has been made with those achieved by DDDP. The reason for choosing DDDP to compare 

the solutions obtained by GA is that the solutions found by DDDP are near optimal for a 

given number of states and release decisions. Another reason for choosing DDDP is the 

generality of the objective functions that can be treated with the approach. The derived 

operating rules are then fed into the simulation model of the basin to evaluate the long term 

economic impacts. 

The GA approach has been applied to five cases. The first is the application of the approach 

to the situation with only Karangkates reservoir operating, and with optimisation carried out 

to maximise hydropower returns. In the second case, the optimisation is carried out for 

hydropower and irrigation returns, again with Karangkates reservoir only. The third case 

considers the optimisation with respect to irrigation production only. These three cases are 
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Application of GA to the Brantas Basin 

described in section 6.3. The application of the GA approach to a future water resource 

development scenario in the basin that includes Wonorejo reservoir in the system is 

considered in section 6.4. Finally, operation of the reservoir system for another future 

scenario that includes both Wonorejo and Beng reservoirs in the system is described in 

section 6.5. For cases 4 and 5, both hydropower and irrigation benefits are considered. The 

sensitivity of GA performance to mutation and crossover probability is discussed in sections 

6.6 and 6.7 respectively. The results of economic post processing are evaluated in section 

6.8. Conclusions are presented in section 6.9. 

6.2 System Dynamics 

The dynamics of a multi reservoir system can be described by the following equation 

S(t+1)=S(t)+I(t)+MR(t)—E,(t) 	 (6.1) 

where S1(t) = vector of reservoir storages at time t in reservoirs i=1, n; 1(t) = vector of 

reservoir inflows in time period t to reservoirs i=1, n; R1(t) = vector of reservoir releases in 

time period t from reservoirs i = 1, n; E1(t) = vector of reservoir evaporation in time period t 

from reservoirs i= 1, n; and M = n X n matrix of indices of reservoir connections. The 

matrix M depends upon the configuration of the system, and consists of -1, 0, and 1. 

The transformation from stage to stage is governed by (6.1). In addition to this, the releases 

and storages are limited by physical considerations. A minimum turbine release is required 

to avoid cavitation, and there are restrictions on the maximum allowable release in any time 

period of the optimization horizon. Similarly, the storage in the reservoir should not fall 

below a specified minimum level nor should it exceed maximum allowable storage in any 

time step. The system is, therefore, subject to constraints expressed as follows: 

S, 	~ S (t) !!~ Si,. 	 (6.2) 

RiflMfl  ~ R(t) :!~ 'i,max 	 (6.3) 

where Si, mm  and Si, ,, are the allowable minimum and maximum storages in reservoir 

i = 1 ,n, and R, mm  and R,, are the lower and upper bounds on the releases from reservoir. 

= 1, n. 
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6.3 Model Application to the Existing Development Situation 

This section discusses the derivation of control curves for Karangkates reservoir using the 

GA and the DDDP approach. Three cases are considered; (i) optimising for hydropower 

only, (ii) optimising for hydropower and irrigation, and (iii) optimising for irrigation 

benefits only. The operation of Karangkates reservoir was originally carried out according to 

a rule curve derived by the Japanese Overseas Technical Co-operation Agency (1973). It 

was based on the assumption that during the wet season the hydropower production should 

be maximised, while during the dry season the irrigation demand should have a priority over 

the hydropower production. This operation was revised by Nippon Koei (1978) to an 

objective of maximising the hydropower production all the year round. This operating rule 

was developed as a rule curve giving target levels at the end of each 10-day operating 

period, and is known as 1978 rule curve. 

The historic inflows and the other data used in this study come from Mott MacDonald 

(1988). The flow records for the K. Brantas are available from 1950 onwards. The 

Karangkates reservoir was constructed in 1972, and since then it has significantly influenced 

the natural flow regime of the K. Brantas. Since historic reservoir operation may not be 

typical of likely future operation, streamfiow naturalisation has been carried out by Mott 

MacDonald (1988) to remove the influence of Karangkates reservoir from the historic flow 

records. This results in a data base on which various possible future development scenarios 

could be tested. 

The DDDP and GA models are applied to a single year of data for a critical period with a 

view to determining control curves for the reservoirs. A critical inflow series with 90% 

annual exceedence probability was derived for Karangkates reservoir. Figure 6.2 shows the 

smoothed critical dependent, and independent inflow series for Karangkates. A log-normal 

distribution has been fitted to the series of 10-day inflows to Karangkates. The log-normal 

distribution fits the data well for most time steps but there are few time steps where the 

distribution is not particularly good. The probability distribution of inflows in each of the 36 

durations is shown in appendix A of this thesis. 

The tributary inflows between Karangkates and the Brantas Delta were combined to obtain a 

local inflow series giving flows upstream of Jabon (Figure 6.3). Critical period analysis was 

then carried on this series to obtain a local inflow series with 90% annual exceedence 
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probability. A net local inflOw series at Jabon was obtained by subtracting from this series 

the irrigation demands between the reservoir and the delta. The tributary inflows and 

irrigation diversions are shown in Figure 6.3. The irrigation demands and the demands at the 

Brantas Delta are based on the calculated irrigation diversion requirements as determined by 

Mott MacDonald (1988). The optimisation models use a potable demand of 8 m 3/s. The 

supply to the delta is calculated by the model in the following manner. 

Qdelta = Qkarang*ates + Qnet_local_inf - Qiozal_demand 
	

(6.4) 

where Qita  is the water supplied to delta, Qrangtes  is the release from the reservoir, 

QneLlocaLinf is the net local inflow upstream of Jabon, and Qtota/ demand is the total abstractions 

from K. Surabaya including the potable water demand of the City of Surabaya. 
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Figure 6.2 Critical dependent, and independent inflow series for Karangkates 

The control curves for Karangkates were developed based on the derived critical inflow 

sequences using the GA and the DDDP approaches. These curves were then applied in a 

simulation model of the Brantas Basin to obtain estimates of long term economic benefits 

from operation of the reservoir system. The network used by the models is shown in Figure 

6.3. With only Karangkates reservoir in operation, there are huge deficits in irrigation 

supply even with a potable demand of 4 m3/s, although the current potable demand is 

probably of the order of 8 m3/s. The objective of modelling is to assess the impact of new 

development schemes, such as Wonorejo and Beng, on the deficits in the irrigation water 

supply while taking into account the current potable demand for the City of Surabaya. 
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6.3.1 Existing Development Situation 1 (EDS1): Optimising for Hydropower 

only 

In this case, the optimisation has been carried out for 36 10-day time steps with the sole 

objective of maximising the hydropower production while allowing deficits to occur in 

irrigation supplies. In view of the importance of Karangkates reservoir, it was important to 

be able to accurately model the power produced for peak and off-peak generation. A series 

of polynomial equations was derived by Nippon Koei (1978) to describe the waterway head 

loss - discharge, and tail water level - discharge relationships for the power station. Using 

these equations, the power generated can be calculated for the releases made from the 

reservoir. The general form of the equations used for calculation of waterway head loss, tail 

water elevation and power are as follows. 

Water way head loss 

HWh, = A 0  + A 1  x Q + A2  x + A 3  x 	 (6.5) 

Tail water level 

H 1  = A 01  + A t  x Q + A21 XQ 2 + A 31  x Q 3 	 (66) 

Power 

P=AO+A!XHff+A2XQ+A3XQXHff 	 (6.7) 

The effective head required for computation of power produced can be calculated as 

follows. 

Heff  = Havg - H1 - HWh1 	 (6.8) 

where Ao,., ,, A1, A2, A 3w  are the coefficients of waterway head loss calculation, A 01, A 11, A 21, A 31  

are the coefficients of tail water level calculation, A 1 , A 1 , A 2  A 3  are the coefficients of 

power calculation, HWh, is water way head loss, H, is tail water elevation, Heff is effective 

head, H0 8  is averagewater level in metres in the reservoir during the current time step, Q is 

discharge per turbine unit in m 3/s, and P is power produced in MW. The coefficients of 

(6.5), (6.6), and (6.7) are given in Table 6.1. 
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Table 6.1 Coefficients for computation of hydropower 

COEFFICIENTS KARANGKATES WONOREJO BENG 

Aow  0.0 0.0 - 	 0.0 

A1 0.02875 0.0 0.0 

A2w 0.12 0.0 0.0 

A3 0.00125 0.0 0.0 

Aot  179.0 110.5 35.0 

Alt  0.018 0.0 0.0 

AN  0.0 0.0 0.0 

A3t 0.0 0.0 0.0 

Aop  1.64465 0.0 0.0 

A 1  -0.0847 0.0 0.0 

A2  -0.015 149 0.0 0.0 

A3  0.012193 0.00834 0.00834 

For Karangkates reservoir, a minimum reservoir level of 246 metres is required for 

hydropower generation. if the water level drops below this value then no power can be 

produced because of the possibility of cavitation. The financial value of peak power is twice 

that of offpeak power. if there is not enough water to release for full peak and off-peak 

power generation, then peak power is generated in preference to off-peak power. Peak 

power is generated for 5 hours per day, the remainder being offpeak. The objective is to 

maximise the hydropower returns from the reservoir subject to the given constraints. An 

additional constraint is that the state of the system at the end of the control horizon must be 

same as that at the beginning of the control horizon. The objective function may be 

expressed as 

n N 

Maximise Z = 	E. (Sfl, R.) 	
(6.9) 

j=1 t=1 

where n is the number of reservoirs included in the model, N is the operating horizon, 

E, (S, , R,) is the economic return from the power produced from reservoir i = 1, n, during 
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period t = 1, N; 3i, is the average storage in reservoir i during time step t, and R, is the 

release made from reservoir i in time step t. 

For the calculation of power produced, the effective head is required. The reservoir level is 

continually changing as both inflows occur and releases are made. Since the reservoir state 

is discretized and only one power calculation is made for each 10 day operating period, the 

power functions use the average reservoir level for each stage. The average of the state 

before and after a release is made is used to determine the average reservoir level in a 

particular time step. The values of HWhI , H 1 , and Heff  are computed from (6.5), (6.6), and 

(6.8) respectively. Finally, the power produced can be computed using (6.7). 

6.3.2 Existing Development Situation 2 (EDS2): Optimising for Hydropower 

and Irrigation 

For this case the objective function comprises the hydropower benefits and a penalty for 

failing to supply the required water for irrigation. The model attempts to minimise the 

deficits in irrigation supplies while maximising the hydropower production. The agricultural 

production was included into the GA and the DDDP models through an imposed penalty 

function. The penalty function is quadratic and is given by (6.11). The model does not 

include the potable water demand as a benefit in the objective function but Surabaya City 

potable water demand has to be met before any water is diverted for irrigation in the Brantas 

Delta. if the demand is not met, then agriculture would receive no water thus causing a large 

penalty on the return function. The potable water demand is therefore included in the 

objective function through the imposed constraints. The objective function for this case can 

be expressed as 

Maximise Z= 
	 (6.10) 

j=1 1=1 

wherePi, = Penalty for not meeting the irrigation demand for the delta assumed to be of the 

following form. 

pit = k x [d1, - x11 
	 (6.11) 
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where k is penalty factor, d1 , is irrigation demand at delta, and x 1  is irrigation supply to 

delta in time step t. The selection of penalty factor is also important as it determines the 

severity of penalty imposed. The objective function given by (6.10) is considered complex 

because hydropower production is a highly non-linear function of discharge and power head. 

Also, the objective function includes a penalty term. 

6.3.3 Existing Development Situation 3 (EDS3): Optimising for Irrigation 

Benefits only 

The objective in this case study is to minimise the deficits in irrigation water supply without 

taking into account the hydropower production. A penalty function similar to that used for 

EDS2 has been employed. The potable water demand is included in the model through the 

imposed constraints, and has a priority over the irrigation demands. The objective function 

may be expressed as follows. 

Maximise Z=(C — P) 
	

(6.12) 

where C is a positive constant, and P, is the penalty for not meeting the irrigation demand 

for the delta assumed to be of the form given by (6.11). 

6.3.4 The Solution Procedure 

The solution to the problems described above were obtained using the GA and the DDDP 

approach. The essentials of the GA approach have been described in chapter 3. Real-valued 

representation with the tournament selection scheme, uniform crossover, modified uniform 

mutation and elitism is used. The chromosome length may be expressed as a product of the 

number of stages and the number of reservoirs in the system. For the four reservoir problem 

discussed in chapter 4, the chromosome length in terms of number of genes was 4 x 12 = 48 

for 12 time steps, while that for a single reservoir in this system with 36 time steps it is 

1 x 36 = 36. The decision variables are releases during each time period, R1(t), t = 1, N. In a 

GA, the discretization of storage and release is not required. Each gene within the 

chromosome represents a release made from the reservoir and can take up any value 

between the upper and lower bounds of releases. The aim of the GA is to find a gene 

sequence that yields the best chromosome i.e. maximises the objective function values. In a 

GA, the discretization of storage and release is not required. A population size of 100 has 
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been used and the model allowed to run for 1000 generations for all the three cases 

described above. A crossover probability of 0.7 and a mutation probability of 0.028, which 

corresponds to one mutation per chromosome, has been adopted. 

The evaluation function used by GA corresponds to the objective functions given by (6.9), 

(6.10), and (6.12) for case EDS1, EDS2, and EDS3 respectively. The constraints on storages 

are handled by using a quadratic penalty function based upon the degree of constraint 

violation. The fitness of chromosomes is appropriately modified for any constraint 

violations. The GA initiates the search with a randomly generated set of solutions which 

may or may not be feasible. As the GA run progresses, the infeasible solutions are 

eliminated because the penalties assigned to them reduce their fitness, thus making their 

chances slim for selection in the next generation. At the end of the run, a large number of 

feasible and near optimal solutions are obtained. Figure 6.4 shows the plot of generation 

number versus best-of-generation maximum normalised fitness and average fitness of the 

population for the objective of maximising hydropower returns (EDS 1). 

In all other cases to follow, the results shown are for a crossover probability of 0.7 and for a 

mutation probability corresponding to one mutation per chromosome irrespective of the 

length of the chromosome. This has been done so that the consistency in the presentation of 

results could be maintained although in some cases slightly better objective function values 

could be obtained for a different combination of crossover and mutation probability. It can 

be observed from Figure 6.4 that the GA starts with poor initial solutions but picks up 

quickly. By the end of 200 generations, a number of good solutions have been found. Once, 

the GA locates good solutions, some fine-tuning may be required to improve those solutions. 

The GA was therefore allowed to run for 1000 generations although the improvement has 

been found to be small after 500 generations. The variation of best-of-generation maximum 

fitness and the average fitness of the generation for case EDS2 and EDS3 is shown in Figure 

6.5 and Figure 6.6 respectively. It can be observed from these figures that the manner in 

which the fitness progresses with the generation for EDS2 is very similar to the earlier case 

(case EDS 1). In EDS3, the average fitness of the population quickly approached the 

maximum fitness. This is because a large number of solutions close to the optimum were 

identified by the GA in the early part of the run, and there was little scope for improvement 

thereafter. - 
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All the three problems described earlier were also solved using DDDP so that an evaluation 

of the GA approach could be carried out. Instead of searching over the entire state-stage 

domain for the optimum, as is the case for DP, DDDP analyses only few states at each stage. 

DDDP starts with the selection of a trial state trajectory for the system and searches for 

improved trajectories in the neighbourhood of the trial trajectory. A corridor is defined 

around the current trajectory within which the optimisation is constrained. The traditional 

DP algorithm (Bellman 1957) is then used to find the optimal trajectory within the corridor. 

The recursive eqaution used was 

F(s)=max [V,(sn ,dn )+F,i _i (sn_i )] 	 (6.13) 

where s, is the state variable, d is the decision variable, V, (s dn) is the objective function 

value, F (sn)  is the cumulative return at stage n with F (s0 ) known, and s,, 1  = g(s , dn ) 

is the stage to stage transformation function. An improved trajectory is obtained after each 

iteration and used as a trial trajectory for the next iteration. The procedure continues until no 

further improvement in the value of objective function is obtained. DDDP reduces the 

execution time significantly by analysing only a small subset of all feasible states at each 

stage. 

Application of DDDP requires that the problem be divided into states and stages. For the 

problem under consideration, the stage was taken to be a 10 day period. The decision 

variables are the release made from the reservoir and the state variables are represented by 

the storage in the reservoir at the beginning of each stage. For the development of reservoir 

states, the storage volume of Karangkates reservoir is discretized into 100 states ranging 

from the minimum storage volume to maximum storage volume in increments of 3.535 

Mm3 . The reservoir levels and areas were calculated for each of the 100 states using the 

available data. The original data for the storage volume to reservoir level does not provide 

enough information to generate levels for all storage volumes. In order to calculate the 

corresponding levels and areas for each state, linear interpolation between the existing data 

was used. The choice of discretization levels requires careful consideration in a DDDP 

algorithm. A coarser discretization may lead to inaccurate results and a finer discretization 

may be computationally intensive. In any case, the discretization need not be finer than the 

actual controls at the reservoirs. For reservoirs with huge storage capacity, a large number of 
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discretizations may be required to represent the problem adequately. The GA approach 

treats the storage space as continuous, and is unaffected by the size of the reservoirs. 

A comparison of the trajectories produced by the GA and by DDDP for EDS 1 is presented 

in Figure 6.7. The trajectories obtained by the GA matches closely to that of DDDP except 

for a few points. In situations of multiple local optima, the optimum objective values 

obtained by different techniques may not differ much in magnitude but the storage or level 

trajectories can be significantly different. These rule curves were obtained for a 10-year 

critical drought sequence and give the target reservoir levels at the end of 10-day operating 

periods. Application of such a rule implies that as far as possible target reservoir levels 

should be maintained. If the inflows are such that available water results in levels higher 

than required by the rule curve the surplus water may also be released downstream. On the 

other hand, if the reservoir level falls below the target values, the release are curtailed in 

subsequent stages until the desired levels are achieved. It can be seen that the GA 

trajectories follow closely those produced by the DDDP. 

When the optimisation was carried out for both power and irrigation, the target levels 

produced by the GA and the DDDP models are lower than for the case when the 

optimisation was done for power only. This is because the models in case EDS2 attempts to 

satisfy the irrigation demands of the delta in addition to maximising the hydropower returns, 

thus lowering the reservoir levels particularly during the drier periods (Figure 6.8). The 

trajectories obtained for the case when the optimisation was carried out for maximising 

agricultural production only are shown in Figure 6.9. These trajectories suggest that 

reservoir should be maintained at higher levels during wet periods while higher amounts of 

release should be implemented during drier periods. It can be observed from the trajectories 

that in EDS3, the reservoir does not draw down to levels lower than in EDS1 and EDS2 

during drier periods. It can be observed from the trajectories presented in Figure 6.9 that 

during the first half of the operating horizon, the reservoir keeps filling up and the levels 

become considerably high. During the dry periods, the models release just enough water to 

satisfy the irrigation demands. Owing to already high levels in the reservoir, these releases 

during the dry periods do not result in levels lower than in EDS1 or EDS2. 
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The objective function values produced by the GA and the DDDP models for the different 

cases considered are presented in Table 6.2. It can be observed that the GA solutions are 

very close to the optimum in terms of objective function values achieved. The objective 

function values achieved by GA were 99.84%, 99.98%, and 99.90 % of those achieved by 

the DDDP approach for EDS 1, EDS2, and EDS3 respectively. The execution time for GA 

was 90 seconds compared to 50 seconds for DDDP irrespective of the objective function 

used. In terms of execution time, GA is not as economical for a single reservoir system as 

the procedure involves a large number of evaluations of the objective function. The 

difference in the execution time is, however, small and can be considered as insignificant for 

all practical purposes. Given the vast decision space which the GA had to search for this 

particular problem, the results can be considered as highly satisfactory. The search space is 

considered vast because the upper and lower bounds of releases from Karangkates reservoir 

are 155 and 25 respectively, and the GA had to search for optimal values between these 

bounds. On the whole, the performance of GA compares well with the DDDP. 

Table 6.2 Objective function values achieved by GA 

CASE 	GA values as % of 

DDDP values 

EDS1 	 99.84 

EDS2 	 99.98 

EDS3 	 99.90 

As described in chapter 5, the simulation model developed for the Brantas Basin can be used 

to evaluate alternative water resource development scenarios in the basin (Wardlaw 1993). 

A series of economic post processing functions have been incorporated in the model, dealing 

with agricultural production, hydropower production, aquaculture production, and pumping 

costs. The model has been used in this study to provide a more detailed evaluation of the 

operating policies determined by optimisation models. The response of the system to the 

rule curves produced by the GA and the DDDP was evaluated for all the three cases (EDS1, 

EDS2, EDS3). The derived rule curves were fed into the simulation model and it was run for 

a 37-year period of continuous streamfiow record. 
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From the output of the simulation model, the mean deficits in irrigation supply to the 

Brantas Delta are calculated. The model evaluates deficits in each 10-day time step by 

satisfying all demands from upstream to downstream and then comparing the irrigation 

demands of the Brantas Delta with the available river flow. Figure 6.10, Figure 6.11, and 

Figure 6.12 show the mean deficits in irrigation supplies to the delta for EDS 1, EDS2, and 

EDS3 respectively for the DDDP and the GA derived rule curves, and also for the 1978 rule 

curve. In this research, a future potable water demand of 8m 3/s was considered which 

resulted in a total demand of 16.5 m 3/s from K. Surabaya. The water resource of the basin is 

sufficient to permit the continued increase in the potable water supply at the expense of 

irrigation water supply. It is economic to do so but is totally unacceptable socially. For this 

reason, the potable demand was given priority over irrigation demands. This resulted in 

irrigation deficits in dry seasons for each scenario considered but the scale of deficits was 

different for each scenario. When the optimisation was carried out for maximising irrigation 

production (EDS3), interestingly both the GA and the DDDP rule curves resulted in slightly 

higher deficits than EDS 1 or EDS2. This is due to the reason that with the rule curve derived 

in EDS3 the reservoir needs to be maintained at higher levels thereby allowing releases 

smaller than with the rules derived in EDSI or EDS2. However, in each case considered, 

significant reduction in irrigation deficits were obtained with the GA and the DDDP derived 

rule curves over the 1978 rule curve. 
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Figure 6.12 Mean irrigation deficits, EDS3 

A comparison of the economic returns that can be realised from the basin for each of the 

scenarios considered is presented in Table 6.3. The model reports results in terms of 

irrigation production at the Brantas Delta, energy benefits, and capacity benefits at 

Karangkates among other values. Energy benefits are computed on the basis of the fuel cost 

of replacing hydropower with thermal power. Capacity benefits relate to difference in 

capital costs between hydropower and equivalent thermal power station alternatives. The 

model computes the capacity benefits on the basis of the series of minimum annual 10 day 

power production figures, and thus give a measure of the reliability of power production. 

The output from the simulation model includes a range of reliability levels but for economic 

analysis the mean energy benefits and the capacity benefit at 95% annual reliability or at 

99.5% overall reliability, whichever is lower, are considered. The simulation model was also 
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run using the 1978 rule curve, and the economic returns obtained from that run are also 

shown in Table 6.3 in the last column under the heading RC. 

Table 6.3 Economic returns in million Rupiah, existing development situation 

EDS1 	EDS2 	EDS3 	RC 

DDDP GA DDDP GA DDDP GA 

Irrigation production 50681 50905 51626 51591 50929 51002 51104 

Karangkates Energy 32981 33058 32741 32789 32867 32846 33321 

Karangkates Capacity 3398 3461 3418 3428 3450 3451 3748 

Total 87060 87424 87785 87808 87246 87299 88173 

The figures in Table 6.3 show that the rule curves derived for the case when optimisation 

was carried out for both hydropower and irrigation (Case EDS2) produce significantly 

higher total returns than those obtained when the optimisation was carried out for 

hydropower only (Case EDS 1). For case EDS3 where the optimisation was carried out for 

maximising the irrigation production only, the total returns obtained from the system are 

lower than those obtained with EDS 1 or with EDS2. The GA derived rule produced higher 

total returns than the DDDP derived rules for EDS 1, EDS2, and EDS3. In all the three cases, 

however, the differences are small thus indicating that the GA solutions are very close to the 

DDDP solutions. Of the three different objective functions considered, the best results are 

achieved when the optimisation was carried for power and irrigation benefits (case EDS2). 

With the 1978 rule curve, the return from irrigation production is lower than for the case 

when the optimisation was carried out both for irrigation and power production (case EDS2) 

but is higher than the other two cases (EDS 1 and EDS3) considered. Although the deficits in 

irrigation supply with EDS 1 and EDS3 are lower than with the 1978 rule, the irrigation 

production is slightly higher with the 1978 rule. This may be due to the reason that the 

simulation model evaluates irrigation production on the basis of cropping pattern in the 

delta, and the crop production functions relate crop yield to water supply through various 

stages of crop growth. A same amount of deficit in different time steps may lead to different 

overall value of annual irrigation production. The total return from 1978 rule curve is higher 

mainly due to the higher power production and capacity benefits. However, it must be 
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emphasised that with the 1978 rule curve higher levels need to be maintained causing large 

deficits in irrigation supplies particularly during the drier periods. At the same time 

maintaining the reservoir at higher levels leads to increased power production and increased 

capacity benefits at the expense of losses in irrigation production. The mean annual 

irrigation losses amount to 4865 million Rupiah under the 1978 rule curve operation. With 

the DDDP and GA derived rules in EDS2, the mean annual irrigation losses are 4347 and 

4398 million Rupiah respectively. 

6.4 First Future Development Scenario 1 (FDS1) 

This section presents the application of the GA and the DDDP approach for optimising the 

combined operation of the Karangkates and the Wonorejo reservoirs for a likely future 

development scenario. The water resource of the Brantas Basin is almost fully utilised at 

present but the pressure on the available water resources in the basin is still increasing at a 

rapid rate due to large scale industrial development and agricultural extension. To optimise 

the utilisation of available water resources, various development schemes have been 

proposed (Mott MacDonald 1988). Among those schemes is the construction of Wonorejo 

dam shown in Figure 6.1. In simplified network terms, FDS 1 can be represented as shown in 

Figure 6.13. Wonorejo is a storage reservoir that can be used for hydropower production and 

for irrigation. The hydropower production for Wonorejo reservoir can be calculated using 

the polynomial equations proposed by Nippon Koei (1978) as described in section 6.3.1. 

One of the purposes of Wonorejo is to supply water to local irrigation schemes. After 

satisfying these local irrigation demands, the water from Wonorejo can be used to augment 

the irrigation demands at Brantas Delta. A potable demand of 8 m 3/s has been used which 

results in a total demand of 16.5 m3/s from the K. Surabaya, as for the runs with a single 

reservoir. 

To generate a single year of inflow data for Wonorejo, the critical period analysis was 

carried out on the entire 37 year inflow series in a manner similar to that for Karangkates. 

The combined operation of Karangkates and Wonorejo reservoirs is optimised over 36 

successive 10 day periods using the GA and the DDDP approach for the following objective 

function. 
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Maximise Z= 
	 (6.14) 

j=1 t=1 

where Pj  is the penalty for not satisfying the irrigation demands at delta, and P2, is the 

penalty for not satisfying local irrigation demands at Wonorejo in time step t. 
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The minimum reservoir level required for generating hydropower at Wonorejo is 143 

metres. Only off-peak power could be generated at Wonorejo as there is no re-regulation 

downstream of it. The rest of the procedure for hydropower computation is same as that for 

Karangkates. The details of power stations for each reservoir are given in the previous 

chapter. 

6.4.1 The Solution Procedure 

With the GA approach, the solution procedure is similar to the one used for a single 

reservoir system. Since the number of reservoirs included in the model for this future 

development scenario is two, each chromosome as a potential solution consists of 36 x 2 = 

72 genes. The fitness of chromosomes is obtained using an evaluation function which 

corresponds to the objective function given by (6.14). The same population size of 100 as 

used for the single reservoir system has been retained, and the model allowed to run for 

1500 generations compared to 1000 generations for the single reservoir system. The reason 

for using higher number of generations is that it is relatively quicker to achieve an optimal 

sequence of 36 genes compared to 72 genes. The rest of the GA parameters are identical to 

the ones used for the earlier problems (EDS 1, EDS2, and EDS3) except that the mutation 

probability was changed to 1/72 (0.0138) instead of 1/36. 

The manner in which the GA approached the solution is shown in Figure 6.14. There is a 

steady increase in the maximum and average fitness of the population during the early part 

of the run but the growth slows down during the later part. Existing solutions improve 

during the later part of the run but the rate of improvement is slow as compared to the earlier 

part of the GA run. Variability in average fitness is low indicating that a large number of 

similar solutions have been identified in the early part of the run. 
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Figure 614 Variation of maximum and average fitness with generations, FDSJ. 

To apply the DDDP approach, the state space must be discretized in a finite number of 

points. Discretization of decision space is not required as the value of the decision variable 

can be determined for every feasible pair of states in two consecutive stages. For the 

development of reservoir states, the total storage volumes of Karangkates was divided into 

100 values in increments of 3.535 Mm3  as before. The storage of Wonorejo was discretized 

into 50 levels in increments of 2.367 Mm 3. With these numbers of discretization, the total 

number of possible combinations of states to be tested at each stage of a DP algorithm 

would be 1002  x 502  25 million. The application of DP approach to this problem would 

therefore require huge memory and computing time. For this reason DP cannot be applied to 

this problem. With DDDP, the number of combinations of states which needs to be tested at 

each stage is 32 
 x 32 = 81 only. The DDDP approach can therefore be used without much 

computational complexity. The efficiency of the DDDP model however depends largely 

upon the levels of discretization of the state variables. Any increase in the number of 

discretizations would increase the number of evaluations of the recursive formula and the 

computing time increase accordingly. The likelihood of achieving an optimum is also 

reduced with the increase in the number of discretizations. On the other hand, a coarser 

discretization may lead to inaccurate results. 

The output of the GA model is the optimal reservoir levels for both Karangkates and 

Wonorejo. The optimal reservoir levels obtained by DDDP and GA for Karangkates have 

been plotted in Figure 6.15 and the trajectories for Wonorejo have been plotted in Figure 

6.16. With GA, the objective function value achieved was 99.07 % of that produced by the 

DDDP. Both the techniques produce similar objective function values but there is some 
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deviation in the rule curves obtained for both the reservoirs. The DDDP derived rule curve 

for Karangkates is smoother than the GA derived rule curve. For Wonorejo, the level 

trajectories produced by both the models match very closely, again indicating the robustness 

of the approach in identifying near optimal solutions. The execution time for the DDDP was 

210 seconds while the GA took 290 seconds to complete 1500 generations. 
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Figure 6.15 Level trajectories for Karangkates reservoir, FDSJ 
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Figure 6.16 Level trajectories for Wonorejo reservoir, FDSJ. 

Rule curves derived using the optimisation models were fed into the simulation model as in 

earlier cases. The output of the simulation model was used to calculate the deficits in 

irrigation supply to the Brantas Delta. Figure 6.17 shows these deficits when Wonorejo was 

included in the model. It can be observed that there is some decrease in deficits over the 

scenario when only Karangkates was included in the model. The primary purpose of 
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Wonorejo is to supply water to local irrigation schemes, and the water is available for 

irrigation at delta only after satisfying these local demands. It appears that the contribution 

of Wonorejo to the river flow is not large enough. For this reason, it is not possible to 

eliminate deficits completely even after including Wonorejo in the system. 
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Figure 6.17 Mean irrigation deficits, FDS1 

The economic returns from the system are shown in Table 6.4. The values shown in Table 

6.4 indicate that the returns increase considerably over EDS 1, EDS2 and EDS3 with both 

the approaches. The increase in irrigation return is realised after an initial capital investment 

is made in the construction of Wonorejo Dam. Again, the rule curve produced by GA and 

the DDDP produce very similar total returns with the DDDP based rule curve producing a 

slightly better overall return from the system. This is largely due to higher returns from the 

irrigation production at the local schemes fed by Wonorejo. 
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Table 64 Economic returns in million Rupiah, FDSJ 

DDDP GA 

Net irrigation production 51935 51939 

Wonorejo Irrigation 1 8588 8530 

Wonorejo Irrigation 2 5035 4362 

Karangkates Energy 32691 32540 

Karangkates Capacity 3418 3426 

Wonorejo Energy 1481 1472 

Wonorejo Capacity 0 0 

Total 103148 102269 

6.5 Second Future Development Scenario (FDS2) 

This section considers the development of operating rules for another future water resource 

development scenario that includes Beng reservoir in the system. Rule curves have been 

derived for Karangkates, Wonorejo and Beng reservoir using the GA and the DDDP 

approach. Beng is a potential offstream reservoir in the lower reaches of the K. Brantas 

(Figure 6.1). The simplified network representing FDS2 is shown in Figure 6.18. During 

periods of high flows, water could be pumped back from the main stream to Beng. If the 

water from Karangkates and Wonorejo are not able to meet the irrigation demands for the 

delta, then releases could be made from Beng. Two pump stations with a discharge capacity 

of around 10m3/s would be used to divert Brantas flows to Beng in the wet season, in 

addition to the local inflow to the reservoir. The volume of pumping in each time step is 

determined on the basis of the naturalised available Perning discharge (QAP). There are two 

major demands downstream of Peming, irrigation demand at delta and potable water 

demand for the City of Surabaya, that need to be satisfied before any water is diverted to 

Beng. For this reason, a threshold value of 70 m 3/s has been assumed. If QAP is less than 

this value, no water is pumped to Beng. If QAP is greater than the threshold value, the 

surplus amount is pumped to Beng subject to the constraints on the maximum rate of 

pumping. 
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Figure 6.18 Network used in optimisation models, FDS2 

There is a provision of hydropower production at Beng, and it has been assumed that the 

cost of pumping will be offset by the power production. A minimum level of 55.0 m has 

been assumed for power production. If the water level falls below this value, no power could 

be produced. As for Wonorejo, only offpeak power could be generated at Beng as there is no 
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re-regulation downstream of the reservoir. The objective function is modified only to reflect 

an additional reservoir in the system, and may be expressed as 

n N 	 (6.15) 
MaximizeZ= 	

- 	
P] 

j=1 t=I 

where P1  is the penalty for not meeting the local irrigation demands at Wonorejo, P2  is 

penalty for not meeting the irrigation demand for the delta, and P3f  is zero. 

6.5.1 The Solution Procedure 

The chromosome required to represent the solution for this case comprises 108 genes (3 

reservoirs, 36 time-steps). A higher population size of 200 has been used to maintain greater 

diversity in the population as the problem under consideration is more complex in the sense 

that the optimal sequence of 108 genes is required compared to 36 and 72 genes for the 

earlier problems. The model was allowed to run for 2000 generations. A crossover 

probability of 0.7 and a mutation probability of 0.009 (1/108) was used. The GA code used 

remains unchanged from the one used for the problems discussed earlier. The modifications 

are required only to the evaluation function and the data file which may be different for 

different objective functions. Changes in the evaluation function require no changes to other 

modules of a GA. The ease with which different problems can be solved using the same 

code is perhaps the most important advantage of the GA. The rest of the solution procedure 

is same as that for other problems discussed earlier. 

Figure 6.19 shows the progress of maximum and average fitness over 2000 generations. As 

is typical of GA performance, the rate of improvement of solutions is quite high in the 

beginning of the run. However, as the GA run progresses, the population starts becoming 

matured and the rate of improvement becomes steady. Slight improvements could be 

observed in the existing solutions but no large changes are visible. The variability in average 

fitness is also low. 
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Figure 6.19 Variation of maximum and average fitness with generations, FDS2 

A DDDP model for the three reservoir system including Karangkates, Wonorejo and Beng 

was also developed. To apply the DDDP approach, the storage of each reservoir was 

discretized in a finite number of values as in earlier cases. The storage of Karangkates 

reservoir is discretized into 100 levels in increments of 3.535 Mm3  while the storage of 

Wonorejo and Beng is discretized into 50 values each in increments of 2.367 Mm 3  and 3.23 

Mm3  respectively. It took around 425 seconds for the DDDP procedure to complete a run on 

a Pentium based 586 PC. With GA, the time required to complete 2000 generations was 590 

seconds. For the problem solved by Esat and Hall (1994), the computational effort required 

to solve the problem using DDDP increased exponentially. Fahmy et al. (1994) reported that 

the execution time for a GA increased at a significantly slower rate than with the DP. In this 

study, the execution time for a GA has gone up in a similar proportion to the DDDP model. 

However, with the increase in the dimensionality of system, DDDP becomes 

computationally bounded but GA can still be used for achieving acceptable solutions to such 

problems. This was demonstrated in chapter 4 where a ten reservoir problem was solved 

within an affordable computing time. An additional drawback of the DDDP approach is that 

the computer code has to be modified for each problem considered. 

The optimal trajectories produced by GA and by DDDP for the three reservoir system are 

shown in Figure 6.20, Figure 6.21, and Figure 6.22. The trajectories for Karangkates appear 

to be in very good agreement with the DDDP trajectories for the second half of the operating 

horizon but there are some small deviations in the first half. Although this being the case, 

both the trajectories represent solutions within 1.1% of the optimum. The objective funëtion 

value produced by GA was 98.9% of that produced by the DDDP. For Wonorejo, the 
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trajectories match closely in all time steps but there are deviation for the trajectories for 

Beng during the later part of the operating horizon. 

The differences in trajectories for Beng could be due to the reason that the objective 

function considered here is a function of releases made from the reservoir as well as the 

water head in the reservoir, and the same amount of power can be produced by different 

combinations of releases and heads. For example, maintaining the reservoir at a higher level 

and releasing less amount of water can result in the same power that can be produced by 

maintaining the reservoir at a lower level and releasing higher amounts. Therefore, the 

trajectories while looking different may still represent similar solution. 
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Figure 6.20 Level trajectories for Karangkates, FDS2 
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Figure 6.22 Level trajecto ries for Beng, FDS2 

The simulation model was run with the rule curves derived using the optimisation models. 

The mean deficits in irrigation supply to the delta are shown in Figure 6.23. It can be seen 

that with the inclusion of Beng in the system, there is a further decrease in the mean deficits 

but it was not possible to eliminate the deficits totally. The main reason these deficits occur 

is that the historic inflow set includes several years characterised by lower inflow sequences 

than that used in the derivation of rule curves. It can be observed from Figure 6.2 that the 

independent inflow series are more extreme than the one used in the optimisation models to 

derive the rule curves. Additionally, it appears that the inclusion of Beng in the system does 

not sufficiently increase the irrigation supply to the delta in extremely dry years to have any 

significant impact on the deficits during these years. 
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Figure 6.23Mean irrigation deficits, FDS2 
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Table 6.5 presents the economic returns from the operation of the reservoir system under 

FDS2. The total return from the system for the GA based rule is higher than that produced 

by the DDDP, which is highly satisfactory given the complexity and the size of the problem 

considered. The main reason for this increase is the higher returns with the GA derived rule 

curve from irrigation production at the Brantas Delta. Also, the capacity benefits at 

Karangkates are higher with the GA derived rule curve. 

Table 6.5 Economic returns in million Rupiah, FDS2 

DDDP GA 

Net irrigation production 52045 52527 

Wonorejo Irrigation 1 8648 8468 

Wonorejo Irrigation 2 4656 4600 

Karangkates Energy 32657 32821 

Karangkates Capacity 3419 3498 

Wonorejo Energy 1510 1510 

Wonorejo Capacity 0 0 

Beng Energy 1141 1137 

Beng Capacity 0 0 

Total 104076 104561 

6.6 Sensitivity To Mutation Probability 

Proper settings of GA parameters are required to achieve the best performance from it. 

Therefore, a sensitivity analysis has been carried out to determine the effect of crossover 

probability and mutation probability on the GA performance. To analyse the effect of 

mutation probability on the GA performance, a crossover probability of 0.7 was used, with 

all other parameters and run controls as discussed earlier. 

Sensitivity of the GA performance to mutation probability is presented in Figure 6.24. 

Fitness is expressed as the proportion of the optimum produced by the DDDP. It can be 

observed from the results of sensitivity analysis that although the chromosome length is 

different for each case considered in this study, the mutation probabilities that yield good 

performance are those that corresponding to a single mutation per chromosome. The 
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performance of the objective function with respect to mutation is similar to that for the four-

reservoir problem solved in chapter 4. It is interesting to note that in all cases, 1 mutation 

per chromosome produces about the best results. For a single reservoir system, the best 

results were obtained with a mutation probability of 0.027 (1/36) for EDS 1 and EDS3 and 

0.033 (1.2/36) for EDS2 respectively. For the two-reservoir case (FDS 1), the best mutation 

probability is 0.0139 (1/72) while for the three reservoir system, it is 0.007 (0.8/108). The 

optimum number of mutations per chromosome in each case was around 1. Since EDS 1, 

EDS2, and EDS3 use the same number of genes to represent the problem, it was considered 

appropriate to show the results of sensitivity analysis for EDS2 only. The trend of results for 

EDS1 and EDS3 were very similar to EDS3. 
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Figure 6.24 Effect of mutation probability on GA performance for different cases 

The analysis showed that with the increase in the number of mutations per chromosome, GA 

performance deteriorates. This might be due to the fact that causing too many disturbances 

to already good solutions deflects them from optimal paths. On the other hand, causing only 

a few changes tends to improve the existing solutions. Clearly, more than two mutations 

does not lead to good GA performance. The performance of the objective function with 

respect to mutation is similar to that for the four reservoir problem solved in chapter 4. 

6.7 Sensitivity To Crossover Probability 

The effect of crossover probability on the performance of GA has also been analysed using a 

mutation probability which corresponds to 1 mutation per chromosome irrespective of the 

length of the chromosome. The mutation probabilities were therefore set at 0.027, 0.0138, 
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and 0.009 for the single reservoir, two reservoir and the three reservoir case respectively. 

GA runs were carried out with crossover probabilities ranging from 0.5 to 1.0. Figure 6.25 

shows the sensitivity of the achieved fitness to crossover probability for each of the three 

cases. Again, the fitness has been expressed as the proportion of the optimum produced by 

the DDDP 
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Figure 6.25 Effect of crossover probability on GA performance for dfferent cases 

The performance of GA is stable with respect to crossover probability. The variability of 

normalised fitness with crossover probability is much lower than that with mutation 

probability. The trend of results is similar for all the problems considered here and for the 

four reservoir problem solved earlier in chapter 4. The results of sensitivity analysis for 

mutation and crossover probabilities have shown that very good results could be obtained 

for some particular combination of crossover and mutation probability but most 

combinations produce satisfactory results. It can be concluded that the impact of crossover 

probability on the performance is insignificant but definitely some care should be exercised 

while selecting the number of mutations to be made to each chromosome. 

6.8 Evaluation of Economic Post Processing Results 

This section presents a comparison of economic returns that could be realised under 

different scenarios in the basin. The response of the system to the rule curves produced by 

the GA and the DDDP was evaluated for all the five cases (EDS1, EDS2, EDS3, FDS1, 

FDS2). The derived rule curves were fed into the model and simulation was carried out for a 

37-year period of continuous streanffiow record. A comparison of the total economic returns 
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that can be realised from the basin for each of the scenarios considered is presented in 

Figure 6.26. 
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Figure 6.26 Summa,y of economic returns in million Rupiah under dWerent  scenarios 

From the results presented in this chapter, it can be observed that in all the cases considered, 

the GA was able to locate solutions within 1.1% of those produced by DDDP. In four of the 

five cases considered (EDS1, EDS2, EDS3, and FDS2) in this research, the total economic 

returns for the system are higher with GA derived rules than with the DDDP derived rules. 

In the remaining case, the total economic return produced by the GA was sub-optimal by a 

very small amount (0.85%). The results thus demonstrate that the GAs can be effectively 

used in identifying optimal operating policies for multi reservoir systems. 

6.9 Conclusions 

A real world reservoir operation problem has been solved satisfactorily using the GA 

technique. The existing development situation in the Brantas Basin was considered with 

different objective functions. The rule curves derived for EDS2 achieved better results than 

the original 1978 rule curve in terms of irrigation production, which indicates that the 

operation of Karangkates reservoir can be improved by its application. Two future water 

resource development scenarios in the basin were also considered. It was found that the 

irrigation demand of the basin could be met more often when the Wonorejo and the Beng 

reservoirs are included in the system. The agricultural production would increase when all 

the three storage reservoirs of the basin are in operation, and the overall economic returns 

from the system would also be higher. 
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The results of GA were compared with DDDP and it was observed that GA was able to 

locate solutions very close to the optimum for all the cases considered. The objective 

function values achieved by GA were within 1.1% of that obtained by DDDP. In terms of 

execution time, the performance of DDDP was better than the GA but the differences are 

negligibly small. Significant savings in computing time and memory requirements could be 

obtained for large reservoir systems. The requirements in terms of memory and execution 

time are less for DDDP than GA when applied to small problems. With the increase in the 

dimensionality of the system, GAs become economical in terms of memory requirements 

and execution time. 

The results of research presented in this chapter indicate that GAs do not suffer from 

problems of dimensionality and it is possible to achieve near optimal solutions to multi 

reservoir systems within the available computing resources. Although, the benefits achieved 

may be sub-optimal, no existing method can provide truly optimal policies for large real 

world multi reservoir operation problems. The method does not require discretization of 

state and decision variables and is equally applicable for non-differentiable and 

discontinuous functions The ease with which GA could be implemented is also remarkable. 

A general GA code as the one shown in appendix B could be used to solve different 

problems with changes required only to the evaluation module and the data file. This is not 

possible with DDDP. It may be concluded that the employment of GAs in the planning and 

analysis of water resources systems is showing considerable potential for the future. 
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7. REAL TIME OPERATION OF THE EQUATORIAL 

LAKES SYSTEM 

7.1 Introduction 

This chapter discusses the application of the GA technique in developing real time water 

management policies for the Equatorial Lakes system on the River Nile in Africa. The rapid 

increase in the population and the water demand forecasts of the Nilotic countries has 

created the need to explore and implement water conservation policies for the Equatorial 

Lakes system. The demand for electricity is increasing and there is an urgent need to 

develop strategies for generation of hydroelectric power at reliable levels (Wardlaw 1998). 

Owen Falls dam is a hydropower facility located at the source of the Victoria Nile at Lake 

Victoria. It has an installed capacity of 180 MW. An extension is currently under 

construction that will increase the installed capacity to 260 MW. The potential benefits of 

the extension cannot be fully realised unless efficient operating policies are developed for 

Lake Victoria. The objective of this application is to investigate operating procedures for the 

Equatorial Lakes system that could increase the reliability of power production from the 

system now and under future development conditions. 

Following this introduction, section 7.2 describes the physical characteristics of the 

Equatorial Lakes system. Section 7.3 describes the development and essential features of the 

simulation model of the system. Results of simulation model runs are presented in section 

7.4. Stochastic flow forecasting models are described in section 7.5. Section 7.6 describes 

simulation model runs carried out using a synthetic sequence. Real time operation of a 

single lake system and a three lake system using the GA and the DDDP models is discussed 

in section 7.7 A power production forecasting approach using GA is presented in section 

7.8. Conclusions are presented in section 7.9. 

7.2 The Equatorial Lakes system 

Lakes Victoria, Kyoga and Albert constitute the Equatorial Lakes system (Figure 7 1). The 

Equatorial Lakes are natural reservoirs with vast storage capacities. Lake Victoria is the 
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second largest fresh water lake in the world. It has a surface area of 69000 km 2  and a storage 

capacity of 3121 billion cubic metres (BCM) at an elevation of 1136.3 m. The Lake Victoria 

basin covers an area of 194000 km2, of which 44000 km2  lies in Kenya, 84000 km2  in 

Tanzania, 32000 km2  in Uganda and 33600 km 2  in Rwanda and Burundi. The Lake plays an 

important role in the fisheries, hydropower, recreation, water supply and transport sectors of 

the region. 

The two major lakes downstream of Lake Victoria are Lake Kyoga and Lake Albert. Lake 

Kyoga is relatively much smaller in volume terms than Lake Victoria with a storage capacity 

of 20 BCM and a surface area of 4800 km 2. Lake Albert has a surface area of 6000 km 2  and 

a storage capacity of 176 BCM. Table 7.1 provides information on historical minimum and 

maximum lake levels and discharges from the three lakes. These levels are relative to gauge 

datums of 1122.887 m, 1020.61 m, and 609.82 m for Lakes Victoria, Kyoga, and Albert 

respectively. 
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Figure 7.1 The Equatorial Lakes System 
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Table 7.1 Historical levels and outflows 

Lakes Gauge Levels (m) Oufflows (m 3Is) 

Minimum Maximum Minimum 	Maximum 

Victoria 10.22 13.33 345.0 	1722.0 

Kyoga 9.53 13.53 280.1 	1990.7 

Albert 9.11 14.14 383.9 	2120.4 

7.3 The Simulation Model 

7.3.1 General 

A simulation model has been developed by Wardlaw (1998) to assess the performance of the 

Equatorial Lakes system under different regulation plans. The objective of regulation is to 

increase the reliability of power production from Lake Victoria as hydropower at Owen 

Falls, the source of White Nile, accounts for 90% of total installed capacity in Uganda. The 

model synthesises the monthly water balances of Lakes Victoria, Kyoga and Albert under 

the influences of different operational controls at Owen Falls dam on Lake Victoria. There 

is provision for computation of hydropower at Owen Falls, and at the proposed new 

hydropower facilities at Owen Falls Extension, Bujagali, Kalagala, Murchison, Kamdini and 

Ayago. The location of Owen Falls is shown in Figure 7.1. The purpose of the model is to 

evaluate the impact that the various operational controls would have had on historical water 

levels and discharges had they been in place and experienced the historical record. The basis 

of analysis is that the hydrological past, as represented in the historical records, is 

representative of likely future conditions. 

The simulation of all lakes is driven by the net basin supply (NBS), defined as inflow minus 

net evaporation from the lake. The model computes the net basin supply, from 

observed outflows and water levels using the following equation. 

Q =O—LS 
	

(7.1) 

where 0 is the observed outflow in time step t and ES is the change in storage between time 

steps t and t+ 1 computed from end of period water levels. 
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7.3.2 Model Data Base 

7.3.2.1 Lake Victoria 

The water levels recorded at Jinga gauge station, and outflows observed at Owen Falls are 

used to compute the NBS to Lake Victoria. This historical data has been extracted by 

Wardlaw (1998) from the reports by the Institute of Hydrology (1993), and by Kennedy and 

Donkin (1996), and is available for the period between 1899 to 1997. Recent years of record 

were obtained directly from the Directorate of Water Development (DWD) in Uganda. The 

elevation-storage characteristics have been taken from Georgakakos (1996). 

7.3.2.2 Lake Kyoga 

The simulation of Lake Kyoga is driven by outflows from Lake Victoria, and local NBS. It 

has been more difficult to define the NBS to Lake Kyoga than to Lake Victoria because of 

limitations in data availability. The NBS record has again been constructed by Wardlaw 

(1998). The outflow data has been taken from Kennedy and Donkin (1996) for the period 

1899 to 1995. A combination of methods had been used to construct this record. The basis 

of the record is Kyoga outflows at Kamdini from 1940 to 1980, Masindi Port flows from 

1912 to 1939, and regression with the Jinja gauge for the periods between 1896 and 1912, 

and between 1980 and 1995. To compute the NBS, water levels are also required for the 

period from 1899 - 1997 but the end of month gauge levels at Masindi Port are available 

only for the period 1915 to 1977. To compute the outflows for the rest of the period, the 

following relationship has been derived using the common period of Masindi Port levels and 

Kyoga outflows. 

Qk = 0.00067352 H5717553 
	

(7.2) 

where Qk  is the Lake Kyoga outflows in m 3/s and H is the Masindi port water level (gauge 

level). The local NBS for Lake Kyoga, 	is computed as follows. 

Q,,,5,k = Qk - ES - 
	

(7.3) 
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where Q 	is the outflow from Lake Victoria and AS is the change in storage at Lake 

Kyoga between consecutive time steps. The changes in storages are computed from Masindi 

Port water levels, using an elevation-storage relationship given by Georgakakos (1996). 

7.3.2.3 Lake Albert 

The simulation of Lake Albert is also based upon the local NBS and inflows received from 

Lake Kyoga. Water levels are recorded at Butiaba on the eastern shore of the Lake, and 

discharge have been recorded on the Nile downstream of the Lake at Panyango. The water 

level records at Butiaba are reasonably complete between 1948 and 1976, but thereafter 

become intermittent. The records of discharges at Panyango on the Albert Nile are also 

reasonably complete between 1948 and 1979. These records have been extracted from 

Shahin (1985). On the basis of available records, the following rating relationships have 

been derived by Wardlaw (1998). 

QA = 0.3848 (H - 	 H < 10.55 	 (7.4) 

QA = 690;4(H - 95)0.8662 	 10.55 !~ H !!g 12.33 	 (7.5) 

QA = 977.9 (H - 95)0.5127 	 H> 12.33 	 (7.6) 

where QA  is Lake Albert outflow in m3/s and H is Butiaba gauge level in metres. 

7.3.3 Power Components 

A master plan for hydropower development in Uganda has been completed recently by 

Kennedy and Donkin (1996). The master plan covers hydropower potential on the River 

Nile, and on other smaller rivers in the country. The simulation model (Wardlaw 1998) has 

provision for hydropower computations at the existing Owen Falls power station, Owen 

Falls Extension, and the proposed power stations at Bujagali, Kalagala, Murchison, Kamdini 

and Ayago. The characteristics of different hydropower stations as represented in the model 

are described below. 
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7.3.3.1 The Existing Owen Falls Power Station 

This power station is located at the source of the Victoria Nile and house 10 turbines of 18 

MW rating (recently upgraded from 15 MW), thus giving a total installed capacity of 180 

MW. The maximum discharge through each turbine is of the order of 105 m 3/s, and with 9 

units in service the total discharge is around 950 m3/s. Due to the non availability of 

efficiency and the hydraulic loss characteristics of the station, the power production has 

been evaluated using the following relationship. 

P=0.17045xQ 	 (7.7) 

where P is the power output in MW and Q is the turbine discharge in m 3/s. The above 

relationship reproduces the power output given by Kennedy and Donkin (1996). 

7.3.3.2 Owen Falls Extension 

This hydropower station is still under construction. It has a provision for 5 turbines of 40 

MW rating but at this stage only two turbines are being installed. On completion of the 

extension, the installed capacity at Owen Falls will be 242 MW and the corresponding 

maximum discharge will be of the order of 1420 m3/s. For the computation of hydropower, 

the same relationship as that for existing power station has been used. It has also been 

assumed that the power station is currently operational. 

7.3.3.3 Bujagali Falls 

There is little storage available at Bujagali, and on the basis of data presented by Kennedy 

and Donkin (1996), the following relationship has been derived for net head 

(Wardlaw 1998). 

H. = 17.0 - (Q - 660.0)! 722.0 	 (7.8) 

where H = turbine net head (m), and Q = turbine discharge (m 3/s). 

The power production is given by 

P=O.0O873QH  
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where P is the power output in MW. There will be four turbine units of 45 MW capacity 

each at Bujagali. 

7.3.3.4 Kalagala Falls 

Kennedy and Donkins (1996) presented a number of options for Kalagala Falls power 

station. For this study, the 315 MW option has been selected. The following net head 

relationship has been derived for the Kalagala Falls by Wardlaw (1998). 

H. = 28.3 - (Q - 660)/ 684.0 	 (7.10) 

The same power equation as that for Bujagali may be used. The total installed capacity will 

be 315 MW (7 units of 45 MW capacity each). 

7.3.3.5 Murchison Falls 

A number of options for Murchison Falls power station were presented by Kennedy and 

Donkin (1996). Option M4 has been selected for this study. From the data presented by 

Kennedy and Donkin (1996), a net head of 87.0 m has been assumed. The power 

relationship remains the same as that for Bujagali. There will be 6 turbine units of 52.5 MW 

at Murchison Falls. 

7.3.3.6 Kamdini Falls 

A number of options have been presented by Kennedy and Donkin (1996) for Kamdini Falls 

power station. Option KM4 has been selected for inclusion in the simulation model. For this 

option there will be 3 turbine units of 45 MW capacity each. From the data presented by 

Kennedy and Donkin (1996), a net head of 25.3 m has been assumed by Wardlaw (1998). 

The efficiency for energy production and the power relationships are assumed to be same as 

at Bujagali. 

7.3.3.7 Ayago Falls 

Kennedy and Donkin (1996) presented a number of options for Ayago Falls power station. 

The option with 6 turbine units of 38 MW capacity has been included in the simulation 
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model. A net head of 52.0 m has been assumed, and the efficiency and power relationships 

are assumed to be same as at Bujagali (Wardlaw 1998). 

7.3.4 Net Basin Supply Variability 

The simulation model of the Equatorial Lakes system is driven by the NBS for each lake. 

Figure 7.2 shows the percentage deviation of NBS from the long term historical mean for 

Lake Victoria. There is large variability in NBS with very low NBS experienced, for 

example, during early 1920's, and very high NBS during 1961, 1962, and 1963. The NBSs 

to Lake Kyoga and Lake Albert have followed similar trends. There has been a generally 

declining trend since the high values of early 1960's. Since the NBSs have been derived 

using the historically observed records of levels and outflows, the accuracy of computation 

of NBSs depends upon the accuracy of the observed data. A small error in the observed 

water level may lead to a considerable error in the computation of NBS. For example, a 10 

mm depth of water level at a surface area of 69000 km 2  represents a storage of 0.69 BCM. 

The equivalent discharge over a monthly time step is around 270 m 3/s. 

The measurements of water levels in huge lakes such as Lake Victoria may also be affected 

by wind set up. Great care has to be exercised in observing the lake levels particularly 

during the periods of high winds. Historically, discharge was related to water levels through 

a rating in Owen Falls. For this reason, there is a potential for error in the computation of 

NBS. 

Figure 7.2 Historical variations in net basin supply to Lake Victoria 
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7.4 Simulation Model Runs With Historical NBS Sequence 

Currently, Lake Victoria is operated according to the "Agreed Curve", which is a stage- 

discharge relationship that existed at the Owen Falls prior to the start of construction of the 

Owen Falls dam in 1954. The relationship is given by (7.11), and is illustrated by Figure 7.3. 

Q = 630.0 + (H - 11.0) x 403.2 	 (7.11) 

where Q = mean monthly discharge in m 3/s, and H is the lake level above the Jinga gauge 

datum. When operating to the Agreed Curve, an iterative approach is used to determine the 

mean monthly release and end of month water level. The model iterates to compute a mean 

monthly discharge corresponding with an average monthly water level determined from start 

and end of month levels using a tabular relationship between the gauge levels at Jinja and 

discharges at Owen Falls. 
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Figure 7.3 Relationship between Jinja gauge and discharge (Agreed Curve) 

The water levels and discharges simulated through operation of Lake Victoria according to 

Agreed Curve have been compared to the historically observed values. Figure 7.4 presents 

simulated and observed Lake Victoria levels. There were rises in lake levels in 1906 and 

1917, but the lake levels were relatively stable before 1961. The most prominent feature in 

the whole series is the rise of almost 2.5 m between 1961 and 1964. Since then, the levels 

have followed a generally declining trend except for a rise in 1979. At present, the lake 

levels appear to be relatively stable. Simulated and observed discharges are shown in Figure 

7.5. There is a close agreement between the simulated and observed levels and discharges, 

particularly prior to the completion of the Owen Falls dam. The small differences in 
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discharges after the completion of Owen Falls dam may be attributed to the minor deviations 

from Agreed Curve in operational practice. Thus, it may be concluded that the simulation 

model is reliable for the Lake Victoria. 
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Figure 7.4 Lake Victoria simulated and observed levels 
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Figure 7.5 Lake Victoria simulated and observed discharges 

1969 	1979 	1989 	1999 

Simulated and observed water levels for Lake Kyoga are shown in Figure 7.6, and simulated 

and observed discharges in Figure 7.7. It appears from Figure 7.6 that the simulated water 

levels lag observed water levels by about one month in the pre 1962 period, but otherwise 

the simulation is very good. The magnitude of the water levels is, however, same. The 

reason for this lag is that the missing historic water level records were infilled using the 

discharge data. These infilled levels are mean monthly values but are treated by the model as 

the end of month levels. The differences between the observed and the simulated discharges 
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may also be attributed to the problems in observed water level and discharge records 

(Wardlaw 1998). Another source of problems could be the reliability of the elevation area 

characteristics for the lake. Given these input data problems, the performance of the model 

can be considered satisfactory. 
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Figure 7.6 Lake Kyoga simulated and observed levels 
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Figure 7.7 Lake Kyoga simulated and observed discharges 

Lake Albert simulated and observed water levels and discharges are shown in Figure 7.8 and 

Figure 7.9 respectively. The problems with the data for Lake Albert are similar to those 

experienced for Lake Kyoga. The intended purpose of the model is to evaluate the relative 

impact of regulation on the lakes. For this purpose, the model can be considered to be 

satisfactory. 
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Figure 7.8 Lake Albert simulated and observed levels 
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7.4.1 Evaluation of Regulation Rules 

The impact of alternative regulation rules on Lake Victoria, Lake Kyoga, and Lake Albert 

was studied by Wardlaw (1998). A total of six regulation rules were investigated, along with 

operation according to the Agreed Curve. All the rules are based on different control levels 

for Lake Victoria. Out of these six rules, two are worthy of detailed consideration. These are 

described below. 

(i) Single Zone Regulation: Lake Victoria is regulated to give a constant discharge of 660 

m3/s when the lake levels are in the range of 10.5 m to 12.0 m. Outside this range, regulation 

is according to the Agreed Curve. This rule keeps the levels and discharges from all lakes - 

within the range that would occur under Agreed Curve regulation. A maximum recession 
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rate of 0.95 is applied to discharges when the lake levels fall back into the control zone from 

higher levels. This avoids large fluctuations in power production particularly when the level 

is close to the upper control level and regulated discharge is triggered in. 

(ii) Dual zone regulation Lake Victoria is regulated to give a constant discharge of 660 

m3/s when the levels are in the range of 10.5 m to 12.0 m. When the levels are between 12 m 

and 12.9 m, a constant discharge of 1200 m 3/s is implemented. When the levels fall below 

10.5 m, regulation is according to the Agreed Curve. At levels above 12.9 m, discharge is at 

1800 m3/s. This higher discharge is required so that higher extremes in water levels can be 

avoided, and lake levels remain within the historical range. When the levels fall back into 

the lower control zone from a higher control zone, a maximum recession rate of 0.95 is 

applied to the discharges. 

The simulation model was run with single zone and dual zone regulation rules. Figure 7.10 

shows the water levels and Figure 7.11 shows the simulated discharges with single zone and 

with Agreed Curve operation. It can be observed that there is little impact on levels but the 

impact on discharges in the Victoria Nile is significant. The impact of regulation on levels is 

minor primarily due to the huge storage capacity of Lake Victoria. The simulated water 

levels and discharges remain within their historically observed ranges. The discharges from 

Lake Victoria were routed through Lake Kyoga and Lake Albert. 
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Figure 7.10 Impact of single zone regulation on Lake Victoria levels 
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Figure 7.11 Impact of single zone regulation on Lake Victoria discharges 

The impact of single zone regulation on the levels and the discharges from Lake Kyoga is 

shown in Figure 7.12 and Figure 7.13 respectively. Clearly, the lake levels follow observed 

levels very closely. The impact on discharges from Lake Kyoga is not significant, and both 

the levels and discharges remain within their historically observed ranges. Similarly, the 

influence of single zone regulation on Lake Albert is minor. The discharges and levels for 

Lake Albert are presented in Figure 7.14 and Figure 7.15 respectively. 
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Figure 7.12 Impact of single zone regulation on Lake Kyoga levels 
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Figure 7.13 Impact of single zone regulation on Lake Kyoga discharges 

15 

-Agreed Curve 

ngl 

13 

12 

	

1899 	1909 	1919 	1929 	1939 	1949 	1959 	1969 	1979 	1989 	1999 
Year 

Figure 7.14 Impact of single zone regulation on Lake Albert levels 
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Figure 7.15 Impact of single zone regulation on Lake Albert discharges 
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The power production at Owen Falls dam with Agreed Curve and with single zone 

regulation is presented in Figure 7.16. At times when the lake levels are higher than 12.0m, 

power production fluctuates as the releases are determined according to the Agreed Curve. 

There are, however, long periods of stable power when the lake level is between 10.5 m and 

12.0 m. With 95% reliability, the power produced at Owen Falls dam increased from 72.5 

MW under Agreed Curve operation to 112.5 MW under single zone regulation. The increase 

in reliable power production at Bujagali Falls is 33.7 MW, and at Kalgala Falls it is 57.2 

MW. The power stations downstream of Lake Kyoga; Ayago, Murchison and Kamdini Falls 

would also experience an increase in reliable power production but not to the same extent as 

Bujagali and Kalagala. The power duration curve for Owen Falls dam is shown in Figure 

7.17, and the flow duration curve is shown in Figure 7.18. 
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Figure 7.16 Impact of single zone regulation on Owen Falls power production 

25 

22 

20( 

1 7 

15( 

0 
°- 12 

1 OC 

7 

5( 

- 	 .- 	 - 	 vu 	 oi, 	UU 	 lou 
Percentage of time exceeded 	 - 

Figure 7.17 Impact of single zone regulation on Victoria power duration characteristics 
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Figure 7.18 Impact of single zone regulation on Lake Victoria flow duration characteristics 

With single zone regulation, fluctuating power is produced when the lake levels are higher 

than 12.0 m (Figure 7.16). To permit short term forecasts of reliable power to be made, 

flows at higher levels should also be regulated. This can be achieved by dual zone regulation 

wherein the lake is regulated to give a constant discharge of 1200 m 3/s for lake levels 

between 12.0 m and 12.9 m. This would allow use of higher flows and would result in 

maintaining target discharges for long periods. The impact of dual zone regulation on the 

levels at Lake Victoria is shown in Figure 7.19. The impact of regulation on discharges from 

Lake Victoria is shown in Figure 7.20. The results of dual zone regulation are very much 

similar to the single zone regulation with little impact on levels and significant impact on 

discharges. 
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Figure 7.19 Impact of dual zone regulation on Lake Victoria levels 
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Figure 7.20 Impact of dual zone regulation on Lake Victoria discharges 

The dual zone regulation stabilises the power production at higher levels too as shown in 

Figure 7.21. There are long periods of high power production during periods of high lake 

levels. The impact of dual zone regulation on power and flow duration characteristics is 

shown in Figure 7.22 and Figure 7.23 respectively. As with the single zone regulation, the 

reliable power production is increased from 72.5 MW to 112.5 MW. Also, there is a 

marginal increase in the average power production over that produced with the Agreed 

Curve. Table 7.2 gives the summary of power production at Owen Falls dam and at other 

power stations downstream. 

Table 7.2 Summary of power production under different regulation schemes 

Potential Power Production (MW) 

Installations Agreed Curve Single Zone Dual Zone 

95% Average 95% Average 95% Average 

Owen Falls 72.5 141.9 112.5 143.9 112.5 143.8 

Bujagali Falls 64.3 119.8 98.0 121.2 98.0 122.2 

Kalagala Falls 106.3 201.6 163.2 204.3 163.1 205.1 

Kamdini Falls 80.0 126.4 89.9 129.3 90.0 129.2 

Ayago Falls 164.2 222.8 184.8 225.9 184.8 225.9 

Murchison Falls 275.0 313.3 308.4 314.5 308.4 314.5 

148 



250 

225 

200 

175 

150 

0 
(- 125 

100 

75 

50 
0 

Application of GA to the Equatorial Lake System 

260 

210 

160 

ao 110 

60 

10 

1899 	1909 	1919 	1929 	1939 	1949 	1959 	1969 	1979 
Year 

Figure 7.21 Impact of dual zone regulation on Owen Falls power production 

1989 	1999 

Percentage of time exceeded 

Figure 722 Impact of dual zone regulation on Lake Victoria power duration characteristics 
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Figure 7.23 Impact of dual zone regulation on Lake Victoria flow duration characteristics 
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The implementation of single zone regulation is fairly straightforward and does not require 

sophisticated operational controls. The dual zone regulation offers the potential for higher 

levels of reliable power to be produced for specified periods of time. However, there is 

scope for improving the reliability with which power production at higher levels could be 

forecast. Also, it should be appreciated that the levels used for upper zones in dual zone 

regulation are conditioned by the period of record available. In practice, more flexibility is 

required and a dynamic approach to operation incorporating stochastic inflows could prove 

valuable. The objective of the dynamic approach would be to forecast potential power 

production that could be guaranteed for specified durations of time, say 3 months, 6 months, 

12 months, and 24 months. These forecasts would permit planning of maintenance and 

outage of thermal plants. Moreover, it would be possible to sell surplus hydropower 

internationally as a substitute of thermal power, and to capitalise on the higher flows 

whenever they do occur. An approach similar to one outlined here is discussed in 

subsequent sections of this chapter. 

7.5 Flow Forecasting Models 

Streamilow forecasting techniques are an integral part of real time operation models. 

Stochastic streamfiow models are often used in simulation studies to evaluate the response 

of the water resource systems to possible future scenarios. The development and 

implementation of such models require the historical record of the flows. Based upon the 

historical record, the parameters of the rainfall or streamilow forecasting model are 

estimated. The verification of the model is then carried out by comparing the statistics of the 

generated sequences with the historical sequences. Two different stochastic forecasting 

models are described in the following sections. 

7.5.1 The Thomas-Fiering Model 

The Thomas-Fiering model (Thomas and Fiering 1962; Fiering 1967) is a lag-one Markov 

model. In most streamfiow generation techniques it is sufficient to assume that a first order 

Markov structure exits. The Thomas Fiering model is fitted to the standardised monthly 

flows, Yij  given by 

y1,1 =(x —x 1 )/ci 	 - 	(7.12) 
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where x, is the original flow for year i and month j, and x, and ar i are sample estimates 

of the mean and standard deviation respectively, for month j. 

The model is based on a lag-one auto-regressive Markov process, and the standardised 

generated flow is given by 

Yij = f3 E i ,j (7.13) 

where E is the random component as described by 

=yi_ 2  xz, 	 (7.14) 

and Z j  is the randomly generated normal variate with zero mean and unit variance, /3, is the 

lag-one serial correlation coefficient between month j and j-1 given by 

Jdx dY  ________ 

i 	
xd2 

(7.15) 

where dx  and d are the deviations of inflows in month j and j-1 from their respective means. 

A suitable starting value and the sample estimates of monthly parameters x and a i are 

required to generate a continuous sequence of T years of synthesised monthly flows, x 1j , 

where i = 1, T and j = 1, 12 for monthly flows. Since the next period's inflow can be 

estimated from the previous period's inflow, (7.13) can be used recursively to generate a 

synthetic sequence of any length. The mean and standard deviation of the generated 

sequences are generally well preserved when the individual monthly flows are normally 

distributed. When the probability distribution of the monthly flows are skewed, they can 

often be normalised by transforming to the logarithmic scale. Both the models are used to 

first generate standardised data which is followed by inverse standardisation. If the log 

transform is used, inverse log transformation is carried out to obtain the synthetic sequence. 
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7.5.2 The ARIMA (1,1) Model 

ARIMA (1,1) is an abbreviation for auto-regressive-integrated-moving-average; the values 

in the parentheses denote the number of autoregressive and moving average terms used in 

the model respectively (0' Connell 1971, 1974). Like the Thomas-Fiering model, the 

ARIMA model is also usually fitted to the standardised flows given by (7.12). ARIMA 

models combine the direct serial correlation properties of a data series with the smoothing 

effects of an updated running mean through the series. The generated standardised flow, 

y, , is given by 

yi,j = 0 	+ 	— 6 X 	 (7.16) 

The coefficient 0 is obtained by minimising the sum of squares of 

i- i 0 (k — i) 

from k = 2 to k = L, where Tk is the lag k autocorrelation function and L,,,.,, is the maximum 

lag. In program SYNHY1 which has been used to generate flows, Lm has been arbitrary set 

equal to 100. The second coefficient 0 is given by 

0=(a_i/a2 —4b2)/2b 

where a=1-2 r +2 

and b = Ø — ij 

The coefficients 0 and 0 used in an ARIIvIA model do not vary from month to month. So, 

the model cannot be expected to preserve the statistical parameters of the historic data. The 

model, however, provides a better means of modelling the Hurst Effect (Hurst 1951), which 

is described next. 

Hurst (1951) while studying the long-term storage requirements on the Nile River found that 

(n) h  
R=a- 
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where R is the range of cumulative deficits from the mean flow, a is the standard deviation, 

and n the length of the series. The ratio - is known as rescaled range, and exponent h is 

known as the Hurst coefficient. The value of h for a statistically independent process such as 

Markov process is 0.5. For some 800 time series analysed by Hurst, the average value of h 

was around 0.73. The discrepancy between the theoretical results and the values observed by 

Hurst has become known as the Hurst phenomenon. This discrepancy could be due to the 

non-stationarity of the series or due to the statistical dependence of the series (Klemes 

1974). A Hurst coefficient between 0.5 and 1.0 corresponds to a long term persistence in 

series, which is also known as Joseph effect (Mandeibrot and Wallis 1968). 

The Hurst phenomenon is, however, questionable . Since its discovery, the puzzle of Hurst 

phenomenon has haunted hydrologists and mathematicians as the physical significance of h 

is not completely known although it gives some measure of long term persistence in the 

natural time series. The coefficient can be perceived as an index to drought phenomenon, 

and models that can replicate h have the capability of replicating historically observed 

droughts. The sequences generated by the Thomas-Fiering model exhibits values of h of 

around 0.5. On the other hand, ARIMA models tend to preserve persistence in the series and 

produce h values close to those observed by Hurst. 

The Hurst phenomenon occurs due to the persistence in streamflows caused by storage 

effects. The Lake Victoria models considered here are, however, driven by the NBS which 

is to a large extent based upon the rainfall, particularly for Lake Victoria. As shown in 

Figure 7.2, there is large variability in the NBS which clearly indicates the absence of 

persistence in NBS and the rainfall. The Hurst phenomenon cannot be attributed to one 

specific physical cause but one of the several causes reported for its existence is the 

characteristics of a particular storage system (Klemes 1974). For Lake Victoria system, the 

storage upstream of the Lake is insignificant; only at the point of supply is the storage 

significant. The Hurst phenomenon therefore does not appear to exist for NBS to Lake 

Victoria. 

The standardised monthly data is generally used to generate synthetic streamfiow sequences 

with forecasting models such as Thomas-Fiering or the ARIMA models. Following 

standardisation, the data has zero mean and unit standard deviation. A correlogram analysis 

may be used to obtain an insight into the character of the data. Figure 7.24 shows the 
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correlogram of the observed historic data, standardised historic data, and the synthetic data 

generated by the Thomas-Fiering model for lags of upto 100. 
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Figure 7.24 Correlogram of observed, standardised, and synthetic data 

A key assumption in the correlogram analysis is that the standardised data is stationary. The 

correlogram for the historic data shown in Figure 7.24 has a periodicity of 12. The 

penodicity is absent in the standardised data and its correlogram shows a decay with lag 

similar to that which would be expected for a stationary Markov process. The assumption of 

a stationary standardised monthly data is therefore justified. 

7.5.3 Determination of Appropriate Forecasting Model 

The FORTRAN programs SYNHY1 and SYNHY2 (Mott MacDonald 1988) have been used 

to generate forecasts of NBS to Lake Victoria with a view to determining the most 

appropriate forecasting model for the lake. Program SYNHY1 is used to set up the 

parameters of the Thomas-Fienng and the ARIIVIA models. Using these parameters, program 

SYNHY2 can be used to generate several synthetic sequences. Ten NBS sequences starting 

with different initial random number seeds were generated using the Thomas-Fiering and the 

ARIMA(1,1) models. The generated sequences were then compared to the historical 

sequence in terms of basic statistics such as mean and standard deviation. The statistics of 

these sequences are presented in Table 7.3. The monthly mean and standard deviation of the 

historical sequence are 2245 million cubic metre (MCM) and 6581 MCM respectively. 
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Table 7.3 Statistics of synthetic sequences 

SEQUENCE Thoamas-Fiering ARIMA (1,1) 

NUMBER Mean Std. Dev. Skewness Mean Std. Dev. Skewness 

(MCM) (MCM) Coeff. (MCM) (MCM) Coeff. 

1 2139 6548 0.659 2109 7395 0.513 

2 1896 6427 0.753 1635 7279 0.711 

3 2036 6640 0.698 1951 7280 0.635 

4 2152 6647 0.659 2132 7441 0.568 

5 2107 6411 0.587 1955 7194 0.505 

6 1918 6429 0.595 1728 7242 0.473 

7 2153 6480 0.621 2080 7233 0.537 

8 1992 6673 0.685 1921 7549 0.641 

9 2149 6787 0.783 2122 7603 0.749 

10 2243 6555 0.650 2282 7282 0.583 

Historical 2245 6581 0.98 - - 

The statistics presented in Table 7.3 clearly indicate that the mean and standard deviation of 

the sequences generated by the Thomas-Fiering model were in good agreement with the 

corresponding historical values. However, the standard deviations for the sequences 

generated by the ARIMA model showed significant differences from the historical values 

(Table 7.3). This is due to the reason that the ARIMA (1,1) model tends to generate long 

periods of extreme values (very low or very high) of NBS. Also, the ARIMA (1,1) model, by 

its nature, cannot be expected to preserve the historical means of NBS for different months. 

On the other hand, the Thomas-Fiering model preserves the historical means well 

(Table 7.3). For the present study, it has been considered appropriate to use the Thomas 

Fiering model to generate sequences of NBS in all cases to follow. 

7.6 Simulation Model Runs With Synthetic NBS Sequences 

In this section, single zone regulation is applied with synthetically generated NBS 

sequences. The basic idea behind using these synthetically generated sequences is that each 

of these sequences may be considered as representative of a likely future scenario. Using a 

single historical streamfiow record to derive reservoir operating rules is generally not 

155 



Application of GA to the Equatorial Lake System 

considered to be satisfactory, and it is common practice to evaluate operation with 

synthetically generated alternative flow sequences. 

Ten sequences of 99 years NBS each starting with a different number seed were generated 

using the Thomas-Fiering model. These sequences were combined to obtain a sequence of 

990 years of monthly NBS data. Using this sequence, the operation of Lake Victoria was 

carried out according to single zone regulation. The output obtained from the 990 year 

simulation by using synthetic inputs was analysed to determine the power that could be 

produced from the Owen Falls under single zone regulation at different levels of reliability. 

The power production at 90% and 95% exceedence levels along with the long term annual 

average with the synthetic sequences and the historic sequence is presented in Table 7.4. 

The power duration curve is shown in Figure 7.25. 

Table 7.4 Summary of power produced in MW with 990 year synthetic sequence 

Synthetic sequence 	Historical Sequence 

Average 90% 95% Average 90% 95% 

160.5 	112.5 	112.5 	141.9 	79.5 	72.5 

As shown in Table 7.4, the power produced with 90% and 95% reliability using the 990 year 

synthetic NBS sequence is 112.5 MW. The power production with the synthetic sequence is 

considerably higher than with the historical NBS sequence. From Figure 7.2 it can be seen 

that there is a steep rise in NBS between 196 1-1963 mainly due to a period of heavy rainfall 

during these years. In 1961, there was a deviation in NBS of around 250% from the long 

term mean. Statistically, this affects the mean and standard deviation of the sample used to 

generate the forecasts of NBS with the Thomas-Fiering model. It appears that the synthetic 

sequence does not contain extremely low values of NBS as had been experienced 

historically. This is the likely reason why the average and the reliable power production with 

the synthetic sequence are considerably higher than with the historical sequence. 

The affect of synthetic sequences on the levels in Lake Victoria was also investigated. The 

historically observed minimum levels for Lake Victoria is 10.22 m. The level duration curve 

obtained by using the 990 year synthetic sequence is shown in Figure 7.26. On the basis of 

synthetic sequence generated by the Thomas-Fiering model considered here, the probability 
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that the lake level will go down below the historical minimum level under single zone 

operation is less than 1 percent (Figure 7.26). This is interesting because the stochastic flow 

generation models such as the Thomas-Fiering model have the ability to produce events 

more extreme than those actually experienced historically. However, it appears that the 

generation of NBS with the Thomas-Fiering model is affected by the high values 

experienced during 1961-1964, and therefore extremely low values of NBS are not 

generated. 
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Figure 7.25 Power duration curve, simulation with 990 year synthetic sequence 
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Figure 7.26 Level duration curve, simulation with 990 year synthetic sequence 

90 	100 

157 



Application of GA to the Equatorial Lake System 

7.7 Real Time Operation 

In real time reservoir operation, stochastic models are used to obtain scenarios of possible 

future inflows on the basis of which effective operating decisions can be made. Real time 

operating models can help in the management of extreme events, such as floods and 

droughts that occur over relatively short time periods. They can also be used to manage 

complex systems on a continuing basis. In real time operation of reservoir systems, the 

models take into account future forecasts of inflows to determine optimal operating policy 

over a specified length of time. While only the decisions in the current period are 

implemented, the impact of these decisions in the future is considered. Real time models are 

run sequentially and the information concerning the current state of the system, current and 

future inflows are updated each time the model is run. A flow chart outlining the real time 

operation procedure is shown in Figure 7.27. 

Start 
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orecast NBS Scenario 
for next 12 stages 

4, 
Activate optimisation 

model 

Identify optimal 
release sequence 

4,  
Implement first 

months release 

Update storage with 
actual NBS 

Stage = Stage + I 

YES 

F Print results 

Figure 7.27 Real time operation procedure 
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Since the forecasts of inflows are based on the actually observed values in the previous time 

step, the occurrence of any extreme phenomenon can be implicitly taken into account. For 

example, a very low inflow in the previous time step is likely to generate future forecasts of 

inflow having low magnitudes. 

7.7.1 The System Dynamics 

The dynamics of the Equatorial Lakes system can be described by the following mass 

balance equation. 

S,(t+l) = S,(t)+I(t)+fR1 (t)—E,(t) 
	

(7.17) 

where the terms have their usual meanings and M is a n order square matrix describing the 

system configuration with -1 along the diagonals +1 in the position ith column and jth row if 

the release from reservoir i goes into reservoir j. The rest of the martrix elements are zero. 

From this consideration, the matrix M for this system could be expressed as follows. 

—1 0 0 

M= 1 —1 0 

o 1 —1 

The constraints on storages and releases can be described in the usual manner as follows. 

Simin  !~ S  :!~ 	 (7.18) 

!!~ R :!~ R1 	 (7.19) 

where Sj, m jn  and S, ,, represent the lower and upper bounds on storages; Rj, mjn  and R, max  are 

the lower and upper bounds on releases from lake i. 

The operation of Equatorial Lakes system may be described by (7.17), (7.18), and (7.19). 

Most models that simulate the process of real time operation use an optimisation model for 

determining optimal decision in each time period. For this research, the DDDP and the GA 

models have been used to determine optimal real time operating decisions. Two case studies 

are presented. In the first case, the real time operation of Lake Victoria is considered. The 

combined operation of Lakes Victoria, Kyoga and Albert is considered in the second case. 
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7.7.2 The Single Lake System 

In this case study, real time operation of Lake Victoria is considered. The objective function 

is to maximise the hydropower generation from the existing hydropower facility at the exit 

of Nile and from the proposed extension at the Owen Falls. Mathematically, the objective 

function could be expressed as 

Maximise J1  =p,(t) 	 (7.20) 

where p,(t) is the power produced at lake i in time step t. 

The energy generation at Owen Falls dam is a linear function of release as given as (7.7), 

and is effectively independent of lake elevation. Currently, there are no operational controls 

at Lake Kyoga and Lake Albert. It was considered reasonable to use the optimal releases 

made from Lake Victoria as an input to Lake Kyoga. Deterministic simulation is then 

carried out for Lake Kyoga and Lake Albert. 

To prevent the lake levels from falling below the minimum allowable levels, a penalty 

function approach was used. This requires modification of the objective function given by 

(7.20). A penalty term was added to the objective function which penalizes releases that 

exceed those determined by the Agreed Curve whenever the lake levels fall below 10.5 m. 

Since the objective of optimisation is to maximise the hydropower production, the model 

tends to release the maximum possible amount of water whenever it is feasible to do so. For 

example, at lake levels above 11.0 m it is possible to generate full power without violating 

the lower bound on the lake levels. At levels lower than 11.0 m, the model still tends to 

produce maximum amount of power until the lake levels go down the historical minimum 

value. The reason for these high release even at low lake levels is that the power function is 

independent of lake elevation. It is therefore important to derive an appropriate penalty 

function which gives the maximum value of the objective function when the release 

generated by the optimization model coincides with that determined by the Agreed Curve. 

The modified objective function may be expressed as: 

Maximise J= 	(J1  —J2) 	
(7.21) 

where n is the number of lakes in the system, N is the length of operating horizon, and 
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Ik(r—rai,ow ) 	 if r> 

J2 	—r) 	if r< 

if r=r,,OWJ 

(7.22) 

where Tallow  is the release allowed by the Agreed Curve for the given lake level, k and p are 

penalty multipliers which determines the amount of penalty to be imposed when the release 

generated by the optimization model exceed those allowed by the Agreed Curve. The system 

objectives like the requirements that the lake levels and releases should remain within their 

historically observed ranges are incorporated into the model through the constraints 

described by (7.18) and (7.19). 

7.7.2.1 The DP Approach 

The DP algorithm is applied to the operation of Lake Victoria using a 12 month planning 

horizon. To apply DP to the problem formulated above, the storage of Lake Victoria must be 

discretized into a finite number of states. The elevation data for the lake is available in 

increments of 0.1 m. For each lake elevation, the corresponding value of the state variable is 

also available. By interpolating between the given data, the storage and elevations of Lake 

Victoria were discretized into 2000 levels each. This gives an incremental storage of 0.17 

BCM which is equivalent to a release of 65.6 m3/s over a monthly time step. The levels are 

discretized between 9.113 m and 14.113 m in increments of 2.5 mm. It is necessary to use a 

large number of discretizations because Lake Victoria has huge storage capacity (3121 

BCM) and a coarser discretization than the one adopted here might lead to considerably 

inaccurate results. The computed loss in storage also becomes seriously in error if the 

discretization is too coarse. A finer discretization than that adopted here would increase the 

computational burden of optimising the recursive equation. 

The starting lake levels are taken as 11.4 m for Victoria, 11.74 m for Kyoga, and 11.0 m for 

Albert. These values have been obtained from the historic water level records for the lakes. 

The respective datum are 1122.887 m, 1020.61 m, and 609.82 m. The upper and lower 

bounds on releases and levels are set equal to the historically observed maximum and 

minimum values. For each time step of the operating horizon, the Thomas-Fiering model is 

used to generate a forecast of the sequence of NBS to Lake Victoria for the next 12 time 

steps. The basis of these forecasts is the 97 year (1899-1995) long monthly net basin supply 
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record. Using the forecast sequence of next 12 months NBS, the DP model is used to 

determine the optimal release sequence that maximises the power production over the 

operating horizon. From these 12 time step optimal release sequences, only the release of 

first time step is actually implemented. The system state is then updated using the actual 

NBS for the current time step (Figure 7.27). The procedure is repeated for every time step of 

the control horizon (12x99= 1188 time steps) and as a result optimal reservoir levels and 

releases for the lake are obtained for each month of the operating horizon. The optimum 

releases obtained from the DP model are then used as an input to Lake Kyoga. Deterministic 

simulation is then carried out for Lake Kyoga and Lake Albert. The total execution time for 

completing a DP run on a Pentium based 586 PC was around 115 minutes. 

7.7.2.2 The GA Approach 

The chromosome length in terms of the number of genes required to represent a solution to 

the problem is 12 (1 lake and 12 time steps) as only the operation of Lake Victoria is 

optimised. The same GA code as used for the problems described in chapters 4 and 6 has 

been used for this case study. Tournament selection, uniform crossover, modified uniform 

mutation and elitism has been used. A probability of crossover of 0.7, and a mutation 

probability of 0.083 which corresponds to 1 mutation per chromosome has been used. With 

a population size of 100, the GA model was run for 200 generations using the same 

objective function as that used for the DP model. 

The initial lake levels and other data are the same as used for the DP model. Discretization 

of storage space is not required in the GA approach. The procedure for real time operation 

using GA is similar to the one used for the DP approach. A planning horizon of 12 months 

was used. The whole GA procedure is invoked at each time step of the control horizon. At 

the beginning of the run, the forecasts of NBS to Lake Victoria for the next 12 months is 

made using the Thomas-Fiering model. An optimal (or a near optimal) solution in the form 

of a release policy is obtained for these sequences of NBS by running the GA model for a 

predetermined number of generations. The optimal release of only the first time step is 

implemented and the state of the system is updated using the actual NBS to the system. The 

whole GA procedure is restarted with new initial levels, storages and a forecast NBS 

sequence for the next 12 months. The procedure cOntinues until every time step of the 
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control horizon is covered. The execution time for the GA model was around 155 minutes 

which is longer than for the DP model. 

Although discretization of releases is not required, it was considered advantageous to make 

releases from the lake in increments of 50 m3/s. This required slight modification to the 

initialisation function of the GA module. Instead of allocating continuous values, the genes 

were allocated values in increments of 50 m3/s. This was achieved by using a random 

number function that returned releases in multiples of 50 cumecs. The rationale behind 

using discrete values of releases is that it speeds up the GA procedure. Also, it is impractical 

to make releases with high degree of precision. The modified mutation operator was used to 

change the value of the gene selected for mutation by a fixed amount of 50 m3/s. This 

change could be either positive or negative depending upon the outcome of the random 

number generator. 

7.7.2.3 Evaluation of model runs 

The lake levels produced under real time control by the GA and the DP models are shown in 

Figure 7.28. It is clear from the figure that the levels produced by the GA and the DP model 

match each other closely. There is, however, some deviation in levels from their historical 

range, and the minimum level is lower than the historically observed minimum levels by 

about 0.2 in . This occurs because if the NBS is negative, the lake levels may fall below a 

predefined lower bound when the updating of storage with actual NBS takes place. 
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Figure 7.29 shows the power sequences produced by the GA and the DP models. There is 

large variability in power production with either of the models. Both models tend to 

generate full power whenever there is enough storage to do so thereby forcing the lake to 

lower levels more often. This results in fluctuating power production as shown in Figure 

7.29. With single zone regulation, a constant release of 660.0 m 3/s is made when the lake 

levels are between 10.5 m and 12.0 m. Full power is produced with single zone regulation 

only when the lake levels are higher than 12.96 m. On the other hand, the optimisation 

models (both GA and DP) tend to release maximum possible amounts even when the lake 

levels are lower than 11.0 m. The average power production with the DP model is 147.5 

MW which shows that there is an improvement over the single zone operation. On the other 

hand, the energy which will be available 95% of the time is only 64.7 MW which is 

significantly lower than with the single zone regulation. With the GA model, the average 

power production is 146.2 MW, and the reliable power output is 64.1 MW. The reliability of 

power production is low with both the models because of the extreme variability in power 

generation. In practice, this type of operation would not be satisfactory due to the 

requirements of producing power at reliable levels. 
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Figure 7.29 Power production at Owen Falls, single lake system 

7.7.3 The Three Lake System 

In this section, the combined operation of the Equatorial Lakes system, assuming that 

operational controls exist at the outflows from Lake Kyoga and Lake Albert, is considered. 

Currently, there are no controls at these lakes. In addition to maximising the power 

production at Owen Falls dam, the operation of Lake Kyoga and Lake Albert is considered. 
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The objective of operation for these lakes is to maintain the levels in the vicinity of their 

mean historical values. Georgakakos (1996) used the following function for achieving this 

aim. The same function has been used in this study. 

.i3 =IHx(t)_H2+IHA(t)_H2 
AHK )LM-IA) 

(7.23) 

where Hk  (t) is the level in Lake Kyoga, H is the historical mean level, and LVTI k  is the 

range of the historical levels. The lake levels depend upon the storage which is a function of 

NBS and releases. Therefore, the model maintains the lakes levels close to a given target by 

controlling the releases made from the Lake. 

The overall objective in this case study is to maximise the power production at Owen falls 

dam and to maintain the levels in Kyoga and Albert as close to the historical mean levels as 

possible. From the historic data, the long term mean levels for Lake Kyoga and Lake Albert 

are 11.495 m 10.941 m respectively. Mathematically, the objective function J for the system 

can be expressed as 

Maximise J=> 	(J —J2   —J) 
	 (7.24) 

subject to the constraints described by equations (7.18) and (7.19). The functions J1  and J2  

are given by (7.20) and (7.22). In (7.24), n is 3 as all the three lakes are included in the 

model, and Nis 12. 

7.7.3.1 The DDDP Approach 

DP cannot be used to optimise the combined operation of the three lake system as it would 

result in huge memory and computing requirements. DDDP can, however, be used to 

optimise the operation of the system. The application of DDDP requires discretization of 

storage space for each of the lakes. The storage of Lake Victoria was discretized into 2000 

levels. There are 80 and 91 data points for Lake Kyoga and Lake Albert respectively giving 

the levels in increments of 0.1 m. The corresponding values of the state variables are also 

available. The storage of Lake Kyoga and Albert were discretized in 80 and 91 levels 

respectively. To start the DDDP procedure, an initial feasible solution is required. The 
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determination of such a solution is a cumbersome task because of the presence of negative 

NBSs in the historical record. For cases where the NBS are non-negative values, releases 

can be set equal to the NBSs to obtain an initial trial policy. However, for the Equatorial 

Lakes system the initial release policy was obtained by setting the releases to NBS if the 

NBS is positive. The releases are set equal to their lower bounds if the NBS is negative. 

Starting with an initial solution, the DDDP procedure determines an improved trajectory 

within the specified corridor. One state below and one state above the trial state trajectory is 

used to form a corridor. The improved trajectory obtained in the previous iteration is 

adopted as the new trajectory to form a new corridor. The procedure is repeated for a 

number of iterations until there is no further improvement in the value of the objective 

function. At each stage of control horizon, the DDDP procedure gives the optimal lake 

levels, releases and power production at Lake Victoria. These sequences are then analysed 

to develop statistics of system performance. The real time operation procedure is similar to 

that followed for the single lake system. The forecasts of NBS to Lake Victoria for the next 

12 time steps were made using the Thomas-Fienng model. For Lake Albert and Lake Kyoga, 

perfect forecasts have been assumed. The execution time for the DDDP model was around 

400 minutes. 

7.7.3.2 The GA approach 

The GA was set up with tournament selection, elitism, uniform crossover and modified 

uniform mutation. For the Equatorial Lakes system, the chromosome representing the 

solution consists of 36 genes since there are 3 lakes in the system and the optimisation is 

carried out for 12 time steps. Since releases are the decision variables of the problem, each 

gene represents a release made from the lakes. For each time step of the historical record, 

the GA was run for 500 generations using a crossover probability of 0.7 and a mutation 

probability of 0.028 (1/36). A population size of 100 was used. After each run of the GA, 

the optimal levels in each lake, releases made from each lake, and power produced at 

different hydropower stations are recorded. The recorded data is then analysed to determine 

values of different parameters at various exceedence probabilities. The execution time for 

the GA model was 310 minutes which is less than for the DP model which required 400 

minutes to execute. 
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7.7.3.3 Evaluation of model runs 

The impact of real time operation of the three lake system on the levels in Lake Victoria is 

presented in Figure 7.30. The level sequences for Kyoga and Albert are shown in Figure 

7.31, and Figure 7.32. It can be seen from Figure 7.30 that there is a good agreement 

between the levels produced at Lake Victoria by both the models. The sequences for Lake 

Kyoga and Albert clearly indicate that both the GA and the DDDP models achieve their aim 

of maintaining levels in the vicinity of mean historical levels. It can be observed from these 

sequences that there are periods in the control horizon when it is not possible to achieve 

levels close to the mean levels. This is largely due to the occurrence of very low or very high 

NBS in these periods. There is, however, a good correspondence between the GA and the 

DDDP results. 

Figure 7.33 shows the power production at Owen Falls dam. Again, there is large fluctuation 

in power production similar to the one experienced for the single lake system. The 

fluctuating power production is not desirable from the operator's point of view as the 

contractual obligations generally require some minimum amount of power to be supplied 

each month. The situation where large amounts are generated during one month and less 

than the contracted amount in the next month needs to be avoided. With the DDDP model, 

the average power production is 146.9 MW and at 95% exceedence probability it is 64.5 

MW. The corresponding values with the GA model are 146.5 MW and 63.8 MW. There is 

an improvement in the average power production with real time operation when compared to 

single zone regulation and the Agreed Curve. However, for the reasons mentioned in the 

previous section, the power production at higher reliability levels is low. 

The case studies discussed in this section and the previous section indicate that with real-

time operation it is possible to increase the overall energy generation from Lake Victoria but 

not the reliability of power production which is highly important for Lake Victoria. Real 

time operation should allow planning and forecasts of power production over a required 

duration of time. This is particularly important during periods of high lake levels. 
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Figure 7.31 Lake Kyoga levels, three lake system 
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Figure 7.32 Lake Albert levels, three lake system 

168 



Application of GA to the Equatorial Lake System 

300 

250 

200 

0 

150 

100 

50 
1899 	1909 	1919 	1929 	1939 	1949 	1959 	1969 	1979 	1989 	1999 

Year 

Figure 7.33 Power production at Owen Falls, three lake system 

7.8 Power Forecasting Approach 

This section presents a power forecasting approach (PFA) based on the GA for Lake 

Victoria. Most of the power systems are interconnected by hydro-thermal power systems. 

Although thermal plants are costly to operate, they are often installed in a relatively short 

time to fulfill a rapidly increasing demand. A disadvantage with thermal plants is that they 

cannot vary their generation from hour to hour with the flexibility of hydropower plants. 

Hydropower plants are much more responsive, and can be effectively used in supplying peak 

power as the generation rates can be varied rapidly. The choice of hydropower to generate 

peak power carries a higher economic value of water used. This makes optimal operation of 

any reservoir or lake in a hydro-thermal system a complex process because an operating 

decision in a given stage has a considerable effect on the consequences in the future. If 

higher amounts of hydropower are generated during the current stage, and low NBS occurs 

in the future, it may be necessary to use expensive thermal power in the future. On the other 

hand, if the lake levels are kept high through a more intensive use of thermal generation and 

high NBS occurs, there may be spillage in the system and an unnecessary waste of potential 

hydropower. 

Studies of hydropower system operation typically involve determining policies to maximise 

total energy production. However, hydropower benefits accrue from capacity as well as 

energy benefits. Capacity benefits are based on the cost to construct thermal plants to 

replace reliable hydropower. The value of energy benefits is the fuel cost of replaèing 

hydropower with thermal power. The objective of maximising the total energy production is 
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a valid criteria in hydro-thermal systems with high installed thermal capacity. In systems 

where hydropower is a crucial part of the power infrastructure accounting for a high 

proportion of total installed capacity, concepts such as capacity benefits need to be taken 

into account in formulating management policies. In such systems, the reliability with which 

hydropower is produced is of utmost importance. At present, over 90% of the installed 

capacity in Uganda is from hydropower production at Owen Falls. Major future investments 

are also in hydropower installations on River Nile. With these new power projects, the 

potential to sell power internationally will be increased. Internationally sold power may be 

used as a substitute for existing thermal stations but planning of thermal power generation 

from these existing plants would need a high degree of reliability in hydropower production 

forecasts. It is therefore not sufficient just to maximise the hydropower production which 

may typically be the case in most hydrosystems. 

The objective of regulating Lake Victoria must be to increase the reliability of power 

production. Any optimization procedure with the objective of maximising the total power 

production over a planning horizon would normally result in fluctuating power. Due to the 

manner in which the reliability of power production is calculated statistically, fluctating 

power production is bound to lead to low reliability similar to or even worse than that 

produced under Agreed Curve operation. Higher reliability in power production can be 

obtained if constant power is generated at every time step of the optimization horizon. The 

objective of generating constant power at every time step of the optimization horizon can 

only be achieved if the target power production is specified. However, determination of such 

a target is a highly complicated task. Moreover, it is a computationally complex task to 

incorporate capacity benefits in a DP formulation. To maximise reliable power output using 

a DP model, a series of optimisation runs with varying power targets would be required at 

every stage of the optimisation horizon. This would result in huge computational complexity 

and the benefits of optimisation might be offset by the computational costs. The traditional 

approach of determining reliable capacity of a hydropower system as described by Labadie 

et al. (1987) has been to use simulation models to determine the reliable power capacity of 

hydrosystems. The same approach has been outlined in the preceding sections of this 

chapter. The simulated output for a given operating policy is analysed to determine the 

reliable power at different risk levels. The uncertainty measure of the reliable power 

capacity can be obtained by repeating the procedure for different synthetic sequences. 
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It is important to be able to forecast the availability of minimum power that can be 

continuously generated from Lake Victoria for different durations of time particularly due to 

low installed thermal capacity in Uganda. In this research, a new alternative methodology 

for forecasting constant reliable power that can be produced over different durations of time 

such as 3 months, 6 months, 12 months and 24 months for a given forecast of NBS 

sequences, is presented. With these forecasts, it would be possible to satisfy more often the 

contractual obligations relating to supply of minimum reliable power. Also, it would be 

possible to plan the sale of any power produced in excess of reliable contracted power. 

Moreover, if the forecasts of power generation are such that reliable power is likely to be 

available for a particular duration, then shutting down the thermal power plant could be 

considered for that duration. This mode of operation would therefore allow savings in 

financial terms as well as provide an opportunity for maintenance and repair of thermal 

power plants. 

The GA approach that would allow forecasts of reliable power over different duration of 

time is remarkably simple. A chromosome consisting of four genes is constructed with each 

gene representing a constant release that can be guaranteed for specified durations of time. 

A typical chromosome is shown in Figure 7.34, where G 1, G2, G3, G4 represent the releases 

and Gi > G2 > G3 > G4. The first gene represents the constant release that can be 

guaranteed for the next 3 months while the second, third and fourth genes represent the 

constant releases that can be guaranteed for 6, 12, and 24 months respectively. A sketch 

showing the formulation is presented in Figure 7.35. 

GI G2 G3 G4 

Figure 7.34 A typical chromosome used in PFA 

171 



Application of GA to the Equatorial Lake System 

Cl) 

(I) 

G) 

GI 

G3 

G4 

3 	6 	12 	 24 

Duration (months) 
Figure 7.35 Formulation of the problem, PFA 

The GA procedure begins with a random initialisation of a population of 100 chromosomes 

comprising of four genes each. The genes are assigned values between the lower and the 

upper bounds of releases. In the initialisation process, a random number generator that 

returned releases in fixed increments rather than continuous values was used. This speeds up 

the GA without incurring any loss in the accuracy of the solution obtained. A crossover 

probability of 0.7 and a mutation probability of 0.25 was used. The performance of the GA 

formulation described earlier was evaluated on the basis of a design NBS sequence with a 

90% probability of exceedence. This sequence was derived by carrying out critical period 

analysis on a synthetic sequence generated by the Thomas-Fiering model, and is shown in 

Figure 7.36. For each month in the simulation horizon, a forecast based on design NBS 

sequence is made for the next 24 months. The GA process was run for 100 generations, and 

at the end of each run an optimal or a near optimal sequence of releases that can be 

guaranteed for 3, 6, 12, and 24 months is obtained. From these sequences, only the first 

three month's releases are actually implemented. The state of the lake is updated with actual 

NBSs because the forecast NBS usually deviate from the actual NBS. The starting level for 

the next control-simulation time step is determined from the results of the previous time 

step. After the first 3 months releases have been implemented, the model is run again to 

derive a new release policy for the next 24 months. This new release policy is determined 

taking into account the releases that have been guaranteed for different durations during the 

previous time step of the model run. This control-simulation process is repeated for the 

entire historical record in steps of 3 months. The total execution time for the GA model was 

40 minutes. 
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The reliability with which the power forecasts are met is also important. As the model is run 

in steps of three months, the releases guaranteed for the next three months during the current 

stage are implemented in the current stage as well as in the next two stages. This implies 

that the 3 month's forecasts of power production are met with 100% reliability. The model 

has an imbedded constraint which require that the forecasts of 3 month's releases made in 

the next run of the model should not be less than the release that have already been 

guaranteed for the next 6 months during the current run of the model. In this way, the model 

has a constraint such that the power forecasts for upto next 12 months should not be less 

than that already guaranteed during the earlier model runs. However, no such constraints 

could be set up on 24 month's forecasts. Setting up such a constraint on 24 month's forecast 

would imply that these forecasts could not be decreased in subsequent model runs; they 

could only be increased which is practically not possible. 
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Figure 7.36 Design NBS sequence for Lake Victoria 

The PFA described in the preceding sections was also evaluated using the perfect forecasts 

which were based on the historical NBS. These two control-simulation experiments resulted 

in sequences of lake levels, releases, power production in each time step of the historical 

record. A statistical analysis was then carried out on these sequences to evaluate the 

performance of the system. Figure 7.37 presents the comparison between the historical 

levels and the levels produced by the GA model using the critical NBS sequence at 90% 

probability of exceedence. The levels follow a pattern similar to one observed under the 

Agreed Curve operation particularly prior to the periods of high lake levels. During periods 

of high lake levels in the historic record, the model produces high amounts of power and 

consequently the lake levels go down as seen in Figure 7.37. The minimum level was 10.0 m 
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which is 0.22m lower than the historically observed minimum level. The water levels for 

Lake Kyoga and Lake Albert are shown in Figure 7.38 and Figure 7.39 respectively. There 

is no significant impact on the levels in these lakes. 
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Figure 739 Lake Albert levels, power forecasting approach 

The impact of regulation considered in this section on Lake Victoria, discharges is shown in 

Figure 7.40. There is a distinct impact on the discharges. During periods of high lake levels, 

higher discharges are maintained thus giving stable power production for longer periods. 

However, there is large variability in the discharges when compared to the single zone 

regulation except during periods of high levels. The flow duration characteristics from the 

Owen Falls for the 3 months forecasts are presented in Figure 7.41. 
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Figure 7.40 Lake Victoria discharges, power forecasting approach 
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Figure 7.41 Owen Falls flow duration curve, 3 months forecasts 

The power production from the Owen Falls dam is shown in Figure 7.42. There is large 

variability in power production with the pattern being very similar to the one observed for 

the discharges. It can be seen from Figure 7.42 that the model makes use of the high lake 

levels by maintaining higher constant power for longer period. 
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Table 7.5 gives the summary of power production at Owen Falls and other installations 

downstream of Owen Falls. The average power production increased from 143.9 MW under 

single zone regulation to 148.2 MW under PFA. The discharge that can be met with 95% 

annual reliability is 460 m3/s and the corresponding reliable power output is 78.4 MW which 

is significantly higher than is possible under the Agreed Curve operation where the reliable 

power production was 72.5 MW. The increase in reliable power production is not to the 
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same extent as that obtained under single zone or the dual zone regulation but the main 

advantage of the type of regulation considered here is that allows forecasting of power 

production at different planning horizons. The power duration curves for 3 months, 6 

months, and 12 months forecasts are shown in Figure 7.43, Figure 7.44, and Figure 7.45 

respectively. 

Table 7.5 Summary of power production in MW, PFA 

Installation 	Power Forecasting Approach 	 Single Zone 

Critical NBS Series 	Perfect Forecasts 	Historical NBS 

Average 	95% 	Average 	95% 	Average 	95% 

Owen Falls 148.2 78.4 148.7 78.4 143.9 112.5 

Bujagala 122.43 69.4 125.5 69.4 121.2 98.0 

Kalagala 208.11 114.9 209.9 114.8 204.3 163.1 

Kamdini 126.1 81.2 126.6 81.2 129.3 90.0 

Ayago 223.1 166.9 223.1 166.9 225.9 184.8 

Murchison 313.3 279.1 313.3 279.1 314.5 308.4 

250 

225 

200 

175 

150 

a. 125 

100 

75 

50 

0 	. 	 .,', 	i-, ', 	vu 	,v 	0V 	 WU 	 IUU 

Percentage of tme exceeded 

Figure 7.43 Owen Falls power duration curve, 3 month forecasts 
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Figure 7.44 Owen Falls power duration curve, 6 month forecasts 
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Figure 7.45 Owen Falls power duration curve, 12 month forecasts 

While not providing capacity benefits, the mode of operation described in this section can 

offer higher overall returns. With the forecasts of potential power production available, it 

would be possible to plan the sale of surplus hydropower as a substitute of thermal power. 

To investigate this, a selling price of 0.05 US $/KW-h for the contracted power was 

assumed. The energy benefits from selling the surplus hydropower cannot be treated in the 

same way as the capacity benefits that derive from reliable power production. Therefore, a 

power tariff structure was also assumed. The return from the power that can be guaranteed 

for the next 3 months was assumed to be only 60% of that obtained from selling the reliable 

power. Similarly, the returns for the power that can be guaranteed for the next 6 months and 

next 12 months were assumed to be 75% and 90% of that obtained from the reliable power 
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respectively. An economic analysis was then carried out to determine the total returns that 

can be obtained from the system under different operating procedures. 

Based upon the power tariff structure described above, the total economic return from the 

power production during 99 years of operation under single zone regulation was 4791.083 

million US $. This value of economic return was obtained considering that with single zone 

regulation there are no extra benefits available for producing power in excess of the 

contracted power. However, with the potential power forecasting approach, it would be 

possible to sell the surplus power. The total economic return using 3 months power forecasts 

was 5196.059 million US $, an increase of around 404.976 million US $ over the single 

zone operation. The sensitivity of this increase in benefits to the assumed power tariff 

structure was also investigated. It was found that a long as the power guaranteed for the next 

months could be sold at 47% or more of the price of the reliable power, there will be an 

increase in the benefits obtained with the power forecasting approach. The summary of 

economic analysis is presented in Table 7.6. 

Table 7.6 Summary of economic benefits in million US $ 

Forecast Duration Critical NBS Series - - Perfect Forecasts 

3 months 	 5196.059 	 5210.985 

6 months 	 5812.744 	 5830.203 

12 months 	 6121.050 	 6139.773 

The benefits from operation of Lake Victoria could be further enhanced using a combination 

of PFA and single zone regulation. The Lake could be operated according to single zone 

when the levels are below a particular threshold and according to PFA if the levels are 

above the threshold. Determination of the threshold would require experimentation, and 

values between 11.0 and 12.0 m should be considered. With this type of operation, the 

reliability of power production may be improved while capitalising on higher lake levels 

whenever they do occur. 

7.9 Conclusions 

In this chapter, the impact of different operating procedures on the levels, discharges and 

power production from the Equatorial Lakes was considered. With improved regulation 
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schemes like the single zone and the dual zone regulation, significant increase in the reliable 

power production from Owen Falls was obtained. All subsequent hydropower projects 

downstream of Lake Victoria would also benefit from regulation. Both the single zone 

regulation and dual zone regulation have a significant impact on discharges in the section of 

the River Nile between Lake Victoria and Lake Kyoga. The extremes of the Lake Victoria 

levels and discharges simulated with these regulation schemes are within the range of those 

experienced under Agreed Curve operation. The regulation has very little impact on the 

levels and discharges from Lake Kyoga and Lake Albert. The performance of single zone 

regulation with a 990 year long synthetically generated NBS sequences was also highly 

satisfactory. 

The real time operation of Equatorial Lakes system was also considered. Models based on 

the DDDP and the GA approach were developed for the single lake system and the three 

lake system. The results obtained using the GA approach were similar to those obtained by 

the DDDP approach which demonstrates further the robustness of the GA approach for real 

time operation of multi reservoir systems. However, the reliability of power production is 

low with both the GA and the DDDP models. This is largely due to the extreme variability 

in power production experienced with real time models having the objective of maximising 

the overall power production. Such an operation would not be suitable for Lake Victoria 

where reliability of power production is very important due to low installed thermal 

capacity. 

A GA model for forecasting reliable power that can be produced over different durations of 

time has also been developed. The 3 month's forecasts of power production are met with 

100% reliability, and there are constraints in the model which require that the power 

produced in any month should not be less than that already forecast for that particular 

month. The PFA approach resulted in an increase in the reliable power over that possible 

with the historical operation but not to the same extent as with the single zone operation. 

The main advantage of this approach, however, is that the sale of surplus power is possible. 

The results of the economic analysis clearly indicated that if reliability is less of a 

consideration because of higher installed thermal capacity, the power forecasting approach 

will provide better returns than either the Agreed Curve or the single zone regulation. 

Depending upon the forecasts of potential power production, decisions can be made to cease 

the generation of expensive thermal power. This would also allow maintenance and repair of 
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thennal power plants particularly during the period of high lake levels. It may be concluded 

that the power forecasting approach would also make use of the higher flows when they are 

available as they have been over the past 35 years. Also, it would be possible to plan the 

operation of thermal plants if the power forecasts from the hydropower plants are available. 

Furthermore, the GA formulation developed herein lends itself to operational applications 

without much modification. 
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8. CONCLUSION 

8.1 Introduction 

The research carried out in this thesis discusses the implementation of GAs for the 

optimisation of multi reservoir systems. The application of GAs to a number of problems 

has been presented and their effectiveness in identifying optimal or near optimal solutions 

has been analysed. Wherever possible, the GA performance has been evaluated against other 

techniques. This chapter summarises the research reported in this thesis, outlining the 

limitations of the research and providing recommendations for future research. 

Following this introduction, section 8.2 presents the achievements of the research. Section 

8.3 describes the limitations and section 8.4 presents a few pointers towards the future work. 

8.2 Achievement of the Thesis 

The research presented in this thesis is made up of three distinct parts. The first part of the 

thesis presents the development of a GA for water resource problems and investigates its 

performance on a number of problems with known solutions. These applications offered the 

opportunity to verify the results produced by the GA. Secondly, the approach was applied in 

the optimisation of control curves for a multi reservoir system in Indonesia. Finally, 

application of the GA technique in investigating different operating procedures for the 

Equatorial Lakes system in Africa is described. Real time operation of the system was also 

considered, and a method of reliable power forecasting developed with the GA. Major 

achievements of the thesis highlighting the contributions at each stage are presented below. 

Chapter 2 of the thesis, presents a review of optimisation techniques for reservoir systems 

operations, with particular emphasis on techniques that aimed at alleviating the 

dimensionality problem associated with the DP approach. Chapter 3 of the thesis presents an 

introduction to GA technique, and a brief review of GA applications to problems from 

different disciplines of civil engineering. The GA jargon is discussed in detail and the 

procedure for formulating a problem for solution by GA is outlined in its general form. This 

could serve as a useful guideline in the implementation of GAs to optimisation problems 

from diverse fields. 
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In Chapter 4 of the thesis, an evaluation of several alternative formulations of the GA for the 

well known four reservoir problem is presented. A sensitivity analysis of GA performance to 

parameters such as mutation probability, crossover probability, and population size is also 

carried out. Different representation schemes and reproduction operators are also 

investigated. The application to a non-linear four reservoir problem, and to a problem with 

extended time horizons has further demonstrated the robustness of the approach. In all cases, 

the GA was able to identify near optimal solutions. Some major achievements from this 

chapter are summarised here. 

A procedure for formulation and implementation of GAs to multi reservoir optimisation 

problems has been developed. 

A generic GA model for the optimisation of reservoir systems has been developed which 

is transportable with minimal changes to any reservoir system. 

• Guidelines have been laid for determination of GA parameters that provide the best 

performance. 

• A best set of reproduction operators for a GA has been identified. 

• The effectiveness of real-value representation over binary and Gray representation has 

been demonstrated. 

A complex ten reservoir problem has been successfully solved. 

• Application to a four reservoir problem with extended time horizons has also been 

demonstrated. 

In Chapter 5 of the thesis, the characteristics of the Brantas Basin and the essential features 

of the simulation model of the Basin are described. Chapter 6 presents the application of the 

GA approach in the optimisation of control curves for the existing development situation in 

the basin, and also for two future water resource development scenarios. A comparison of 

the GA results with those produced by DDDP is also presented. For each case considered in 

this chapter, the GA results are very close to the optimum and the technique appears to be 

robust. Contrary to methods based on DP, discretization of state variables is not required. 

Further, there is no requirement for trial state trajectories to initiate the search using a GA. 
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The computational complexity for a GA increases at a slower rate than that for the DP based 

methods. Some major contributions from this chapter are listed below. 

• Control curves which can be used in the actual operation of the reservoirs have been 

developed for the existing development situation in the basin, and also for two future 

water resource development scenarios in the basin. 

• Rule curves with improved benefits in terms of irrigation production from the Brantas 

delta have been developed. 

• It has been demonstrated that GAs have considerable flexibility in application to 

problems with complex objective functions. 

• GAs generate a number of alternative solutions close to the optimum solution providing 

more choice to the operator of the reservoir system. 

In chapter 7 of this thesis, a number of regulation plans for Lake Victoria are considered 

with the objective of improving the reliability of power production. The application of the 

GA approach in the real time operation of the Equatorial Lakes system is also investigated. 

A power production forecasting approach using the GA has also been developed that allows 

power production to be forecast over different durations of time. Such an operation could 

not have been achieved using DP. The approach was found to be economically superior to 

the single zone regulation under the assumption that reliability is less of a consideration 

because of high installed thermal capacity. The major conclusions from this chapter are 

summarised here. 

The single zone and the dual zone regulation provide around 50% increase in the 

reliability of power production from Lake Victoria over the current operation. 

• Construction of thermal power plants can be avoided in the short to medium term if Lake 

Victoria is regulated according to single zone or dual zone regulation. 

• With single zone regulation, an increase of 30% in the reliable power, which amounts to 

194 MW, can be obtained if all the subsequent hydropower projects downstream of 

Owen Falls are implemented. 

184 



Conclusion 

• Neither the single zone nor the power forecasting approach require sophisticated 

operational controls and could be easily implemented. 

• A combination of single zone and power forecasting approach could lead to enhanced 

benefits. 

In the context of reservoir optimisation, GAs have some distinct practical advantages over 

the traditional algorithms. Complex and non-differentiable objective functions that 

frequently occur in reservoir operation problems introduce no difficulties as a GA requires 

objective function or fitness information only. Discretization is a major cause of 

dimensionality problem associated with DP based methods but in a GA, state and decision 

space need not be discretized. Finally, implementation of GA is straightforward due to its 

simplicity and ease of interfacing. 

8.3 Limitations of the Research 

This section presents the limitations of the research presented in this thesis. 

GAs are a heuristic search technique and are not theoretically guaranteed to find the optimal 

solution to a given problem. This is not particularly important for complex real world 

reservoir systems as these are already being managed with operating policies that are based 

upon experience or are derived by some approximate optimisation technique. Although GAs 

are not guaranteed to identify the exact optimum, they maintain a multipoint perspective on 

many regions of the solution space simultaneously and thus have a high probability of 

locating the true optimum. 

The GA approach requires the use of penalty functions to satisfy the constraints of the 

problem. Proper settings of penalty parameters is vital to achieve an efficient performance 

from a GA. Too high penalty parameters are likely to eliminate potentially good solutions at 

an early stage of the run whereas if the penalty parameters are low, bad solutions may 

propagate in subsequent generations. The problem of constraint satisfaction can be severe if 

very long chromosomes are considered. The use of appropriate penalty functions can 

overcome the problem but some experimentation might be required. The problem of 

constraint handling is, however, not limited to the GA approach; other approaches such as 

optimal control theory also face the same problem. While DDDP can easily handle the 
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constraints on state and decision variables the method is not efficient for large systems in 

terms of execution time and memory requirements. On the other hand optimal control theory 

approaches are highly efficient in terms of execution times but their application is limited to 

problems with continuous and differentiable objective functions. 

The other limitation of the GA approach is that they are controlled by a number of 

parameters and their success largely depends upon the proper setting of these parameters. 

The problem is that no single set of parameter values will result in an effective and efficient 

search in all cases. For this reason, a sensitivity analysis to GA parameters has been carried 

out in this thesis which clearly indicates that the mutation probability affects the 

performance of a GA. The results of sensitivity analysis with respect to crossover 

probability are stable and a value of around 0.7 has been found to be most suitable. The 

population size also affects the GA performance but not to the same extent as the mutation 

probability. Hence, a correct choice of mutation probability is important, and some care has 

to be exercised in selecting the values of mutation probability. The guidelines laid down in 

this thesis suggests that a mutation probability corresponding to one mutation per 

chromosome on an average may be optimal. The initial tests of GA performance should be 

carried out with values of mutation probability corresponding to around one mutation per 

chromosome. 

8.4 Recommendations for Further Research 

To conclude the thesis, the following recommendations are made for further research which 

could lead to enhanced optimisation performance. 

8.4.1 Hybrid GAs 

The first suggested area in which the research can be undertaken follows from the limitation 

of the GA in locating optimal solutions. A hybrid search strategy that combines GA with a 

local search method could produce more efficient search algorithms. The basic GA is 

effective in identifying solutions close to the optimum because it performs a global search 

instead of a localised one. The solution achieved by GA could then be improved using a 

local search technique. For example, simulated annealing could be used to refine the 

solutions already found by a GA. Franchini (1996) used sequential quadratic programming 

as a local search method to improve the solutions produced by the GA. Applications of GA 
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in combination with fuzzy logic have been described by Lee and Takagi (1993) and Soh and 

Yang (1996). Many applications of hybrid GAs have been reported by Davis (1991). 

8.4.2 Improved GAs 

The performance of classical GAs can be improved through the introduction of advanced 

operators. Numerous versions of selection schemes, crossover and mutation operators are 

being devised by the researchers in the pursuit of further improving the performance of GAs 

(Michalewicz 1992; Dasgupta and Michalewicz 1997). One of the possible directions for 

research is investigation of the effect of more sophisticated reproduction operators on the 

performance of GAs. In this thesis, GAs with constant population size are considered. It 

would be interesting to implement and analyse the performance of GAs in which the 

population size varies with the evolution process. 

8.4.3 Parallelisation 

One of the major advantages of GAs is their ability to be parallelised. Natural evolution in 

itself is a highly parallel process as it deals with a population of individuals and not with a 

particular individual. Parallel GAs work by distributing the task of a basic GA on different 

processors. Since each chromosome can be evaluated independently of the other, significant 

savings in execution time could be achieved. With parallel GAs it is possible to use higher 

population sizes, reduce the computing time, and thus improve the overall performance. The 

parallelisation process cannot be used for techniques such as LP, DP or DDDP because of 

the manner in which these methods work. On the other hand, GAs are fairly straightforward 

to implement on parallel machines. The speedup attainable by solving GAs on parallel 

computers could be significant for problems where the time required to evaluate each 

solution is high. 
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Appendices 

A. Probability Distribution of Inflows to Karangkates 

The following figures show the log-normal distribution fitted to the series of 10-day inflows 

to Karangkates reservoir. It can be observed that the log-normal distribution fits the data 

well for most of the durations. The values shown on the y axis are the logarithms of inflows 

in different durations. 
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B. Genetic Algorithm Computer Code 

This appendix contains the source code for the program used to solve the four reservoir 

problem using a genetic algorithm. The code is developed using Microsoft Visual C++. It is 

written in a fairly generic form, and can be used to solve different multi reservoir 

optimisation problems with changes needed only to the files containing the data and the 

objective function of the problem. 

The source code is contained in 5 files. An outline of these files is provided below. 

File 1: MULRESGA.CPP 

This file comprises a main program and a number of functions required to implement the 

GA procedure. The details of these functions are documented in the code itself. This file 

contains functions to implement different selection schemes such as proportional selection, 

tournament selection and rank based selection. There is a provision in the code to use one 

point, two point, or the uniform crossover scheme. The code also includes functions for 

implementing uniform mutation, non uniform mutation, and modified uniform mutation 

schemes. 

File 2: 4R_HEAD.CPP 

It is the header file where the population size, number of reservoirs in the system, and 

number of time steps in the optimisation horizon are defined by the user. 

File 3:UTILITIES.CPP 

Miscellaneous routines required by the main program are included in this file. 

File 4: 4R_DATA.CPP 

It contains the data for the four reservoir problem. The file could easily be modified to 

include the data pertaining to the problem to be solved with this code. 

File 5: 4R_EVAL.CPP 

It contains the objective function for the four reservoir problem. This file could be changed 

to incorporate the objective function of any other problem to be solved. 
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GA Computer Code 

1* 	This is a real-valued genetic algorithm code which can be *1 
1* 	used to solve multi reservoir optimisation problems. *1 
1* 	The code is written in C++ and requires a set of five files *1 

/ 	FILE 4R_HEAD.CPP is the header file where the population *1 
size, number of reservoirs in the system, and number of time *1 
steps in the optimisation horizon are defmed by the user *1 

I 	FILE UTILITIES.CPP contains routines that are required by *1 
1* 	the main code *1 

1* 	FILE 4R_DATA.CPP contains the data for the four reservoir *1 
1* 	problem. This file could easily be modified to include the *1 
1* 	data of the problem to be solved with this code *1 
I*********************** * ******** **** *** ***** **** **************** 
/ 	FILE 4R_EVAL.CPP contains the objective function for the four 	*1 
1* 	reservoir problem. *1 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <string.h> 
#include<time.h> 

#include "4R_HEAD.CPP" 1* the header file *1 
FILE *gfl; 1* an output file *1 
I****** *** * *********** ** * ** ******* *** * ** ** ******* **** * *********** 
stnict genotype 

mt gene[NVARS]; P NVARS number of genes of a chromosome*/ 
/ 	* NVARS = num_reservoir * num_stages */ 

double fitness; 1* fitness of chromosomes 	*1 
mt upper[NVARS]; /* Upper limit of the genes*/ 
mt lower[NVARS]; / Lower limit of the genes 	*1 
double rfitness; /* relative fitness of a chromosome*/ 
double cfitness; /* cumulative fitness of a chromosome*/ 

struct reschar 	 1* struct defining reservoir characteristics *1 

float storage[num_stages+1]; 
float release[num_stages]; 
float inflow [num_stages]; 
float stormin; 
float stormax; 
float storinitial; 
float storfinal; 

/ an array for storages*/ 
1* an array for releases*/ 
/ an array for inflo ws*/ 

1* minimum storage*/ 
I initial storage*/ 
1* final  storage*/ 

float **ben; 
#include "UTILITIES.CPP" 
#include "4R_DATA .CPP" 
#include "4R_EVAL.CPP" 

1* 	This function initializes a population of chromosomes within 	 *1 
1* 	the lower and lower bounds of the variables of the problem. 	 *1 

These bounds are specified through a data file which is 
1* 	pplied to this function as a second argument 	 *1 

void initializel(genotype population[], char fname[]) 

FILE *jpfi; 
mti, j,lbound, ubound; 

if ((infile = fopen(fname,"r"))=NULL) { 
printf("Cannot open input file Rn"); 
exit(1); 
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/* initialize variables within the bounds *1 
for (i = 0; j <NVARS; i-H-) 

fscanf(infile, "%d',&lbound); 
fscanf(infile, "%d",&ubound); 

for (j = o;j <POPSIZE;j-i-i-){ 
population[jJ.fitness = 0; 
population(j].rfitness = 0; 
population[j].cfitness = 0; 
population[j]Jower[i] = lbound; 
population[j].upper[i]= ubound; 
population[j].gene[i] = randval(population[j].lower[i], 

population[j].upper[i]); 

fclose(infile); 

1* ** *** ************ ************************ ********** ** ********** 
1* 	This function is similar to initialize! except that each GA 

run starts with a different number number seed 

void initialize2(genotype population[], char fname[]) 

FILE *infile; 
int j,lbound, ubound; 
float rmax; 

if ((infile = fopen(fnanie,'r"))=NULL) { 
printf("Cannot open input file!\n'); 
exit(l); 

1* initialize variables within the bounds *1 
/ set the initial random number seed *1 
srand( (unsigned)time( NULL)); 
rmax = RAND_MAX; printf(" rmax = %f (any key)\n', rmax); 
/* read upper and lower bounds from the file *1 
for (i= 0; i< NVARS; i-i--i-) 

fscanf(infile, "%d",&lbound); 
fscanf(infile, "%d,&ubound); 

for (j = 0; j <POPSIZE; j-i-i-)[ 
population[j].fitness = 0; 
population[j].rfitness = 0; 
population[j].cfltness = 0; 
population[j].lower[i] = lbound; 
population[j].upper[i]= ubound; 
population[j].gene[i] = randval(population[j]iower[i], 

population[jJ.upper[i]); 

fclose(infile); 

*************** * * *******************************************I 
1* 	Keep_the_best function: This function keeps track of the 	*1 
1* 	best member of the population. Note that the last entry in 
1* 	the array Population holds a copy of the best individual 	*1 

void keep_the_best(genotype population[]) 

mt i,mem; 
mt cur_best; 	 1* index of the best individual *1 
cur_best = 0; /* stores the index of the best individual */ 
double maxfitness = 0.0; 

for (mem =0; mem < POPSIZE; mem-i-+) 
if (population[mem].fitness > maxfltness) { 

maxfitness = population[mem].fitness; 
cur_best = mem; 
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population[POPSIZE].fitness = population[mem].fitness; 

1* once the best member in the population is found, copy the genes *1 
for (i = 0; i <NVARS; i-H-) 

population[POPSIZE].gene[iJ = population[cur_best].gene[i]; 

I**************************** ******** *** ********* ************** 
1* 	Elitist function: The best member of the previous generation *1 / 	is stored as the last in the an-ay. *1 

void elitist(genotype population[J) 

inti; 
double best, worst; 	1* best and worst fitness values *1 
mt best_mem, worst_mem; 1*  the best and the worst members *1 

best = population[0].fitness; 
worst = population[O].fitness; 

for (i = 0; I < POPSIZE - 1; ++i) { 
if(population[i].fltness > population[i+l].fitness) { 

if (population[i].fitness >= best) 
best = population[i].fitness; 
best_mem = I; 

if (population[i+l].fitness <= worst) 
{ 	 - 

worst = population[i+l].fitness; 
worsLmem = i + 1; 

else{ 
if(population[i].fitness <= worst) 

worst = population[i].fltness; 
worst_mem = i; 

if (population[i+1].fitness >= best) 
best = population[i+1].fitness; 
best_mem=i + 1; 

1* 	if best individual from the new population is better than *1 
the best individual from the previous population, then *1 

1* 	copy the best from the new population; else replace the *1 
worst individual from the cunent population with the *1 / 	best one from the previous generation *, 

1* ****** **** *** *************************** * *** ****** *** ********* *****I 
if (best >= population[POPSIZE].fitness) 

for(i=O;i<NVARS;i+-i-) 	{ 
population[POPSIZE].gene[i] = population[best_mem].gene[i]; 

population[POPSIZE].fitness = population[best_mem] fitness; 

else 
for(i=O;i<NVARS;i-i-t-){ 

population[worst_memJ.gene[iJ = population[POPSIZE].gene[i]; 

population[worst_mem].fitness = population[POPSIZE]fimess; 

I******************************************* ******  ************* 
1* 	Selection function: Standard proportional selection *1 

void ProportionSelect(genotype population[],genotype newpopulation[]) 

mt mem, i,j; 
double sum = 0; 
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double p,avg; 

/* find total fitness of the population *1 
for (mem =0; mem < POPSIZE; mem+-l-) 

sum += population[mem].fltness; 

avg = suml(double)POPSIZE; 

/* calculate relative fitness *1 
for (mem =0; mem < POPSJZE; mem++) 

population[memJ.rfitness = population[memJ fitness/sum; 

population[0].cfitness = population[0].rfitness; 

/* calculate cumulative fitness *1 
for (mem = 1; mem < POPSIZE; mem-f+) { 

population[mem].cfitness = population[mem-1].cfitness + 
population[mem].rfitness; 

1* finally select chromosomes using cumulative fitness *1 
for (i = 0 i <POPSIZE; i++) { 

p = randO%1000/l000.0; 
if (p < population[0].cfitness) 

newpopulation[i] = population[0]; 
else 

for(j=0;j<POPSIZE;j++) 
if (p >= population[j].cfitness && 

p<population[j+1J.cfitness) 
newpopulation[i] = population[j+1]; 

1* once a new population is created, copy it back */ 
for (i = 0 i < POPSIZE; i++) { 

population[i] = newpopulation[i]; 

* *********** * ***************** **** * ************** 

void BinaryTourSelect(genotype population[],genotype newpopulation[J) 

mt mem,ii,jj,i; 
/* find the best member from the group and select it *1 
for (mem =0; mem < POPSIZE; mem++) 

ii = randval(0,POPSIZE-1); 
jj = randval(0,POPSIZE-1); 
if(population[iij.fitness >= population[jj].fitness) newpopulation[mem]= population[ii]; 

else newpopulation[mem] = populationjj]; 

I once a new population is created, copy it back */ 
for (i = 0 i <POPSIZE; i++) { 

population[i] = newpopulation[i]; 

mt ToummSelection(genotype population[]) 

intTS_K=4; 
float IS_P = 0.25; 
floatp; 
intij; 

typedef struct 

mt index; 
double fitness; 

} tournmType; 

tournmType sel[POPSIZE]; 
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tournmType aux; 

1* Selects K individuals */ 

for(i=O;i<TS_K;i++) { 
sel[i].index=randval(O,POPSIZE-1); 
sel[i].fitness=population[sel[j]jndex].fltness; 

1* Sorts the fltness/ Brings best to the top *1 
for(i=O;i<TS_K-1 ;i++) ( 

for (j=i+1 ;j<TS_K;j4-l-) { 
if (sel[i].fitness<=sel[j].fitness) { 

aux=sel[i]; 
sel[i]=sel[j]; 
sel[j]=aux; 

p = randO%I000/l000.OF; 
if (p<TS..P) sel[O] index = sel[l].index; 
retum(sel[O].index); 

void ModTourSelect(genotype population[],genotype newpopulation[]) 

mti, ii; 

for (i = 0; i < POPSIZE; i++) { 
ii = TournmSelection(population); 
newpopulation[i] = population[ii]; 

1* copy back the poulation *1 
for (i = 0; i < POPSIZE; i++) { 

population[i] = newpopulation[i]; 

******* ********************* ******** ******* ***** *1 
1* 	MODIFIED SELECTION SCHEME 	 *1 
I*************** ******** ************* *** * ****** ** ********** 

void mod_select(genotype population[],genotype newpopulation[]) 

mt mem, i, j; 
double sum =0; 
double p; 

/* find total fitness of the population *1 
for (mem =0; mem < POPSIZE; mem++) 

population[mem}.fitness = 1- mem/(POPSIZE-l); 
sum += population[memJ.fltness; 

1* calculate relative fitness *1 
for (mem =0; mem < POPSIZE; mem-H-) 

population[mem] .rfltness = population[mem].fitness/sum; 

population[0].cfitness = population[0].rfitness; 

/* calculate cumulative fitness *1 
for (mem = 1; mem < POPSIZE; mem++) { 

population[mem].cfitness = population[mem-l].cfitness + 
population[mem].rfltness; 

1* fmally select survivors using cumulative fitness. *1 
for(i=0;i <POPSIZE;i++){ 

p = rand0%1000/1000.0; 
if (p < population[O].cfitness) 
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newpopulation[i] = population[O]; 
else 

for (j = 0; j <POPS1ZEj-f-f) 
if (p >= population[j].cfitness && 

p<population[j+l ].cfitness) 
newpopulation[i] = population[j+l]; 

1* once a new population is created, copy it back */ 
for (i = 0; i < POPS!ZE; i++) { 

population[i] = newpopulation[i]; 

void Xover(int one, mt two,genotype populationD) 

mti ;  
mt point; 1*  crossover point *1 

/* select crossover point *1 
point = num_reservoir * randval(l,num stages -I); 

for (i = point; i < NVARS; i++) 
swap(&popu!ation[one].gene[i], &popu!ation[two].gene[i]); 

Crossover: performs 2 point crossover of the two selected parents. *1 

void TPXover(int one, mt two,genotype population[]) 

mti ;  
mt pointl,point2; 1* crossover point *1 

/* select crossover point *1 

point! = num_reservoir * randva!(0,num_stages -1); 
point2 = num_reservoir * randval(O,num stages -1); 

if(point2>pointl) swap(&pointl, &pomt2); 

for (i = point!; i <point2; i-l-+) 
swap(&population[one].gene[i], &popu!ation[two].gene[i]); 

void MUNXover(int one, mt two,genotype popu!ation[]) 

mt i,ii,crossindex,kk; 
mt blockLength; 
kk=0; 

blockLength = num_reservoir; 

for (ii=0; ii<num_stages; ii-i-+) { 
crossindex = randO&O1; 

for (i = kk; i <kk + b!ockLength; i++) { 
if (crossindex ==0) swap(&popu!ation[one].gene[i], &popu!ation[two].gene[i]); 

kk=kk+blockLength; 

1* Performs uniform crossover 
I******************************************************** ** * *********f  
void UNXover(int one, mt two,genotype popu!ation[]) 

mt i,rr,crossindex,kk; 
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mt blockLength; 
kk=0; 
blockLength = num_stages; 

for (rr=O; rr<num_reservoir; rr+-s-) 
crossindex = randO&01; 

for (i = kk; i <kk + blockLength; i-i--i-) 
if (crossindex ==O) swap(&population[one].gene[i], &population[two].gene[i]); 

kk=kk+blockLength; 

I**** * ******************** 
1* 	Crossover selection: selects two chromosomes that take part 	 *1 
1* 	in the crossover. Implements one point crossover 	 *1 
I****************** ** ******* ********* *********** **** *** ******** **** 

void OnePointCrossover(genotype population[],float PXOVER) 

mt mem, one; 
mt first = 0; 1*  count of the number of members chosen *1 
double x; 

for (mem =0; mem < POPS IZE; ++mem) 
x = randO%1000/10000; 

if (x <PXOVER) { 
-H-first; 
if (first % 2=0) 

Xover(one, mem,population); 
else 

one = mem; 

/ 	Two point crossover scheme 	 *1 

void TwoPointCrossover(genotype population[],float PXOVER) 

mt mem, one; 
mt first = 0; 	/* count of the number of members chosen *1 
double x; 

for (mem =0; mem <POPSIZE; ++mem) 
x = randO%1000/1000.0; 

if (x <PXOVER) 
++first; 
if (first % 2=0) 

TPXover(one, mem,population); 
else 

one = mem; 

1* 	Uniform Crossover: selects two parents that take part in 	 *1 
1* 	the crossover. Implements uniform crossover 	 *1 

void UniformCrossover(genotype population[J,float PXOVER) 

mt mem, one; 
mt first = 0; /P  count of the number of members chosen *1 
double x; 

for (mem =0; mem < POPSIZE; -m--m-mem) 
x = randO%1000/1000.0; 

if (x < PXOVER) { 
-i--i-first; 
if (first % 2 = 0) 

MUNXover(one, mem,population); 
else 

208 



GA Computer Code 

one = mem; 

I************************************* ** ******** **** * ****************I 
1* 	Modified Uniform Mutation. A gene selected for 	 *1 
1* 	mutation is modified by a predefined small amount which 	 *1 
I 	may be positive or negative with equal probability 	 *1 

void ModUniMutate(genotype population[J,float PMUTATION) 

mt i,j; 
mt ibound, hbound; 
double x; 
mt mutant,change; 
change = 1; 

for (i = 0; j <POPSIZE; i++) { 
for(j=0;j <NVARS;j-H-){ 

x = randO% 1000/1000.0; 
if (x <PMUTATLON) 

/ find the bounds on the variable to be mutated *1 
Ibound = population[i}.lowerjj]; 
hbound = population[i].upper(j]; 

mutant = randO&Ol; 
if (mutant=l) { 
population[i].gene[jJ = population[i].gene[j] + change; 
if (population[i].gene[jJ > hbound) population[i].gene[j] = population[i].gene[j] - 

2*change; 

else{ 
population[i].gene[j] = population[i].gene[j] - change; 
if (population[i].gene[j] <Ibound) populatión[i].gene[j] = population[i].gene] + 

2*change;  

/* end of routine *1 
I***** ** * ** ********** *** ** ******** * ****** **** ************ * ******* ****I 
1* 	UNIFORM MUTATION: Random uniform mutation. A gene 	 *1 
1* 	selected for mutation is replaced by a random value between lower *1 
1* 	and upper bounds of this gene 
I********* * ***** ****** ******** ****** **** * ** ****** **** ********** **** * *1 

void UniMutate(genotype population[],float PMUTATION) 

mt i,j; 
mt lbound, hbound; 
double x; 

for (i = 0; i < POPSIZE; i-t-+) { 
for(j=0;j <NVARS;j-i-t-){ 

x = randO% 1000/1000.0; 
if (x <PMUTATION) { 
/* find the bounds on the variable to be mutated */ 

lbound = population[i].lower[j]; 
hbound = population[i].upper[j]; 

population[i].gene[j] = randval(Ibound,hbound); 

1* Report function: Reports progress of the sunulation. 	 *1 

void report(genotype population[J,int generation) 

int 
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double best_val; 
double avg; 
double sum_square; 
double square_sum; 
double sum; 
sum = 0.0; 
sum_square = 0.0; 

/* best population fitness *1 
1* avg population fitness *1 
/ sum of square for std. calc *1 
1* square of sum for std. calc *1 
1* total population fitness *1 

for (i = 0 i <POPSIZE; i++) { 
sum += population[i].fitness; 
sum_square += population[i].fitness * population[i].fitness; 

avg = sum/(double)POPSIZE; 
square_sum = avg * avg * POPSIZE; 

1* stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); *1 
best_val = population[POPSIZE].fitness; 
fprintf(garun, "%4d %5.3f %5.3f %5.2fin", generation,best_val, avg); 
pnntf("%4l %4.3f %4.3f\n", generation,best_val,avg); 

1* 	Main function: The GA procedure is repeated for the required 	*1 
/ 	number of generations 

void main(void) 

mt ii,generation, dummy; 
float Increase,oldfitness,newfitness; 

char title[80]; 
char garunfile[20],benfuncfile[201, 

datafile[20], resultfile[20]; 
FlIE *f; 

struct genotype population[POPSIZE+l]; 
struct genotype newpopulation[POPSIZE+1]; 
struct reschar res[num_reservoir]; 
mt MAXGENS; 
float PXOVER; 
float PMUTATION; 

/* Open the list file */ 

if(!(fl = fopen("4r_gal2.lst", "r"))) { 
printf(" Can't open 4r_ga**.lst on fl/n'); 
exit(1) 

fgets(title, 80, fl); 
fscanf(fl,"%d\n",&dummy); 
if(num_stages!=dummy) { 

printf("check num_stages\n"); 
exit(l); 

puts(title); 
fgets(garunfile,20,fl); 
fgets(benfuncfile,20,fl); 
fgets(datafile,20,f 1); 
fgets(resulffile,20,fl); 

for (ii=0; ii.'z20; ii+-i-) {  

/* population *1 
/* new population; *1 

1* Maximum number of generations*/ 
/* probability of crossover */ 

/* probability of mutation */ 

if (garunfile[iiJ ='n') garunfile[ii]='\O'; 
if (benfuncfile[ji] ='\n') benfuncfile[ii]='\O'; 
if (datafile[ii} ='n') datafile[ii]=0'; 
if (resultfile[ii] ="n') resultfi1e[ii]='0'; 

(void)fclose(f 1)  
/* Open an output file */ 

if ((garun = fopen(garunfile,"w"))NULL) { 
exit(1); 
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printfCEnter the crossover probability: 
scanf("%f', &PXOVER); 
printf('Enter the mutation pmbability: 
scanf("%f, &PMUTATION); 
printfC'Enter the number of generation: 
scanf('%d", &MAXGENS); 

I******************************************** ****** *** ******* 

ben = matrix(O, num_stages - 1, 0, 4); 
/* read the benefit functions from the benfuncfile *1 
readdata(res,benfuncfile); 
1* start the generation loop */ 
generation = 0; 
initializel(population,datafile); 	 1* mitialise the population randomly */ 
1* initialize2(population,datafile); 	 *1 
evaluate(population,res); 	 1* evaluate the fitness of schromosomes *1 
keep_the_best( population); 
Increase = 10.017; 
oldfitness = 0.017; 
while((Increase >= 0.1F) && (generation<MAXGENS)) 	{ 

generation++; 
report(population,generation); 

1* 	 rank_selectO; *1 
ModTourSelect(population,newpopulation); 

1* 	 ProportionSelectO; *1 
UniformCrossover(population,PXOVER); 1*  Uniform  *1 
OnePointCrossoverO; *1 

1* 	 TwoPointCrossover(); */ 
ModUniMutate(population,PMUTATION); 

1* 	 UniMutate(population,PMUTATION); 	*1 
evaluate(population,res); 
elitist(population); 
if((generation)%100==O) { 
newfltness = population[POPSIZE].fitness; 
printf("oldfitness = %3.3fn', oldfitness); 
printf(newfitness = %3.3t\n", newfitness); 
Increase = newfitness - oldfithess; 
printf("Increase = %3.3f\n', Increase); 
oldfitness = newfitness; 

1* print the results */ 
result(population,res,MAXGENS,PXOVER,PMUTATION,resultflle); 
fclose(garun); 
printf('Run Complete\n"); 

)/*end of main *1 
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/* File 4R_HEAD.CPP: Header file */ 

#define POPSIZE 100 
#defme num_iservoir 4 
#define num_stages 12 
#define NVARS num_reservoir * num_stages 
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I*** *** * ********** *************** *************** *********** ********* *1 
1* FILE 4R_DATA.CPP: Reads data from the supplied files 	 *1 

void readdata(reschar res[], char fname[]) 

FILE *f3; 
tnt ii,jj,rr; 
mt stage_index,reservoir_index; 
char title[801; 

/* Open the benefit functions data file */ 
if(!(f3 = fopen(fnaine, "r'))) { 
nrerror(" Can't open ben_func.dat on Mn") 
exit(l) 

fgets(title, 80, f3); 
for(stage_index =0; stage_index <num_stages; stage_index++) 

ii = stage_index; 
for(jj = O;jj < 5;jj++) { 

fscanf(f3,"%f',&ben[iij[jj]); 

(void)fclose(f3) 

1* 	assigns inflows to reservoirl and reservoir 2 

num_stages; stage_index++) { 
ii = stage_index; 
res[0].inflow[ii] = 2.017; 
res[1].inflow[ii] = 3.017; 

/* Assigning max. and mm. storages to different reservoirs 

*1 
for(stage_index = 0; stage_index < 

for(reservoir_index =0; reservoir_index <num_reservoir; 
reservoir_index-i-+) { 
rr=reservoir_index; 
res[rr].stormin = 0.0; 
res[rr}.stormnax = 10.0; 
res[rr].storfmal = 5.0; 
res[rr].storinitial = 5.0; 
if (rr==3) res[rr].stormax = 15.0; 
if (n==3) res[rr].storfinal = 7.0; 

for(reservoir_index = 0; reservoir_index <num_reservoir; reservoir_index++) 
rr=reservoir_index; 
res[rrj.storage[O] = res[rr].storinitial; 

I****** ** ********* *********** * ***** ***** *************** 
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1* 	4R_EVAL.CPP: contains evaluation function of the problem 
1* * **************** * *** ***************** 
1* 	Evaluation function: This computes the fitness of each 	*1 
1* 	chromosome in the population 

void evaluate(genotype population[],reschar res[J) 

mt mem; 
inti; 
mt ii,rr; 
float pen,sum_benefit, sumpenalty,penalty,pfactor; 
double nfactor = 1.0; 
float *benefit; 
float minfactor = 2.0; 
float maxfactor = 1.0; 

I******* *** ***** ******************* * **** ****** *** *********** *** 

benefit = vector(0, num..stages-l); 
1* start the population loop *1 
for (mem = 0; mem < POPSIZE; mem-i--t-) { 

pen =0; 
for (ii = 0 ii < num_stages; ii-s-+) 

for (rr = 0; rr < num_reservoir; rr-i--+-) { 
i = ii * num_reservoir + fl 
res[rr].release[ii] = (float)population[mem].gene[i]; 

for (ii = 0 ii < num_stages; ii++) 
res[0J.storage[ii+1] = res[0].storage[ii] + res[0].inflow[ii] - 
res[0].release[ii] 

if(res[0].storage[ii+1] <= res[0].stormin) 
pen = pen+(res[0].storage[ii+1] - res[0].stormin) 

*(res[o].stomgeEii+11 - res[0].stormin) * minfactor; 
if(res[0].storage[ii+l] >= res[0].stormax) 

pen = pen+(res[0] .storage[ii+1 ]-res[0].stormax) 
*(res[0] .storage[ii+1 ]-res[0] .stormax)*maxfa ctor;  

res[1].storage[ii+1] = res[1].storage[ii] + res[l].inflow[ii] - r 
es[1].release[ii] 

if(res[1].storage[ii+l] <= res[1].stormin) 
pen = pen +(res[l].storage[ii+l ]_res[1].stormin)* 
(res[ 1] .storage[ii+1]-res[ 1] .stormin)*minfacto r;  

if (res[1].storage[ii+l] >= res[1].stormax) 
pen = pen -t-(res[1].storage[ii+l] - res[1].stormax) 
*(res[1].storage [im+1] - resEll .stormax)*maxfactor; 

res[2].inflow[ii] = (res[1].release[ji]) 

res[21.storage[ii+1] = res[2].storage[ii] + res[2].inflow[ii] - 
res[2].release[ii] 

if(res[2].storage[ii+1] <= res[2].stonnin) 
pen = pen +(res[21.storage[ii+1]-res[2].stormin) 

*(res[2].storage[im+1]_res[2].stoth1)*nfactor; 
if( res[2].storage[ii+1] >= res[2].stormax) 
pen = pen +(res[2].storage[ii+lJ- res[2].stormax) 
*(res[2] .storage[ii+l ]- res[2] .stormax)*maxfactor; 

res[3].inflow[ii]=(res[0].release[jj] + res[2].release[ii]); 

res[31.storage[ii+l] = res[3].storage[ii] + res[3].inflow[ii] - 
res[3].release[ii] 

if(res[3].storage[ii+1] <= res[3].stormin) 
pen = pen +(res[3].storage[ii+1]-res[3].stormjn) 
*(res[31. storage [mi+1 ]_res[3].stonnin)*minfactor;  

if(res[3].storage[ii+l] >= res[3].stormax) 
pen = pen +(res{3].storage[ii+l]-res[3].storrnax) 
*(res[3] .storage[ii+1 ]-res[3] .stormax)*m axfactor;  

benefit[ii] = ben[ii][0]* (res[0J.release[u])tben[jj][1]* (res[1].release[ii]) 
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+ ben[ii][2]* (res[2].release[ii])+ ben[ii][31* (res[31.release[jj])+ 
ben[jj][4]* (res[3].release[ij]) 

I****************************** ********* ** ******* ******* ****** 

sum_benefit = fmdsum(beneflt, num_stages); 
pfactor= 10.0; 
sumpenalty = 0.017; 
for(rr =0; rr < num_reservoir; rr++) { 

if(res[rr].storage[num_stages]<res[rr] .storfinal) { 
penalty = (res[rr].storage[num_stages]res[rrJ.storflna1)* 
(res[rr].storage[num_stages]res[rr].storfinaJ)*( 1 OF * pfactor) 

else penalty = 0.0; 
sumpenalty+=penalty; 

population[mem].fitness = (sum_benefit -pen + sumpenalty)/nfactor; 
if(population[memj.fltness<0.0) population[mem].fitness = 0.0; 

/* population loop *1 
/* end of function 'evaluate" *1 

void result(genotype population[], reschar res[],int MAXGENS, 
float PXOVER,float PMUTATION,char fname[]) 

mt mem; 
int 
mt ii,rr; 
float sum_benefit, penalty l,penalty2,penalty3,penalty4,pfactor; 
float * benefit; 
FILE *f4; 

benefit = vector(0, num_stages-l); 

1* open an outout file */ 
if(!(f4=fopen(fname, "w'))) { 

nrerror(" Can't open output file 4r_mga.txt on fl/n'); 
exit(1) 

fprintf(f4,"POPSIZE: %d\n",POPSIZE); 
fprintf(f4,"MAXGENS : %4d\n',MAXGENS); 
fpnntf(f4,"PXOVER : %l.3t\n",PXOVER); 
fprintf(f4,"PMUTATE: %l.3fn",PMUTATION); 

mem = POPSIZE; 
for (ii = 0 ii < num_stages; ii++) 

for (IT =0; if < num_reservoir; rr++) 
i = ii"num_reservoir + rr; 
res[if].release[ii] = (float)population[mem].gene[i]; 
res[0].storage[ii+1] = res[0J.storage[ii] + res[0}.inflow[ii] - res[0].release[ii] 
if(rr>=l) f 

res[lJ.storage[ii+1] = res[l].storage[ii] + res[1].inflow[ii] - 
res[1].release[ii] 

res[2].inflow[ii] = res[l].release[ji] 
if(n>=2) { 
res[21.storage[ii+lJ = res[2].storage[ii] + res[2].inflow[ii] - 

res[2].release[ii]; 

res[31.inflow[ii]=(res[O].release[ij] + res[2].release[ii]); 
if(rr>=3) { 

res[3].storage[ii+1] = res[3].storage[ii] + res[3].inflow[ii] - 
res[3].release[ii] 

benefit[ii] = ben[ii][0]* (res[0].release[ii])+ben[ji][1]* (res[l].release[jj]) 
+ ben[ii][2]* (res[21.release[ii])+ ben[ii][3]* (res[3].release[ii])+ben[jj][4]* 

(res[3].release[ii]); 

1* reservoir loop */ 
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11* stage loop *1 
1* ******* * ******************* ********** * *** 

sum_benefit = fmdsum(benefit,num_stages); 
pfactor = 10.0; 
if(res[0].storage[nuin_stages]<5.0) { 
penaltyl = 

1.OF * pfactor) 

else penalty I = 0.0; 
if(res[1].storage[num_stages}<5.0) { 
penalty2= (res[1 ]. storage[num_stages]5 .0F)*(res [! .storage [num_sages]5 oJ*(  

1 .OF * pfactor) 

else penalty2 = 0.0; 
if(res[2].storage[num_stages]<5.0) { 
penalty3 = ( res [2]. s torage [num_stages]5OF)*(res [2] .storage [numsges]5o*(  

1 .OF * pfactor) 

else penalty3= 0.0; 

if(res[3].storage[num_stages]<7.0) { 
penalty4 = (res [3].storage [num_stages]7.0F)*(res [3] .storage [num_stges]7.o*(  

I .OF * pfactor) 

else penalty4 = 0.0; 

population[mem].fiiness = sum_benefit + penaltyl + penalty2 + penalty3 + 
penalty4; 
if(population[mem].fitness.z0.0) population[mem].fitness = 0.0; 
1* ******************************************* *1 

printf(FITNESS = %3.2fln', population[mem].fitness); 
fprintf(f4," Reservoir! 	Reservoir2 	Reservoir3 	Reservoir4\n'); 
fprintf(f4," STOR INFL RELE STOR INFL RELE STOR INFL RELE STOR 
INFL RELE\n"); 
for (ii = 0; ii < num_stages; ii++) 

for (if = 0; rr < num_reservoir; rr++) { 
fprintf(f4,'%5.2f %5.2f %6.2f 

res[rr].storage[ii],res[rr].inflow[ii],res[rr]release[ji]); 

fprintf(f4,'\n") 

fprintf(f4,'Maximum Benefit =%3.2f\n,population[mem].fitness); 
(void) fclose(f4); 

} /* end of routine 'result" *1 
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I********* ************************* ***** * ************** 
1* 	UTILITJES.CPP: contains miscelleneous routines 	 *1 
I******************** ******************* 
mt **imatrix(int nrl, mt nih, mt nd, mt nch); 
float **matrix(int nrl, mt nih, mt nd, mt nch); 
mt *jvectcu.(jjjt ni, mt nh); 
float *vtor(jnt ni, mt nh); 
void nrerror(char *messg); /*fundtion prototype for error routine*/ 
void get_f(char name[J); 
mt randval(int, int); 
float findsum(float [I,int); /*function prototype for summing n elements*/ 

1* 	Swap: Used for swapping 2 variables 	 *1 

void swap(int *, mt *y) 

mt temp; 
temp = 
*( = 

= temp; 

1* 	Random value generator: Generates a value within bounds 	 *1 

mt randval(int low, mt high) 

mt val; 
mt nb = high - low + 1; 
val = (randO%nb + low); 
retum(val); 

1* routine to find sum of values *1 
float findsum(float vals[],int num_els) 

float summation=0.0; 
for (mt i=0;inum_e1s; i+-i-) 	{ 

summation=summation+vals[j]; 

return summation; 

void get_f(char name[]) 

mt c_count,flag; 
flag = 1; 
while(flag) 

gets(name); 
c_count = strlen(name); 
if (c_count> 80) puts("File name too long\n"); 
else flag = 0; 

I** * * *********************** ************** ********** ***** *** **** *** 

/* Allocation of vectors and matrices starts here *1 
mt *ivector(int nl, mt nh) f*  allocates an mt vector with range [nl .... nh] *1 

hit *y; 

v = (mt *)floc((up,igned) (nh_nl+1)*sizeof(mnt)); 
if(!v) nrerror(" allocation failure in ivectoro'); 
return v-ni; 

float *vtor(int nI, mt nh) /* allocates a vector with range [nl .... nh] *1 
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float *y; 

v = (float *)nmiloc((unsignl) (nhn1+l)*sizeof(float)); 
if(!v) nrerror(' allocation failure in vectorO"); 
return v-ni; 

char *cvector(int ni, mt nh) 1*  allocates a vector with range [nl .... nh] *1 

char *v; 

v = (char *)nloc((uigned) (nhn1+1)*sizeof(char)); 
if(!v) nrerror(" allocation failure in cvectorO"); 
return v-ni; 

I************* ************************** ***** *********** 

void free_vector(float 	mt ni, mt nh) 	1* Frees a float vector allocated by vector *1 

free((char*) (v+nl)); 

void free_ivector(int *v, mt ni, mt oh) 	1* Frees a float vector allocated by ivector / 

free((char*) (v+nl)); 

float **mal].(int nrl, mt nrh, mt nd, mt nch) 

inti; 
float **m; 

m = (float **) malloc((unsigned) (nrhnrl+l)*sizeof(float*)); 
if(!m) nrerror('allocation failure tin matrixO"); 
m -= nrl; 

for(i=nrl;i<=nrh;i-i--s-){ 
m[i] = (float *) malloc((unsigned) (nchndl+l)*sizeof(float)); 
if(!m[iJ) nrerror("allocation failure 2 in matrixO"); 
m[i] -= nd 

return m; 

mt **imatrtx(int nrl, mt nrh, mt nd, mt nch) 

inti; 
mt **m; 

m = (mt **) malloc((unsigned) (nrh_nrl+l)*sizeof(int*)); 
if( !m) nrerror("aJlocaljon failure 1 in matrixO"); 
m -= nrl 

for(i=nrl;i<=nrh;j+-t-){ 
m[i] = (mt *) malloc((unsigned) (nchnclil)*sizeof(int)); 
if(!m[i]) nrerror("ailocation failure 2 in matrixO'); 
m[i] -= nd 

return m; 

1* *************************************************** *1 
1* Routine to print error message *1 
void nrerror(char *msg) 

puts(messg); getcharo; 
exit(1); 
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C. Discrete Difterential Dynamic Programming Code 

This appendix contains the DDDP code used to solve the four reservoir problem. 

1* 	Discrete Differential Dynamic Programming Code 	 *1 
/ 	for the Four Reservoir System 4r_DDDP.CPP 	 *1 
I** ** ** ******** ******************************************* * 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <string.h> 

#define MAXSTATES 111 
#define MAXSTATES2 11 
#define MAXSTATES3 11 
#define MAXSTATES4 16 
#define MINSTATES 0 

#define MAXJTER 20 
#define num_reservoir 4 
#define num_stages 12 

struct reschar 	 / reservoir characteristics *1 

float inflow[num_stages]; 	1* an array for inflows *1 
float stormin; 
float stormax; 
float storinc; 
float reline; 
float relmin; 
float relmax; 

struct reschar res[num_reservoir]; 1* number of reservoirs / 

mt **imatrix(int nrl, mt nrh, mt nd, mt nch); 
float **mathx(jnt nrl, mt nrh, mt nd, mt nch) 
mt *ivector(mnt nI, mt nh) 
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float *vector(int  ni, mt nh); 
char *cvector(jnt  nI, mt nh); 

main() 

mt ii,rr,jj,kk,jj2,jj3,jj4,kk2,kk3,kk4,ins,jns2,jns3,jns4; 
mt is,stage_index,dummy; 
float new_state! ,new_state2,new_state3,new_state4; 
float **ben; 
float ret_funct{num_stages+1][12][12][12][17]; 
float ri ,r2,r3,r4,Increase,max_return,cum_return,*Obj Value;; 
float 

short mt previous_state[num_stages+1][12][I 2][1 2][17]; 
short mt previous_state2[num_stages+1][12][12][12][17]; 
short mt previous_state3[num_stages-i-1][1 2][12][1 2][17]; 
short mt previous_state4[num_stages+1][ 1 2][12][12][17]; 

mt 
mt lcl,ucl ,1c2,uc2,1c3,uc3,1c4,uc4,sigma; 
mt Inl,unl,1n2,un2,1n3,un3,1n4,un4,jk,jk2jk3,jk4; 
mt itjastkk,Iastkk2,lastkk3,Iastkk4; 
char Iitle[80]; 
char benfuncfile[20]; 
char rescharfile[20]; 
char initrajfile[20]; 
char nlpoutfile[20]; 
FILE *fl,*f2,*f3; 

/* Open the main file *1 
if(!(fl = fopen('4r_idpl2.lst', "r'))) { 
printf(" Cant open 4r_idpl2.1st on Mn") 
exit(1); 

fgets(tmtle, 80, f 1); 
fscanf(fl,'%d\n",&dummy); 
if(num_stages !=dummy) { 

piintf('check num_stages\n'); 
exit(1); 

puts(title); 
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fgets(nlpoutflle,20,f1); 
fgets(benfuncflle,20,f 1); 
puts(benfuncflle); 
fgets(rescharfile,20,fl); 
fgets(initrajflle,20,f1); 

for (ii=0; ii<20; ii-i-+) { 
if (benfuncflle[ii] ='\n') benfuncflle[ii]='\O'; 
if (rescharfile[ii] =\n') rescharfile[ii]='\O'; 
if (initrajflle[ii] =n') initrajfile[ii]='0'; 
if (nlpoutfile[ii] ='\n') nlpoutfile[ii]='\O'; 

(void)fclose(f 1) 
/* Open an output file *1 
if(!(f2 = fopen(nlpoutfile, 'w'))) { 
printf(' Can't open nlpoutfile on f2/n"); 
exit(1); 

Obj Value = vector(0,MAX_ITER); 
res_storage = vector(0,MAXSTATESI- 1); 
res_storage2 = vector(0,MAXSTATES2-1); 
res_storage3 = vector(0,MAXSTATES3-1); 
res_storage4 = vector(0,MAXSTATES4-1); 

1* * ******** *********************** ** ******* ****** 

kkmax = ivector(0,num_stages); 
kkmax2 = ivector(O,num_stages); 
kkmax3 = ivector(O,num_stages); 
kkmax4 = ivector(0,num_stages); 

/* Read benefit function values *1 
if(!(f3 = fopen(benfuncfile, 'r"))) { 
printf(" Can't open ben_func.dat on f3/n"); 
exit(l); 

ben = matrix(O, num_stages-1, 0,4); 
fgets(title, 80, f3) 

puts(title); 
for(stage_index = 0; stage_index <num_stages; stage_index-i--,-) 

ii = stage_index; 
for(jj=0;jj<5;jj++) 

fscanf(f3,"%f",&ben[ii]W]) 
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(void)fclose(f3); 

/* Read reservoir characteristics *1 
if(!(f3 = fopen(rescharfile, "r'))) { 
printf(" Cant open test.dat on f3/n'); 
exit(I); 

fgets(title, 80, f3); 
for(rr =0; rr < num_reservoir; rr+-l-) { 

fscanf(f3,"%f %f %f ,&res[rr].relmin,&res[rr].relmax,&res[rr].relinc); 

for(rr =0; rr < num_reservoir; rr++) { 
fscanf(f3,"%f %f %f" ,&res[rr].stormin,&res[rr].stormax,&res[rr].storinc); 

(void)fclose(f3) 

1* assigns inflows to reservoirl and reservoir 2 */ 
for(stage_index = 0; stage_index <num_stages; stage_index++) 

ii = stage_index; 
res[0].inflow[ii] = 2.OF; 
res[ 1 ].inflow[ii] = 3.OF; 

printf("data read\n'); 
I** ******************* ************************************ *** 

for(kk = 0; kk < MAXSTATES!; kk-i-+) { 
res_storage[kk] = res[0].stormin + kk*res[0].storinc; 

for(kk = 0; kk < MAXSTATES2; kk-i-i-) { 
res_storage2[kk] = res[ ! ] .stormin + kk*res[1 ] .storinc; 

I** ******************** *** ** **** ***** ******** ** ** ** ** ***** ******** ** *1 
for(kk = 0; kk < MAXSTATES3; kk+-,-) ( 

res_storage3[kk] = res[2] .stormin + kk*res[2] .storinc; 

for(kk = 0; kk < MAXSTATES4; kk++) { 
res_storage4[kk] = res[3].stormin + kk*res[3].storinc; 

PIN 



/* read initial trial state trajectories *1 
if(!(f3 = fopen(initraj file, 'r'))) 
printf(' Cant open init_tra.dat on f3/n'); 
exit(1); 

fgets(title, 80, f3); 
puts(title); 
for(stage_index = 0; stage_index <mum_stages; stage_index-H.) 

ii = stage_index; 
fscanf(f3,"%d %d %d %d", &kkmax[ii],&kkmax2[ii],&kkmax3[ji],&kkjnax4[ii]); 

(void)fclose(f3) 

it=0; 
ObjValue[0]=362.50F; 
sigma= 1; 
Increase = 10.OF; 

/ start the DDDP iterative loop *1 
while(lncrease > OAF) 
printf('it = %2d ObjValue[%d]= %3.2f\n', it,it,ObjValue[it]); 

1* * ** ***** ** ** ************* ** ************************* ** *** 

/ initialise previous state and return function to zero / 
for(ii = 0; ii <= num_stages; ii-i-+) { 
for(jj =0;jj <MAXSTATES1;jj.H-) { 

for(jj2=O; jj2 < MAXSTATES2; jj2++) { 
for(jj3=0; jj3 <MAXSTATES3; jj3++) { 

for(jj4=O; jj4 < MAXSTATES4; jj4++) { 
ret_funct[ii][jj][jj2}[jj3][jj4] = O.OF; 

previous_state[ii][jj][jj2][jj3][jj4] = 0; 
previous_state2[ii][jj][jj2]jjj3][jj4] = 0; 
previous_state3[ii][jjj[jj2][jj3][jj4] = 0; 
previous_state4[ii] [jj][jj2][jj3][jj4] = 0; 

1* * ** ***** ** ** ********** ** ** ** ** *********** ****** ** ** *************** *1 
/* locate the starting states *1 
1* initial return function to a non-zero value *1 
ret_funct[0][5][5][5][5] = 000117  
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1* ******** ***s********************* *********************** 

/ start DP loop *1 
pnntf( Start of DP Loop\n"); 
for(stage_index = 0; stage_index <num_stages; stage_index-i--i-) 

ii = stage_index; 
printf('ii=%d\n',ii); 
1* define upper and upper bounds of state trajectory *1 
Ic! = kkmax[ii] - sigma; if (lcl<M!NSTATES) Ic! = MINSTATES; 
ucl=kkmax[ii] + sigma+i; 	if(ucl>MAXSTATES1) uci = MAXSTATESI; 
1c2 = kkmax2[ii] - sigma; if (1c2<MINSTATES) 1c2 = MINSTATES; 
uc2=kkmax2[ii] + sigma+i; 	if (uc2>MAXSTATES2) uc2 = MAXSTATES2; 
1c3 = kkmax3[ii] - sigma; if (1c3<MINSTATES) 1c3 = MINSTATES; 
uc3=kkmax3 [ii] + sigma-fl; 	if (uc3>MAXSTATES3) uc3 = MAXSTATES3; 
1c4 = kkmax4[ii] - sigma; if (1c4<MINSTATES) 1c4 = MINSTATES; 
uc4=kkmax4[ii] + sigma-I-i; 	if (uc4>MAXSTATES4) uc4 = MAXSTATES4; 

in! = kkmax[ii+!] - sigma; if (lnl<MINSTATES) Ini = MINSTATES; 
uni=kkmax[ii+i] + sigma-i-i; 	if(unl>MAXSTATES1) Un! = MAXSTATESI; 
1n2 = kkmax2[ii+!] - sigma; if (1n2<MINSTATES) !n2 = MINSTATES; 
un2=kkmax2[ii+1] + sigma+i; if (un2>MAXSTATES2) un2 = MAXSTATES2; 
1n3 = kkmax3[ii+!] - sigma; if (1n3<M!NSTATES) 1n3 = MINSTATES; 
un3=kkmax3[ii+l] + sigma+l; if (un3>MAXSTATES3) un3 = MAXSTATES3; 
1n4 = kkmax4[ii+i] - sigma; if (1n4<MINSTATES) 1n4 = MINSTATES; 
un4=kkmax4[ii+i] + sigma-I-!; if (un4>MAXSTATES4) un4 = MAXSTATES4; 
for(jk = ml; jk < uni ; jk-H-) { 
for(kk=Ic!;kk<uc!;kk-i--i-){ 

for(jk2 = 1n2; jk2 < un2; jk2-i--i-) { 
for(kk2 = 1c2; kk2 < uc2; kk2++) { 

for(jk3 = 1n3; jk3 <un3;jk3-i-+) { 
for(kk3 = Ic3; kk3 <uc3; kk3-i--i-) 

for(jk4 = 1n4; jk4 < un4; jk4-i-+) { 
for(kk4 = 1c4; kk4 < uc4; kk4++) { 

if(ret_funct[ii][kk][kk2][kk3][kk4] > 0.000117) { 
ri = res_storage[kk]-res_storage[jk] + res[0].inflow[ii]; 
if(r!>=res[0].relmin && r!<=res[0].relmax) { 

new_statel = res_storage[jk}; 

/ find the corresponding state *1 
ins = 0; 
for(is = I; is < MAXSTATES I; is-i--i-) 

if(new_statel >= res_storage[is-!] && new_statei<res_storage[is]) ins = 
is-I 
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if(new_statel >= res[O].stormax) { 
ins = MAXSTATESI - 1; 

r2 = res_storage2[kk2]-res_storage2[jk2] + res[1].inflow[ii]; 

if(r2>=res[1].relmin && r2<=res[I].relmax) { 
new_state2 = res_storage2[jk2]; 
ins2=O; 
for(is = 1; is <MAXSTATES2; is-H-) 

if(new_state2 >= res_storage2[is-1] && new_state2 < 
res_storage2[is]) ins2 = is-i 

if(new_state2 >= res[i]stormax) { 
ins2 = MAXSTATES2 - 

res[2].inflow[ii]= r2; 
r3 = res_storage3[kk3]-res_storage3[jk3] + res[2].inflow[ii]; 
if(r3 >= res[2] reimin && r3<=res[2]relmax) { 
new_state3 = res_storage3[jk3]; 
ins3 = 0; 
for(is = 1; is < MAXSTATES3; is++) { 

if(new_state3 >= res_storage3[is-1] && new_state3 < 
res_storage3[is]) ins3 = is-i 

if(newstate3 >= res[2].stormax && r3<=res[2].relmax) { 
ins3 = MAXSTATES3 - I; 

res[3].inflow[ii]= ri + r3; 
r4 = res_storage4[kk4]-res_storage4[jk4] + res[3].inflow[ii]; 
if(r4 >= res[3].relmin && r4 <= res[3].relmax) { 
new_state4 = is_storage4jk4]; 
ins4=0; 
for(is = 1; is < MAXSTATES4; is-i--i-) 

if(new_state4 >= res_storage4[is- I] && new_state4 < 
res_storage4[is]) ins4 = is-I 

if(new_state4 >= res[3].stormax) { 
ins4 = MAXSTATES4 - 1; 
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1* compute cummulative return *1 
cum_return = ret_funct[ii][kk][kk2][kk3][kk4] + 

ben[ii][O]*rl.iben[ii] [l]*r2 
+ben[ii][2]*r3 + (ben[ii][3] + ben[ii][4])*r4; 
if(cum_return >= ret_funct[ii+1 }[ins][ins2j[ins3][ins4]) 

ret_funct[ii+1][ins][ins2][ins3)[ins4] = cum_retum 
previous_state[ii+1][ins][ins2][jris3][jns4] = kk; 
previous_state2[ii+1][ins][jns2][ins3][jns4] = kk2 

previous_state3[ii+1][ins][ins2][jns3][jns4] = 
kk3 

previous_state4[ii+l ][ins] [ins2] [ins3][ins4] = 
kk4; 

}/* if cum_returnloop *1 
} 	state4 loop/ 

/*newstate3 loop  *1 
/ new_state2 loop *1 
1* new_statel loop *1 

1/* ret_funct loop *1 
/ state loop for fourth */ 

/* decision loop for fourth res *1 
1* state ioop for third res *1 

/* decision ioop for third res *1 
/ state loop for second reservoir *1 

/* decision loop for second reservoir *1 
1* state loop for first reservoir *1 

/* decision loop for first reservoir *1 
1* stage loop *1 

/ 	trace back to get the optimal path 	 *1 

printf(Trace back\n'); 
for(stage_index = num_stages; stage_index> 0; stage_index--) 

max_return=0.OF; 
ii = stage_index; 
if(ii == num_stages ) { 

1* constraints on ending storages *1 
kkmax[ii] = 5 ; kkmax2[ii]= 5 
kkmax3[ii]= 5; kkmax4[ii]= 7; 

/ trace back to previous time step to determine feasible policies 
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do by taking maximum return at each stage to cut down no looked at *1 
kk = kkmax[ii]; kk2 = kkrnax2[ii]; kk3 = kkmax3[ii]; kk4 = kkmax4[ii]; 
kkmax[ii - l] = previous state[ii][kk][kk2][kk3][kk4] ; kkmax2[ii-1] = previous_state2[ii][kk][kk2][kk3][kJc4] 

klunax3[ii - l] = previous_state3[ii][kk][kk2}[kk3][kk4] ; kkmax4[ii-l]= previous_state4[ii][kk][kk2][kk3][kJc4] 

printf('TRACEBACK OK \n"); 

/* Compute Objective function value for the current iteration*/ 
lastkk = kkmax[num_stagesJ; lastkk2 = kkmax2[num_stages]; 
lastkk3 = kkmax3[num_stages]; lastkk4 = kkniax4[num_stages]; 
ObjValue[it+l] = ret_funct[num_stages][lastkk][lasfldc2][lastkk3][lastjcjc4]; 
Increase =(float)fabs(ObjValue[it-i-1] -ObjValue[it]); 
it++; 
11* while loop *1 
/* end of iterative loop of DDDP*/ 

printf('Solution Converged\n'); 
1* print optimum states and releases to the output file */ 

fprintf(f2,' PROGRAM FILE NAME: 4Rj)DDP.CPP\n'); 
fprintf(f2,' OUTPUT FILE NAME : 4R_DDDP.OUT\n'); 
fprintf(f2,"Stage Strl Infi 	Rell Str2 Inf2 	Re12 Str3 Inf3 Re13 Str4 Inf4 Re14 Return\n); 

for(ii = 0; ii < num_stages ; ii-s-+) { 
kk = kkmax[ii+1]; kk2 = kkmax2[ii+1] 

kk3 = kkmax3[ii+1]; kk4 = kkmax4[ii+1]; 
rI =res_storage[kkmax[ii]] -res_storage[kkmax[ii-i-1]] +res[0].inflow[ii]; 
r2 =res_storage2[kkmax2[ii]J -res_storage2[kkrnax2[ii+1]] -4-res[1].inflow[ii]; 
res [2]. inflow [ii] = r2; 
r3 =res_storage3[kkmax3[ii]] -res_storage3[kkmax3[ii+1]] +res[2].inflow[ii]; 
res[3].inflow[ij] = rl+r3; 
r4 =res_storage4[kkmax4[ii]] -res_storage4[kkmax4[ii+l]] +res[3].inflow[ii]; 
fprintf(f2,'%3d %5.2f %5.2f%5.2f %5.2f %5.2f%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %7.2fln', 

ii, res_storage[kkmax[ii]], res[0].inflow[jj], rI, 
res_storage2[kkmax2[ii]], res[1].inflow[ii], r2, 
res_storage3[kkmax3[ii]], res[2].inflow[ii], r3, 
res_storage4[kkrnax4[ii]], res[3].inflow[ii], r4, 
ret_funct[ii+l ][kk][kk2][kk3][kk4]) 

(void)fclose(f2); 
printf(' RESULTS PRINTED TO 4R_DDDP.OUrn"); 
return 0; 

RAN 



/* end of main function */ 

/* 	Dynamic allocation of vectors and matrices starts here 	*/ 

mt *ivector(int ni, mt nh) 1* allocates an mt vector with range [nl .... nh] *1 

mt *, 

v = (mt *)malloc((unsigned) (nh_nl+l)*sizeof(int)) 
if(!v) printf(" allocation failure in ivectorO'); 
return v-ni; 

I********************* ********** *** ** 

float *vector(int  nl, mt nh) 1* allocates a vector with range [nl .... nh] *1 

float *V; 

v = (float *)malloc((unsigned) (nhn1+1)*sizeof(float)); 
if(!v) printf(' allocation failure in vectorO'); 
return v-ni 

char *cvector(int  nI, mt oh) /* allocates a vector with range [nl .... nh] *1 

char *V; 

v = (char *) malloc((unsigned) (nhnl+1)*sizeof(char)); 

if(!v) printf(" allocation failure in cvectorO); 
return v-ni; 

void free_vector(float *, mt nl, mt nh) 	/* Frees a float vector allocated by vector / 

free((char*) (v+nl)); 

void free_ivector(int *v, mt nI, mt nh) 	/* Frees a float vector allocated by ivector / 

free((char*) (v+nl)); 

float **mathx(jnt nrl, mt nrh, jot nd, mt nch) 

inti; 

NO 



float **m; 

m = (float **) malloc((unsigned) (nrhnrl+1)*sizeof(float*)); 
if(!m) printf(allocation failure 1 in rnatrixO"); 
m -= nil; 

for(i = nil; i <= nih; i++) 
m[i] = (float *) malloc((unsigned) (nchncl+1)*sizeof(float)); 
if(!m[i]) printf("allocation failure 2 in matrixO'); 
m[i] -= nd; 

return m; 

mt **imatrix(int  nil, mt nih, mt nd, mt nch) 

int 
mt **m; 

m = (mt **) malloc((unsigned) (nrhnrl+1)*sizeof(int*)) 
if(!m) printf("allocation failure 1 in matrixO); 
m -= nrl; 

for(i = nil; i <= nih; i++) 
m[i] = (mt *) malloc((unsigned) (nch_ndl+1)*sizeof(int)) 
if(!m[i]) prmntf("allocation failure 2 in matrixO"); 
m[i] -= net 

return m; 
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EVALUATION OF GENETIC ALGORITHMS FOR OPTIMAL RESERVOIR 

- 	 SYSTEM OPERATION 

By Robin Wardlaw' and Mohd Sharif 2  

ABSTRACT: 
Several alternative formulations of a genetic algorithm for reservoir systems are evaluated using 

the four-reservoir, deterministic, finite-horizon problem. This has been done with a view to presenting funda-
mental guidelines for implementation of the approach to practical problems. Alternative representation, selection, 
crossover, and mutation schemes are considered. It is concluded that the most promising genetic algorithm 
approach for the four-reservoir problem comprises real-value coding, tournament selection, uniform crossover, 
and modified uniform mutation. The real-value coding operates significantly faster than binary coding and 
produces better results. The known global optimum for the four-reservoir problem can be achieved with real-
value coding. A nonlinear four-reservoir problem is considered also, along with one with extended time horizons. 
The results demonstrate that a genetic algorithm could be satisfactorily used in real time operations with sto- 

• chastically generated inflows. A more complex ten-reservoir problem is also considered, and results produced 
by a genetic algorithm are compared with previously published results. The genetic algorithm approach is robust 
and is easily applied to complex systems. It has potential as an alternative to stochastic dynamic programming 
approaches. 

INTRODUCTION 

The study of genetic algorithms (GAs) originated in the mid 
1970s (Holland 1975) and has developed into a powerful op-
timization approach. Excellent introductions to GAs are given 
by Goldberg (1989) and by Michalewicz (1992), and several 
recent papers give summaries of the essentials (e.g., Oliveira 
and Loucks 1997; and Savic and Walters 1997). 

The literature describing the application of GAs to water 
resources problems is not abundant. Wang (1991) applied a 
GA to the calibration of a conceptual rainfall-runoff model. 
The model had seven calibration parameters, the values of 
which were optimized by minimizing the sum of squares of 
differences between computed and observed discharges. Of ten 
optimization runs, eight were able to locate the global mini-
mum.The values obtained from the other two runs were only 
marginally inferior to the global optimum. Similar work has 
been reported by Franchini (1996), who used a GA in com-
bination with sequential quadratic programming to calibrate a 
conceptual rainfall-runoff model. 

There have been several applications of GAs to pipe net-
work problems. Goldberg (1987) used a GA for pipeline op-
timization. Murphy et al. (1993) developed a methodology for 
optimizing a water supply network using a simple GA. The 
objective was to find the combination of pipe sizes that min-
imized the cost of a water distribution network. Simpson et al. 
(1994) compared the performance of complete enumeration, 
nonlinear programming (NLP) and a GA for an example pipe 
network. They concluded that the GA was capable of finding 
acceptable solutions, although for the example considered it 
was not as fast as NLP. Davidson and Goulter (1995) used 
GAt to optimize the layout of a branched rectilinear network, 
such as a natuFal  gas or water distribution system. An im-
proved GA has been developed by Dandy et al. (1996) for 
pipe network cost optimization and was found to perform bet-
ter Ihan the traditional optimization methods and a simple GA. 
The solution found by improved GA for the New York City 
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water supply network was the lowest cost design yet presented 
in the literature for that particular problem. Savic and Walters 
(1997) describe the development of the computer model GA-
NET for the least-cost design of water distribution networks, 
again demonstrating that in certain cases GAs may yield better 
results than other optimization techniques. 

Haihal et al. (1997) described a multiobjective optimization 
approach using capital cost and benefit as dual objectives to 
the problem of network rehabilitation. They used a structured 
messy GA (SMGA), which has some additional features like 
variable string length that increases during the evolution of 
designs. They compared the performance of SMGA with a 
standard GA, concluding that the SMGA was much better for 
a large network. 

Ritzel et al. (1994) solved a multiobjective ground-water 
pollution problem using a GA. Cieniawski et al. (1995) dealt 
with the multiobjective optimal location of a network of 
ground-water monitoring wells under conditions of uncer-
tainty. McKinney and Lin (1994) also solved a ground-water 
management model with GAs. 

GAs have so far had very little application in reservoir sys-
tems optimization. Esat and Hall (1994) applied a GA to the 
four-reservoir problem. The objective was to maximize the 
benefits from power generation and irrigation water supply 
subject to constraints on storages, and releases from the res-
ervoirs. The paper by Esat and Hall showed the significant 
potential of GAs in water resources systems optimization, and 
clearly demonstrated the advantages of GAs over standard dy-
namic programming (DP) techniques in terms of computa-
tional requirements. Fahmy et al. (1994) also applied a GA to 
a reservoir system, and compared performance of the GA ap-
proach with that of dynamic programming. They concluded 
that GAs had potential in application to large river basin sys-
tems. 

Oliveira and Loucks (1997) used a GA to evaluate operating 
rules for multireservoir systems, demonstrating that GAs can 
be used to identify effective operating policies. Significant 
benefits were perceived to lie in the freedom afforded by GAs 
in the definition of operating policies and their evaluation. 

The primary objective of this paper is to explore the poten-
tial of alternative GA formulations in application to reservoir 
systems, and to deterministic finite-horizon problems in par-
ticular. This paper significantly extends the work of Esat and 
Hall (1994) and leads to consideration of the potential of GAs 
in real-time reservoir operation with stochastic inflow fore-
casts. The problem addressed here differs from that considered 
by Oliveira and Loucks (1997), who were concerned with the 
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optimization of parameters in operating policies rather than 
with deterministic real-time reservoir releases. 

GAs may be set up in many ways, but as yet there is little 
guidance in the literature on the type of formulation most ap-
propriate for reservoir systems. This paper is intended to ad-
dress that gap through consideration of the application of GAs 
to the well-known four-reservoir problem (Larson 1968), 
s.vhich has provided a benchmark for water resources system 
optimization algorithms. The four-reservoir problem has pre-
'iously been solved using a GA by Esat and HaIl (1994). Hei-

qari et al. (197 1 ) solved the four-reservoir problem by discrete 
differential dynamic programming. Little detail was given by 

sat and Hall on their GA formulation, although it appears 
hat they did not consider every time step of the problem in 
he same way as considered here. In this paper several different 
ipproaches to GA formulation are considered, along with a 
nge of sensitivity analyses. The object has been to present 

as a practical tool in reservoir system evaluation, and to 
xamine the potential of different GA formulations for multi-

reservoir problems. Consideration has also been given to more 
omplex and nonlinear problems and to problems with long 

:ime horizons. GAs deal easily with nonlinear problems and 
ire shown to be very robust. 

GENETIC ALGORITHMS 

a search algorithm based upon the mechanics of 
:tion, derived from the theory of natural evolution. 
te mechanisms of population genetics and natural 
vival in pursuit of the ideas of adaptation. Indeed 
to a vocabulary borrowed from natural genetics. 
(1989) identifies the following as the significant 
between GAs and more traditional optimization 

ork with a coding of the parameter set, not with 
imeters themselves. 
arch from a population of points, not a single 

GAs use objective function information, not derivatives 
or other auxiliary knowledge. 
GAs use probabilistic transition rules, not deterministic 
rules. 

A GA is a robust method for searching the optimum solution 
to'a complex problem, although it may not necessarily lead to 
the best possible solution. A GA generally represents a solution 
using strings (also referred to as chromosomes) of variables 
that represent the problem. In early GAs (Goldberg and Kuo 
1987; Wang 1991) these strings were comprised of binary bits. 
In binary representation, the bits may encode integers, real 
numbers, sets, or whatever else is appropriate to the problem. 
Real-value coding is now proving more effective in many 
problems than binary coding (e.g., Oliveira and Loucks 1997). 

Coding components of possible solutions into a chromo-
some is the first part of a GA formulation. Each chromosome 
is a potential solution and is comprised of a series of substrings 
or genes, representing components or variables that either form 
or can be used to evaluate the objective function of the prob-
lem. In a simple single-reservoir problem in which the objec-
tive function is related to reservoir releases x 1  over months I 
= 1, 12, the chromosome would comprise 12 genes, each rep-
resenting one month of reservoir storage. Each gene could be 
represented by a binary string mapped to the range of permis-
sible values of x, or by the real value of x. The fitness of a 
chromosome as a candidate solution to a problem is an ex-
pression of the value of the objective function represented by 
it. It is also a function of the problem constraints and may be  

modified through the introduction of penalties when con-
straints are not satisfied. 

A GA starts with a population of chromosomes, which are 
combined through genetic operators to produce successively 
fitter chromosomes. The genetic operators used in the repro-
ductive process are selection, crossover, and mutation. Chro-
mosomes in the population with high fitness values have a 
high probability of being selected for combination with other 
chromosomes of high fitness. Combination is achieved through 
the crossover of pieces of genetic material between selected 
chromosomes. Mutation allows for the random mutations of 
bits of information in individual genes. Through successive 
generations, fitness should progressively improve. Various 
schemes for selection, crossover, and mutation exist and are 
discussed below. 

In application to water resources problems, chromosomes 
may be generated that fail to meet system constraints, such as 
continuity and component capacities. Each generated chro-
mosome must therefore be checked against the system con-
straints. Chromosomes failing to meet the constraints could be 
excluded from subsequent participation in the evolutionary 
process, but this may lead to useful genetic material being lost. 
Alternatives to exclusion are successive regeneration of chro-
mosomes until they meet constraints, or application of a pen-
alty function to reduce the fitness of chromosomes failing to 
meet constraints. Many argue that the former approach, 
adopted by Esat and Hall (1994), disrupts the GA process and 
in effect requires many additional generations (Michalewicz 
1992). In this paper a penalty function approach has been 
adopted. The penalty function is quadratic, based on the degree 
of constraint violation. This is particularly useful in dealing 
with long strings representing a time series in which con-
straints are violated in only a small part. Also, potentially good 
genetic material is permitted to contribute to subsequent gen-
erations when violations are small. 

Representation Schemes 

Traditionally GAs have used bjnary coding, in which a 
chromosome is represented by a string of binary bits that can 
encode integers, real numbers, or anything else appropriate to 
a problem. Binary strings are easy to operate on, and within 
any gene, binary representations can be mapped to values in 
the range feasible for the variable represented (Goldberg 
1989). Following the operations of reproduction, the fitness of 
a particular chromosome is evaluated after the binary values 
are decoded back into their original form. Standard binary cod-
ing of variables permits large jumps in variable values between 
generations, which can lead to difficulty in converging to a 
good solution. This can be overcome to some extent through 
the use of Gray coding (Goldberg 1989) in which the binary 
representation of two adjacent variable values changes by only 
one binary digit. Discretization of the decision variable space 
is required with binary and with Gray coding. Gene lengths 
can be modified to permit various levels of precision, and sat-
isfactory mapping of the variable space can normally be 
achieved. 

An alternative approach to formulation of the GA is to use 
a representation appropriate to the components of the problem. 
Real-value chromosomes have been used with success by var-
ious authors (e.g., Oliveira and Loucks 1997). In a real-value 
representation, individual genes of a chromosome are initially 
allocated values randomly within the feasible limits of the var-
iable represented. With a sufficiently large population of chro-
mosomes, adequate representation will be achieved. There is 
a significant advantage in not wasting computer time on de-
coding for objective function evaluation, although a more care-
ful approach to mutation is required. In real-value coding there 
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is nn discretization of the decision variable space. This is an-
other advantage of this approach. 

Selection Approaches 

Selection is the procedure by which chromosomes are cho-
sen for -  participation in the reproduction process. A popular 
approach has been fitness proportionate selection (Goldberg 
1989), in which the probability p, of an individual i being 
selected is given by 

f. 

iml 

&ref, = fitness of individual i, and n = population size. 
Thitley (1989) identifies population diversity and selective 

ssure as being the two most important issues in the genetic 
ch process. An interesting discussion on this topic is pro-

ed by Yang et al. (1997). Population diversity is maintained 
exploiting good individuals, while still exploring the rest 
the search space. It is influenced by the degree to which 

~
best individuals are favored, which may be termed selec-
pressure. A high selective pressure may lead to a rapid 

vergence—but convergence to a suboptimal solution-
le a low selective pressure may result in a greater number 
generations being required before convergence to an ac-
table solution is achieved. A number of approaches exist 

.t help to balance the influence of selective pressure and 
ulation diversity. 

Marious rank selection schemes are in use (Michalewicz 
2) that tend to ensure that good chromosomes have higher 

inces of being selected for the next generation. Ranking 
emes operate by sorting the population on the basis of fit- 
s values and then assigning a probability of selection based 

on the rank. A constant selection differential is thus main- 
ned between the best and the worst individuals in the pop- 
ition (Whitley 1989). A drawback is that information on the 

ss of the individuals is not used. Goldberg and 
tave compared various selection schemes, and in- 
:ference for the tournament selection scheme, also 

Yang et al. (1997). In tournament selection a 
lividuals are chosen at random from the popula-
individual with the highest fitness is selected for 
the next generation. The procedure is repeated 

ropriate number of individuals are selected for the 
ion. The approach had originally been developed 
of two individuals and was called binary tourna-
an, but larger groups lead to greater diversity and 
progression to a solution. Tournament selection 

Cieniawski et al. (1995) in their ground-water 
,roblem. - 

Approaches 

ral theory behind the crossover operation is that, 
ng important building blocks between two strings 
r well, the GA attempts to create new strings that 
- best material from two parent strings. The number 
which material is exchanged is controlled by the 

robability forming part of the parametric data. 
989) and Michalewicz (1992) describe the follow-

of crossover: (1) one-point crossover; (2) two-
ver; and (3) uniform crossover. 
occurs between two selected chromosomes with 

led probability, usually in the range of 0.5-1.00 
d chromosomes have this probability of being used 
). In one-point crossover, a crossover point is Se-
idom at some point c in the chromosome length L 

One-point crossover 

Parent I 

Parent 2  

Child I 	 - 

s4rnr.w 

Tw?_point crossover 

Parent I 

Parent 2  

Child I 

Uniform crossover 

Parent I 

Parent 2  

srnr.0 	 -' 

Child 2 	 . 

FIG. 1. Approaches to Crossover 

(Fig. 1). Two new individuals are created by swapping all 
genes between positions c and L. In two-point crossover, ge-
netic material between two positions chosen at random along 
the length of the chromosomes is exchanged. Uniform cross-
over operates on individual genes of the selected chromo-
somes, rather than on blocks of genetic material, and each 
gene is considered in turn for crossover or exchange. 

An important aspect of crossover in application to a mul-
tivariate problem in binary coding is that crossover should 
occur only at gene boundaries, because each gene consists of 
alleles, or bits, and crossover may split the genes. This is not 
an issue for real-value representations. In real-value coding the 
gene comprises a single allele and is itself the parameter value. 

Mutation Approaches 

Mutation is an important process that permits new genetic 
material to be introduced to a population. A mutation proba-
bility is specified that permits random mutations to be made 
to individual genes. The two basic approaches to mutation for 
real-value representations are uniform mutation and nonuni-
form mutation (Michalewicz 1992). Uniform mutation permits 
the value of a gene to be mutated randomly within its feasible 
range of values, possibly resulting in significant modification 
of otherwise good solutions. In this study, a modified uniform 
mutation operator has been used. Modified uniform mutation 
permits modification of a gene by a specified amount, which 
may be either positive or negative. In nonuniform mutation, 
the amount by which genes are mutated can be reduced as a 
run progresses, and can therefore help in the later generations 
to fine tune the solutions. This operator is particularly suited 
to problems where high precision is required. 

by 
of 

of 
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FOUR-RESERVOIR PROBLEM 

The four-reservoir problem was formulated and first solved 
by Larson (1968), and more recently by Esat and Hall (1994). 
This problem offered the opportunity to test the performance 
of GAs against a known global optimum and to perform sen-
sitivity analysis. 

The system consists of four reservoirs, as shown in Fig. 2. 
The supplies from the system are used for hydropower gen-
eration and for irrigation. Hydropower generation is possible 
from each reservoir, and all discharges pass through the tur-
bines. The outflow from reservoir four may be diverted for 
irrigation. Hydropower and irrigation benefits are quantified 
by linear functions of discharge. The objective is to maximize 
benefits from the system over 12 two-hour operating periods. 
There are inflows to the first and second reservoirs only, and 
these are 2 and 3 units, respectively, in all time periods. The 
initial storage in all reservoirs is 5 units. 

The fundamental constraints on reservoir storage are 

0.0 	S1 , S2, S3  :5 10 	 (2) 

0.0S4 :s15 	 (3) 

and on releases from the reservoirs through the turbines are 

0.0:5R 1 :!:-:3 	 (4) 

0.0 :5R2,R 3 :54 	 (5) 

0.0R 4 7 	 (6) 

The above constraints apply in all time steps. The continuity 
constraints for each reservoir over each operating period t are 

S,(t + 1) = S.(r) + I,(r) + M R.(t) 	 (7) 

where S.(t) = vector of reservoir storages at time t in reservoirs 
= 1, n; I,(t) = vector of reservoir inflows in time period t to 

reservoirs i = 1, n; R(t) = vector of reservoir releases in time 
period t from reservoirs i = 1, n; and M = n"n matrix of 
indices of reservoir connections 

–1 0 0 0 
0 –1 0 0 
0 1 –1 0 
1 0 1 –1 

In addition to the above general constraints, there are target 
final storages for all reservoirs. There are five units for res- 

FIG. 2. Four-Reservoir Problem 

ervoirs one to three, and seven units for reservoir four. The 
objective function to be maximized can be written as 

Max! = 	b,(r)R,(r) + E b5(r)R4(t) 	(8) 

The benefit functions b.(r) are tabulated by Larson (1968) and 
by Heidari et al. (1971). 

For comparative purposes, an LP solution to the above prob-
lem has been produced in a spreadsheet. This solution was 
identical to the original solution presented by Larson and has 
been used for evaluation of the GA approach discussed below. 
In the LP solution, the final target storages are set as con-
straints. In GA this is not possible, and use has been made of 
a penalty function (Heidari et al. 1971). Taking the target end-
ing storage in reservoir i to be d, the penalty function is ex-
pressed as 

g.[S1 (12), d1 ] = –40[S(12) - d,1 2  for S.(12) :5 d, 	(9) 

and 

g.[S,(12), d1 ] = 0 for S,(12) > d1 	(10) 

The objective function is thus modified to 

Max / = 	b.(t)R,(t) + Z b5(t)R 4(t) + 	gjS,(12), d,] 

(11) 

FORMULATION OF GAs 

To solve the four-reservoir problem using a GA, it is nec-
essary to construct a chromosome representing all four reser-
voirs in all twelve time steps. Since the objective function is 
based on reservoir releases in each time step, releases should 
be the decision variable on which the GA is based. With four 
reservoirs and 12 time steps, there are thus 48 discrete varia-
bles to be represented in the GA. Each of these may be con-
sidered to be a gene, and in binary representation is encoded 
as a binary number. Reservoir releases are to be considered as 
integer quantities. This is toward defining the problem and is 
not a limitation of GAs. GAs work equally well with nonin-
teger decision variables. In binary coding, three digits are re-
quired for the range of releases defined, and with this approach 
the total length of each chromosome in the population is thus 
144. Esat and Hall (1994) refer to strings of length 16—it is 
unclear how these were made up. In real-value coding the 
length of a chromosome is 48 (12 time steps and 4 reservoirs). 

The manner in which genes are grouped within the chro-
mosome is of importance. There are two basic approaches. 
One would be to group releases by time step, such that the 
chromosome contained 12 groups of 4 genes representing the 
release from each reservoir in a particular time step. The al-
ternative is to have 4 groups of 12 genes, with each group 
containing the time series of releases from an individual res-
ervoir. The former approach is preferable, and keeps more 
closely related material together. 

Consideration has been given to binary coding, Gray cod-
ing, and real-value coding. Performance of each of these cod-
ings and of different operator approaches is discussed next. 

EVALUATION OF ALTERNATIVE GA FORMULATIONS 

A series of sensitivity analyses were carried out to establish 
appropriate parameter settings under binary, Gray, and real-
value codings, prior to evaluation of the alternative codings 
themselves. In many practical problems, GA results are found 
to be sensitive to crossover and mutation probabilities. This is 
because genetic material lost at the start of a run, through 
either crossover or mutation, may be needed to improve fitness 
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in the later stages of a run. Sensitivity to crossover and mu- 
tation probability is discussed below for each coding scheme. 

and coding methods. The results also demonstrate that the real-
value representation is more robust and produces better results 
than either of the binary or Gray code representations. 

Sensitivity to Crossover Probability 

Various researchers (e.g., DeJong 1975; Goldberg 1989) 
have suggested that good performance may be achieved from 
a GA using a high crossover probability and low mutation 
probability. It has been found from initial test runs that good 
results will be achieved when mutation is restricted to about 
one gene per chromosome on average. For the four-reservoir 
problem, with 48 genes, an initial mutation probability was 
therefore set at 0.02 (1/48). 

Sensitivity to crossover probability was carried out using a 
ppulation size of 100 and a mutation probability of 0.02. The 
to.imament selection approach was adopted with uniform 
crpssover, and a modified uniform mutation operator for real-
v lued representation. Crossover probabilities from 0.50 to 
0. 15 were considered through runs with a fixed length of 500 
g nerations. Fig. 3 shows the sensitivity of the achieved fitness 
to crossover probability for each of the three coding schemes 

nsidered. Fitness is expressed as a proportion of the known 
o timum for the four-reservoir problem. 

The real-value coding clearly provides the best performance 
o er a wide range of crossover probabilities. The most appro 
p iate crossover probability for the real-value code would ap- 
pl ar to be in the range of 0.70-0.75. The optimal crossover 
p obability4 for Gray coding appears to be 0.80. The binary 

ding is apparently more sensitive than either the real-value 
a Gray codings to crossover probability. There is a distinct 
p4ak in performance with a crossover probability of 0.70 as 
vfell as progressive deterioration in performance as crossover 
pfobability, increases beyond this. The results demonstrate 
2early that the GAs are robust, with reasonable results being 
o,tained over a fairly wide range of crossover probabilities 

of maximum fitness 

0.99 

	

0.98 
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Sensitivity to Mutation Probability 

For the determination of sensitivity to mutation probability, 
a crossover probability of 0.70 was used, with all otherparam-
eters and run controls as discussed above. The mutation prob-
ability may be expressed as 

P. 	 (12) 
Clength 

where Pmot = mutation probability; k = number of mutations; 
and CI0,,5th = chromosome length (in genes). 

In the four-reservoir problem formulation used here, the 
length of a chromosome is 48 genes. Numbers of mutations 
per chromosome in the range of 0.1 to 10 have been consid-
ered, resulting in mutation probabilities of 0.002-0.208. The 
results of the sensitivity analysis are presented in Fig. 4. The 
best results are achieved with approximately one mutation per 
chromosome. In binary coding, the best result was achieved 
with 1.5 mutations per chromosome, but it is clear that there 
is more variability in the binary code representation. There is 
again an indication of robustness, and 0.6 to 2 mutations per 
chromosome produce reasonable results. 

Representation Schemes 

An evaluation of the three representation schemes has been 
carried out using the parameter levels that gave the best per-
formance with each scheme in the sensitivity analysis. The 
results already presented in Figs. 3 and 4 have indicated that 
the real-value coding is likely to be the best. Fig. 5 presents 
a comparison of how maximum fitness values vary with gen-
eration number. Similar results are achieved with each scheme, 
although it is apparent that the real-value representation pro-
duces a smoother curve, perhaps indicating a greater robust-
ness. The binary representation makes more erratic progress 
toward better fitness than do either the Gray code or real-value 
representations. The real-value representation exhibits a slower 
rate of improvement in fitness in the mid-generation period of 
the run, but it sustains its rate of improvement longer. The 
binary and Gray code representations become restricted partly 
because mutation may occur in any part of a gene, and while 
this is helpful in early generations it can be disruptive in later 
ones. More generations would be required to reach the opti-
mum in binary or Gray coding, as the chromosome length is 
three times that of the real-value representation. Mutation can 
occur in any bit of the chromosome, and achieving an optimal 
sequence of 48 bits is quicker than achieving an optimal se-
quence of 144 bits. 
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6. Average Fitness with Alternative Representation 

1. Normalized and Actual Fitness Values after 500 

Normalized 	I Actual 
Coding fitness 	I fitness 

(1) (2) 	I (3) 

Binary I 	0.995 	I 399.0 
Gray 0.995 399.0 
Real-value 0.998 400.5 

Plots of average fitness in the population with generation 
humber are shown in Fig. 6. Clearly the real-value represen-
jation results in a population with a much higher overall fitness 
than either the binary or Gray code representations. The other 
ignificant feature of the real-value representation is that the 
'ariability in average fitness between generations is much 
lower. This is largely because of the improved manner in 
which mutation can be dealt with. With binary and Gray cod-
ings, the average fitness does not improve significantly after 
about 100 generations. The number of infeasible solutions gen-
'crated as a result of mutation is higher than with real-value 
coding, and this restricts the average fitness that can be 
achieved. In each representation scheme, elitism has been used 
to ensure that the best individual of a population is not lost 
between generations, and this ensures that in all representa-
tions a high and improving maximum fitness is maintained. 

The maximum values of the objective function achieved 
with 500 generations with each coding are given in Table 1. 
The known global optimum for the four-reservoir problem is 
401.3. Clearly, each of the representation schemes approaches 
the global optimum closely. Real-value coding appears to offer 
several advantages over both binary and Gray coding: 

• A higher maximum fitness value is achieved 
• A smoother convergence to a solution is achieved 
• The average fitness of the population generated is much 

higher 

The known global optimum for the four-reservoir problem 
was reached with the real-value coding representation after 
750 generations. Another significant advantage of real-value 
representation over binary representation is in execution times. 
On the basis of the parameter sets used above, the real-value 
representation of the four-reservoir problem completed 500 
generations two and a half times faster than the binary rep-
resentation and four times faster than the Gray coding repre-
sentation. For larger problems, this speed advantage may be 
of importance. 

Population size also influences the performance of a GA. 
Fig. 7 shows the influence of population size on maximum 
fitness produced by the real-value representation after 500 gen- 

FIG. 7. Influence of Population Size on Fitness 

erations. Acceptable results are produced with a population of 
100, but by increasing the population size to 200 it is, in fact, 
possible to match the known global optimum. The total num-
ber of evaluations decreases with a decrease in population size, 
and hence desired results may not be achieved with smaller 
population sizes. Moreover, the diversity in a population can-
not be maintained if the population size is small. 

Influence of Alternative Crossover and 
Mutation Operators 

Consideration has been given to the influence of alternative 
crossover and mutation operators on the results produced with 
real-value representation. Three crossover and two mutation 
operators have been considered; Table 2 presents the results 
with these different approaches. Uniform crossover is the best 
crossover operator for the four-reservoir problem. This might 
be expected, as it is likely to lead to greater diversity within 
the population than either one-point or two-point crossover. 
Modified uniform mutation is clearly the best mutation oper,  
ator. With uniform mutation there is a much greater risk of 
good genetic material being lost. Modified uniform mutation 
dampens the impacts of mutation, thus leading to better so-
lutions. With modified uniform mutation in real-value coding, 
the size of mutations can be fixed rather than allowing random 
mutations to the gene values, and this again leads to better 
final solutions as disruption to the solution is less. Results are 
less sensitive to the crossover operator adopted, and uniform 
and one point crossover produce very similar results. 

FOUR-RESERVOIR TRAJECTORIES 

A comparison of the trajectories produced by the LP and by 
the real-value GA for the four-reservoir problem are presented 
in Fig. 8. The GA results are based on the best parameter set 
resulting from sensitivity analysis, and are given for a popu-
lation of 100 at the end of 500 generations. Exact reproduction 

TABLE 2. Evaluation of Crossover and Mutation Schemes 

Proportion of 
Scheme adopted 	 maximum fitness 

(1) 	 1 	(2) 

Crossover Schemes 
Uniform crossover 0.998 
One-point crossover 0.997 
Two-point crossover 	- 0.994 

Mutation Schemes 
Uniform mutation 0.983 
Modified uniform mutation 0.998 

Note: Modified uniform mutation is used with all crossover schemes, 
and uniform crossover with all mutation schemes. 
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LP results was achieved after 750 generations. For reservoir 
an exact match in trajectories is obtained. In reservoirs 2 
d 3, there are minor shifts in trajectories produced with a 
pulation of 100. For reservoir 4 there is, with the exception 
the first, time step, exact reproduction of the optimal trajec- 

ry. 
The GA also has been run using different seeds in the sto- 
astic generators than had been used in the sensitivity runs. 

5 out of 10 runs with 750 generationS the optimal solution 
as produced. The other runs produced values that were very 
ose to the optimum (0.999 for three of them and 0.998 for 
e other two). The results and performance are therefore rel-
ivelv stable with respect to particular random number se-

MODIFIED FOUR-RESERVOIR PROBLEM 

GAs have considerable flexibility in application to nonlinear 
problems. To demonstrate this, the four-reservoir problem has 
been modified by introducing a head storage relationship for 
each reservoir of the form H = K.S 0 , and modifying the ob-

jective function to 

•Max I = 
	

b.(r).p,(f) + 	g.[s,(12) - d] 	(13) 

where 

p(t) =f(s,(t), u(0) 	 (14) 

is the power generated from reservoir i in time step t. 
The modified four-reservoir problem has been solved using 

discrete differential dynamic programming and using the GA 
technique. A penalty function is not required for the DDDP 
technique as it is possible to trace back those trajectories that 
have the required final state. For the GA the penalty function 
used with the-linear four-reservoir problem has been adopted. 
The GA was set up with real-value representatiofl tournament 
selection, elitism, uniform crossover, and modified uniform 
mutation. The GA computer code was unchanged from the 
linear problem with the exception of a modification to the 
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Problem 

evaluation function. It is perhaps in this flexibility that the 
main strength of the GA lies. 

With the parameters adopted, the optimal return for the 
problem found using DDDP was 1901.39. With DDDP no im-
provement was found in this value after 10 iterations. The GA 
was run with a population size of 100 and achieved maximum 
fitness after 460 generations. The GA produced the same op-
timum as the DDDP approach, and trajectories in each reser-
voir were the same with each technique. Fig. 9 shows the 
manner in which the GA approached the solution. The average 
fitness of the population was very high, indicating that a large 
number of alternative solutions close to the optima have been 
produced. The GA executed almost three times faster than the 
DDDP and required no initial trajectories to be set. 

APPLICATION TO TEN-RESERVOI9 PROBLEM 

A ten-reservoir problem was formulated and introduced to 
the literature by Murray and Yakowitz (1979). The problem is 
complicated not only in terms of size, but also because of 
many time-dependent constraints on storage. The problem was 
formulated such that it remained solvable by linear program- 
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ing, and Murray and Yakowitz (1979) presented a solution 
sing constrained differential dynamic programming. The 
troblem is beyond the capacity of traditional DP and is diffi-
uk with variants such as DDDP, but is relatively simple to 
olve by LP. 

The schematic of the ten-reservoir problem is shown in Fig. 
0. The system comprises reservoirs in series and in parallel, 
nd a reservoir may receive supplies from one or more up-
tream reservoirs. Operation of the system is to be optimized 
)ver 12 operating periods to maximize hydropower produc-
ion. Decision variables for the problem are reservoir releases, 
md the state variables are reservoir storages in each operating 
)eriod. Inflows are defined for each of the upstream reservoirs, 
md initial storages and target storages at the end of the op-
rating period are specified for each reservoir. In addition, 

FIG. 10. Arrangement of Reservoirs for 10-Reservoir Problem 
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there are minimum operating storages in each reservoir that 
must be satisfied, as well as constraints on minimum and max-
imum reservoir releases. Details are given by Murray and Ya-
kowitz (1979). 

The continuity constraints are defined by (7), and the ob-
jective function is modified only to reflect the additional res-
ervoirs: 

Max I = Z Z b1(k).u 1(k) + 	g 1 [s,(12) - d] 	(15) 

Taking the target ending storage in reservoir i to be d., the 

penalty function is expressed as 

g.[S(12), d,] = —60[S,(12) - d,] 2  for S,(12) :5 d, (16) 

and 

g.[S1(12), d] = 0 for S(12) > d, 	 (17) 

The penalty function is not required for the LP solution be-
cause the target storages can be set up as constraints. It was 
found that with the ten-reservoir problem a more severe pen-
alty function was required than with the four-reservoir prob-
lem. 

The components of the solution vectors for the ten-reservoir 
problem are noninteger continuous values. Discretization 
within the decision space is not required. The ten-reservoir 
problem has been solved using the same GA code as used for 
the four-reservoir problem, with modification only to the eval-
uation function. The GA parameters found most suitable for 
the four-reservoir problem were adopted, but the population 
size was increased to 500 in order to maintain diversity in 
initial populations. The GA was permitted to run for 2,500 
generations and took about 25 minutes to run on a Pentium-
based PC. Fig. 11 shows the manner in which convergence to 
a solution was achieved. 

The LP for the ten-reservoir problem was set up in a spread-
sheet, and the optimal return of 1,194 obtained. Using con-
strained DDP, Murray and Yakowitz produced a maximum re-
turn of 1,190.652. The maximum return achieved with the GA 
approach was 1,190.25, which is 99.7% of the known global 
optima. Given the size of the problem, the results of the GA 
are very satisfactory. The storage trajectories produced by the 
GA are very similar to those produced by the LP. The exe-
cution time for the GA was eight times longer than that of the 
LP on a Pentium PC. The execution time of the GA would 
not, however, have been influenced through the introduction 
of nonlinear objectives or constraints. This is an advantage for 
complex systems. 

The purpose of this application has been to demonstrate that 
the GA approach is capable of addressing large problems. Fur-
ther complexity introduced through nonlinearities in any part 
of the system would not present any difficulties for the GA 
approach, and this is a particular strength of the approach. 

TAI 	 flA Performance  with Extended Time Horizons 

- DDDP  GA, Population of 100 GA, Population of 200 

Stages Return Return % of maximum Generations Return % of maximum Generations 

(1) (2) (3) (4) (5) (6) (7) (8) 

12 - 401.3 400.5 99.8 500 401.3 100 500 

24 8106 808.7 99.7 1,300 808.9 99.79 900 

36 1,220.1 1,219.1 99.92 2.400 1,218.6 99.89 1,900 

48 1,629.6 1,621.2 99.48 2,600 1,626.5 99.81 2,100 

60 2,039.1 2,025.1 99.31 2,700 2.036.9 99.89 4,000 

72 2,448.6 2,439.2 99.62 4,200 2,446.0 99.89 4,100 

84 2,858.1 2,842.5 99.45 4,700 2,847.5 99.63 4,400 

96 3,267.6 3,253.3 1 	99.56 1 	5,300 1 	3,259.8 1 	
99.76 5,500 
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APPLICATIONS TO EXTENDED TIME HORIZONS 

When the GA approach is applied to problems with ex-
tended time horizons, the chromosome length increases, and 
it may become more difficult to find solutions that satisfy con-
straints throughout the length of the chromosome. This poten-
tial limitation has been investigated by extending the four-
eservoir problem to incorporate up to 96 stages instead of the 

briginal 12. Results for the problem with extended time hori-
ons produced with the GA has been compared with those 
roduced by DDDP, and are presented in Table 3. In the GA 

approach, a larger population is required with longer chro-
biosomes in order to maintain diversity in the population. Pop-
blations of 100 and 200 have been considered. The number of 
enerations included in Table 3 are those required for the GA 
o converge to a state at which the change in fitness over 100 
enerations is less than 0.1 (0.025%). It is clear from Table 3 
at the GA maintains high fitness, and that the deterioration 

n fitness at longer time horizons is not significant. The results 
ndicate that a higher population does produce better overall 
tness, although, interestingly, the number of generations re-
uired with a larger population is very similar to the number 
equired with a small population. This is another measure of 
he robustness of the GA approach. 

It has been demonstrated that GAs provide robust and ac-
ceptable solutions to the four-reservoir deterministic finite-ho-
rizon problem, and can reproduce the known global optimum. 

everal possible formulations have been considered, along 
with their sensitivity to various parameters. It is concluded that 
a real-value, representation, incorporating tournament selec-
tion, elitism, uniform crossover, and modified uniform muta-
tion will operate most efficiently and produce the best results. 
A crossover probability of 0.70 is appropriate for the four-
reservoir problem, and mutation probability should be based 
on one mutation per chromosome. For the four-reservoir prob-
lem, a solution very close to the known global optimum can 
be achieved within 500 generations with a population of 100. 
With a population of 200, the known global optimum can be 
achieved in 500 generations, and with a population of 100 the 
known global optimum can be achieved in 750 generations. 

The results achieved indicate that there is potential for ap-
plication of GAs to large finite-horizon multireservoir system 
problems, where the objective function is complex and other 
techniques are difficult to apply. A significant advantage of the 
GA approach is that no initial trial release policy is required, 
as in discrete differential dynamic programming, for example. 
The approach is easily applied to nonlinear problems and to 
complex systems. It has also been shown that acceptable re-
sults can be produced over longer time horizons. Furthermore, 
a GA will generate several solutions that are very close to the 
optimum, and this gives added flexibility to an operator of a 
complex reservoir system. 
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