
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Integrating climatic information in water resources modelling and optimisation

Gelati, Emiliano; Rosbjerg, Dan; Madsen, Henrik

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gelati, E., Rosbjerg, D., & Madsen, H. (2010). Integrating climatic information in water resources modelling and
optimisation. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU).

http://orbit.dtu.dk/en/publications/integrating-climatic-information-in-water-resources-modelling-and-optimisation(4b8bad29-e67f-410f-ac37-9371de686f48).html


PhD Thesis
September 2010

Integrating climatic information in water

resources modelling and optimisation

Emiliano Gelati





 
 
 
 
 
 

Integrating climatic information in water 
resources modelling and optimisation 

 
 
 
 

Emiliano Gelati 
 
 
 
 
 
 
 
 

PhD Thesis 
September 2010 

 
 
 
 

Department of Environmental Engineering 
Technical University of Denmark 



DTU Environment

September 2010

Department of Environmental Engineering

Technical University of Denmark

Miljoevej, building 113

DK-2800 Kgs. Lyngby

Denmark

+45 4525 1600

+45 4525 1610

+45 4593 2850

http://www.env.dtu.dk

reception@env.dtu.dk

Vester Kopi

Virum,

Torben Dolin

978-87-92654-09-0

Address:

Phone reception:

Phone library:

Fax:

Homepage:

E-mail:

Printed by:

Cover:

ISBN:

Emiliano Gelati

Integrating climatic information in water

resources modelling and optimisation

PhD Thesis,

The thesis will be available as a pdf-file for downloading from the homepage of

the department: www.env.dtu.dk

September 2010



Preface
The work reported in this PhD thesis, entitled “Integrating climatic information in
water resources modelling and optimisation”, was conducted at the Department of
Environmental Engineering (Technical University of Denmark) and at DHI Water
– Environment – Health, under the supervision of Dan Rosbjerg and Henrik Mad-
sen. The PhD project ran from March 2007 to June 2010 and was funded by the
Technical University of Denmark.

The content of the PhD thesis is based on four papers prepared for scientific jour-
nals. In the text, the papers are referred to by their appendix number written with
roman numbers.

I. Gelati, E., O. B. Christensen, P. F. Rasmussen, and D. Rosbjerg, Downscaling
atmospheric patterns to multi-site precipitation amounts in southern Scandi-
navia, Hydrology Research, 41(3-4), 193–210, doi: 10.2166 / nh.2010.114,
2010.

II. Gelati, E., H. Madsen, and D. Rosbjerg, Markov-switching model for non-
stationary runoff conditioned on El Niño information, Water Resources Re-
search, 46, W02517, doi: 10.1029 / 2009WR007736, 2010.

III. Gelati, E., H. Madsen, and D. Rosbjerg, Stochastic reservoir optimisation us-
ing El Niño information – case study of Daule Peripa, Ecuador, revised to
Hydrology Research.

IV. Gelati, E., H. Madsen, and D. Rosbjerg, Reservoir operation using El Niño
forecasts, submitted manuscript.

The papers are not included in this www-version, but can be obtained from the
Library at DTU Environment:
Department of Environmental Engineering
Technical University of Denmark
Miljøvej, Building 113
DK-2800 Kongens Lyngby, Denmark
(library@env.dtu.dk)
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Summary
Water resources modelling and optimisation methods need to include climatic in-
formation, in order to be applied to problems where climatic variability is an im-
portant factor. In this study, stochastic modelling and optimisation methods using
climatic information are defined, combined and applied to water resources appli-
cations.

The presented modelling approaches assume the hydrologic variables to depend on
an unobservable state variable representing the prevailing climatic conditions. The
hidden state is assumed to shift between a finite number of values according to a
Markov chain, whose transition probabilities are functions of climatic information.
Thus the hidden state process mimics climate-induced hydrologic regime shifts.
This general modelling framework is applied to two case studies, by defining an
appropriate conditional description of the hydrologic variables for each case.

In the first case study, the probability distribution of multi-gauge daily precipitation
amounts in southern Scandinavia is conditioned on a hidden weather state, whose
transitions are influenced by gridded atmospheric variables. The high-dimensional
atmospheric fields are summarized via singular value decomposition, which pre-
serves most of the covariance with precipitation. To account for the spatial depen-
dence structure of precipitation while limiting the growth of model dimension, the
conditional multivariate probability distributions of precipitation occurrences are
approximated by Chow-Liu trees. Given the weather state and the precipitation oc-
currence pattern, amount distributions are modelled independently at each gauge.
The model yields robust predictions of precipitation statistics. The 8 identified
weather states are consistent with the weather types of the study area. Chow-Liu
trees improve the reproduction of the spatial correlation of precipitation compared
to assuming conditional spatial independence. However, an explicit parameterisa-
tion of the spatial dependence structure of precipitation amounts may bring further
improvement.

In the second case study, monthly inflow anomalies of the Daule Peripa and Baba
reservoirs (in Ecuador) are modelled by a mixture of autoregressive models with
exogenous input (ARXs), each one corresponding to a hidden climate state. El
Niño – Southern Oscillation (ENSO) indices are used both to compute state transi-
tion probabilities and as exogenous covariates. Thus the hidden climate state pro-
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cess represents ENSO-induced inflow regime shifts, and the ARXs account directly
for the influence of ENSO. The model generates realistic simulated and forecasted
inflow scenarios based on, respectively, historical records and forecasts of ENSO
indices. ENSO forecasts are currently published with 9 month lead time. Of the 2
identified climate states, one corresponds to El Niño and the other represents both
La Niña and normal conditions. Indeed El Niño is well correlated with anoma-
lously high inflow, while La Niña does not have a significant impact on inflow.
Consistently, large positive anomalies are reasonably predicted, while anomalously
low inflow is generally overestimated. To improve drought prediction, climatic in-
dices correlating with negative inflow anomalies should be pursued.

The presented optimisation methods use time series generated by the climate-
driven hydrologic models as stochastic input. They are applied to the Daule Peripa
– Baba reservoir system, which supplies hydropower plants and downstream wa-
ter users. We follow the simulation-optimisation approach, by coupling a genetic
algorithm with a simulation model of the reservoir system. To account for input
uncertainty, sampling objective functions are evaluated by simulating the water
resources system with ENSO-based synthetic inflow scenarios. Long-term opti-
misation (LT) calibrates rule curves that return reservoir releases as functions of
storage and season, using long simulated inflow scenarios. Short-term optimisa-
tion (ST) is performed at the beginning of each month, and determines releases
using inflow forecasts and seasonal storage targets. Both LT and ST outperform
the historical management of Daule Peripa. In particular ST yields the best results,
as it combines short- and long-term information. Despite the promising results ob-
tained by applying ST to the planned Daule Peripa – Baba reservoir system, further
research should be conducted on flood prevention during intense El Niño events.

The presented methods might be used to assess the consequences of global climate
change scenarios on water resources systems that need small-scale hydrologic data
as input. However, such assessments may be affected by large or even unquantifi-
able uncertainties, as methods calibrated under past climatic conditions might not
be valid under altered climate scenarios.
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Dansk sammenfatning
Når det drejer sig om problemstillinger, hvor klimavariabiliteten er en vigtig faktor,
bør information om lokale klimasvingninger medtages i vandressource-modelle-
ring og -optimering. I afhandlingen er stokastiske modellerings- og optimeringsme-
toder, der inddrager klimainformation, defineret, kombineret og anvendt i en vand-
ressource-sammenhæng.

De præsenterede modeller har som antagelse, at de hydrologiske variable afhænger
af en ikke-målbar tilstandsvariabel, der repræsenterer den fermherskende klimatil-
stand. Den skjulte klimatilstand antages at skifte mellem et endeligt antal værdier
svarende til en Markov-kæde, hvis overgangssandsynligheder er funktioner af den
klimatiske information. På den måde afspejler den skjulte tilstandsproces observer-
bare klima-inducerede ændringer i det hydrologiske regime. Den overordnede mo-
dellerings-ramme er anvendt på to forskellige eksempler.

I det første tilfælde er sandsynligheds-fordelingen for den simultane nedbør på en
lang række nedbørsstationer i de sydlige Skandinavien betinget af en skjult ve-
jrtilstand, hvor overgangssandsynligheden fra én tilstand til en anden afhænger
af grid-værdier af atmosfæriske variable. De flerdimensionale atmosfæriske vari-
able kunne reduceres væsentligt ved hjælp af SVD (singular value decomposi-
tion), hvorved kovariansen til nedbøren kun blev marginalt berørt. Den rum-
lige afhængighedsstruktur i nedbørs-processen er modelleret med Chow-Liu træer,
hvil-ket kun giver en begrænset vækst i model-dimensionen. For en given vejr-
tilstand og nedbørsmønster opnås herved robuste sandsynlighedsfordelinger for
nedbørs-mængden på de forskellige stationer. Modellen identificerer 8 vejrtil-
stande, som giver et konsistent billede af de fremherskende vejrtyper i området.
Chow-Liu træer forbedrer reproduktionen af den rumlige korrelation i sammen-
ligning med en antagelse om rumlig uafhængighed. En eksplicit parametrisering af
afhængigheds-strukturer må imidlertid formodes at lede til yderligere forbedringer.

I det andet eksempel er månedlige anomalier af indstrømningen til to reservoirer
i Ecuador, Daule Peripa og Baba, modelleret ved hjælp af en blanding af autore-
gressive modeller med eksogent input, hvor de enkelte modeller hver svarer til
en skjult klimatilstand. Indekser for El Niño Southern Oscillation (ENSO) er
benyttet både til at beregne overgangssandsynlighederne og som eksogene kovari-
anter. De skjulte klimatilstande repræsenterer således ENSO-inducerede regime-

vii



skift i indstrømningen. Denne ENSO-indflydelse tages direkte i regning af ARX-
modellerne, der genererer realistiske simuleringer og forudsigelser af indstrøm-
nings-scenarier baseret på henholdsvis observationer og forudsigelser af ENSO-
indekser. ENSO-forudsigelser publiceres løbende med en 9 måneders tidshorisont.
To forskellige klimatilstande er identificeret, én svarende til El Niño-situationen,
mens den anden repræsenterer både La Niña- og normal-tilstanden. El Niño ko-
rresponderer meget fint til unormalt høje indstrømninger, hvorimod La Niña ikke
synes at have nogen væsentlig indflydelse på indstrømningen. Det betyder, at høje
indstrømninger er godt prædikterede, mens særligt lave indstrømninger generelt er
overestimerede. En forbedring af tørke-forudsigelser vil kræve, at der kan findes
klima-variable, der korrelerer til negative indstrømnings-anomalier, hvilket hidtil
ikke er lykkedes.

De præsenterede optimerings-metoder benytter tidsserier genereret af den klima-
drevne hydrologiske model som stokastisk input. Disse er anvendt på Daule Peripa-
Baba reservoir-systemet, som forsyner vandkraftturbiner og nedstrøms vandbru-
gere. Der benyttes en simulerings-optimerings tilgang ved at koble en genetisk al-
goritme (heuristisk optimeringsmodel) til en simuleringsmodel for reservoir-syste-
met. Input-usikkerheden tages i regning gennem sampling målfunktioner, der be-
regnes og minimeres under anvendelse af de ENSO-baserede syntetiske indstøm-
nings-scenarier. Langtids-optimering kalibrerer styrekurver, der bestemmer reser-
voir-udstrømningen som funktion af vandindhold og årstid ved hjælp af lange
simulerede indstrømnings-serier. Korttids-simulering beregner for en 9-måneders
horisont den optimale reservoir-udstrømning under anvendelse af syntetiske ind-
strømnings-serier baseret på El Niño -forudsigelser og de sæsonmæssige mål for
reservoir-indholdet begegnet af langtidssimuleringen. Den optimerede udstrømn-
ing anendes for den første af de 9 måneder, hvorefter korttids-optimeringen gent-
ages et tidsskridt senere, etc. Både langtids- og korttids-optimeringen giver forbed-
rede resultater i forhold til den historiske regulering, korttids-simuleringen i særde-
leshed, idet den kombinerer både korttids- og langtids-information. På grund af det
lille reservoirindhold i Baba bør der foretages yderligere undersøgelser af over-
svømmelses-risikoen i forbindelse med intense El Niño-situationer som forudsæt-
ning for implementering af de opnåede resultater.

De præsenterede metoder kunne muligvis anvendes til en bedømmelse af kon-
sekvenserne af fremtidige globale klimavariationers påvirkning af vandressource-
systemer, der kræver hydrologiske data på lille skala som input. Imidlertid må
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det påregnes, at store og måske ukvantificerbare usikkerheder må tages i betragt-
ning, da metoder kalibreret under de nuværende klimaforhold ikke nødvendigvis
vil være gældende under væsentligt ændrede forhold.
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1 Introduction
The interest in modelling hydrologic variables derives from the need of provid-
ing water resources simulation models with reliable input time series. Such in-
terest has been notably enhanced by climate change predictions. Global climate
models produce scenarios at large spatial scales, while hydrologic variables need
to be predicted at local scale for assessing climate change impacts on water re-
sources. Thus stochastic models can be used to translate large-scale information
from physically-based climate models to small-scale hydrologic data. Traditional
stationary stochastic approaches have not used climatic information to condition
time series generation. It is widely acknowledged that models not including cli-
matic input should not be applied under climatic conditions that differ from those
of calibration. Therefore the development of stochastic hydrologic models ac-
counting for the influence of climatic variability has become a priority. Further-
more, such models have to be complemented by methods that can effectively ex-
ploit the included climatic information for water resources optimisation.

The research work was aimed at developing stochastic hydrologic models and wa-
ter resources optimisation methods that could yield benefits from including large-
scale climatic information. In the first research application, we implemented a
stochastic model to downscale large-scale atmospheric variables to precipitation
amounts for a gauge dense network in southern Scandinavia. Then we developed
a stochastic model using El Niño – Southern Oscillation (ENSO) information to
describe reservoir inflow in Ecuador. Both proposed stochastic models are based
on the assumption that the observable processes (precipitation or inflow) are con-
ditioned on an unobservable state variable (weather or climate) shifting between a
finite number of values. We investigated different innovative aspects of stochastic
hydrologic modelling using climatic information: in the precipitation modelling
study, we applied a spatial correlation model for multivariate precipitation; in the
inflow modelling application, we accounted for the climatic influence on inflow by
directly correlating ENSO indices with inflow anomalies. Finally, we defined sev-
eral reservoir optimisation methods that could exploit the synthetic ENSO-based
inflow scenarios produced by the inflow model. Thus we tested the benefits of
using the developed modelling approach for reservoir optimisation.

In the remainder of this chapter, we first provide a literature review characterising
the state of the art of the research areas of interest (see section 1.1); then we give
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a brief overview of the proposed methods, placing them in the context of recent
research developments (see section 1.2); and finally we outline the structure of the
thesis (see section 1.3).

1.1 Literature review
Sections 1.1.1 and 1.1.2 review relevant scientific literature on, respectively, stochas-
tic models for hydrologic time series and reservoir optimisation methods.

1.1.1 Review of stochastic models for hydrologic time series

Stochastic models are often used to generate synthetic time series of hydrologic
variables, such as precipitation and streamflow. To realistically simulate water re-
sources systems, model development is faced by the challenging task of account-
ing for climatic variability in the description of hydrologic variables. Traditional
stochastic modelling approaches have not accounted for climatic variability, thus
resulting in stationary descriptions. Though not including climatic information,
many models have been developed to mimic the regime-like behaviour of hydro-
logic systems. Among the various approaches, Markovian processes deserved par-
ticular attention (Hughes and Guttorp, 1994): Cooke (1953) and Green (1970)
fitted distributions of wet/dry precipitation spell durations using Markov chains;
Stern and Coe (1984) described precipitation occurrences with a Markov chain de-
fined by seasonal parameters; Markov chains were also used by Haan et al. (1976)
to model precipitation as a process shifting between several states, each of them
representing a precipitation amount interval; Zucchini and Guttorp (1991) mod-
elled multi-gauge precipitation occurrences by assuming a different set of proba-
bilities for each of a number of common unobservable climate states following a
Markov chain; Fortin et al. (2004) applied a shifting level model, where a con-
tinuous Markovian process described mean runoff, to detect streamflow regime
changes and forecast annual time series; Akintuğ and Rasmussen (2005) assumed
the runoff probability distribution to be conditioned on a hidden climate state fol-
lowing a Markov chain, in order to generate synthetic time series of annual stream-
flow.

Precipitation downscaling originates from the desire to generate time series that are
consistent with atmospheric information. Atmospheric variables can be predicted
by the physically-based general circulation models (GCMs), which have been ex-
tensively used to generate climate change scenarios (Hughes et al., 1993). Since
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GCMs simulate atmospheric processes on very large grids, they are not suitable for
predicting precipitation, which is characterised by high spatial variability (Hughes
and Guttorp, 1994). Several studies, e.g. Giorgi and Mearns (1991) and Bates
et al. (1998), indicated the need for downscaling approaches that could translate
GCM simulations and historical records of large-scale atmospheric variables into
local-scale precipitation. Giorgi and Mearns (1991) used a GCM to provide the
boundary conditions for a nested limited area meteorological model, which simu-
lated precipitation on a finer grid. However, this methodology implies high com-
putational costs hindering its applicability. Moreover, biases of large-scale GCM
simulations are likely to propagate to local-scale predictions (Hughes et al., 1993;
Giorgi and Mearns, 1991). Weather state models (WSMs) were first developed by
Hay et al. (1991): WSMs downscale atmospheric information to local precipita-
tion by classifying observed atmospheric patterns into weather types, which can
be defined by either expert meteorological knowledge (Bardossy and Plate, 1991)
or automatic classification methods (Hughes et al., 1993); then precipitation prob-
ability distributions are estimated for each weather state. Non-homogeneous hid-
den Markov models (NHMMs) for precipitation were developed by Hughes and
Guttorp (1994), Hughes et al. (1999), and Bellone et al. (2000). Unlike WSMs,
NHMMs do not define the weather types by classifying atmospheric patterns a
priori: each weather type is identified by a precipitation probability distribution
and is represented by a state of a non-homogeneous Markov chain, whose state
transition probabilities depend on atmospheric variables. Thus NHMMs define the
weather states by considering both atmospheric and precipitation patterns. Such
definition may yield more efficient models than WSMs, which identify the weather
states without considering the precipitation process (Charles et al., 1999). Re-
cently NHMMs were applied by Robertson et al. (2004) to simulate precipitation
occurrences in north-eastern Brazil, and by Robertson et al. (2007) to provide a
crop model with precipitation input in south-eastern USA.

Several studies report of stochastic streamflow models using climatic information:
Uvo and Graham (1998) applied canonical correlation analysis to perform sea-
sonal streamflow forecasts in the Amazon Basin using Atlantic and Pacific Ocean
sea surface temperature (SST); Piechota and Dracup (1999) combined autocorre-
lation and ENSO information to forecast streamflow in the Columbia river basin;
Kelman et al. (2000) used ENSO data in an autoregressive model with exogenous
input (ARX) to forecast aggregate streamflow in Colombia; Landman et al. (2001)
applied statistical downscaling of GCM outputs to predict streamflow; Grantz and
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Rajagopalan (2005) used regression methods to forecast streamflow from SST,
snow water equivalent, and geopotential height. Lu and Berliner (1999) mod-
elled daily streamflow with a Markov switching model (MSM): lagged streamflow
and precipitation influenced state transition probabilities and were used in state-
dependent linear regressions to predict streamflow.

1.1.2 Review of reservoir optimisation methods

Most existing reservoir operation policies are based on heuristic rules or subjective
judgements of the operators. Thus many reservoir projects have not completely
yielded the planned benefits (WCD, 2000). Furthermore, many policies are not de-
signed for multi-facility systems, as integrated operational strategies dramatically
increase the number of possible decisions (Labadie, 2004). Therefore the devel-
opment of robust and feasible approaches to optimise reservoir operation has been
extensively studied during the last decades (Yeh, 1985; Simonovic, 1992; Wurbs,
1993; Labadie, 2004). However a continuous gap between theoretical advances
and real implementations has been observed. Mathematical complexity and dif-
ficulties in accounting for uncertainty of many optimisation methods were men-
tioned by Labadie (2004) among the causes of such gap. Considering input un-
certainty is compulsory if inflow forecasts are exploited to improve operational
efficiency. Input uncertainty in reservoir optimisation can be considered by either
explicit (ESO) or implicit (ISO) stochastic optimisation methods (Tickle and Goul-
ter, 1994). ESO integrates probabilistic descriptions of the input variables, thus
directly accounting for uncertainty when optimising the policies. Instead, ISO
evaluates operation policies on a number of equally likely input time series, thus
indirectly including uncertainty. Theoretically, the operation policies obtained by
applying ISO are valid only for the used input time series. However, compared to
ESO, ISO allows a closer representation of the optimisation problem (Karamouz
and Houck, 1987; Rani and Moreira, 2009) and yields lower computational costs
in multireservoir applications (Roefs and Bodin, 1970).

Yeh (1985) and Labadie (2004) identified the main drawbacks of traditional opti-
misation algorithms, such as linear (LP) and dynamic (DP) programming, which
can be implemented according to both ISO and ESO approaches: LP requires the
system equations to be linear, when important processes such as hydropower gen-
eration are highly non-linear; DP is affected by the exponential growth of com-
putational costs with the number of system state variables. Thus the applicability
of these methods is often limited to simplified reservoir systems (Chen, 2003).
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The simulation-optimisation (SO) approach, which belongs to the ISO framework,
has been used to combine water resources simulation models with heuristics such
as genetic algorithms (GAs). According to SO, optimisation is an iterative pro-
cess in which trial solutions are first evaluated by the simulation model, and then
used by the search algorithm to produce a new generation of trial solutions. De-
spite the high number of simulations required, SO has gained growing attention
thanks to computational power advancements, its ease of implementation, and its
applicability to non-linear and non-convex optimisation problems. GAs cannot
guarantee the attainment of global optima, but can produce satisfactory solutions
to problems where convergent algorithmic methods would lead to local optima or
fail. Several authors have applied SO to water resources optimisation problems:
Oliveira and Loucks (1997) used GAs to perform multi-objective optimisation of
complex reservoir systems with constraints on releases and hydropower produc-
tion; Sharif and Wardlaw (2000) used GAs to optimise a multi-reservoir system
in the Brantas Basin in Indonesia; Chen (2003) combined a GA with a simulation
model to optimise the rule curves of a reservoir system in Taiwan; Ngo et al. (2007)
used the shuffled complex evolution algorithm to optimise the Hoa Binh reservoir
in Vietnam. Several stochastic water resources optimisation problems were tack-
led by coupling GAs with sampling objective functions, which average multiple
noisy evaluations, in order to implicitly account for input or parameter uncertainty
(Smalley and Minsker, 2000; Gopalakrishnan et al., 2001; Kapelan et al., 2006;
Wu et al., 2006).

Many of the aforementioned methods have been applied to optimise real-time
reservoir operation. Several authors indicated that real-time operation using fore-
casts may yield better results than reactive control (Labadie et al., 1981; Misha-
lani and Palmer, 1988; Georgakakos, 1989). Several reservoir optimisation ap-
plications were implemented using short-term inflow forecasts without including
long-term information (Simonovic and Burn, 1989; Mujumdar and Ramesh, 1997,
1998). However, since forecast models generally perform poorly for large lead
times, real-time reservoir operation may be improved by integrating information
from optimised long-term operation (Yeh, 1985; Celeste et al., 2008).

1.2 Overview of the proposed methods
In the first research application we used NHMMs to downscale synoptic atmo-
spheric patterns to daily precipitation amounts. The model was applied to 51 pre-
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cipitation gauges in Denmark and southern Sweden. To obtain realistic simulations
for dense networks of gauges, the spatial dependence structure of precipitation
must be explicitly modelled (Hughes et al., 1999; Bellone et al., 2000). Hughes
et al. (1999) used the autologistic model for multivariate binary data to account
for spatial correlation of precipitation occurrences. However, to limit the number
of parameters, inter-gauge correlations were modelled as functions of the distance
and direction between gauges. To model the precipitation occurrence probabil-
ity patterns for each weather state, we applied Chow-Liu trees (Chow and Liu,
1968; Meila and Jordan, 2000). Chow-Liu trees approximate multivariate discrete
distributions with products of bivariate distributions, thus identifying preferential
correlation patterns among precipitation gauges. Chow-Liu trees were embedded
in NHMMs by Kirshner et al. (2004) for modelling multivariate precipitation oc-
currences in south-western Australia. Our model was used to simulate precipita-
tion amounts conditioned on time series of atmospheric variables, and to analyse
the correspondence between precipitation and atmospheric patterns defined by the
weather states. Paper I reports on these applications.

In the second application we model seasonal inflow to the Daule Peripa and Baba
reservoirs (Ecuador) using ENSO information. Our methodology derives from the
work of Hamilton (1989), who modelled gross domestic product with a mixture
of autoregressive models shifting between growth and recession phases according
to a hidden Markov chain. We extended this approach by modelling state tran-
sitions with a non-stationary Markov chain, as defined for NHMMs by Hughes
and Guttorp (1994). The presented model defines a hidden climate state follow-
ing a non-stationary Markov chain, whose transition probabilities are functions of
climatic information. The occurring climate state sets the ARX parameters for
mapping inflow anomalies as functions of lagged inflow and current climatic in-
dices. Thus the presented model is an MSM and not a hidden Markov model,
in which observations are independent conditioned on the hidden states (Cappè
et al., 2005). Inflow anomalies are given a non-stationary description accounting
for autocorrelation and climatic influence through pseudo-linear relations. Such
description may be an advantage compared to stationary periodic autoregressive
models (PARs) (Salas, 1993; Hipel and McLeod, 1994), which may also include
climatic indices as exogenous input. Indeed non-linearities between streamflow
and climatic variables and in autocorrelation may not by properly modelled by
PARs due to their linearity. Model applications, which are described in papers II,
III and IV, were: inflow simulation based on ENSO time series; inflow forecast-
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ing conditioned on ENSO forecasts, which are available with 9 month lead time;
and a retrospective analysis of historical records to infer about the correspondence
between inflow regimes, model-defined climate states, and ENSO phases.

Finally we considered the optimisation of the Daule Peripa and Baba reservoirs,
which serve hydropower plants and downstream water users. We followed the
SO approach to perform long- and short-term stochastic reservoir optimisation. To
account for input uncertainty and thus obtain robust reservoir operations, the devel-
oped MSM was used to generate the stochastic input to simulate the reservoirs. The
optimisation was performed by minimising a sampling objective function measur-
ing the hydropower deficit. Long-term optimisation was performed by calibrating
rule curves, using synthetic inflow scenarios generated by conditioninng on long
ENSO time series. Short-term optimisation was carried out by integrating ENSO-
based inflow forecasts with seasonal storage targets, thus combining short-term
climatic information and long-term optimal management guidance. Papers III and
IV report on these applications.

1.3 Structure of the thesis
This thesis has the following structure: in chapter 2 we characterise the case stud-
ies; in chapter 3 we outline the applied methods; in chapter 4 we discuss the main
results; in chapter 5 we summarise the achievements of the conducted research; in
chapter 6 we provide a list of abbreviations and symbols.
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2 Case studies
In this chapter we introduce the case studies by presenting study areas and data.
Section 2.1 gives an overview of the meteorology of southern Scandinavia, and
of the precipitation and atmospheric data used for the downscaling application in
paper I. Section 2.2 presents the Daule Peripa and Baba reservoir system, and the
inflow and ENSO data used in papers II, III, and IV.

2.1 Southern Scandinavia
The study area of the precipitation downscaling application consists of Denmark
and southern Sweden (see Figure 2.1a).

2.1.1 Meteorology

The weather of southern Scandinavia is strongly influenced by the dominating
wind direction (DMI, 1997). When the westerlies push low pressure systems
from the northern Atlantic Ocean to Scandinavia, frontal precipitation occurs. This
weather type usually persists for some days and sometimes for a few weeks. If low
pressure does not affect Scandinavia, then high pressure weather prevails, bringing
stable and dry conditions. Winds blow from east when there is a pressure gradient
between Fennoscandia and the continent: air masses, heated and moisturised by the
Baltic sea, may bring precipitation over the eastern part of the region. This weather
type is very stable, but less frequent than the westerly regime. As eastern winds,
southern winds blow from the continent. During summer, these air masses convey
humidity, often provoking squalls or thunderstorms. Northern winds are the least
frequent: due to the lee effect of the Norwegian mountains, the northern and east-
ern parts of the region are characterised by dry conditions, while precipitation may
occur over the south-western part. North-eastern winds often bring precipitation
over Denmark, as cold air masses from Sweden are heated and moisturised by the
Kattegat.

2.1.2 Precipitation and atmospheric data

Daily precipitation and atmospheric data were available from 1981 to 2003. Only
autumn-winter periods (November-February) were considered. Indeed the small-
scale convective processes causing spring-summer precipitation can hardly be pre-
dicted by large-scale atmospheric patterns (Linderson, 2001). Precipitation data
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Figure 2.1: Overview of southern Scandinavia, precipitation gauges (·), and atmo-
spheric grid nodes (+).

were obtained from the Danish Meteorological Institute (Copenhagen, Denmark)
and the Swedish Meteorological and Hydrological Institute (Norrköping, Sweden)
for 51 gauges (see Figure 2.1b). Time series of atmospheric variables were ex-
tracted from the NCEP Reanalysis dataset provided by the NOAA-CIRES Climate
Diagnostics Center (Boulder, Colorado, USA). Among the available atmospheric
fields, we chose geopotential height and relative humidity at several pressure levels
because of their high relevance to precipitation: geopotential height informs on the
circulation pattern, while relative humidity indicates the degree of saturation of the
atmospheric layers. The variables are available on a grid with 2.5◦ resolution in
latitude and longitude: the selected nodes are located in Figure 2.1b.

2.2 Western Ecuador
The hydrology of the coastal regions of Ecuador is strongly influenced by ENSO.
ENSO can be characterised by standard indices based on SST anomalies (SSTA)
of the equatorial Pacific Ocean (see Figure 2.2). ENSO is a cyclical phenomenon,
in which El Niño and La Niña phases alternate with normal conditions.The ex-
pected duration of an El Niño or La Niña event is approximately 1 year, while
return times normally range from 3 to 6 years. El Niño events can be defined as
periods in which the 5 month moving average deviations of Niño 3 SST from the
1950-1979 monthly mean values are larger than +0.5◦C for at least 6 consecutive
months (Trenberth, 1997). A symmetric definition applies for La Niña, for which
the upper threshold of smoothed SST deviations is -0.5◦C. Occurrences of El Niño
bring anomalously heavy precipitation in western Ecuador as a consequence of

10



180
° W 150° W 120° W 90°W 

60 °W 

30 °S 

0 °

Niño 1+2
Niño 3
Niño 4
Niño 3+4
Reservoir
system

Figure 2.2: Location of the Daule Peripa and Baba reservoir system and parts of
the Pacific Ocean where ENSO-related SST are measured.

positive SSTA along the coast (Vuille et al., 1999). Moreover intense El Niño
events may reverse the normal direction of trade winds, causing further increases
in precipitation due to warm moist air masses moving from the Pacific Ocean to
the coast.

2.2.1 Inflow and ENSO data

Monthly inflow data are available from 1950 to 2008 for Daule Peripa, and from
1950 to 2004 for Baba. The average inflow is 176 m3/s for Daule Peripa, and
107 m3/s for Baba. Approximately 92% of the difference concentrates between
February and May, which constitute the wet season for both catchments (see Figure
2.3a). Indeed the average February-May inflow constitutes approximately 76% and
66% of the total annual inflow of Daule Peripa and Baba, respectively.

We analysed ENSO indices computed from SST measured on parts of the equa-
torial Pacific Ocean (see Figure 2.2): Niño 1+2 (0◦-10◦S, 90◦-80◦W), Niño 3
(5◦N-5◦S, 150◦-90◦W), Niño 3+4 (5◦N-5◦S, 170◦-120◦W), and Niño 4 (5◦N-5◦S,
160◦E-150◦W). We also considered the Trans-Niño Index (TNI), which is com-
puted as the difference between Niño 1+2 and Niño 4 SSTA, thus representing
the SSTA gradient across the equatorial Pacific Ocean (Trenberth and Stepaniak,
2001). Monthly SST data were obtained from the NOAA Climate Prediction Cen-
ter1 (Camp Springs, Maryland, USA) for 1950-2009. Monthly forecasts of ENSO-
related SST are currently published with lead times up to 9 months.

1http://www.cpc.ncep.noaa.gov/data/indices/
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Figure 2.3: (a) Average monthly inflow of Daule Peripa and Baba reservoirs. (b)
Annual time series of inflow anomalies and Niño 1+2 SSTA.

To give an overview of the correlation between ENSO indices and reservoir inflow,
Figure 2.3b compares the annual anomalies of Niño 1+2 SST and inflow. Anoma-
lies were obtained by standardising annual data with respect to sample mean and
standard deviation. The annual inflow anomalies of Daule Peripa and Baba exhibit
a significant cross-correlation. Niño 1+2 SSTA are well correlated with positive
inflow anomalies, but not with anomalously low inflow. Similar results were ob-
tained by comparing inflow anomalies with the other ENSO indices. This analysis
suggested that El Niño is well correlated with positive inflow anomalies, while the
influence of La Niña is not significant.

2.2.2 The Daule Peripa – Baba reservoir system

The approximate location of the studied reservoirs is shown in Figure 2.2. The
Daule Peripa reservoir, which was completed in 1987, receives its inflow from the
Daule and Peripa rivers. It serves a hydropower plant and other downstream water
users. The Baba reservoir, currently under construction, will be supplied by the
Baba river. It will serve downstream water users and a hydropower plant located
along a transfer channel to Daule Peripa. The downstream water demands of both
reservoirs are given highest priority and aggregate irrigation, urban water supply,
and environmental flow demands.

The main characteristics and a scheme of the Daule Peripa – Baba water resources
system are reported by Table 2.1 and Figure 2.4, respectively. The average annual
inflow volume of Daule Peripa is 1.6 times its active storage volume. The same
ratio scores 27 for Baba. Thus the water management potential of Baba is very lim-
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Figure 2.4: Scheme of the Daule Peripa – Baba water resources system: existing
and added elements, and terms of the water balance equations (2.1) and (2.2).

Table 2.1: Characteristics of the Daule Peripa – Baba water resources system.
Reservoir Turbine Downstream

Active Level Hydraulic Power Average Water
storage range capacity capacity efficiency demand
[km3] [m] [m3/s] [MW] [-] [m3/s]

Daule
3.534 70-86 396 213 0.835 60

Peripa
Baba 0.123 105-120 250 65 0.901 10

ited, compared to that of Daule Peripa. Indeed the inclusion of Baba will increase
the total inflow by 60%, and the system storage capacity by only 3.5%. No defined
operation policy is known for the existing or the planned water resources system.
However, observed monthly time series of reservoir water level and hydropower
are available from 2000 to 2008 for Daule Peripa.

Due to data scarcity, we defined the reservoir water balance and hydropower equa-
tions according to the following assumptions.

1. Inflows are net values, thus precipitation and evaporation at the lake surface, as
well as storage gains and losses due to filtration, are not explicitly considered.
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2. Time steps are monthly.

3. Water flows are constant during a time step.

Thus the water balance equations for time step t are

vd (x) = vd (τt−1) + (x− τt−1)
(
qdt + rbt − rdt − wdt

)
(2.1)

vb (x) = vb (τt−1) + (x− τt−1)
(
qbt − rbt − wbt

)
(2.2)

where τt−1 is the end time of time step t − 1; the superscript indices d and b refer
to, respectively, Daule Peripa and Baba; vi (x) is the storage volume at time x, and
qit, rit and wit are inflow, turbine flow and downstream release during t, for i = d, b

and τt−1 < x 6 τt. The terms of equations (2.1) and (2.2) are associated to the
elements of the system in Figure 2.4. Let gt be the average power generated by the
hydropower plants during t:

gt = φ
∑
i=d,b

εirit

(
h
i

t − kit
)

(2.3)

where φ is the specific weight of water; εi is the turbine efficiency, and kit and h
i

t

are the tailwater height and the average reservoir water level during t, for i = d, b.
Tailwater height and average reservoir level are non-linear functions of rit, thus
equation 2.3 is highly non-linear.

According to the water balance equations (2.1) and (2.2), system operation during
t is defined by rit and wet , for i = d, b. However, to reduce the number of control
variables, considering that downstream water demands prioritised, we made the
following further assumptions. Let W i be the downstream water demand, and Ri

be the turbine hydraulic capacity, for i = d, b (see Table 2.1):

4. rdt > W d unless the Daule Peripa reservoir is empty.

5. wbt > W b unless the Baba reservoir is empty.

6. rbt > 0 if and only if wbt > W b.

7. wdt = 0 unless rdt = Rd and the Daule Peripa reservoir is full.

8. wbt > W b if and only if rbt = Rb and the Baba reservoir is full.

Assumptions 4, 5 and 6 derive from prioritising the downstream water demands.
Assumption 7 takes into account that the turbine release of Daule Peripa is avail-
able to the downstream water users. Assumption 8 states that the downstream
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release of Baba may exceed the water demand if and only if the Baba reservoir is
full and the turbine hydraulic capacity is reached. According to all formulated as-
sumptions, system operation during t is determined by the sole releases rdt and rbt .
Let us define the system control variables during t as the turbine release fractions
ρt =

{
ρdt , ρ

b
t

}
:

rdt = W d + ρdt
(
Rd −W d

)
(2.4)

rbt = ρbtR
b (2.5)

where 0 6 ρit 6 1 so that rit 6 Ri (for i = d, b), and rdt > W d.
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3 Methods
In this chapter we summarise the applied methods. Section 3.1 describes the ap-
proaches to stochastic hydrologic modelling with climatic input used in papers I, II,
III, and IV. The precipitation and inflow models are both based on the assumption
that an unobservable state variable conditions the observable process. Thus section
3.1 first illustrates how the state is modelled, and then specifies the conditional de-
scriptions of precipitation and inflow (in sections 3.1.1 and 3.1.2, respectively).
Section 3.2 illustrates the reservoir optimisation methods applied in papers III and
IV.

3.1 Stochastic hydrologic modelling with climatic in-
put

The proposed stochastic models assume the observable hydrologic processes to be
driven by a hidden climatic state. The state at time t is represented by the discrete
stochastic variable st taking on values 1, . . . , S. st follows a first order Markov
chain, whose transition probabilities depend on the climatic input at t. According
to Hughes and Guttorp (1994), state transition probabilities can be computed as

Pr {st |st−1, ct,θ} ∝ pst−1st exp
[
−1

2

(
ct − µst

)′
V−1

(
ct − µst

)]
, if t > 1 (3.1)

where ct is the vector of climatic indices at t; θ is the model parameters set; pij
is the stationary component of the transition probability from state i to j; µi is the
value of ct that maximises the probability of shifting to state i; and ′ is the transpose
operator; to limit parameter numerosity, the scale matrix V is set equal to the
covariance matrix of ct (Hughes and Guttorp, 1994; Hughes et al., 1999; Bellone
et al., 2000). To ensure parameter identifiability, pij is subject to the constraint
S∑
j=1

pij = 1, for i = 1, . . . , S. State occurrence probabilities for the first time step are

calculated as

Pr {s1 |c1,θ} ∝ exp
[
−1

2

(
c1 − µs1

)′
V−1

(
c1 − µs1

)]
(3.2)

Let at and βt be the vectors of, respectively, observable and conditioning vari-
ables at t. The content of βt is specified in sections 3.1.1 and 3.1.2 for each
modelling application. However, in the developed models, βt may only consist
of current and lagged (with respect to t) observable variables and climatic indices.
Let fa (at |st,βt,θ ) be the conditional probability density function (CPDF) of the
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observable variables at, given the state st, the conditioning variables βt, and the
model parameters θ. Then, according to MacDonald and Zucchini (1997), the
model likelihood function is

L (θ |a1:T , c1:T ) = ψ′1

(
T∏
t=2

Ψt

)
1S (3.3)

where T is the last time step of the series; a1:T and c1:T are the time series of,
respectively, at and ct from time step 1 to T ; 1(S) is a S long vector of ones; and
the elements of the S long vector ψ1 and of the S × S matrix Ψt are

ψ1 (s1) = fa (a1 |s1,β1,θ ) Pr [s1 |c1,θ ] (3.4)

Ψt (st−1, st) = fa (at |st,βt,θ ) Pr [st |st−1, ct,θ ] , if t > 1 (3.5)

Model parameters θ are estimated by maximising the likelihood function (3.3)
with the expectation-maximisation (EM) algorithm. The EM algorithm, which
is an iterative maximum likelihood method, was originally developed for hidden
Markov models (Baum et al., 1970; Dempster et al., 1977), and later applied to
NHMMs by Hughes et al. (1999). Paper I outlines the EM algorithm for NHMMs,
while for MSMs full derivations are carried out in the appendices of papers III and
IV.

The presented general modelling framework can be used for simulation, forecast-
ing, and retrospective analysis of historical records. By simulating, we generate a
set of synthetic time series of observable variables ÂN

1:T =
{

â
(1)
1:T , . . . , â

(N)
1:T

}
, given

a time series of climatic variables c1:T . Forecasting for lead times up to l (from the
end of time step t) is done by generating ÂN

t+1:t+l conditioned on past observations
a1:t and c1:t, and on climatic forecasts ĉt+1:t+l. Retrospective analysis of histori-
cal records is carried out via the Viterbi algorithm (Viterbi, 1967; Rabiner, 1989),
which finds the most likely state sequence s∗1:T = {s∗1, . . . , s∗T} given the observed
time series a1:T and c1:T :

s∗1:T = arg max
s1:T

{Pr [s1:T |a1:T , c1:T ,θ ]} (3.6)

Simulation, forecasting, and retrospective analysis techniques are described in pa-
pers I, II, and IV.

3.1.1 Downscaling atmospheric patterns to precipitation

In the precipitation modelling application, the observable variables at are the pre-
cipitation amounts observed at K gauges on day t. The hidden state variable st is
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referred to as the weather state. The climatic inputs ct are atmospheric summary
variables obtained by applying singular value decomposition (SVD) to the grid-
ded atmospheric fields. SVD reduces the high dimensional atmospheric data into a
few values that explain most of the covariance between the atmospheric fields and
precipitation (Bretherton et al., 1992). The SVD technique is described in paper I.

We assume that precipitation is conditioned only on the current weather state and
model parameters, according to the definition of hidden Markov model (Cappè
et al., 2005). Thus the CPDF of at is

fa (at |st,θ ) = fα (αt |st,θ )

K∏
k=1

Ga (at (k)− e; ξkst , ϕkst)
αt(k) (3.7)

where at (k) is the precipitation amount at gauge k on day t; e is the typical reso-
lution of a tipping bucket rain gauge (0.2 mm); Ga (· ; ξki, ϕki) is a two parameter
Gamma density with parameters ξki and ϕki, which are specific for gauge k when
state i occurs; αt is the precipitation occurrence pattern on day t: if precipita-
tion occurs at gauge k, then αt (k) = 1, otherwise αt (k) = 0; fα (αt |st,θ ) is the
conditional probability mass function (CPMF) of αt, given st. If we assume that
precipitation occurrences at different gauges are conditionally independent given
the weather state, the CPMF of αt becomes

f Iα (αt |st,θ ) =

K∏
k=1

(okst)
αt(k) (1− okst)

1−αt(k) (3.8)

where oki is the precipitation occurrence probability at gauge k for state i. How-
ever, the description given in equation (3.8), in which the spatial correlation of
precipitation is implicitly accounted for by the weather state, is not suitable for
dense gauge networks (Hughes et al., 1999; Bellone et al., 2000).

To explicitly model the spatial dependence of precipitation occurrences, NHMMs
can be combined with Chow-Liu trees for multivariate discrete data (Chow and
Liu, 1968; Meila and Jordan, 2000; Kirshner et al., 2004). The Chow-Liu method
approximates a multivariate distribution of K discrete variables with the product
of K − 1 bivariate discrete distributions. Such pairs constitute the tree structure, in
which the edges are not allowed to form circles. Let Ei be the Chow-Liu tree for
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state i, the tree-approximated CPMF of αt becomes

fTα (αt |st,θ ) =

∏
(k,j)∈Est

Fkj (αt (k) , αt (j) |st,θ )

K∏
k=1

Fk (αt (k) |st,θ )deg(k)−1

(3.9)

where Fkj (αt (k) , αt (j) |st,θ ) is the conditional bivariate discrete distribution of
precipitation occurrences at gauges k and j; Fk (αt (k) |st,θ ) is the marginal of
Fkj (αt (k) , αt (j) |st,θ ) with respect to αt (j) for any j 6= k; deg (k) is the num-
ber of tree edges connecting gauge k. At each iteration of the model calibration
procedure, the tree edges are selected by maximising the total conditional mutual
information, which measures the amount of explained covariance between pairs
of discrete variables (see paper I for details). Thus the tree Ei identifies a prefer-
ential correlation pattern among precipitation gauges for state i. The number of
parameters needed by the Chow-Liu tree approximation increases linearly with the
number of gauges K, while a multivariate discrete distribution yields an exponen-
tial increase (Hughes and Guttorp, 1994).

3.1.2 Inflow modelling using ENSO information

In the inflow modelling application, at and ct are monthly anomalies of reservoir
inflow and ENSO indices, respectively. Inflow anomalies are obtained by log-
transformation and deseasonalisation, while ENSO indices are only deseasonalised
(see paper II) II. Here, the hidden state variable st is referred to as the climate state.
The climate state determines the parameters of the multivariate ARX modelling
inflow anomalies. Assuming the conditional multivariate ARX noise to consist of
Gaussian stationary white noise uncorrelated processes, the CPDF of at is

fa (at |st, at−1, ct,θ ) =
1√

(2π)K det (Ωst)

exp
[

1

2
(at − δst −Dt−1λst − Γstct)

′Ω−1st (at − δst −Dt−1λst − Γstct)
]

(3.10)

where a0 is defined to be a null vector; K is the number of inflow gauges; Dt

is a diagonal matrix constituted by the elements of at; δi, λi, Γi, and Ωi are the
multivariate ARX parameters for state i. In particular, δi is the K long vector of
intercept parameters; λi is the K long vector of autoregressive parameters; Γi is
the K ×M matrix of exogenous correlation parameters, where M is the length of
ct; and Ωi is the K ×M covariance matrix of the multivariate residual process:

Ωi = cov {at − δi −Dt−1λi − Γict} = Ξi /OiΞ
′
i, if st = i (3.11)
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where the columns of Ξi are the eigenvectors of Ωi; and the elements of the diag-
onal matrix /Oi are the eigenvalues of Ωi. Thus the conditional description of at

is

at = δi + Dt−1λi + Γict + Ξi /O
1
2
i εt, if st = i (3.12)

where εt is a vector of standard Gaussian independent white noise processes.

The proposed approach mimics discrete climate-driven inflow regime shifts, and
directly models correlations between ENSO indices and inflow anomalies. Since
the multivariate ARX parameters are determined by the climate state, inflow anoma-
lies are given a heteroschedastic and pseudo-linear description.

3.2 Reservoir optimisation methods
The presented reservoir optimisation methods are designed to exploit the ability
of the inflow model defined in 3.1.2 to generate inflow scenarios consistently with
the available ENSO information. Optimisation is carried out according to the SO
approach by coupling the reservoir system simulation model defined in section
2.2.2 with a GA.

GAs are heuristics designed to find approximate solutions to search and optimisa-
tion problems (Goldberg, 1989; Holland, 1992). The operation of a GA consists
of the following steps: (i) an initial population of solutions is randomly generated;
(ii) objective functions are evaluated for each member of the initial population;
(iii) a new population is generated by the genetic operators (selection, crossover
and mutation); (iv) steps (ii) and (iii) are iterated until a termination criterion is
satisfied.

According to the assumptions made in section 2.2.2, the downstream water de-
mands of the Daule Peripa and Baba reservoirs are given highest priority. Thus
reservoir optimisation is defined as a single-objective problem, in which the min-
imisation of the expected root mean square hydropower deficit (ERMSHD) is
sought. Input uncertainty is accounted by using sampling objective functions that
evaluate each trial set of decision variables on a high number of synthetic inflow
time series. The number of used synthetic time series is decided by compromising
between the following conflicting criteria: (i) if simulations are iterated on several
sets of time series, a set of decision variables must yield similar objective function
values (stability criterion); (ii) the computational cost of the stochastic evaluation
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must be acceptable (feasibility criterion).

Section 3.2.1 defines the long-term optimisation technique (LT), which uses sim-
ulated inflow scenarios based on long time series of ENSO indices as stochastic
input. Section 3.2.2 defines the short-term optimisation technique (ST), which
optimises reservoir releases at each monthly time step using ENSO-based inflow
forecasts issued for the following 9 months. To benchmark the performance of
the optimisation methods, we apply the DP algorithm (Bellman, 1957; Bertsekas,
2000): given a finite set of reservoir water levels and assuming perfect knowledge
of inflow, the DP algorithm finds the water level time series minimising ERMSHD
while fulfilling the downstream water demands. The optimisation problems solved
by the DP algorithm are defined in papers III and IV.

3.2.1 Long-term optimisation

LT optimises rule curves that determine reservoir releases as functions of reservoir
water levels and calendar month. A rule curve consists of 12 reservoir water levels,
one per calendar month, which are the upper bounds for the implementation of a
pre-defined release fraction.

Let ηku =
{
ηku (1) , . . . , ηku (12)

}
be the uth rule curve for reservoir k, and υku be

the corresponding pre-defined release fraction. Let hk (x) be the water level of
reservoir k at time x, and ρk (x) be the corresponding actual release fraction. During
the monthly time step t, i.e. when τt−1 < x 6 τt, we have that

ηku+1 (m (t)) < hk (x) 6 ηku (m (t))⇒ ρk (x) = υku (3.13)

where m (t) returns the calendar month corresponding to t; the rule curves are
defined so that ηku (z) < ηku−1 (z), and υku−1 < υku. Two additional fixed rule curves
are needed for each reservoir to fulfil the reservoir water level constraints:

ηk0 = hkmax1(12) (3.14)

ηkU+1 = hkmin1(12) (3.15)

corresponding to υk0 = 1 and υkU+1 = 0, where hkmin and hkmax are the minimum and
maximum operational water levels of reservoir k (see Table 2.1), and 1(12) is a 12
long vector of ones. The average release fraction of reservoir k during t, i.e. ρkt , is
then computed as the average of ρk (x) for τt−1 < x 6 τt.

If U rule curves have to be optimised, to limit the number of variables to be op-
timised, only ηk1 is defined by 12 levels, whereas the other U − 1 rule curves are
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defined by scaling factors:

ηku = hkmin1(12) + χku−1
(
ηku−1 − hkmin1(12)

)
, for u = 2, . . . , U (3.16)

where χku−1 is the scaling factor defining the uth rule curve of reservoir k. For
each reservoir k, the set of decision variables is

{
ηk1, χ

k
1, . . . , χ

k
U−1
}

. Thus the total
number of variables to be optimised is K (U + 11). The presented rule curve pa-
rameterisation imitates traditional reservoir operation, in which releases are often
determined as functions of reservoir water level and season (Wurbs, 1993).

Let HLT be the complete set of LT decision variables; Q̂N
1:T =

{
q̂
(1)
1:T , . . . , q̂

(N)
1:T

}
be

a set of N synthetic reservoir inflow time series from month 1 to T ; and R̂N
1:T ={

r̂
(1)
1:T , . . . , r̂

(N)
1:T

}
and ĝN1:T =

{
ĝ
(1)
1:T , . . . , ĝ

(N)
1:T

}
be the corresponding sets of releases

and hydropower time series obtained by simulating the water resources system im-
plementing HLT , given Q̂N

1:T . Assuming the sum of the turbine power capacities to
be the power demand G (see Table 2.1), the sampling objective function estimating
ERMSHD is

y
(

Q̃N
1:T ,HLT

)
=

√√√√ 1

NT

N∑
n=1

T∑
t=1

(
G− ĝ(n)t

)2

(3.17)

3.2.2 Short-term optimisation

At the beginning of each monthly time step t, ST optimises reservoir operation
according to the following procedure: (i) based on the available 9 month long fore-
casts of ENSO indices ĉt:t+8, a set of inflow forecast scenarios Q̂N

t:t+8 are generated
by the stochastic inflow model described in section 3.1.2; (ii) the reservoir release
fractions for the 9 month forecast period ρt:t+8 =

{
ρt, . . . ,ρt+8

}
are optimised us-

ing the inflow forecast scenarios as stochastic input; (iii) the system is operated
during the first time step t by implementing the optimised value of ρt; (iv) the
reservoir water levels are updated at the end of t; (v) steps from (i) to (iv) are
iterated for t+ 1.

At the beginning of t, ρt:t+8 are optimised by minimising an aggregate objective
function, which is a weighted sum of ERMSHD from t to t + 8 and of a penalty
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term approximating the minimum ERMSHD beyond the forecast horizon:

Y
(

Q̂N
t:t+8,ρt:t+8

)
=

(1− ω)

√√√√ 1

9N

N∑
n=1

8∑
l=0

(
G− ĝ(n)t+l

)2

+
ω

N

N∑
n=1

P
(
m (t+ 8) , ĥ

(n)
t+8

)
(3.18)

where ĥ
(n)
t+8 =

{
ĥd(n) (τt+8) , ĥ

b(n) (τt+8)
}

is the vector of reservoir water levels at

the end of t + 8, obtained by implementing ρt:t+8 given q̂
(n)
t:t+8; P (m (t+ 8) ,ht+8)

is the penalty term as function of the calendar month and reservoir water levels at
the end of the forecast period; and ω is the weight assigned to the penalty term
(0 6 ω 6 1).

To compute P (m (t+ 8) ,ht+8), we sample a set of observed 12 month inflow
time series beginning on calendar month m (t+ 9). Given a finite set of feasible
monthly reservoir water levels, constraining initial and final levels to be equal, and
imposing the satisfaction of downstream water demands, the approximated min-
imum root mean square hydropower deficit (MRMSHD) for a single time series
is found via the DP algorithm. The penalty term is computed by averaging the
RMSHDs obtained for the single inflow time series. This definition of the penalty
function yields the following properties: (i) the reservoir water levels minimising
the penalty function can be interpreted as monthly storage targets; (ii) RMSHDs
computed on the same inflow time series are based on the same cumulated reser-
voir releases; (iii) the stochasticity of inflow is accounted for by averaging single
MRMSHD values. A detailed discussion of the penalty function is available in
paper IV.

ST exploits both short- and long-term information to optimise reservoir operation
at the beginning of every monthly time step. Short-term information consists of the
9 month long ENSO-based inflow forecasts. Long-term information is accounted
for by the penalty function, which penalises deviations from monthly storage tar-
gets.
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4 Results and discussion
In this chapter, we summarise and discuss the main results obtained during the PhD
studies: section 4.1 presents the application of the stochastic precipitation model
in southern Scandinavia; section 4.2 reports on the application of the stochastic in-
flow model to the Daule Peripa reservoir; section 4.3 compares LT and ST with the
historical management of the Daule Peripa reservoir, and then illustrates the appli-
cation of ST to the planned Daule Peripa – Baba water resources system. Although
the methods described in sections 3.1.2 and 3.2 are defined for the two reservoir
system, several results are available only for Daule Peripa. Indeed the inclusion
of Baba needs to be further developed, by working on both the multivariate inflow
model and the multi-reservoir optimisation methods.

4.1 Downscaling atmospheric patterns to precipita-
tion in southern Scandinavia

NHMMs embedding Chow-Liu trees (see section 3.1.1) were calibrated on daily
winter precipitation data recorded by 51 gauges in Denmark and Götaland (see Fig-
ure 2.1). We selected a NHMM defining 8 weather states and downscaling geopo-
tential height at 1000 hPa (GH-1000) and relative humidity at 850 hPa. The fitted
model yielded satisfactory reproductions of average precipitation amounts, and of
gauge-specific statistics such as precipitation marginal distributions and wet- and
dry-spell duration curves. A detailed discussion of these results is available in pa-
per I. Here we illustrate the reproduction of the spatial correlation of precipitation,
and the physical interpretation of the weather states.

Figure 4.1 compares the reproduction of the observed cross-correlation coefficients
between precipitation amounts at pairs of gauges. The NHMM assuming condi-
tional spatial independence systematically underestimates high correlations. The
use of Chow-Liu trees yields a slightly better reproduction of large correlations.
However underestimation remains systematic. Indeed Chow-Liu trees account for
the spatial dependence of the precipitation occurrence process, but assume precip-
itation amounts at different gauges to be conditionally independent. Thus further
improvement might be achieved by introducing a spatial dependence model for
precipitation amounts.

The model-defined weather states can be associated to expected atmospheric pat-
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Figure 4.1: Observed correlation coefficients between precipitation at pairs of
gauges versus values simulated with (a) conditional spatial independence, and (b)
Chow-Liu trees.

terns, which are obtained by averaging the atmospheric time series using inferred
state occurrences or occurrence probabilities as weights. The latter can be esti-
mated via, respectively, Viterbi (Viterbi, 1967; Rabiner, 1989) and Baum-Welch
(Baum et al., 1970) algorithms, which are described in paper I. Comparing the
state-specific precipitation probability distributions with the corresponding aver-
aged atmospheric patterns allows validating the physical significance of the model.
Here each weather state is characterised by the marginal precipitation occurrence
probability pattern, the Chow-Liu tree, and the associated averaged pattern of GH-
1000. A more complete discussion of the weather states, including expected pre-
cipitation amounts, is available in paper I.

State 1 corresponds to a high pressure weather type and yields small precipitation
occurrence probabilities at all gauges (see Figure 4.2).

State 2 represents an intense westerly regime, in which a deep low pressure system
approaches Scandinavia from the Norwegian Sea and causes winds to blow from
the south-west. Consistently, precipitation probabilities are large at all gauges (see
Figure 4.3).

State 3 corresponds to a weak westerly weather type, in which winds blow from the
north-west. Precipitation probabilities are large in Denmark and low in Götaland,
probably due to the lee effect of the Norwegian mountains (see Figure 4.4).

State 4 may correspond to the early development of a low pressure area causing
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Figure 4.2: Weather state 1: (a) precipitation occurrence probabilities and edges of
the Chow-Liu tree; (b) averaged GH-1000 pattern.

(a) (b)

0 0.25 0.5 0.75 1

−1
00−7
5 −7
5

−75

−50 −5
0

−50

−50
−25

−25
−2
5

−25

−25
0

0

0
0

25

25
25

25

50

50
50

50

75

75
75

75

10
0

100
100

10
0

125

125

125

150
15
0

15
0

L

Figure 4.3: Weather state 2: (a) precipitation occurrence probabilities and edges of
the Chow-Liu tree; (b) averaged GH-1000 pattern.

weak westerly conditions. Precipitation probabilities are larger in Götaland than
in Denmark, possibly because of air masses being heated and moisturised by the
Kattegat (see Figure 4.5).

State 5 is similar to state 4, corresponding to an even less developed low pressure
system. Consistently, precipitation probabilities for state 5 are smaller than for
state 4 at all gauges (see Figure 4.6).

State 6 corresponds to an easterly weather type, characterised by high pressure
on Russia and Fennoscandia. Consistently, precipitation probabilities are highest
in the easternmost part of the study area and gradually decrease westwards (see
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Figure 4.4: Weather state 3: (a) precipitation occurrence probabilities and edges of
the Chow-Liu tree; (b) averaged GH-1000 pattern.
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Figure 4.5: Weather state 4: (a) precipitation occurrence probabilities and edges of
the Chow-Liu tree; (b) averaged GH-1000 pattern.

Figure 4.7).

State 7 is characterised by a low pressure area over Norway, and thus by prevalent
western winds. Precipitation is very likely in Denmark and central Götaland. The
small precipitation probabilities in eastern and western Götaland may be correlated
to the loss of moisture of the air masses after causing precipitation on the relieves
of central Götaland (see Figure 4.8).

State 8 represents weaker westerly conditions than state 7, with lower precipitation
probabilities at all gauges, except for those in Jutland and central and western
Götaland (see Figure 4.9).
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Figure 4.6: Weather state 5: (a) precipitation occurrence probabilities and edges of
the Chow-Liu tree; (b) averaged GH-1000 pattern.
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Figure 4.7: Weather state 6: (a) precipitation occurrence probabilities and edges of
the Chow-Liu tree; (b) averaged GH-1000 pattern.

To summarise, states 1 and 6 correspond to high pressure weather types; states
3 and 5 may represent either developing or extinguishing low pressure systems;
states 4 and 8 correspond to low pressure systems approaching Scandinavia; states
2 and 7 represent fully developed low pressure areas over Scandinavia. In most
cases, the model-defined Chow-Liu tree edges connect neighbouring gauges, thus
forming likely spatial correlation structures.

The robust predictions of precipitation statistics and the good physical consistency
of the weather states may encourage the use of NHMMs for translating large-scale
climate change predictions into local-scale precipitation simulations. However,
the estimated relations between atmospheric variables and precipitation, which are
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Figure 4.8: Weather state 7: (a) precipitation occurrence probabilities and edges of
the Chow-Liu tree; (b) averaged GH-1000 pattern.
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Figure 4.9: Weather state 8: (a) precipitation occurrence probabilities and edges of
the Chow-Liu tree; (b) averaged GH-1000 pattern.

valid for past climatic conditions, may not hold under altered climate scenarios.

4.2 Inflow modelling using ENSO information in west-
ern Ecuador

In this section we illustrate the application of the MSM defined in section 3.1.2
to model monthly inflow of Daule Peripa using ENSO information. The selected
model setup defined 2 climate states and included Niño 1+2 SSTA and TNI as
climatic inputs.

The simulated annual inflow data shown in Figure 4.10a derive from monthly val-
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Figure 4.10: (a) Observed and simulated average annual inflow with the 80% quan-
tile interval. (b) Historical ENSO events and inferred occurrences of state 2.

ues generated by conditioning on observed values of ENSO indices. Upwards in-
flow regime shifts are generally well predicted, except for the largest annual inflow
values (in 1983 and 1998), which are overestimated. The 80% quantile interval
around the expected value from simulation includes most observations. However,
the lowest annual inflow values are systematically overpredicted, due to the small
correlation between ENSO indices and negative inflow anomalies.

Figure 4.10b compares the historical El Niño and La Niña events (see section 2.2
for their definition) with the most likely climate state time series inferred by the
retrospective analysis. Occurrences of state 2 are well correlated with the observed
El Niño events, while state 1 may account for both normal and La Niña condi-
tions. These indications are confirmed by the parameter estimates illustrated in
paper I, which discusses in detail the application of the MSM to quarterly inflow
of Daule Peripa. Moreover, paper I reports on the reproduction of several inflow
statistics, including low- and high-flow duration curves and marginal distributions.
By comparing Figures 4.10a and 4.10b, we see that El Niño often associates to
anomalously high inflow, while the impact of La Niña does not appear significant.

Figure 4.11 illustrates the expected values of the forecasts performed for 1 and 9
month lead times. Indeed ENSO indices are currently forecasted for lead times
up to 9 months. In this application, for the purpose of model testing, we used
observed values of ENSO indices instead of forecasts. This constitutes a simplifi-
cation, and artificially reduces the inflow forecast error. The inflow forecasts show
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Figure 4.11: Observed monthly inflow versus expected forecasts for (a) 1 and (b)
9 month lead times.

a reasonable fit, although the lowest observed values are slightly overestimated. As
expected, the forecast precision decreases with the lead time, even if not dramati-
cally.

The overprediction of anomalously low inflow constitutes the main shortcoming of
this modelling application: it might be overcome by pursuing climatic indices that
correlate with negative inflow anomalies. As concluded for the downscaling model
in section 4.1, applyng the inflow model to predict hydrologic impacts of climate
change scenarios may be a risky exercise, despite the robust predictions and the
correspondence between climate states and ENSO phases.

4.3 Reservoir optimisation using ENSO information
in western Ecuador

The optimisation techniques described in section 3.2 were applied to the Daule
Peripa and Baba reservoirs. ENSO-based synthetic inflow time series were used as
stochastic input for the reservoir system simulation model defined in section 2.2.2.
Section 4.3.2 reports on the application of LT and ST to the Daule Peripa reservoir:
the optimised operations were compared to the historical management (HM) and
a benchmark solution obtained via the DP algorithm (BS). Section 4.3.2 illustrates
the application of ST to the planned Daule Peripa – Baba reservoir system: as no
information about the planned operation policy was known, ST was compared to
two hypothetical management strategies and BS.
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Figure 4.12: Daule Peripa reservoir: (a) rule curves optimised by LT; (b) contour
plot of the penalty function with storage targets at the end of the calendar months.

4.3.1 Optimisation of the Daule Peripa reservoir

The rule curves of Daule Peripa were optimised via LT using synthetic inflow,
which was simulated by conditioning on observed ENSO indices from 1950 to
1999 (see Figure 4.12a). The pre-defined release fractions were chosen to obtain
a set of rule curves characterised by sufficient level resolution and no overlapping.
The penalty function, used by ST to account for ERMSHD beyond the 9 month
forecast horizon, was mapped by sampling observed inflow from 1950 to 1999.
Figure 4.12b reports a contour plot of the estimated penalty values and the stor-
age targets, which are the monthly reservoir water levels minimising the penalty
function.

Both storage targets and optimised rule curves indicate the optimal long-term reser-
voir management: the reservoir should be filled by the end of the wet season to have
sufficient storage during the dry months; the reservoir water level at the end of the
dry season should be low enough to store the inflow of the following wet season
without spills. Spills are defined as non-turbinated releases that do not contribute
to satisfying the downstream water demands.

The weight assigned to the penalty term was estimated by performing ST during
1950-1999: ERMSHD was minimised by ω = 0.4. The rule curves optimised
by LT and the calibrated ST were applied from 2000 to 2008: Table 4.1 reports
performance indicators for HM, LT, ST, and BS. Assuming perfect knowledge of
inflow, and given a reservoir water level discretisation, BS approximates the mini-
mum possible ERMSHD conditioned on the satisfaction of the downstream water
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Table 4.1: Daule Peripa reservoir: performance indicators for the simulated opera-
tions from 2000 to 2008.

ERMSHD
Average Downstream Average
power deficits spill

[MW] [MW] [-] [m3/s]
HM 147.0 70.6 0 2.3
LT 144.8 71.4 0 0.9
ST 142.9 73.1 0 1.7
BS 139.8 74.6 0 0

demand. Thus BS was used to benchmark the improvements brought by LT and
ST compared to HM: of the maximum ERMSHD reduction estimated by BS, LT
and ST yielded 31% and 57%, respectively. LT and ST outperform HM also in
terms of average generated power, increasing the production by 1.1% and 3.5%,
respectively. No downstream water deficits are observed, thus proving that the op-
timisation problem was correctly formulated and that efficient turbine releases can
satisfy the downstream water demand. Spills are not completely avoided by LT
and ST, but are reduced compared to HM.

BS water levels confirm that the theoretical optimal management fills the reservoir
at the end of the wet season, and leaves enough empty storage volume at the end of
the dry season to store the upcoming wet season inflow (see Figure 4.13a). Such
management would avoid spills and preserve high hydraulic heads for hydropower
generation. From 2000 to 2002, HM, LT, and ST are relatively close to the optimal
management. The low inflow of 2003 causes HM and LT water levels to fall sig-
nificantly. Instead ST limits dry season releases thanks to the ENSO-based inflow
forecasts, and fills the reservoir at the end of the wet season. The anomalously
low inflow of 2004 is overpredicted by the stochastic inflow model, thus causing
ST water levels to fall. However, ST yields higher water levels than HM and LT,
as deviations from monthly storage targets are penalised. Indeed, from 2004 to
2008 we observe LT and HM gradually recovering high hydraulic heads, while ST
yields higher water levels at nearly all time steps and is faster at reapproaching the
optimal management. LT, which performs better than HM, exploits the informa-
tion about long-term optimal management held by the rule curves. However, ST
outperforms LT, as it combines both short- and long-term information in the form
of inflow forecasts and storage targets.
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Figure 4.13: Daule Peripa reservoir: (a) water levels of the simulated operations;
(b) observed inflow.

To conclude, the integration of climate-driven inflow forecasts with long-term op-
timal management information yielded the best optimised operation. The potential
further improvement shown by BS might be partly achieved by enhancing the qual-
ity of inflow forecasts.

A detailed discussion of the long term optimisation minimising two objective func-
tions is available in paper III: the optimisation problem was initially formulated
including an objective measuring the downstream deficit, and produced similar
results to those presented here. Paper IV illustrates ST results focusing on the
benefits yielded by the penalty term.

4.3.2 Optimisation of the Daule Peripa – Baba reservoir system

ST was applied to the planned Daule Peripa – Baba water resources system during
1990-2004, using multivariate inflow forecast scenarios and a penalty term ac-
counting for the water levels of both reservoirs. The ENSO-based inflow forecasts,
together with the optimisation results, are discussed in paper IV.

The penalty function was mapped using observed inflow from 1950 to 1989. The
resulting storage targets of Daule Peripa were similar to those obtained in section
4.3.2. Conversely, the estimated penalty values did not define any strong prefer-
ence pattern for Baba, due to its small storage volume (3.5% of the total system
capacity). A full discussion of the penalty function for the two reservoir case can
be found in paper IV. The optimal value of ω, found by minimising ERMSHD with
ST during 1950-1989, was 0.2: the smaller importance of the penalty, compared to
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Table 4.2: Daule Peripa – Baba reservoir system: performance indicators for the
simulated operations from 1990 to 2004.

ERMSHD
Average power Downstream Average spill

Daule Peripa Baba deficits Daule Peripa Baba
[MW] [MW] [MW] [-] [m3/s] [m3/s]

MT 145.6 126.2 18.5 1 64.5 8.6
FR 139.5 125.2 26.8 0 63.4 11.2
ST 135.2 129.0 26.3 1 52.2 11.2
BS 131.3 133.3 26.0 0 44.3 9.6

the single reservoir case, may be due to the water transfer from Baba that facilitates
preserving high hydraulic heads at Daule Peripa.

We compared ST to two hypothetical management strategies, assuming that Baba
is operated according to a fixed policy, while short-term optimisation is applied
only to Daule Peripa: the maximum transfer strategy (MT) maximises the amount
of water transferred to Daule Peripa during each time step; the full reservoir strat-
egy (FR) transfers water only if the Baba reservoir is full. Such strategies were
conceived to mimic likely sub-optimal operation schemes.

Table 4.2 reports performance indicators of ST, MT, FR, and BS during 1990-
2004. ST outperforms MT and FR in terms of both ERMSHD and average power
generation. MT minimises the spill from Baba, but yields the lowest hydropower
production at Baba due to the low hydraulic heads. Moreover by maximising the
amount of transferred water without considering the current storages, MT causes
the largest spill from Daule Peripa. Although causing large spills from both reser-
voirs, FR yields the largest hydropower production at Baba, due to the high hy-
draulic heads. Compared to MT and FR, ST reduces the spill from Daule Peripa,
thus significantly increasing hydropower production. An even larger reduction of
the spill from Daule Peripa is yielded by BS, which maximises hydropower pro-
duction. However, BS does not minimise the spill from Baba, thus implying that
minimising the spill from Daule Peripa is decisive for optimising the management.

Spill reduction is achieved by the proper temporal allocation of water transfers
from Baba to Daule Peripa: ST determines the releases on the basis of inflow
forecasts and current reservoir storages, thus outperforming MT and FR that trans-
ferred water without considering the state of Daule Peripa. We can conclude that
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the joint reservoir operation implemented by ST enhances the water use efficiency
compared to separate management strategies such as MT and FR.

BS reveals that spills cannot be completely avoided. Indeed the inclusion of Baba
increases system inflow and storage volume by 60% and 3.5%, respectively. Thus
only a small part of the wet season inflow of Baba can be stored and then trans-
ferred during the dry season. Moreover the inclusion of Baba may increase the
risk of flooding, especially during intense El Niño events. Flood prevention, which
was not considered because of the lack of flood vulnerability information, should
be included in future analyses.

Table 4.2 shows that ST fails at meeting the downstream water demands once.
Adding an objective accounting for the satisfaction of downstream demands would
allow analysing the trade-off between hydropower production and water supply
reliability. However, such low deficit frequency may not justify the formulation of
a multi-objective optimisation problem.

LT and ST, combined with the ENSO-based inflow predictions, might be used to
assess the impacts of possible climate change scenarios on the performance of the
Daule Peripa – Baba reservoir system. However, the uncertainty involved in such
assessment would be large and hardly evaluable, due to the unknown applicability
of the modelling approaches under altered climate scenarios.
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5 Conclusions
The conducted research focused on the development of stochastic hydrologic mod-
els and reservoir optimisation methods that can be beneficially responsive to cli-
matic information.

The description of hydrologic variables such as precipitation and streamflow is
conditioned on unobservable (hidden) state variables representing the climatic con-
ditions. We assume the hidden states to be shifting between a finite number of
values according to a non-homogeneous Markov chain, in which state transition
probabilities are influenced by climatic inputs. The hidden process conditioning
the observable variables mimics climate-induced shifts of hydrologic regimes, thus
partially accounting for climatic variability.

To test the benefits of climate-responsive hydrologic modelling for water resources
management applications, we developed reservoir optimisation methods that can
exploit climatic information in the form of climate-based synthetic inflow scenar-
ios.

A non-homogeneous hidden Markov model (NHMM) was applied to downscale
synoptic atmospheric patterns to daily precipitation amounts at a dense gauge net-
work in southern Scandinavia. The probability distribution of multivariate precip-
itation is conditioned on a hidden weather state, whose transition probabilities are
functions of gridded atmospheric fields. Although no direct weather classifier is
used, the identified weather states exhibit good physical correspondence between
their expected precipitation and atmospheric patterns. Moreover, such correspon-
dence validates the summarisation of the highly dimensional atmospheric fields
via singular value decomposition. The inclusion of Chow-Liu trees, to approximate
the multivariate probability distributions of precipitation occurrences, improves the
reproduction of the spatial correlation of precipitation. However, further improve-
ment may be achieved by defining a spatial dependence model for precipitation
amounts.

A Markov switching model (MSM) was developed to describe monthly reser-
voir inflow time series in western Ecuador using El Niño – Southern Oscillation
(ENSO) information. Inflow anomalies are modelled by a mixture of autoregres-
sive models with exogenous input (ARX), shifting according to a hidden climate
state, whose transitions are influenced by ENSO sea surface temperature indices.
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The latter constitute the exogenous input of ARXs, which thus directly include
the influence of ENSO on inflow. The developed MSM produces realistic inflow
simulations and forecasts based on, respectively, historical records and forecasts
of ENSO indices. Monthly ENSO forecasts are currently published for lead times
up to 9 months. Due to lack of correlation between ENSO indices and negative
inflow anomalies, model calibration identified 2 climate states. Parameter esti-
mates and the inferred most likely historical state sequence indicate that one state
corresponds to El Niño, while the other accounts for both normal and La Niña
conditions. Model predictions and the correspondence between climate states and
ENSO phases reveal that El Niño is well correlated to anomalously high inflow,
while the impact of La Niña is not significant. Overprediction of anomalously low
inflow constitutes the main shortcoming of this application. Significant improve-
ment might be achieved by pursuing climatic indices that correlate with negative
inflow anomalies.

We defined stochastic optimisation methods that could exploit inflow simulations
and forecasts performed by the MSM to benefit reservoir operation. The analysed
water resources system consists of the Daule Peripa and Baba reservoirs (western
Ecuador), which serve hydropower plants and downstream water users. Reservoir
operation is optimised according to the simulation-optimisation approach, by cou-
pling a genetic algorithm with a simulation model. Each set of decision variables
is evaluated by sampling objective functions on a high number of synthetic inflow
scenarios, thus implicitly accounting for input uncertainty. Long-term optimisa-
tion (LT) is carried out by calibrating rule curves that return reservoir release as
function of current storage and season. Short-term optimisation (ST) is performed
at each month by combining long- and short-term information in the form of, re-
spectively, monthly storage targets and inflow forecasts for the following 9 months.
LT was applied to the Daule Peripa reservoir, outperforming the historical manage-
ment (HM). ST was applied to Daule Peripa, outperforming both LT and HM, and
then to the planned Daule Peripa – Baba system, for which no designed operation
policy is known. The obtained results highlight the benefits of integrating climate-
driven inflow forecasts with information about long-term optimal management. As
the inclusion of Baba reservoir yields a small increase in storage capacity (3.5%),
compared to the average increase in inflow (60%), flood risk mitigation should be
considered in future analyses.

The developed methods, ranging from stochastic hydrologic modelling to reser-
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voir optimisation, illustrated the potential benefits that may derive from accounting
for climatic variability. Modelling approaches produced reasonable predictions by
conditioning the description of hydrologic processes on influential climatic phe-
nomena. Reservoir optimisation methods proved the operational improvements
that may be achieved by using time series generated by climate-responsive hydro-
logic models, and by integrating short-term forecasts with information on long-
term optimal management. The presented methods might be applied to translate
large-scale climate change predictions into small-scale hydrologic impacts, and to
derive water resources management policies that perform robustly under climatic
variability. However, we must be aware that methods calibrated under past climatic
conditions might not be valid for altered climate scenarios.
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6 Abbreviations and symbols
ARX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . autoregressive model with exogenous input.
BS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dynamic programming benchmark solution.
CPDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . conditional probability density function.
CPMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . conditional probability mass function.
DMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Danish Meteorological Institute.
DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dynamic programming.
EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . expectation-maximisation.
ENSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . El Niño – Southern Oscillation.
ERMSHD . . . . . . . . . . . . . . . . . . . . . .expected root mean square hydropower deficit.
ESO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . explicit stochastic optimisation.
FR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . full reservoir strategy.
GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . genetic algorithm.
GCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .general circulation model.
GH-1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . geopotential height at 1000 hPa.
hPa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . hectopascals.
HM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . historical management.
ISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . implicit stochastic optimisation.
km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kilometres.
LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . linear programming.
LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . long-term optimisation.
m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . metres.
MRMSHD . . . . . . . approximated minimum root mean square hydropower deficit.
MSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Markov switching model.
MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . maximum transfer strategy.
MW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . megawatts.
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .north.
NHMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . non-homogeneous hidden Markov model.
PAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . periodic autoregressive model.
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . seconds.
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . south.
SO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . simulation-optimisation.
SST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sea surface temperature.
SSTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sea surface temperature anomaly.
ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . short-term optimisation.
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SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . singular value decomposition.
TNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trans-Niño Index.
W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . west.
WCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . World Commission on Dams.
WSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . weather state model.
◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . arc degrees.
◦C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Celsius degrees.
at (k) . . . . . . . . . . . . . . . . . . . . . . . . . . . observable variables at gauge k at time step t.
at . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vector of observable variables at time step t.
at1:t2 . . . . . . . . . . . . . . . . . time series of observable variables from time step t1 to t2.
â
(i)
t1:t2 . . . . . ith synthetic time series of observable variables from time step t1 to t2.

ÂN
t1:t2

set of N synthetic time series of observable variables from time step t1 to t2.
arg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .argument operator.
ct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vector of climatic indices at time step t.
ct1:t2 . . . . . . . . . . . . . . . . . . . . . time series of climatic indices from time step t1 to t2.
ĉt1:t2 . . . . . . . . . . . . . . . forecasted values of climatic indices from time step t1 to t2.
cov{· } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . covariance operator.
Dt . . . . . . . . . . . . . . . . . . . . . . . . . . diagonal matrix constituted by the elements of at.
deg (k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of tree edges connecting gauge k.
det (· ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . determinant operator.
e . . . . . . . . . . . . . . . . . . . typical resolution of a tipping bucket rain gauge (0.2 mm).
Ei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chow-Liu tree for state i.
exp (· ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . exponential function.
fz (· ) . . . . . . . . . . . . . . . conditional probability density/mass function of variable z.
Fkj (· ) . . conditional bivariate discrete distribution of precipitation occurrences at
gauges k and j.
Fk (· ) . . . . . . . . . . . . . . . . . . . . . . marginalisation of Fkj (· ) with respect to any j 6= k.
gt . . . . . . . . average power generated by the hydropower plants during time step t.
ĝ
(i)
t1:t2 . ith simulated hydropower time series from time step t1 to t2, corresponding

to q
(i)
t1:t2 .

ĝNt1:t2 . . . . . . . . . . set of N simulated hydropower time series from time step t1 to t2,
corresponding to Q̂N

t1:t2
.

G . . . . . . . . . . . power demand, set equal to the sum of all turbine power capacities.
Ga (· ; ξki, ϕki) two parameter Gamma probability density function with parameters
ξki and ϕki.
hk (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .water level of reservoir k at time x.
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i

t . . . . . . . . . . . . . . . . . . . . . . . . . average water level of reservoir i during time step t.
ht . . . . . . . . . . . . . . . . . . . . . vector of reservoir water levels at the end of time step t.
ĥ
(n)
t+l vector of reservoir water levels at the end of t+ 8, obtained by implementing
ρt:t+l given q̂

(n)
t:t+l.

hkmin . . . . . . . . . . . . . . . . . . . . . . . . . . minimum operational water level of reservoir k.
hkmax . . . . . . . . . . . . . . . . . . . . . . . . . maximum operational water level of reservoir k.
HLT . . . . . . . . . . . . . .complete set of decision variables for long-term optimisation.
kit . . tailwater height downstreams of the hydropower plant supplied by reservoir i
during time step t.
L (· ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . model likelihood function.
m (t) . . . . . . . . function returning the calendar month corresponding to time step t.
max{· } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . maximisation operator.
oki . . . . . . . . . . . . . . . . . . . precipitation occurrence probability at gauge k for state i.
pij . . . . . . . . . . . stationary component of the transition probability from state i to j.
P (· ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . penalty function (short-term optimisation).
Pr {· } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . probability operator.
q̂
(i)
t1:t2 . . . . . . . . . . . . . . . . . . . . ith synthetic inflow time series from time step t1 to t2.

Q̂N
t1:t2

. . . . . . . . . . . . . . . set of N synthetic inflow time series from time step t1 to t2.
rit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . turbine release of reservoir i during time step t.
Ri . . . . turbine hydraulic capacity of the hydropower plant supplied by reservoir i.
r̂
(i)
t1:t2 . . . . . . . . . . . . ith simulated turbine release time series from time step t1 to t2,

corresponding to q
(i)
t1:t2 .

R̂N
t1:t2

. . . . . . . set of N simulated turbine release time series from time step t1 to t2,
corresponding to Q̂N

t1:t2
.

st . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . hidden state at time step t.
st1:t2 . . . . . . . . . . . . . . . . . . . . . . . . time series of hidden states from time step t1 to t2.
s∗t . . . . . . . . . .most likely hidden state at time step t, given observations and model
parameters.
s∗t1:t2 . . . . . . . . most likely time series of hidden states from time step t1 to t2, given
observations and model parameters.
qit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . inflow of reservoir i during time step t.
vi (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . storage volume of reservoir i at time x.
V . . . . . . . . . . . . . . . . . . . . . . . . scale matrix, set equal to the covariance matrix of ct.
wit . . . . . . . . . . . . . . . . . . . . . . . . downstream release of reservoir i during time step t.
W i . . . . . . . . . . . . . . . . . . . . water demand of the downstream users from reservoir i.
/Oi . . . . . . . . . diagonal matrix, whose non-null elements are the eigenvalues of Ωi.
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y (· ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . objective function for long-term optimisation.
Y (· ) . . . . . . . . . . . . . . . . . . . . . . . . . . . objective function for short-term optimisation.
αt (k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . precipitation occurrence at gauge k on day t.
αt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . precipitation occurrence pattern on day t.
βt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vector of conditioning variables at time step t.
Γi . . . . . . . . . . . . . . . . . vector of exogenous correlation ARX parameters for state i.
δi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vector of intercept ARX parameters for state i.
εi . . . . . . . . . . . . turbine efficiency of the hydropower plant supplied by reservoir i.
εt . . . . . . . . . . . . . . vector of standard Gaussian independent white noise processes.
etaku (i) . . . . . . . upper water level bound for the uth pre-defined release fraction of
reservoir k during calendar month i.
ηku =

{
ηku (1) , . . . , ηku (12)

}
. . . . . . . . . . . . . . . . . . . . . . . . uth rule curve of reservoir k.

θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . model parameters set.
λi . . . . . . . . . . . . . . . . . . . . . . . . vector of autoregressive ARX parameters for state i.
µi . . . . . . . . . . . . . . . . . . value of ct maximising the probability of shifting to state i.
Ξi . . . . . . . . . . . . . . . . . . . . . . . . . . matrix, whose columns are the eigenvectors of Ωi.
ρit . . . . . . . . . . . . . . . . . . . . . turbine release fraction of reservoir i during time step t.
ρk (x) . . . . . . . . . . . . . . . . . . . . actual turbine release fraction of reservoir k at time x.
ρt . . . . . . . . . vector of turbine release fractions of all reservoirs during time step t.
ρt1:t2 time series of turbine release fractions of all reservoirs from time step t1 to t2.
τt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end time of time step t.
υku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .uth pre-defined release fraction.
φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . specific weight of water.
χku−1 . . . . . . . . . . . . . . . . . . . scaling factor defining the uth rule curve of reservoir k.
ψ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . auxiliary vector for computing model likelihood.
Ψt . . . . . . . . . . . . . . . . . . . . . . . . . . auxiliary matrix for computing model likelihood.
Ωi . . . . . . . . . . . . . . . . . . . . . . . . . . . matrix of covariance ARX parameters for state i.
ω . . . . . . . . . . . . weight assigned to the penalty function (short-term optimisation).
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