1,947 research outputs found

    Achieving Good Angular Resolution in 3D Arc Diagrams

    Full text link
    We study a three-dimensional analogue to the well-known graph visualization approach known as arc diagrams. We provide several algorithms that achieve good angular resolution for 3D arc diagrams, even for cases when the arcs must project to a given 2D straight-line drawing of the input graph. Our methods make use of various graph coloring algorithms, including an algorithm for a new coloring problem, which we call localized edge coloring.Comment: 12 pages, 5 figures; to appear at the 21st International Symposium on Graph Drawing (GD 2013

    Minimum Sum Edge Colorings of Multicycles

    Get PDF
    In the minimum sum edge coloring problem, we aim to assign natural numbers to edges of a graph, so that adjacent edges receive different numbers, and the sum of the numbers assigned to the edges is minimum. The {\em chromatic edge strength} of a graph is the minimum number of colors required in a minimum sum edge coloring of this graph. We study the case of multicycles, defined as cycles with parallel edges, and give a closed-form expression for the chromatic edge strength of a multicycle, thereby extending a theorem due to Berge. It is shown that the minimum sum can be achieved with a number of colors equal to the chromatic index. We also propose simple algorithms for finding a minimum sum edge coloring of a multicycle. Finally, these results are generalized to a large family of minimum cost coloring problems

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    Algorithms and Bounds for Very Strong Rainbow Coloring

    Full text link
    A well-studied coloring problem is to assign colors to the edges of a graph GG so that, for every pair of vertices, all edges of at least one shortest path between them receive different colors. The minimum number of colors necessary in such a coloring is the strong rainbow connection number (\src(G)) of the graph. When proving upper bounds on \src(G), it is natural to prove that a coloring exists where, for \emph{every} shortest path between every pair of vertices in the graph, all edges of the path receive different colors. Therefore, we introduce and formally define this more restricted edge coloring number, which we call \emph{very strong rainbow connection number} (\vsrc(G)). In this paper, we give upper bounds on \vsrc(G) for several graph classes, some of which are tight. These immediately imply new upper bounds on \src(G) for these classes, showing that the study of \vsrc(G) enables meaningful progress on bounding \src(G). Then we study the complexity of the problem to compute \vsrc(G), particularly for graphs of bounded treewidth, and show this is an interesting problem in its own right. We prove that \vsrc(G) can be computed in polynomial time on cactus graphs; in contrast, this question is still open for \src(G). We also observe that deciding whether \vsrc(G) = k is fixed-parameter tractable in kk and the treewidth of GG. Finally, on general graphs, we prove that there is no polynomial-time algorithm to decide whether \vsrc(G) \leq 3 nor to approximate \vsrc(G) within a factor n1εn^{1-\varepsilon}, unless P==NP

    Extensions of Fractional Precolorings show Discontinuous Behavior

    Get PDF
    We study the following problem: given a real number k and integer d, what is the smallest epsilon such that any fractional (k+epsilon)-precoloring of vertices at pairwise distances at least d of a fractionally k-colorable graph can be extended to a fractional (k+epsilon)-coloring of the whole graph? The exact values of epsilon were known for k=2 and k\ge3 and any d. We determine the exact values of epsilon for k \in (2,3) if d=4, and k \in [2.5,3) if d=6, and give upper bounds for k \in (2,3) if d=5,7, and k \in (2,2.5) if d=6. Surprisingly, epsilon viewed as a function of k is discontinuous for all those values of d
    corecore