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Extensions of Fractional Precolorings

show Discontinuous Behavior ∗

Jan van den Heuvel † Daniel Král’ ‡ Martin Kupec §

Jean-Sébastien Sereni ¶ Jan Volec ‖

Abstract

We study the following problem: given a real number k and integer d, what is the

smallest ε such that any fractional (k+ε)-precoloring of vertices at pairwise distances

at least d of a fractionally k-colorable graph can be extended to a fractional (k + ε)-

coloring of the whole graph? The exact values of ε were known for k ∈ {2} ∪ [3,∞)

and any d. We determine the exact values of ε for k ∈ (2, 3) if d = 4, and k ∈ [2.5, 3)

if d = 6, and give upper bounds for k ∈ (2, 3) if d = 5, 7, and k ∈ (2, 2.5) if d = 6.

Surprisingly, ε viewed as a function of k is discontinuous for all those values of d.

1 Introduction and main results

Graph coloring is one of the classical topics in graph theory. In this paper, we seek

conditions when a precoloring of some vertices in a graph can be extended to a coloring

of the entire graph. This line of research was initiated by Thomassen [18] who asked for
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sufficient conditions on extending precolorings of vertices in planar graphs. His original

question led to the following result of Albertson [1].

Theorem 1.1 ([1]). Let G be an r-colorable graph and W a subset of its vertex set such

that the distance between any two vertices of W is at least four. Then every (r+1)-coloring

of W can be extended to an (r + 1)-coloring of G.

This result initiated a line of research [2, 3, 4, 5, 6, 9] seeking conditions for the existence

of an extension of a precoloring of various types of subgraphs.

It is natural to ask whether an analogue of Theorem 1.1 also holds for non-integer

relaxations of colorings. For circular colorings introduced in [19], the extension problem

was almost completely solved by Albertson and West [7] (see [20, 21] for background and

results on circular colorings).

Another well-established relaxation of classical colorings is the notion of fractional col-

orings, see [16], which we address in this paper. A fractional k-coloring of a graph G is an

assignment of measurable subsets of the interval [0, k) ⊆ R to the vertices of G such that

each vertex receives a subset of measure one and adjacent vertices receive disjoint subsets.

The fractional chromatic number of G is the infimum over all positive real numbers k such

that G admits a fractional k-coloring. For finite graphs (which we restrict our attention

to), such k exists, the infimum is in fact a minimum, and its value is always rational.

A fractional k-precoloring is an assignment of measurable subsets of measure one of the

interval [0, k) to some vertices of a graph.

In this paper, we study conditions under which a fractional precoloring can be completed

to a fractional coloring of the whole graph.

Problem 1. Let ε > 0 be a real, k ≥ 2 a rational and d ≥ 3 an integer. Given a

fractionally k-colorable graph G and a fractional (k+ε)-precoloring of a subset of its vertex

set at pairwise distance at least d, is it possible to extend the precoloring to a fractional

(k + ε)-coloring of the whole graph G?

For a fixed rational k ≥ 2 and a fixed integer d ≥ 3, let g(k, d) be the infimum over

all non-negative reals satisfying the following: for any ε ≥ g(k, d) and any fractionally k-

colorable graph G, an arbitrary (k+ε)-precoloring of vertices at pairwise distance at least d

in G can be extended to a fractional (k + ε)-coloring of G. The next proposition, which

is proved in [13], implies that for any ε < g(k, d) there exists a fractionally k-colorable

graph G with a fractional (k+ ε)-precoloring of some of its vertices at pairwise distance at

least d, such that there is no extension of the precoloring to a fractional (k + ε)-coloring

of G.

Proposition 1.2 ([13]). Let G be a graph with fractional chromatic number k and W

a subset of its vertex set. The set of all non-negative reals ε such that any fractional

(k + ε)-precoloring of W can be extended to a fractional (k + ε)-coloring of G is a closed

interval.
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Figure 1: The values of g(k, 4). The dotted line represents the extension of g(k, 4) for

k ∈ {2} ∪ [3,∞) to k ∈ (2, 3).

The only value of d for which the values of g(k, d) are known for all k ≥ 2 is d = 3.

In this case, g(k, 3) = 1 for all k ∈ [2,∞), see [13]. For d ≥ 4, the values of g(k, d) for

k ∈ {2} ∪ [3,∞) were determined in [13].

Theorem 1.3 ([13]). For every k ∈ {2} ∪ [3,∞) and d ≥ 3, we have:

g(k, d) =





√
(d′k − 1)2 + 4d′(k − 1)− (d′k − 1)

2d′
, if d ≡ 0 mod 4;

k − 1

d′k
, if d ≡ 1 mod 4;

√
(d′k)2 + 4d′(k − 1)− d′k

2d′
, if d ≡ 2 mod 4;

k − 1

d′k + k − 1
, otherwise,

where d′ = ⌊d/4⌋. The formula also holds for k ∈ [2,∞) and d = 3.

The main goal of this paper is to shed more light on values of g(k, d) for k ∈ (2, 3).

We determine the values of g(k, d) for k ∈ (2, 3) if d = 4, and for k ∈ [2.5, 3) if d = 6 (see

Figures 1 and 3).

Theorem 1.4. For k ∈ [2, 3) we have g(k, 4) = 1
2

(√
(k − 1)2 + 4− k + 1

)
.

Theorem 1.5. For k ∈ {2} ∪ [2.5, 3) we have g(k, 6) = 1
2

(√
k2 + 4− k

)
.

For additional values of k ∈ (2, 3) and d, we provide upper bounds (Theorems 3.2, 4.2,

5.2, 6.2, and 6.3) which we believe to be tight. See Figures 2 and 4 for the bounds we can

prove for d = 5 and d = 7. To our surprise, for fixed d ∈ {4, 5, 6, 7}, the function g(k, d) is
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discontinuous in k at k = 3, while for d ∈ {6, 7} the function g(k, d) is also discontinuous

at k = 2.5. We provide some additional comments on those observations in Section 7. Also

note that the functions g(k, 4) and g(k, 6) are decreasing on the intervals [2, 3) and [2.5, 3),

respectively, whereas for all d ≥ 3 the functions g(k, d) are increasing on k ∈ [3,∞).

Figure 2: The values of g(k, 5). The dashed line gives the upper bound of g(k, 5) for

k ∈ (2, 3). The dotted line represents the extension of g(k, 5) for k ∈ {2} ∪ [3,∞) to

k ∈ (2, 3).

Figure 3: The values of g(k, 6). The dashed line gives the upper bound of g(k, 6) for

k ∈ (2, 2.5). The dotted lines represent the extension of g(k, 6) for k ∈ {2} ∪ [3,∞) to

k ∈ (2, 3), and for k ∈ {2} ∪ [2.5, 3) to k ∈ (2, 2.5), respectively.

The paper is organized as follows. In the analysis of the values of g(k, d), we consider

four cases based on the remainder of d modulo 4. In Section 3, we present our upper bounds

on g(k, d) for k ∈ (2, 3) and d divisible by four. We also present the matching lower bound
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Figure 4: The values of g(k, 7). The dashed lines give the upper bound of g(k, 7) for

k ∈ (2, 3). The dotted lines represent the extension of g(k, 7) for k ∈ {2} ∪ [3,∞) to

k ∈ (2, 3), and of the conjectured function for k ∈ {2}∪ [2.5, 3) to k ∈ (2, 2.5), respectively.

for d = 4. This lower bound is based on a simple expansion bound on independent sets in

Kneser graphs based on eigenvalues of its adjacency matrix. In Section 4, we present our

upper bounds on g(k, d) for k ∈ (2, 3) and d congruent to two modulo four. This section

also contains the matching lower bound for the case d = 6 and k ∈ [2.5, 3). This lower

bound uses a suitable solution of the linear program dual to that for finding the fractional

chromatic number of a Kneser graph. Finally, in Sections 5 and 6 we present our upper

bounds on g(k, d) for d congruent to one and three, respectively.

2 Notation, definitions and preliminary results

Before we can present our results, and their proofs, in detail, we need to introduce some

notation. For a positive integer n, we set [n] := {1, . . . , n}. Next, for a set Y ⊆ [0,∞) we

write 2Y for the set of all measurable subsets of Y . If f : X → 2Y is a mapping from a

set X to 2Y and A is a subset of X , we write f(A) for the set
⋃

a∈A f(a). We also write

g : X →֒ 2Y for mappings from X to 2Y such that g(i) ∩ g(j) = ∅ for any two distinct

i, j ∈ X .

We gave one possible definition of the fractional chromatic number of a graph G in the

introduction. An equivalent definition can be given as a linear relaxation of determining

the ordinary chromatic number: assign non-negative real weights to the independent sets

of G such that for every vertex v ∈ V (G) the sum of the weights of independent sets

containing v is at least one. The minimum possible sum of weights of all independent sets

in G, where the minimum is taken over all such assignments, is equal to the fractional

chromatic number of G.

The definition of fractional colorings also allows one to define a class of universal graphs,
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i.e., a class such that for every graph with fractional chromatic number k there is a ho-

momorphism to one of the graphs in this class. A homomorphism from a graph G to a

graph H is a mapping f : V (G) → V (H) such that if u and v are two adjacent vertices

of G, then the vertices f(u) and f(v) are adjacent in H . If such a mapping exists, we say

that G is homomorphic to H .

Universal graphs for fractional colorings are Kneser graphs Kp/q; the graph Kp/q, for

integers 1 ≤ q ≤ p, has a vertex set formed by all q-element subsets of [p], i.e., V (Kp/q) =(
[p]
q

)
. Two vertices A and A′ are adjacent if A ∩ A′ = ∅. It is not hard to show that

the fractional chromatic number of Kp/q is equal to p/q. The following proposition can be

found, e.g., in [10].

Proposition 2.1. Let G be a graph with fractional chromatic number k. There exist

integers p and q such that k = p/q and G is homomorphic to the graph Kp/q.

Analogously to [13], our proofs are based on defining and analyzing graphs that are

universal for graphs (of a given fractional chromatic number) with some precolored vertices.

The graphs we introduce now are isomorphic to the ones defined in [13], although we use

a slightly different notation.

The extension product of two graphs G and H is the graph with vertex set V (G)×V (H)

such that vertices (u, v) and (u′, v′) are adjacent if u and u′ are adjacent in G and either

v = v′, or v and v′ are adjacent in H . This type of a graph product was introduced by

Albertson and West [7]. An equivalent notion was used in [13] under the name universal

product ; the only difference is that the meaning of G and H was swapped, i.e., the universal

product of G and H is isomorphic to the extension product of H and G. For a set

X ∈
(
[p]
q

)
, a ray RX

p,q,P is the extension product of the Kneser graph Kp/q and the (P +1)-

vertex path with vertices 0, . . . , P ; the vertex (X, 0) of RX
p,q,P is marked as special. The

copy of Kp/q in the ray RX
p,q,P corresponding to the vertex P of the path is said to be the

base of the ray. For brevity, Rp,q,P will stand for R
[q]
p,q,P in what follows. The ray R

[2]
5,2,2 is

sketched in Figure 5. Note that the graph RX
p,q,P is homomorphic to Kp/q, and the distance

between the vertex (X, 0) and any vertex (A, ℓ), for A ∈
(
[p]
q

)
and ℓ ∈ [1, P ], is at least ℓ.

The graph Un
p,q,d, which we now define, is a universal graph for graphs with fractional

chromatic number p/q with n precolored vertices at pairwise distance at least d. Fix

positive integers p, q, d and n such that p ≥ q/2 and d ≥ 3. If d is even, the graph Un
p,q,d

is the extension product of the Kneser graph Kp/q and the star K1,n([p]q )
with each edge

subdivided d/2 − 1 times. For every X ∈
(
[p]
q

)
, we mark the vertex X as special in n

copies of Kp/q corresponding to the leaves of the star (for different values of X , we choose

different copies). In this way, the subgraphs of Un
p,q,d corresponding to the products of the

subdivided edges and Kp/q are isomorphic to rays RX
p,q,d/2. Hence, the graph Un

p,q,d can be
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base

([2], 0)

Figure 5: The ray R
[2]
5,2,2.

Figure 6: A sketch of the graph U1
5,2,6 (only 4 rays out of 10 are drawn).

viewed as obtained from n copies of the ray RX
p,q,d/2 for each choice of X ∈

(
[p]
q

)
through

identification of the bases of the rays. The graph U1
5,2,6 is sketched in Figure 6.

For positive integers N and P , let LN,P be the graph obtained from a clique KN by

identifying each vertex of the clique with an end-vertex of a P -vertex path; so LN,P , for

P ≥ 2, has N · (P − 2) vertices of degree two, N vertices of degree one, and N vertices of

degree N . If d is odd, the graph Un
p,q,d is the extension product of the Kneser graph Kp/q

and the graph Ln(pq),(d+1)/2. Again, for each X ∈
(
[p]
q

)
, we mark vertices X in n of the

copies of Kp/q corresponding to the vertices of degree one of Ln(pq),(d+1)/2 as special (with

different copies for different values of X again). In this way, we can view Un
p,q,d as a union

of n
(
p
q

)
rays RX

p,q,(d−1)/2 with additional edges between their bases. The graph U1
5,2,7 is

sketched in Figure 7.

In the next three propositions, we summarize the properties of the graphs Un
p,q,d needed

in the proofs. We start with the first two of them; the proof of the first one is straightfor-
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Figure 7: A sketch of the graph U1
5,2,7 (only 4 rays out of 10 are drawn).

ward and the proof of the second one is in [13].

Proposition 2.2. The graph Un
p,q,d for p/q ≥ 2 and d ≥ 3 is homomorphic to Kp/q and its

special vertices are at pairwise distance at least d.

Proposition 2.3 ([13]). Let G be a graph with fractional chromatic number k and W a

subset of its vertex set at pairwise distance at least d ≥ 3. There exist positive integers p

and q, such that k = p/q and the graph G has a homomorphism to U
|W |
p,q,d that maps the

vertices of W to distinct special vertices of U
|W |
p,q,d.

The length of the shortest odd cycle of a graph G is the odd girth of G. The odd girth of

the Kneser graph Kp/q is equal to 2
⌈ q

p− 2q

⌉
+1, see [14]. Note that Proposition 2.1 implies

that if G is a fractionally k-colorable graph, then its odd girth is at least 2⌈1/(k− 2)⌉+1.

The main difference between the case k ∈ {2} ∪ [3,∞), which was fully analyzed in [13],

and the case k ∈ (2, 3) is that vertices of a ray Rp,q,P at some fixed small distance from

the special vertex form an independent set. Observe that the minimum distance for which

this property does not hold is related to the odd girth of the Kneser graph Kp/q.

Proposition 2.4. Consider a special vertex s of a universal graph Un
p,q,d and an integer

ℓ ∈
{
1, 2, . . . ,

⌈ q

p− 2q

⌉
− 1

}
. The vertices at distance ℓ from s form an independent set in

Un
p,q,d.

Finally, we state the following proposition which is implicit in the proof of Theorem 1.3

in [13].

8



Proposition 2.5 ([13]). Let k = p/q be rational, where p, q ∈ N and p ≥ 2q, d, n ∈ N and

ε > 0. For every fractional (k + ε)-precoloring of the special vertices of Un
p,q,d by subsets

C1, C2, . . . , Cn(pq)
⊆ [0, k + ε) there exist functions fo and fe from [p] to 2[0,k+ε) such that

the following holds:

1) for every i, j ∈ [p], i 6= j: fo(i) ∩ fo(j) = ∅ and fe(i) ∩ fe(j) = ∅;

2) for every i ∈ [p] and a ∈
[
n
(
p
q

)]
:

a) ‖fo(i)‖ = (k + ε)/p and ‖fo(i) ∩ Ca‖ = 1/p,

b) ‖fe(i)‖ = 1/q and ‖fe(i) ∩ Ca‖ = 1/(p+ qε).

In other words, the function fo in Proposition 2.5 is an equipartition of the interval

[0, k+ε) into pmeasurable parts fo(1), . . . , fo(p) such that the measure of the intersection of

fo(i) with each set Cj, for i ∈ [p] and j ∈
[
n
(
p
q

)]
, is the same as the expected intersection

of Cj with a random subset of [0, k+ε) of measure (k+ε)/p. Analogously, fe is a partition

of an appropriate subset of [0, k+ ε) of measure k into p measurable parts fe(1), . . . , fe(p),

where the parts have measure 1/q and the measure of the intersection of fe(i) with each

set Cj is the same as for a random subset of [0, k + ε) of measure 1/q.

3 Distances divisible by four

3.1 Upper bounds

In this section we prove upper bounds on g(k, d) for d ≡ 0 mod 4 in the case that k and d

satisfy 2 ≤ k < 2+
2

d− 2
. Observe that Proposition 2.4 guarantees that if we consider the

ray Rp,q,d/2, then for any ℓ ∈ {1, . . . , (d− 2)/2}, the vertices at distance ℓ from the special

vertex form an independent set.

Lemma 3.1. Let ε be a positive real and n, p, q and d positive integers such that d ≡
0 mod 4 and p/q ≥ 2. If the conditions

2 ≤ k < 2 +
1

2d′ − 1
and (1)

ε
d′−2∑

j=0

(k − 1)2j+2 + ε · k − 1 + ε

k + ε
≥ 1

k + ε
(2)

are satisfied, where d′ = d/4 and k = p/q, then any fractional (k + ε)-precoloring of the

special vertices of Un
p,q,d can be extended to a fractional (k + ε)-coloring of Un

p,q,d.
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Proof. First observe that by Proposition 1.2 we only need to consider the case that ε is

the smallest positive real that satisfies inequality (2), i.e., that solves the equation

ε

d′−2∑

j=0

(k − 1)2j+2 + ε · k − 1 + ε

k + ε
=

1

k + ε
.

Furthermore, it is straightforward to show that any positive solution to this equation

satisfies the following two inequalities as well:

ε
d′−2∑

j=0

(k − 1)2j ≤ 1

k + ε
and ε

d′−2∑

j=0

(k − 1)2j+1 ≤ k − 1 + ε

k + ε
. (3)

These two inequalities will guarantee the existence of functions hz and gy, respectively,

which we define later in the proof. Also note that the right inequality of (3) is an immediate

consequence of the left one.

Now consider the universal graph Un
p,q,d. Let Ci, for i ∈

[
n
(
p
q

)]
, be a precoloring of the

special vertices and let fe be a mapping as described in Proposition 2.5. In what follows,

for each ray Ri, which is isomorphic to Rp,q,2d′, we find a fractional coloring ci that satisfies

the following: for every set A ∈
(
[p]
q

)
, each vertex v = (A, 2d′) of the base of Ri is colored

by the set fe(A), and the special vertex of Ri is colored by Ci. Since the universal graph

Un
p,q,d is constructed by identifying the vertices (A, 2d′), the conclusion of the lemma follows

from the existence of such a fractional coloring for each ray.

Fix a ray Ri and let s be the special vertex of Ri. For an integer ℓ ∈ [2d′ − 1], let Vℓ

be the set of vertices of Ri at distance ℓ from s, and let V2d′ be the set of vertices of Ri at

distance at least 2d′ from s. Observe that the sets Vℓ, ℓ = 1, . . . , 2d′, form a partition of

V (Ri) \ {s}, and if a vertex v = (A, ℓ′) of the ray Ri is in Vℓ, then ℓ′ ≤ ℓ. In particular,

the vertices of the base of Ri form a subset of V2d′ . By (1) and Proposition 2.4, it follows

that the set Vℓ forms an independent set in Ri, for ℓ ∈ [2d′ − 1].

The basic idea is to partition for each Vℓ the interval [0, k+ε) into three parts. The first

part will be split into p equal-size parts and will be assigned to vertices in Vℓ according to

the corresponding sets in the Kneser graph. The second part will be assigned to all vertices

in Vℓ (that is possible since Vℓ forms an independent set). The third part will not be used

on the vertices of Vℓ at all and will be reserved for the vertices in Vℓ−1. Based on the parity

of Vℓ, either the second part will be inside Ci and the third part will be disjoint from Ci,

or vice versa. First we define the partition for V2d′ , and after defining the partition for

some Vℓ, we define the partition for Vℓ−1. During this procedure, the sizes of the second

and third parts will increase at the expense of the first part.

Formally, we construct functions fx : [p] →֒ 2[0,k+ε), gy : [p] →֒ 2[0,k+ε) and hz : [p] →֒
2[0,k+ε), for x ∈ [2d′], y ∈ [d′ − 1] and z ∈ [d′ − 1] in the following way. For a ∈ [p] and

j = d′ − 1, d′ − 2, . . . , 1, we sequentially define:
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fe(1) fe(2) . . . . . . fe(p)

f3(a)

Ci

h1(a)

Y fe(1) fe(2) . . . . . . fe(p)

g1(a)

f1(a)

Ci

f2(a)

h1(a)

Y

Figure 8: The construction of a fractional coloring in Lemma 3.1 for d = 8.

• gj(a) as an arbitrary subset of (fe(a) \ Ci) \
d′−1⋃

j′=j+1

gj′(a)

of measure
εk

p
(k − 1)2(d

′−j)−1,

• hj(a) as an arbitrary subset of (fe(a) ∩ Ci) \
d′−1⋃

j′=j+1

hj′(a)

of measure
εk

p
(k − 1)2(d

′−j)−2,

and then:

• f2d′(a) := fe(a),

• f2j+1(a) := f2j+2(a) \ hj(a), and

• f2j(a) := f2j+1(a) \ gj(a).

Finally, we set f1(a) := f2(a) \ Ci for every a ∈ [p]. Since the measure of fe(a) is 1/q and

the measure of fe(a)∩Ci is 1/(p+qε), these functions exist if and only if the conditions (3)

are satisfied. Next, we set Y to be the set of measure ε that is disjoint from fe([p]), i.e.,

Y := [0, k+ ε) \ fe([p]). Observe that ‖Y \Ci‖ = ε− ε/(k+ ε). The described construction

of the functions is sketched in Figure 8.

Let ℓ ∈ [2d′] and v = (A, ℓ′) ∈ Vℓ. Recall that ℓ
′ ≤ ℓ. If ℓ is even, we set

ci(v) := fℓ(A) ∪
d′−1⋃

j=ℓ/2

hj([p]) ;

if ℓ ≥ 3 is odd, we set

ci(v) := fℓ(A) ∪
d′−1⋃

j=(ℓ+1)/2

gj([p]) ∪ Y ;

and for ℓ = 1 we set

ci(v) := f1(A) ∪
d′−1⋃

j=1

gj([p]) ∪ (Y \ Ci) .
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Finally, we set ci(s) := Ci.

We claim that ‖ci(v)‖ ≥ 1 for every vertex v ∈ V (Ri). Indeed, if v = s, then the

assertion immediately follows from ‖Ci‖ = 1. Hence, in the remainder we may assume

that v belongs to a set Vℓ for some ℓ ∈ [2d′]. Observe that for a fixed ℓ ∈ [2d′], the color

sets of any two vertices u and v from Vℓ have the same measure. Let mℓ be the measure of

vertices in Vℓ. Then m2d′ = 1, by the definition of fe. If d > 4, then m2d′−1 = m2d′ , since

both Y and hd′−1(A), for A ∈
(
[p]
q

)
, have measure ε. Next, if ℓ ∈ {3, 5, . . . , 2d′ − 3}, then

mℓ = mℓ+2 − ε(k − 1)2(d
′−⌊ℓ/2⌋)−2 + (k − 1) · ε(k − 1)2(d

′−⌈ℓ/2⌉)−1 = mℓ+2 .

Analogously, if ℓ ∈ {2, 4, . . . , 2d′ − 2}, then

mℓ = mℓ+2 − ε(k − 1)2(d
′−ℓ/2)−1 + (k − 1) · ε(k − 1)2(d

′−ℓ/2)−2 = mℓ+2 .

Finally, for m1 we have

m1 = 1− 1

k + ε
+ (k − 1) · ε

d′−1∑

j=1

(k − 1)2j−1 + ε− ε

k + ε
,

which is at least one by (2).

It remains to check that the mapping ci assigns disjoint sets to any two adjacent vertices

in Ri. Let u = (A, ℓu) ∈ Vℓu and v = (B, ℓv) ∈ Vℓv be two arbitrary adjacent vertices in Ri.

Hence, A is disjoint from B and without loss of generality ℓu ≤ ℓv ≤ ℓu + 1. If ℓv = ℓu,

then ℓv = 2d′ (since for ℓ < 2d′ the set Vℓ is independent). Thus the sets ci(u) and ci(v)

are disjoint, since fe(A) and fe(B) are disjoint.

From now on, we assume that ℓv = ℓu + 1. If ℓv is even, then ci(v) is disjoint from Y ,

and disjoint from gj([p]) for any j ∈ {(ℓu +1)/2, . . . , d′ − 1}. Furthermore, ci(u) is disjoint

from hj([p]) for any j ∈ {ℓv/2, . . . , d′ − 1}. Analogously if ℓv is odd and larger than one,

then ci(v) is disjoint from hj([p]) for any j ∈ {ℓu/2, . . . , d′−1}, and ci(u) is disjoint from Y ,

and disjoint from gj([p]) for any j ∈ {(ℓv − 1)/2, . . . , d′ − 1}. Since fℓ(A) is a subset of

fe(A) for any ℓ ∈ [2d′] and A ∈
(
[p]
q

)
, the sets ci(u) and ci(v) are disjoint. Finally, the

sets assigned to neighbors of s are disjoint from Ci.

We can conclude that the coloring ci is a fractional coloring of the ray Ri with the

required properties.

Combining Lemma 3.1 with Proposition 2.3 yields the following theorem.

Theorem 3.2. Let d be a positive integer such that d ≡ 0 mod 4, k a rational and ε a

positive real such that conditions (1) and (2) are satisfied, where d′ = ⌊d/4⌋. If G is a

fractionally k-colorable graph and W is a subset of its vertex set with pairwise distance

at least d, then any fractional (k + ε)-precoloring of W can be extended to a fractional

(k + ε)-coloring of G.
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Proof. Let p and q be integers such that k = p/q, and h the homomorphism from G

to U
|W |
p,q,d given by Proposition 2.3. Precolor the vertices of h(W ) with the colors assigned

to their preimages. Note that this is possible since h restricted to W is injective. Since

the parameters k, ε and d satisfy the conditions (1) and (2), Lemma 3.1 yields that there

exists an extension of this precoloring of Un
p,q,d to a fractional (k + ε)-coloring cU of U

|W |
p,q,d.

Since h is a homomorphism of G to Un
p,q,d, setting c(v) := cU(h(v)) for all v ∈ V (G) yields

a fractional (k + ε)-coloring of G that extends the given precoloring of W .

3.2 Lower bound for distance four

We start this section with the following proposition about the size of the neighborhood of

an independent set in a Kneser graph.

Proposition 3.3. Let p and q be positive integers, p/q ≥ 2. If I is an independent set of

the Kneser graph Kp/q, then |N(I)| ≥ p− q

q
· |I| .

Proof. Let n =
(
p
q

)
and A = A(Kp/q) be the normalized adjacency matrix of the Kneser

graph Kp/q. This is the n× n matrix indexed by vertices of Kp/q such that if {u, v} is an

edge of Kp/q, the entry corresponding to (u, v) is equal to the inverse of the degree of u, i.e.,

equal to
(
p− q
q

)−1

, while all other entries are zero. If λ1, λ2, . . . , λn are the eigenvalues of

A such that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, then it follows that |λ2| =
q

p− q
, see [15].

A standard expansion inequality (see, e.g., [11, Theorem 4.15]) asserts that

|NG(I)| ≥
|I|

(1− c)(λ2)2 + c
, (4)

for every vertex subset I of a graph G of size at most cn, where n is the number of vertices

of G. If I is an independent set of the Kneser graph Kp/q, then by the Erdős-Ko-Rado

Theorem (see, e.g., [12]), the size of I is at most
(
p− 1
q − 1

)
. Therefore, |I|/n ≤ q/p, where

n =
(
p
q

)
, and hence |N(I)| ≥ p− q

q
· |I| by (4).

Proposition 3.3 has a key role in proving that in any fractional k-coloring of Kp/q, where

k ≥ p/q, there is a vertex v such that the union of sets assigned to the neighborhood of v

has measure at least p/q−1. Note that this statement is trivial if p/q ≥ 3, because in that

case the neighborhood of any vertex of Kp/q is isomorphic to Kp/q−1.

Lemma 3.4. For every real ε ≥ 0, all positive integers p and q, where p/q ≥ 2, and

any fractional (p/q + ε)-coloring c : V (Kp/q) → 2[0,p/q+ε) of Kp/q, there exists a vertex

v ∈ V (Kp/q) such that ‖c(N(v))‖ ≥ p/q − 1.

13



Proof. For x ∈ [0, p/q+ε), let Vx ⊆ V (Kp/q) be the set of vertices of Kp/q that contain x in

their color set, i.e., Vx = { v ∈ V : x ∈ c(v) }. For i ≥ 1 we define Xi := { x ∈ [0, p/q + ε) :

|Vx| = i }. In other words, Xi are the points in [0, k + ε) contained in exactly i color

sets c(v). Note that for i >
(
p− 1
q − 1

)
the set Xi is empty and that

∑
i≥1

i · ‖Xi‖ =
(
p
q

)
.

Next, let Xj be the set of points x ∈ [0, k + ε) such that the number of vertices v that

have at least one neighbor u with x ∈ c(u) is equal to j. In other words, let Xj := { x ∈
[0, p/q + ε) : |N(Vx)| = j }.

Finally, consider all the intersections of Xi with Xj , where i ∈
[(

p− 1
q − 1

)]
and j ∈

[(
p
q

)]
, and let Xj

i := { x ∈ [0, p/q+ ε) : |Vx| = i and |N(Vx)| = j }. Note that for a fixed j

the sets Xj
i form a partition of the set Xj , where for some values of i the part Xj

i might

be empty. Since for any x the set Vx forms an independent set in Kp/q, Proposition 3.3

yields that if j < p−q
q

· i, then Xj
i is empty. Now, for a vertex v ∈ V , consider the measure

of points x ∈ [0, p/q + ε) such that x is contained in the color set of at least one neighbor

of v. By a double counting argument it follows that

∑

v∈V

‖c(N(v))‖ =

(pq)∑

j=1

j · ‖Xj‖ =

(pq)∑

j=1

(p−1
q−1)∑

i=1

j · ‖Xj
i ‖ =

(p−1
q−1)∑

i=1

(pq)∑

j=1

j · ‖Xj
i ‖ .

Since the sets Xj
i are empty for j < p−q

q
· i, we conclude that

∑

v∈V

‖c(N(v))‖ ≥
(p−1
q−1)∑

i=1

p− q

q
· i · ‖Xi‖ =

p− q

q
·
(
p
q

)
.

Therefore, there exists a vertex v ∈ V such that ‖c(N(v))‖ ≥ p/q − 1.

We are now ready to prove that the upper bound on g(k, 4) for k ∈ [2, 3) given in

Theorem 3.2 is best possible. The proof uses the same precoloring as was used in [13] for

a lower bound in the case k ∈ {2}∪ [3,∞), but the argument for k ∈ (2, 3) is considerably

more involved.

Theorem 3.5. Let k ∈ [2, 3) be a rational and ε a positive real such that ε <
1 + ε

k + ε
. There

exist a graph G with fractional chromatic number k, a subset W of its vertex set at pairwise

distance at least four and a fractional (k + ε)-precoloring of W that cannot be extended to

a fractional (k + ε)-coloring of G.

Proof. Let ε0 be the positive root of the equation x =
1 + x

k + x
, i.e., let

ε0 :=
1− k +

√
(k − 1)2 + 4

2
.
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Next, let p′, q be positive integers such that k + ε ≤ p′/q < k + ε0 and kq an integer. Set

ε′ := p′/q − k, p := kq and G := Un
p,q,4, where n =

(
p′

q

)
. We will show the existence of a

(k+ε′)-precoloring of the special vertices of G that cannot be extended to a (k+ε′)-coloring

of G. This implies that there exists also a (k + ε)-precoloring of the special vertices that

cannot be extended to a (k+ε)-coloring of G by Proposition 1.2. Since the special vertices

of G are at pairwise distance at least four, the statement of the theorem immediately

follows.

Let f : [p′] →֒ 2[0,k+ε′) be the function f(i) = [(i − 1)/q, i/q), for i ∈ [p′]. Consider

a precoloring of G that assigns to the n special vertices of the copies of RY
p,q,2, where

Y ∈
(
[p]
q

)
, all the n different sets f(X), for X ∈

(
[p′]
q

)
. We claim that this fractional

(k + ε′)-precoloring cannot be extended to a fractional coloring of the whole graph.

Suppose for contradiction that there exists an extension of the precoloring given by f

to a fractional coloring c : V (G) → 2[0,k+ε′). Let H be the base of G (that is, the common

bases of all rays). Since H is isomorphic to Kp/q, Lemma 3.4 implies that there exists a

vertex v ∈ V (H) with ‖c(NH(v))‖ ≥ k − 1. Let C := c(NH(v)) and let u be an arbitrary

neighbor of v in H ; without loss of generality u is the vertex corresponding to the vertex

([q], 2) in each ray of Un
p,q,4.

Now consider all the rays S
[q]
p,q,2 in Up,q,4; by the definition of f , for any X ∈

(
[p′]
q

)
there

is a ray where the special vertex [q] is precolored with f(X). Since each point of [0, p′/q)

is contained in exactly
(
p′ − 1
q − 1

)
sets f(X), a double counting argument yields that

‖C‖ =
1

(
p′ − 1
q − 1

)
∑

X∈([p
′]
q )

‖C ∩ f(X)‖ .

Therefore, there exists X ∈
(
[p′]
q

)
such that ‖C ∩ f(X)‖ ≤ q

p′
‖C‖. Consider the corre-

sponding ray S with the special vertex [q] precolored by f(X), and let v1 be the vertex

(v, 1) in S. Observe that the neighborhood of v1 in G contains NH(v)∪{s}, where s is the

special vertex of S. Therefore,

‖c(N(v1))‖ ≥ ‖C‖+ 1− ‖C ∩ f(X)‖ ≥ k − q

p′
(k − 1) = k − k − 1

k + ε′
.

Since 0 < ε′ < ε0, it follows that ε
′ < (1 + ε′)/(k + ε′) and hence

k + ε′ − ‖c(N(v1))‖ < 1 .

This implies that c(v1) intersects c(N(v1)), a contradiction.
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4 Distances congruent to two mod four

4.1 Upper bounds

We start this section with showing upper bounds for g(k, d), for d ≡ 2 mod 4 such that k

and d satisfy k < 2 +
2

d− 2
. The construction of the colorings for this choice of k and

d is similar to the one in Lemma 3.1. However, since the parity of the length of the rays

in Un
p,q,d is different, we need to swap the order in which we define the functions gy and hz

when we go from the base of a ray to its special vertex.

Lemma 4.1. Let ε be a positive real and n, p, q and d positive integers such that d ≥ 6,

d ≡ 2 mod 4 and p/q ≥ 2. If the conditions

2 ≤ k < 2 +
1

2d′
and (5)

ε

d′−1∑

j=0

(k − 1)2j+1 ≥ 1

k + ε
(6)

are satisfied, where d′ = ⌊d/4⌋ and k = p/q, then any fractional (k + ε)-precoloring of the

special vertices of Un
p,q,d can be extended to a fractional (k + ε)-coloring of Un

p,q,d.

Proof. As in the proof of Lemma 3.1, we only need to consider the case that ε is the

positive solution of

ε

d′−1∑

j=0

(k − 1)2j+1 =
1

k + ε
.

Any such solution also satisfies the following two inequalities:

ε

d′−2∑

j=0

(k − 1)2j+1 ≤ 1

k + ε
and ε

d′−1∑

j=0

(k − 1)2j ≤ k − 1 + ε

k + ε
. (7)

For the universal graph Un
p,q,d, let Ci, for i ∈

[
n
(
p
q

)]
, be a precoloring of the special

vertices and let fe be a mapping as described in Proposition 2.5. Analogously to the proof

of Lemma 3.1, for each ray Ri we find a fractional coloring ci that satisfies the following:

for every set A ∈
(
[p]
q

)
, each vertex v = (A, 2d′ +1) of the base of Ri is colored by the set

fe(A), and the special vertex of Ri is colored by Ci.

Fix a ray Ri and let s be the special vertex of Ri. For an integer ℓ ∈ [2d′], let Vℓ ⊆ V (Ri)

be the set of vertices at distance ℓ from s, and let V2d′+1 be the set of vertices of Ri at

distance at least 2d′ + 1 from s. Similarly to the proof of Lemma 3.1, the vertices of the

base of Ri form a subset of V2d′+1, and the set Vℓ forms an independent set in Ri, for

ℓ ∈ [2d′].
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fe(1) fe(2) . . . . . . fe(p)

g1(a)

f1(a)

Ci

f2(a)

Y

Figure 9: The construction of a fractional coloring in Lemma 4.1 for d = 6.

We construct functions fx : [p] →֒ 2[0,k+ε), gy : [p] →֒ 2[0,k+ε) and hz : [p] →֒ 2[0,k+ε), for

x ∈ [2d′ + 1], y ∈ [d′] and z ∈ [d′ − 1] as follows. For a ∈ [p] and j = d′ − 1, d′ − 2, . . . 1 we

sequentially define:

• hj(a) as an arbitrary subset of (fo(a) ∩ Ci) \
d′−1⋃

j′=j+1

hj′(a)

of measure
εk

p
(k − 1)2(d

′−j)−1,

Next, we sequentially define for a ∈ [p] and m = d′, d′ − 1, . . . , 1

• gm(a) as an arbitrary subset of (fe(a) \ Ci) \
d′⋃

m′=m+1

gm′(a)

of measure
εk

p
(k − 1)2(d

′−m),

and then:

• f2d′+1(a) := fe(a),

• f2m+1(a) := f2m+2(a) \ hm(a) for m < d′, and

• f2m(a) := f2m+1(a) \ gm(a).

Finally, we set f1(a) := f2(a) \ Ci and Y := [0, k + ε) \ fe([p]). Similarly as in the proof of

Lemma 3.1, such functions exist if and only if conditions (7) are satisfied. The described

construction of the functions is sketched in Figure 9.

Let ℓ ∈ [2d′] and v = (A, ℓ′) ∈ Vℓ. If ℓ is even, we set

ci(v) := fℓ(A) ∪
d′−1⋃

j=ℓ/2

hj([p]) ∪ Y ;

and if ℓ is odd, we set

ci(v) := fℓ(A) ∪
d′−1⋃

j=(ℓ+1)/2

gj([p]) .
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Setting ci(s) := Ci, together with an analysis analogous to the that presented in the

proof of Lemma 3.1, yield that ci is a fractional coloring of the ray Ri with the required

properties.

Combining the lemma with Proposition 2.3 yields the following theorem.

Theorem 4.2. Let d be an integer such that d ≥ 6 and d ≡ 2 mod 4, k a rational and ε

a positive real such that conditions (5) and (6) are satisfied, where d′ = ⌊d/4⌋. If G is

a fractionally k-colorable graph and W is a subset of its vertex set with pairwise distance

at least d, then any fractional (k + ε)-precoloring of W can be extended to a fractional

(k + ε)-coloring of G.

We close this section by showing an upper bound on g(k, 6) for k ∈ [2.5, 3), which is

best possible due to Theorem 4.5. The idea for the way we color the first neighborhood

of each special vertex is analogous to the one in Lemma 4.1. However, since the second

neighborhood of a special vertex does not form an independent set anymore, we need to

use a different strategy for coloring the second neighborhoods.

Theorem 4.3. Let k be a positive rational less than 3 and ε a positive real such that

ε ≥ 1

k + ε
. If G is a fractionally k-colorable graph and W is a subset of its vertex set with

pairwise distance at least six, then any fractional (k+ ε)-precoloring of W can be extended

to a fractional (k + ε)-coloring of G.

Proof. By Proposition 2.3, it is enough to consider only the universal graphs Un
p,q,6, where

p/q = k and n ∈ N, and an arbitrary precoloring of its special vertices. As in the proofs

of Lemmas 3.1 and 4.1, let Ci, for i ∈
[
n
(
p
q

)]
, be a precoloring of the special vertices and

let fe be a mapping as described in Proposition 2.5. For each ray Ri we find a fractional

coloring ci that satisfies the following: for every set A ∈
(
[p]
q

)
, each vertex v = (A, 3) of

the base of Ri is colored by the set fe(A), and the special vertex of Ri is colored by Ci.

Fix a ray Ri, let s be the special vertex of Ri and set Y := [0, k + ε) \ fe([p]). By

symmetry, it is enough to consider the case where Ri is a copy of R
[q]
p,q,3. We construct

functions g : [q] →֒ 2[0,k+ε) and h : [q] →֒ 2[0,k+ε) as follows. For j ∈ [q] we define g(j) to

be an arbitrary subset of fe(j) \ Ci of measure
ε

p+ qε
. Note that these subsets always

exist since ‖fe(j) \ Ci‖ =
k − 1 + ε

p+ qε
. Next, we define h(1), h(2), . . . , h(q) as an arbitrary

equipartition of Y ∩Ci into q parts of measure
ε

p+ qε
. The described construction of the

functions is sketched in Figure 10.

Recall that the neighborhood of s in Ri forms an independent set. Since s = ([q], 0), for

every neighbor (A, ℓ′) of s we have A ∩ [q] = ∅ and ℓ′ = 1. We now construct a fractional

coloring of Ri. Let v = (A, ℓ′) be a vertex of Ri and let ℓ be the distance of v from s in Ri.

We define ci(v) in the following way:
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fe(1) . . . fe(q) fe(q + 1) . . . fe(p)

g(1) . . . g(q)

Ci

h(1)

h(2)

. . .

h(q)

Y

Figure 10: The construction of a fractional coloring in Theorem 4.3.

• if ℓ ≥ 3, then ci(v) := fe(A);

• if ℓ = 2, then ci(v) := (fe(A) \ g(A ∩ [q])) ∪ h(A ∩ [q]);

• if ℓ = 1, then ci(v) := (fe(A) \ Ci) ∪ (Y \ Ci) ∪ g([q]); and

• ci(s) := Ci.

It is straightforward to check that we assigned disjoint sets to any two neighbors in Ri,

and that any vertex at distance at least two from s is assigned a set of measure one.

Furthermore, for every A ∈
(
[p] \ [q]

q

)
the set fe(A) \ Ci is disjoint from both Y and

g([q]), and has measure 1 − 1

k + ε
. Since (Y \ Ci) ∪ g([q]) has measure ε ≥ 1

k + ε
(recall

that ‖Y ∩ Ci‖ = ε/(k + ε)), it follows that ci is a fractional coloring with the required

properties.

4.2 Lower bound for distance six

The goal of this section is to prove that g(k, 6) = 1
2

(√
k2 + 4 − k

)
for k ∈ [2.5, 3), i.e.,

g(k, 6) is the positive root of the equation x =
1

k + x
for k in that range. Before we

present a formal proof, let us first sketch the idea. Suppose for a contradiction that there

exist k ∈ [2.5, 3) and ε > 0 such that g(k, 6) ≤ ε and ε <
1

k + ε
. As in the proof of

Theorem 3.5, we may assume that ε is a rational. Let p′ and q be integers such that

p′/q = k+ ε and kq is an integer, and let p = kq. We construct a precoloring of the special

vertices of Un
p,q,6, where n =

(
p′

q

)
, such that each point of the interval [0, k+ ε) belongs to

exactly
(
p
q

)
·
(
p′ − 1
q − 1

)
sets.

Now fix an arbitrary extension c : V (Un
p,q,6) → 2[0,k+ε) of this precoloring to a fractional

coloring of Un
p,q,6, and let c′ be the restriction of c to the special vertices and the common
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bases of the rays. For every ray Ri of U
n
p,q,6, we will consider a linear program Pi that

minimizes the value of a fractional coloring that extends c′. Clearly, for every ray Ri the

optimal solution of Pi has value at most k+ε. On the other hand, we will show that there is

a ray Ri such that the optimum of the dual program to Pi is at least k+
1

k + ε
. Therefore,

by weak duality of linear programming (see e.g. [17]), it follows that k +
1

k + ε
≤ k + ε,

which contradicts the assumption.

We start the formal exposition by introducing the notion dual to fractional colorings.

Let G = (V,E) be a graph. We say that a mapping x : V (G) → [0, 1] is a fractional clique

in G if for every independent set I of G the sum
∑
v∈I

x(v) is at most one. The weight of x

is the sum
∑

v∈V (G)

x(v). The problem of determining the maximum weight of a fractional

clique in G can be also formulated as a linear program. This program is the dual program

to the program that determines the fractional chromatic number of G. For a fractional

clique x in a graph G and a vertex subset S ⊆ V (G) we set x(S) :=
∑
v∈S

x(v).

The following proposition asserts that for every p and q, where p/q ∈ [2.5, 3) and q is

even, there exist a maximum fractional clique and a vertex v in the Kneser graph Kp/q

such that the sum of the weights over N(v) is equal to one.

Proposition 4.4. For every positive integer p and for every positive even integer q such

that p/q ∈ [2.5, 3), there exists a fractional clique x :
(
[p]
q

)
→ [0, 1] in Kp/q of weight p/q

such that x(v) =
(
p− q
q

)−1

for every neighbor v of the vertex [q].

Proof. Let V0 := {[q]}, V1 :=
(
[p] \ [q]

q

)
and V2 := {X ∈

(
[p]
q

)
: |X ∩ [q]| = q/2 } be

vertex subsets of Kp/q. Note that |V1| =
(
p− q
q

)
, |V2| =

(
q
q/2

)
·
(
p− q
q/2

)
, and the sets V0,

V1 and V2 are pairwise disjoint. Let H be the subgraph of Kp/q induced by V0 ∪ V1 ∪ V2.

Observe that H is connected since p/q ≥ 2.5. We will show the existence of a fractional

clique x in H of weight k such that x(v1) = |V1|−1 for each vertex v1 ∈ V1. The statement

of the proposition then follows.

For each vertex v ∈ V (H), define

x(v) :=





3− p/q, if v = [q];

1

|V1|
, if v ∈ V1;

2(p/q − 2)

|V2|
, if v ∈ V2.

The weight of x(H) is equal to p/q. Hence, it remains to check that x(I) ≤ 1 for every

independent set I of H .
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Fix an independent set I of H . First suppose that [q] ∈ I. Observe that since I has to

be disjoint from V1, it is enough to show that |I ∩ V2| ≤ |V2|/2. Consider the subgraph H ′

induced by V2. Since every vertex in H ′ has degree
(
p− 3q/2

q/2

)
, the graph H ′ is regular

and therefore it has independence number at most |V (H ′)|/2.
In the remainder of the proof we suppose that [q] /∈ I. Next set S1 := I ∩ V1, S2 :=

{X ∈
(
[p] \ [q]
q/2

)
: there is a Y ∈ I ∩ V2 with X ⊆ Y }, and S := S1 ∪ S2. If S2 is empty,

then I is a subset of V1, and therefore x(I) is at most one. On the other hand, if S1 is

empty, then I is a subset of V2. The graph induced by V2 is
(
p− 3q/2

q/2

)
-regular, hence

x(I) ≤ p/q − 2 < 1.

So we can assume that both S1 and S2 are non-empty. For a set X ∈ S2, we define

x̂(X) :=
∑

Y ∈I∩V2 s.t. X⊆Y

x(Y ). Now let O be the set of all (p− q − 1)! circular orders of the

set [p] \ [q]. We say that a set Z ⊆ [p] \ [q] is an arc in O ∈ O if we can order the elements

of Z in such a way that they form a consecutive segment in O. For every O ∈ O, we define

the set SO as the subset of S that contains X ∈ S if and only if X is an arc in O.

Analogously, define SO
1 as the family of sets X ∈ S1 that are arcs in O, and SO

2 as

the family of sets X ∈ S2 that are arcs in O. Observe that for every X ∈ S1 there exist

q!(p−2q)! choices of O such thatX ∈ SO
1 , and for every X ∈ S2 there exist (q/2)!(p−3q/2)!

choices of O such that X ∈ SO
2 . Consider the function x′ : S → [0, 1] defined as follows:

• for X ∈ S1, set x
′(X) :=

1

p− q
=

(p− q − 1)!

q!(p− 2q)!
· x(X); and

• for X ∈ S2, set x
′(X) :=

2(p/q − 2) · |{ Y ∈ I : X ⊆ Y }|

(p− q) ·
(

q
q/2

) =
(p− q − 1)!

(q/2)!(p− 3q/2)!
· x̂(X).

By a double counting argument,

(p− q − 1)! · x(I) =
∑

O∈O

∑

X∈SO

x′(X) .

Therefore, it is enough to show that for every O ∈ O the sum
∑

X∈SO

x′(X) is at most one.

Let x′(O) be this sum.

Fix a circular order O ∈ O. If SO
2 is empty, then x′(O) =

|SO
1 |

p− q
≤ 1. If SO

1 is empty,

then we show that x′(O) ≤ p/q − 2. Indeed, consider the subgraph HO of H induced by

A ∪ X , where A ∈
(
[q]
q/2

)
and X ∈ S2. Note that |V (HO)| ≤ (p − q)

(
q
q/2

)
. By the

definitions of x′ and x̂,

x′(O) =

(
p− q
q/2

)

(p− q)
· x(I ∩ V (HO)) = 2(p/q − 2) · |I ∩ V (HO)|

(p− q)
(

q
q/2

) .
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Since the graph HO is (p− 2q + 1)-regular, |I ∩ V (HO)| ≤ |V (HO)|/2 ≤ (p− q)
(

q
q/2

)
/2,

and hence x′(O) ≤ p/q − 2.

Finally, consider the case that both SO
1 and SO

2 are non-empty. We claim that |SO| ≤
3q/2. We say that an arc L in O of size q/2 is forbidden for SO

1 if there exists a set in SO
1

that is disjoint from L. Let s1 = |SO
1 | and s2 = |SO

2 |. Every arc in O of size q/2 intersects

at most 3q/2 − 1 arcs in O of size q, hence s1 ≤ 3q/2 − 1. On the other hand, we show

that at least p − 5q/2 + s1 arcs in O of size q/2 are forbidden for SO
1 , which means that

s2 ≤ 3q/2− s1.

Fix an arbitrary cyclic numbering of the elements of the set [p] \ [q] with numbers

1, 2, . . . , p − q such that any two consecutive elements in O have consecutive numbers.

Let Kℓ, for ℓ ∈ [p − q], be the arc in O of size q that starts at the ℓ-th element of O and

contains the next q − 1 elements of O. Analogously, let Lℓ, for ℓ ∈ [p − q], be the arc of

size q/2 that starts at the ℓ-th element and contains the next q/2−1 elements. For brevity,

we also refer toKp−q asK0, and to Lp−q as L0. If the sets in SO
1 correspond to s1 consecutive

arcs, i.e., for a fixed ℓ ∈ [p − q] the set SO
1 is equal to {Kℓ+j mod p−q : j = 0, . . . , s1 − 1 },

then observe that exactly p− 5q/2 + s1 arcs in O are forbidden for SO
1 .

Suppose now that the sets in SO
1 do not correspond to s1 consecutive arcs. By symmetry,

we may assume that K1 ∈ SO
1 , Kj ∈ SO

1 for some j ∈ {3, . . . , p− q − 1}, and Kj′ /∈ SO
1 for

every j′ = 2, . . . , j−1. We will show that there exists a set T of s1 consecutive arcs in O of

size q such that the number of forbidden arcs in O of size q/2 for SO
1 is at least the number

of forbidden arcs for T . If the arc Lp−3q/2+2, i.e., the arc that ends at the first element

of O, is disjoint from Kj , then every set that is disjoint from K2 is also disjoint from K1

or Kj . Therefore, every arc in O of size q/2 that is forbidden for T ′ := (SO
1 \ {Kj})∪{K2}

is also forbidden for SO
1 .

If the arc Lp−3q/2+2 intersects Kj, then since Kj′ is not in SO
1 for all j′ = 2, . . . , j−1, the

arc Lj+q mod p−q is disjoint from Kj and intersects every other set in SO
1 . Since it intersects

also K2, the number of forbidden arcs in O of size q/2 for T ′ := (SO
1 \ {Kj}) ∪ {K2} is at

most the number of forbidden arcs for SO
1 . By repeating this procedure till the arcs in O

in the set T ′ are consecutive, we conclude that the number of forbidden arcs for SO
1 is at

least p− 5q/2 + s1.

Now if s1 ≥ q, then

x′(O) =
s1

p− q
+

∑

X∈SO
2

x′(X) ≤ s1 + (3q/2− s1) · 2(p/q − 2)

p− q
≤ 1 ,

since the numerator of the last fraction is equal to 3p − 6q − s1(2 · p/q − 5), which is at

most p− q.

On the other hand, if s1 < q, then consider the partition of the set
(
[q]
q/2

)
into

(
q
q/2

)
/2

unordered pairs {A,B} such that A and B are disjoint. Fix such a pair {A,B}. We claim

that the number of tuples (L,Z), where L ∈ SO
2 , Z ∈ {A,B} and L ∪ Z ∈ I, is at most
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q/2 + s2. Indeed, otherwise there would be at least q/2 + 1 arcs L ∈ SO
2 such that both

L∪A and L∪B are in I. Since every arc in O of size q/2 intersects q/2−1 other arcs of size

q/2, there exist two disjoint sets in I, which contradicts the fact that I is an independent

set. Therefore, it follows that

∑

X∈SO
2

x′(X) ≤ (q/2 + s2)(p/q − 2)

(p− q)

and

x′(O) =
s1

p− q
+

∑

X∈SO
2

x′(X) ≤ s1 + (q/2 + 3q/2− s1)(p/q − 2)

p− q
< 1 .

The last inequality holds since the numerator of the last fraction is equal to s1(3− p/q) +

2p− 4q, which is less than p− q.

We are now ready to give a lower bound on g(k, 6) for k ∈ [2.5, 3).

Theorem 4.5. Let k ∈ [2.5, 3) be a rational and ε a positive real such that ε <
1

k + ε
.

There exist a graph G with fractional chromatic number k, a subset W of its vertex set

at pairwise distance at least six and a fractional (k + ε)-precoloring of W that cannot be

extended to a fractional (k + ε)-coloring of G.

Proof. Analogously to the proof of Theorem 3.5, let ε0 be the positive root of the equation

x =
1

k + x
and let p′ and q be positive integers such that q is even, k + ε ≤ p′/q < k + ε0

and kq is an integer. Next, set p := kq, ε′ := p′/q − k and G := Un
p,q,6, where n =

(
p′

q

)
.

We will show the existence of a fractional (k + ε′)-precoloring of the special vertices of G

that cannot be extended to a fractional (k+ ε′)-coloring of G, which implies the statement

of the theorem by Proposition 1.2.

Let f : [p′] →֒ 2[0,k+ε′) be the function f(i) = [(i − 1)/q, i/q), for i ∈ [p′]. Consider a

precoloring of G that assigns to the n special vertices of the copies of RY
p,q,3, Y ∈

(
[p]
q

)
, all

the n different sets f(X), for X ∈
(
[p′]
q

)
. We assert that this fractional (k+ε′)-precoloring

cannot be extended to a fractional coloring of the whole graph.

Suppose, on the contrary, that there exists an extension of the precoloring given by f

to a fractional coloring c : V (G) → 2[0,k+ε′). Let H be the base of G (recall that H is

isomorphic to Kp/q), let IH be the set of all independent sets in H , and for every I ∈ IH

let I be the complement of I in H , i.e., I = V (H) \ I.
For every ray Ri with its special vertex colored by Ci and every independent set I ∈ IH ,

let di(I) be the measure of the set of all points in [0, k+ε′)∩Ci assigned by c to all vertices

in I and none in I. In other words,

di(I) :=
∥∥∥
⋂

v∈I

(c(v) ∩ Ci) \ c(I)
∥∥∥ .
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Analogously, let ei(I) be the measure of points of [0, k + ε′) \ Ci used, in the coloring c

restricted to H , exactly on the vertices of I, i.e.,

ei(I) :=
∥∥∥
⋂

v∈I

(c(v) \ Ci) \ c(I)
∥∥∥ .

Finally, set ti(I) := di(I) + ei(I). Observe that for every vertex v ∈ V (H) the sum of ti(I)

over all independent sets I that contain v is equal to one.

Now let N be the neighborhood in H of the vertex [q]. (Where [q] is the vertex obtained

by identifying the vertices ([q], 3) from all rays Ri.) Recall that |N | =
(
p− q
q

)
. We assert

that there exists a ray Ri with special vertex ([q], 0) for which

∑

I∈IH

|N ∩ I| · di(I) ≥ |N | · 1

k + ε′
=

(
p− q
q

)
· q
p′
. (8)

Indeed, let C1, C2, . . . , Cn be the sets used in the precoloring of the vertex ([q], 0) in the

rays R
[q]
p,q,3. For simplicity, let R1, R2, . . . , Rn be these rays and d1, e1, . . . , dn, en are the

corresponding functions defined above. Since each point of [0, k+ε′) is contained in exactly(
p′ − 1
q′ − 1

)
sets Ci, it follows that

n∑
i=1

di(I) =
(
p′ − 1
q′ − 1

)
· ti(I) for every I ∈ IH . Next, by a

double counting argument we have
∑
I∈IH

|I ∩N | · ti(I) = |N | =
(
p− q
q

)
. Therefore,

n∑

i=1

∑

I∈IH

|N ∩ I| · di(I) =
∑

I∈IH

|N ∩ I|
( n∑

i=1

di(I)

)
=

(
p′ − 1
q − 1

)
·
(
p− q
q

)
.

Since n =
(
p′

q

)
, there exists a ray Ri with special vertex ([q], 0) such that inequality (8)

holds. In the remainder of the proof, we fix Ri to be such a ray and let s be the special

vertex in Ri.

Let IR be the set of all independent sets in the ray Ri and let V ′ := V (Ri)\(V (H)∪{s}).
Consider the following linear program P :

minimize:
∑

I∈IR

w(I);

subject to:
∑

I∈IR, v∈I

w(I) ≥ 1, ∀v ∈ V ′;

∑

I∈IR, s∈I
I∩H=IH

w(I) ≥ di(IH), ∀IH ∈ IH ;

∑

I∈IR, s/∈I
I∩H=IH

w(I) ≥ ei(IH), ∀IH ∈ IH ;

w(I) ≥ 0, ∀I ∈ IR.
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Observe that the fact that c is a fractional (k + ε′)-coloring of G implies that there exists

a solution satisfying the conditions of P such that
∑

I∈IR
w(I) ≤ k+ ε′. Now consider the

dual program P ∗ of P :

maximize:
∑

v∈V ′

y(v) +
∑

I∈IH

[
di(I) · yd(I) + ei(I) · ye(I)

]
;

subject to: yd(I ∩H) +
∑

v∈I

y(v) ≤ 1, ∀I ∈ IR s.t. s ∈ I;

ye(I ∩H) +
∑

v∈I

y(v) ≤ 1, ∀I ∈ IR s.t. s /∈ I;

y(v) ≥ 0, ∀v ∈ V ′;

yd(I) ≥ 0, ye(I) ≥ 0, ∀I ∈ IH .

We will show that there exists a feasible solution of P ∗ such that the objective function

of P ∗ is at least k + q/p′ = k +
1

k + ε′
. Therefore, ε′ ≥ 1

k + ε′
, which is a contradiction

with the choice of ε′.

Let x :
(
[p]
q

)
→ [0, 1] be a fractional clique in Kp/q of weight p/q such that for every

X ∈
(
[p] \ [q]

q

)
we have x(X) =

(
p− q
q

)−1

. Proposition 4.4 implies that such a clique

exists (recall that q is even). We now define an embedding g of Kp/q in the subgraph of Ri

induced by V ′. If X ∈
(
[p]
q

)
is disjoint from [q], we set g(X) := (X, 1); otherwise we set

g(X) := (X, 2). For every set X ∈
(
[p]
q

)
we set y(g(X)) := x(X), and for every other

vertex v ∈ V ′\g
((

[p]
q

))
we set y(v) := 0. Finally, we set yd(I) :=

|N ∩ I|
(
p− q
q

) and ye(I) := 0

for every I ∈ IH .

By the definition of x, it follows that
∑
v∈V ′

y(v) = k. Next, inequality (8) implies that
∑

I∈IH

di(I) · yd(I) ≥ q/p′. Since y forms a fractional clique in Ri, it remains to show that

for I ∈ IR, where s ∈ I and I ∩N 6= ∅, we have yd(I ∩H) +
∑
v∈I

y(v) ≤ 1. We show that

for every I, where s ∈ I and I ∩ N 6= ∅, there exists an independent set I ′ ∈ IR that is

disjoint from N and that satisfies

yd(I ∩H) +
∑

v∈I

y(v) =
∑

v∈I′

y(v) . (9)

Since y is a fractional clique in Ri and I ′ is an independent set, it follows that
∑
v∈I′

y(v) ≤ 1.

We construct I ′ in the following way:
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• I ′ is disjoint from
{
(X, 0) : X ∈

(
[p]
q

)}
∪
{
(X, 3) : X ∈

(
[p]
q

)}
,

• (X, 1) ∈ I ′ if and only if (X, 3) ∈ I ∩N (observe that (X, 1) /∈ I), and

• (X, 2) ∈ I ′ if and only if (X, 2) ∈ I.

By the choice of yd(H ∩ I), and since y((X, 1)) =
(
p− q
q

)−1

for X ∈
(
[p] \ [q]

q

)
, it follows

that equation (9) holds. This completes the proof.

5 Distances congruent to one mod four

Analogously to Section 3.1, in this section we present upper bounds on g(k, d) for d ≡
1 mod 4 in the case that k and d satisfy 2 ≤ k < 2 +

2

d− 3
. In Lemma 3.1 we gave

a coloring strategy for universal graphs Un
p,q,d with d even. In the following lemma we

adapt this strategy to odd values of d. Recall that for odd d, instead of identifying the

bases of the rays in a universal graph, we now connect them according to their labels.

The main difference in the new strategy is that to color the base of each ray of Un
p,q,d, we

now use appropriately chosen subsets of the sets fo(1), fo(2), . . . , fo(p), instead of using

fe(1), fe(2), . . . , fe(p).

Lemma 5.1. Let ε be a positive real and n, p, q and d positive integers such that d ≥ 5,

d ≡ 1 mod 4 and p/q ≥ 2. If the conditions

2 ≤ k < 2 +
1

2d′ − 1
and (10)

εk

d′−1∑

j=0

(k − 1)2j ≥ 1 (11)

are satisfied, where d′ = ⌊d/4⌋ and k = p/q, then any fractional (k + ε)-precoloring of the

special vertices of Un
p,q,d can be extended to a fractional (k + ε)-coloring of Un

p,q,d.

Proof. Again, we only need to consider ε that satisfy (11) with equality, i.e., we can take

ε =

(
k

d′−1∑

j=0

(k − 1)2j
)−1

.

Note that this choice trivially gives

εk
d′−2∑

j=0

(k − 1)2j ≤ 1. (12)
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Considering the universal graph Un
p,q,d, let Ci, for i ∈

[
n
(
p
q

)]
, be a precoloring of the

special vertices and let fo be a mapping as described in Proposition 2.5. In what follows,

for each ray Ri, which is isomorphic to Rp,q,2d′, we find a fractional coloring ci that satisfies

the following: for every set A ∈
(
[p]
q

)
, each vertex v = (A, 2d′) of the base of Ri is colored

by a subset of fo(A), and the special vertex of Ri is colored by Ci. Since the universal

graph Un
p,q,d is constructed by joining the vertices (A, 2d′) and (B, 2d′) from different rays

for disjoint A,B ∈
(
[p]
q

)
, the lemma follows from this claim.

Fix a ray Ri and let s be the special vertex of Ri. For an integer ℓ ∈ [2d′ − 1], let Vℓ

be the set of vertices of Ri at distance ℓ from s, and let V2d′ be the set of vertices of Ri at

distance at least 2d′ from s. As in the proof of Lemma 3.1, the vertices of the base of Ri

form a subset of V2d′ and the set Vℓ forms an independent set in Ri for ℓ ∈ [2d′ − 1].

Analogously to the proof of Lemma 3.1, we construct functions fx : [p] →֒ 2[0,k+ε),

gy : [p] →֒ 2[0,k+ε) and hz : [p] →֒ 2[0,k+ε), for x ∈ [2d′], y ∈ [d′] and z ∈ [d′ − 1] as follows.

For a ∈ [p] and j = d′ − 1, d′ − 2, . . . , 1, we sequentially define

• gd′(a) as an arbitrary subset of fo(a) \ Ci of measure
ε

p
,

• gj(a) as an arbitrary subset of (fo(a) \ Ci) \
d′⋃

j′=j+1

gj′(a)

of measure
εk

p
(k − 1)2(d

′−j)−1,

• hj(a) as an arbitrary subset of (fo(a) ∩ Ci) \
d′−1⋃

j′=j+1

hj′(a)

of measure
εk

p
(k − 1)2(d

′−j)−2,

and then:

• f2d′(a) := fo(a) \ gd′(a),
• f2j+1(a) := f2j+2(a) \ hj(a), and

• f2j(a) := f2j+1(a) \ gj(a).
Finally, we set f1(a) := f2(a) \Ci for every a ∈ [p]. Since the measure of fo(a) is (k+ ε)/p

and the measure of fo(a) ∩ Ci is 1/p, these functions exist if and only if condition (12) is

satisfied. The described construction of the functions is sketched in Figure 11.

Let ℓ ∈ [2d′] and v = (A, ℓ′) ∈ Vℓ. Recall that ℓ
′ ≤ ℓ. If ℓ is even, we set

ci(v) := fℓ(A) ∪
d′−1⋃

j=ℓ/2

hj([p]) ;
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fo(1) fo(2) . . . . . . fo(p)

g2(a)

Ci

f4(a)
f3(a)

h1(a)

fo(1) fo(2) . . . . . . fo(p)

g1(a)

f1(a)

Ci

g2(a)

f2(a)

h1(a)

Figure 11: The construction of a fractional coloring in Lemma 5.1 for d = 9.

and if ℓ is odd, we set

ci(v) := fℓ(A) ∪
d′⋃

j=(ℓ+1)/2

gj([p]) .

Finally, we set ci(s) := Ci.

As in the proof of Lemma 3.1, we claim that ‖ci(v)‖ ≥ 1 for every vertex v ∈ V (Ri).

First, it follows from the definition that ‖ci(s)‖ = 1. Next, for a fixed ℓ ∈ [2d′], the color

sets of any two vertices u and v from Vℓ have the same measure. Let mℓ be the measure

of vertices in Vℓ. Then m2d′ =
k + ε

k
− ε

k
= 1. Next, for ℓ ∈ {2, 3, . . . , 2d′ − 1} we have

mℓ = 1, by analogous calculations as in the proof of Lemma 3.1. Finally, for m1 we obtain

m1 = 1− 1

k
− (k − 1) · εk

d′−1∑

j=1

(k − 1)2j−1 + ε = 1− 1

k
+ ε

d′−1∑

j=0

(k − 1)2j ,

which is at least one by (11).

An analysis analogous to that presented in the proof of Lemma 3.1 yields that ci assigns

disjoint sets to any two adjacent vertices in Ri. Therefore, the coloring ci is a fractional

coloring of the ray Ri with the required properties.

As in Section 3.1, applying Proposition 2.3 yields the following theorem.

Theorem 5.2. Let d ≥ 5 be an integer such that d ≡ 1 mod 4, k a rational and ε a

positive real such that conditions (10) and (11) are satisfied, where d′ = ⌊d/4⌋. If G is

a fractionally k-colorable graph and W is a subset of its vertex set with pairwise distance

at least d, then any fractional (k + ε)-precoloring of W can be extended to a fractional

(k + ε)-coloring of G.

Note that for d = 5, the theorem shows that g(k, 5) ≤ 1/k for k ∈ [2, 3).
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6 Distances congruent to three mod four

As in the previous sections, we start with showing upper bounds on g(k, d) for d ≡ 3 mod 4

such that k and d satisfy the condition 2 ≤ k < 2 +
2

d− 3
. Observe that the parity of

the length of a ray in Un
p,q,d for d ≡ 3 mod 4 is the same as for d ≡ 2 mod 4, and that it is

different to the one for d ≡ 1 mod 4. (Hence it is also different to the one for d ≡ 0 mod 4.)

Therefore, for this choice of values of k and d, we modify the coloring strategy used in

Lemma 5.1 in a similar way to how we modified the strategy from Lemma 3.1 to prove

Lemma 4.1.

Lemma 6.1. Let ε be a positive real and n, p, q and d positive integers such that d ≡
3 mod 4 and p/q ≥ 2. If the conditions

2 ≤ k < 2 +
1

2d′
and (13)

ε+ εk

d′−1∑

j=0

(k − 1)2j+1 ≥ 1 (14)

are satisfied, where d′ = ⌊d/4⌋ and k = p/q, then any fractional (k + ε)-precoloring of the

special vertices of Un
p,q,d can be extended to a fractional (k + ε)-coloring of Un

p,q,d.

Proof. For the fourth time, we can limit ourselves to ε that give equality in (14):

ε =

(
1 + k

d′−1∑

j=0

(k − 1)2j+1

)−1

.

For later in the proof we observe that these ε trivially satisfy

ε+ εk
d′−2∑

j=0

(k − 1)2j+1 ≤ 1. (15)

For the universal graph Un
p,q,d, let Ci, for i ∈

[
n
(
p
q

)]
, be a precoloring of the special

vertices and fo be a mapping as described in Proposition 2.5. Analogously to the proof

of Lemma 5.1, for each ray Ri we find a fractional coloring ci that satisfies the following:

every vertex v = (A, 2d′ + 1) of the base of Ri is colored by a subset of fo(A), where

A ∈
(
[p]
q

)
, and the special vertex of Ri is colored by Ci.

Fix a ray Ri and let s be the special vertex of Ri. For an integer ℓ ∈ [2d′], let Vℓ ⊆ V (Ri)

be the set of vertices at distance ℓ from s, and let V2d′+1 be the set of vertices of Ri at

distance at least 2d′+1 from s. Similarly as in the proof of Lemma 5.1, the vertices of the

base of Ri form a subset of V2d′+1 and Vℓ forms an independent set in Ri for ℓ ∈ [2d′].
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fo(1) fo(2) . . . . . . fo(p)

g1(a)

Ci

f3(a)

h1(a)

fo(1) fo(2) . . . . . . fo(p)

g1(a)

f1(a)

Ci

f2(a)

h1(a)

Figure 12: The construction of a fractional coloring in Lemma 6.1 for d = 7.

We now construct functions fx : [p] →֒ 2[0,k+ε), gy : [p] →֒ 2[0,k+ε) and hz : [p] →֒ 2[0,k+ε),

for x ∈ [2d′ + 1], y ∈ [d′] and z ∈ [d′] as follows. For a ∈ [p] and j = d′ − 1, d′ − 2, . . . , 1,

we sequentially define:

• hd′(a) as an arbitrary subset of fo(a) ∩ Ci of measure
ε

p
, and

• hj(a) as an arbitrary subset of (fo(a) ∩ Ci) \
d′⋃

j′=j+1

hj′(a)

of measure
εk

p
(k − 1)2(d

′−j)−1.

Next, we sequentially define for a ∈ [p] and m = d′, d′ − 1, . . . , 1

• gm(a) as an arbitrary subset of (fo(a) \ Ci) \
d′⋃

m′=m+1

gm′(a)

of measure
εk

p
(k − 1)2(d

′−m),

• f2d′+1(a) := fo(a) \ hd′(a),

• f2m+1(a) := f2m+2(a) \ hm(a) for m < d′, and

• f2m(a) := f2m+1(a) \ gm(a).
Finally, we define f1(a) := f2(a) \ Ci for every a ∈ [p]. Similarly as in the proof of

Lemma 5.1, these functions exist if and only if condition (15) is satisfied. The described

construction of the functions is sketched in Figure 12.

Let ℓ ∈ [2d′] and v = (A, ℓ′) ∈ Vℓ. If ℓ is even, we set

ci(v) := fℓ(A) ∪
d′⋃

j=ℓ/2

hj([p]) ;

and if ℓ is odd, we set

ci(v) := fℓ(A) ∪
d′⋃

j=(ℓ+1)/2

gj([p]) .
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Also, set ci(s) := Ci. An analysis analogous to that presented in the proof of Lemma 3.1

yields that ci is a fractional coloring of the ray Ri with the required properties.

Lemma 6.1 and Proposition 2.3 together provide the following theorem.

Theorem 6.2. Let d be a positive integer such that d ≡ 3 mod 4, k a rational and ε a

positive real such that conditions (13) and (14) are satisfied, where d′ = ⌊d/4⌋. If G is

a fractionally k-colorable graph and W is a subset of its vertex set with pairwise distance

at least d, then any fractional (k + ε)-precoloring of W can be extended to a fractional

(k + ε)-coloring of G.

For d = 7, the theorem means that g(k, 7) ≤ 1

k2 − k + 1
for k ∈ [2, 2.5). We close this

section by showing an upper bound on g(k, 7) for k ∈ [2.5, 3).

Theorem 6.3. Let k be a positive rational less than 3 and ε a positive real such that

ε ≥ 1

k + 1
. If G is a fractionally k-colorable graph and W is a subset of its vertex set

with pairwise distance at least seven, then any fractional (k + ε)-precoloring of W can be

extended to a fractional (k + ε)-coloring of G.

Proof. By Proposition 2.3, it is enough to consider the universal graphs Un
p,q,6, where p/q =

k and n ∈ N, and an arbitrary precoloring of its special vertices. Furthermore, we may

assume ε ≤ 1, since g(k, 3) = 1 for every k ≥ 2 by Theorem 1.3.

As in the proofs of Lemmas 5.1 and 6.1, let Ci, for i ∈
[
n
(
p
q

)]
, be a precoloring of the

special vertices and let fo be a mapping as described in Proposition 2.5. For each ray Ri

we find a fractional coloring ci that satisfies the following: for every set A ∈
(
[p]
q

)
, each

vertex v = (A, 3) of the base of Ri is colored by a subset of fo(A), and the special vertex

of Ri is colored by Ci.

Fix a ray Ri and let s be the special vertex of Ri. By symmetry, it is enough to

consider the case where Ri is a copy of R
[q]
p,q,3. We construct functions g2 : [p] →֒ 2[0,k+ε),

g1 : [q] →֒ 2[0,k+ε) and h : [q] →֒ 2[0,k+ε) as follows. For j ∈ [q] and j′ ∈ [p] \ [q] we define:

• g2(j) as an arbitrary subset of fo(j) \ Ci of measure
ε

p
,

• g2(j
′) as an arbitrary subset of fo(j

′) ∩ Ci of measure
ε

p
, and

• g1(j) as an arbitrary subset of (fo(j) \ Ci) \ g2(j) of measure
ε

p
(k − 1).

Note that these functions exist if and only if ε ≤ 1. Next, we define sets h(1), h(2), . . . , h(q)

as an arbitrary equipartition of g2([p]\ [q]) into q parts of measure
ε

p
(k−1). The described

construction of the functions is sketched in Figure 13.
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fo(1) . . . fo(q) fo(q + 1) . . . . . . fo(p)

g2(1) . . . g2(q)

g1(1) . . . g1(q)

Ci

g2(q + 1) . . . g2(p)

h(1)
. . .

h(q)

Figure 13: The construction of a fractional coloring in Theorem 6.3.

Recall that the neighborhood of s in Ri forms an independent set. Since we assume

that s = ([q], 0), for every neighbor (A, ℓ′) of s we have A ∩ [q] = ∅ and ℓ′ = 1. We now

construct a fractional coloring of Ri. Let v = (A, ℓ′) be a vertex of Ri and let ℓ be the

distance of v and s in Ri. We define ci(v) in the following way:

• if ℓ ≥ 3, then ci(v) := fo(A) \ g2(A),
• if ℓ = 2, then ci(v) :=

(
(fo(A) \ g2(A)) \ g1(A ∩ [q])

)
∪ h(A ∩ [q]),

• if ℓ = 1, then ci(v) := (fo(A) \ Ci) ∪ g1([q]) ∪ g2([q]), and

• ci(s) := Ci.

An analysis analogous to that presented in the proof of Lemma 3.1 yields that we assigned

disjoint sets to any two neighbors in Ri, and that any vertex at distance at least two from

s got a set of measure one. Furthermore, for every A ∈
(
[p]\[q]

q

)
the set fo(A) \Ci is disjoint

from both g1([q]) and g2([q]), and it has measure 1− (1 − ε)/k. Since g1([q]) ∪ g2([q]) has

measure ε and for ε ≥ 1/(k + 1) we have ε ≥ (1 − ε)/k, it follows that ci is a fractional

coloring with the required properties.

7 Open problems

Determining further values of g(k, d) seems to require additional knowledge on the structure

of independent sets and fractional colorings in Kneser graphs. We believe that our upper

bounds presented in Theorems 3.2, 4.2, 5.2, 6.2, and 6.3 are tight. In particular, for

distances d = 5, 6 and 7, we conjecture the following.

Conjecture 1. For k ∈ [2, 3) we have g(k, 5) =
1

k
.

32



Conjecture 2. For k ∈ [2, 2.5) we have g(k, 6) = 1
2

(√
k2 + 4/(k − 1)− k

)
.

Conjecture 3. For k ∈ [2, 2.5) we have g(k, 7) =
1

k2 − k + 1
, while for k ∈ [2.5, 3) we

have g(k, 7) =
1

k + 1
.

Let us give some additional support for Conjectures 1–3, provided by numerical com-

putations. Fix ε > 0, integers n, p, q and d such that k = p/q ∈ [2, 3), and a fractional pre-

coloring Ci ⊆ [0, k+ε), for i ∈
[
n
(
p
q

)]
, of the special vertices of the universal graph Un

p,q,d.

Denote by Ri the ray Un
p,q,d that has the special vertex precolored with Ci. Finally, fix the

coloring of the bases of the rays of Un
p,q,d as given in the following paragraph. (Recall that

every base is isomorphic to Kp/q, and that for even values of d, the bases of all the rays

are actually the same.)

Let fe and fo be the functions defined in Proposition 2.5 for the precoloring Ci. If d

is even, then the base of each ray of Un
p,q,d is colored using the sets fe(1), fe(2), . . . , fe(p).

If d ≡ 1 mod 4, then for each i ∈
[
n
(
p
q

)]
, the base of Ri is colored using (arbitrarily

chosen) sets f i
o(1) ⊂ fo(1), f

i
o(2) ⊂ fo(2), . . . , f

i
o(p) ⊂ fo(p) of measure 1/q satisfying

‖f i
o(j) ∩ Ci‖ = 1/p for every j ∈ [p]. Finally, if d ≡ 3 mod 4, then the base of the ray Ri

is colored by sets f i
o(1) ⊂ fo(1), f

i
o(2) ⊂ fo(2), . . . , f

i
o(p) ⊂ fo(p) of measure 1/q satisfying

‖f i
o(j) ∩ Ci‖ = (1− ε)/p for every j ∈ [p].

Observe that the precoloring of the special vertices and the coloring of the bases of

Un
p,q,d can be extended to a fractional (p/q + ε)-coloring if and only if we can extend this

precoloring inside each ray Ri separately. Furthermore, the question if we can extend this

precoloring inside Ri can be formulated as a linear program similar to the program P

defined in the proof of Theorem 4.5. With the help of the QSopt Linear Programming

Solver [8], we have checked the minimum possible values of ε for various choices of integers

p, q and d. All the numerical values matched the values we conjectured above; see Table 1.

Note that the assumption on the coloring of the bases of the rays we made is satisfied

in both the optimal extension for d = 4 and k ∈ [2, 3) from Theorem 1.4, and the optimal

extension for d = 6 and k ∈ [2.5, 3) from Theorem 1.5. This is also the case for the

optimal extensions for d = 3 and k ∈ [2,∞), and d ≥ 4 and k ∈ {2} ∪ [3,∞), which were

constructed in [13].

Finally, we also believe that as d gets larger, the function g(k, d) is discontinuous for

more values of k. In particular, let m(p, q, d) be the maximum integer i such that i ≤
⌊d/2⌋− 1 and the i-th neighborhood of the special vertex of Rp,q,⌊d/2⌋ form an independent

set. Observe that for any integers d, p, q, p′ and q′ such that p/q = p′/q′, the values of

m(p, q, d) and m(p′, q′, d) are the same. We expect that the discontinuous points of g(k, d)

exactly correspond to those values of k = p/q, where m(p, q, d) changes from a value ℓ to

ℓ+ 1. Therefore, we pose the following conjecture.
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k p q ε for d = 5 ε for d = 6 ε for d = 7 ε for d = 8

2.07692 27 13 0.48148 0.37822 – –

2.08333 25 12 0.48 0.37542 – –

2.09091 23 11 0.47826 0.37216 – –

2.1 21 10 0.47619 0.36831 – 0.24

2.11111 19 9 0.47368 0.36367 0.29889 –

2.125 17 8 0.47059 0.358 0.29493 –

2.14286 15 7 0.46667 0.35088 0.28994 0.22427

2.16667 13 6 0.46154 0.34171 0.28346 0.21616

2.2 11 5 0.45454 0.32945 0.27472 0.20538

2.25 9 4 0.44444 0.31223 0.26229 0.19035

2.28571 16 7 0.4375 0.30071 – –

2.33333 7 3 0.42857 0.2863 0.24324 0.20657

2.33333 14 6 0.42857 0.2863 – –

2.4 12 5 0.41667 0.26775 0.22936 –

2.5 5 2 0.4 – 0.28571 0.23892

2.5 10 4 0.4 – 0.28571 0.23892

2.66667 8 3 0.375 – 0.27273 0.23274

2.75 11 4 0.36364 – 0.26667 –

Table 1: Minimum possible values of ε for several choices of p, q and d, obtained by nu-

merical computations.
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Conjecture 4. For a fixed integer d ≥ 4, the function g(k, d) is discontinuous at k ∈ [2,∞)

if and only if k = 2 + 1/m with m ∈ {1, 2, . . . , ⌊d/2⌋ − 1}.

Acknowledgments

The authors thank the anonymous referees for carefully reading the manuscript and for

their valuable comments, which greatly improved the presentation of the results.

References

[1] M. O. Albertson: You can’t paint yourself into a corner. J. Combin. Theory Ser. B

73 (1998), 189-194.

[2] M. O. Albertson, J. P. Hutchinson: Graph color extensions: when Hadwiger’s Con-

jecture and embedding helps. Electron. J. Combin. 9 (2002), R#37, 10pp.

[3] M. O. Albertson, J. P. Hutchinson: Extending precolorings of subgraphs of locally

planar graphs. European J. Combin. 25 (2004), 863–871.

[4] M. O. Albertson, E. H. Moore: Extending graph colorings. J. Combin. Theory Ser. B

77 (1999), 83–95.

[5] M. O. Albertson, E. H. Moore: Extending graph colorings using no extra colors.

Discrete Math. 234 (2001), 125–132.

[6] M. O. Albertson, A. V. Kostochka, D. B. West: Precoloring extensions of Brooks’

Theorem. SIAM J. Discrete Math. 18 (2005), 542–553.

[7] M. O. Albertson, D. B. West: Extending precolorings to circular colorings. J. Com-

bin. Theory Ser. B 96 (2006), 472–481.

[8] D. Applegate, W. Cook, S. Dash, M. Mevenkamp: QSopt Linear Programming Solver.

www.math.uwaterloo.ca/∼bico/qsopt/.

[9] M. Axenovich: A note on graph coloring extensions and list-colorings. Electron. J.

Combin. 10 (2003), N#1, 5pp.

[10] G. Hahn, C. Tardif: Graph homomorphisms: structure and symmetry. In G. Hahn,

G. Sabidussi (eds.): Graph Symmetry (Montreal, PQ, 1996). Kluwer Acad. Publ.,

Dordrecht (1997), 107–166.

[11] S. Hoory, N. Linial, A. Wigderson: Expander graphs and their applications. Bull.

Amer. Math. Soc. 43 (2006), 439–561.

35



[12] S. Jukna: Extremal Combinatorics with Applications in Computer Science, 2nd edi-

tion. Springer, Heidelberg (2011).
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tochv́ıl, J. Matoušek, R. Thomas, P. Valtr (eds.): Topics in Discrete Mathematics.

Springer, Berlin (2006), 497–550.

36


