354 research outputs found

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    Mapping Framework for Heterogeneous Reconfigurable Architectures:Combining Temporal Partitioning and Multiprocessor Scheduling

    Get PDF

    Hardware design and CAD for processor-based logic emulation systems.

    Get PDF

    Task scheduling and placement for reconfigurable devices

    Get PDF
    Partially reconfigurable devices allow the execution of different tasks at the same time, removing tasks when they finish and inserting new tasks when they arrive. This dissertation investigates scheduling and placing real-time tasks (tasks with deadline) on reconfigurable devices. One basic scheduler is the First-Fit scheduler. By allowing the First-Fit scheduler to retry tasks while they can satisfy their deadlines, we found that its performance can be enhanced to be better than other schedulers. We also proposed a placement idea based on partitioning the reconfigurable area into regions of various widths, assigning a task to a region based on its width. This idea has a similar rejection rate to a First-Fit scheduler that retries placing tasks and performs better than the First-Fit that does not retry tasks. Also, this regions-based scheduling method has a better running time. Managing how the space will be shared among tasks is a problems of interest. The main function of the free-space manager is to maintain information about the free space (areas not used by active tasks) after any placement or deletion of a task. Speed and efficiency of the free-space data structure are important as well as its effect on scheduler performance. We introduce the use of maximal horizontal strips and maximal vertical strips to represent free space. This resulted in a faster free space manager compared to what has been used in the area. Most researchers in the area of scheduling on reconfigurable devices assumed a homogeneous FPGA with only CLBs in the reconfigurable area. Most reconfigurable devices offered in the market, however, are not homogeneous but heterogeneous with other components between CLBs. We studied the effect of heterogeneity on the performance of schedulers designed for a homogeneous structure. We found that current schedulers result in worse performance when applied to a heterogeneous structure, but by simple modifications, we can apply them to a heterogeneous structure and achieve good performance. Consequently, the approach of studying homogeneous FPGAs is a valid one, as the scheduling ideas discovered there do carry over to heterogeneous FPGAs

    More-Dimensional Packing with Order Constraints

    Get PDF
    We present a first systematic study on more-dimensional packing problems with order constraints. Problems of this type occur naturally in applications such as logistics or computer architecture. They can be interpreted as more-dimensional generalizations of scheduling problems. Using graph-theoretic structures to describe feasible solutions, we develop a novel exact branch-and-bound algorithm. This extends previous work by Fekete and Schepers; a key tool is a new order-theoretic characterization of feasible extensions of a partial order to a given complementarity graph that is tailor-made for use in a branch-and-bound environment. The usefulness of our approach is validated by computational results

    HARDWARE-SOFTWARE CODESIGN FOR RUN-TIME RECONFIGURABLE FPGA-BASED SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Online scheduling for real-time multitasking on reconfigurable hardware devices

    Get PDF
    Nowadays the ever increasing algorithmic complexity of embedded applications requires the designers to turn towards heterogeneous and highly integrated systems denoted as SoC (System-on-a-Chip). These architectures may embed CPU-based processors, dedicated datapaths as well as recon gurable units. However, embedded SoCs are submitted to stringent requirements in terms of speed, size, cost, power consumption, throughput, etc. Therefore, new computing paradigms are required to ful l the constraints of the applications and the requirements of the architecture. Recon gurable Computing is a promising paradigm that provides probably the best trade-o between these requirements and constraints. Dynamically recon gurable architectures are their key enabling technology. They enable the hardware to adapt to the application at runtime. However, these architectures raise new challenges in SoC design. For example, on one hand, designing a system that takes advantage of dynamic recon guration is still very time consuming because of the lack of design methodologies and tools. On the other hand, scheduling hardware tasks di ers from classical software tasks scheduling on microprocessor or multiprocessors systems, as it bears a further complicated placement problem. This thesis deals with the problem of scheduling online real-time hardware tasks on Dynamically Recon gurable Hardware Devices (DRHWs). The problem is addressed from two angles : (i) Investigating novel algorithms for online real-time scheduling/placement on DRHWs. (ii) Scheduling/Placement algorithms library for RTOS-driven Design Space Exploration (DSE). Regarding the first point, the thesis proposes two main runtime-aware scheduling and placement techniques and assesses their suitability for online real-time scenarios. The first technique discusses the impact of synthesizing, at design time, several shapes and/or sizes per hardware task (denoted as multi-shape task), in order to ease the online scheduling process. The second technique combines a looking-ahead scheduling approach with a slots-based recon gurable areas management that relies on a 1D placement. The results show that in both techniques, the scheduling and placement quality is improved without signi cantly increasing the algorithm time complexity. Regarding the second point, in the process of designing SoCs embedding recon gurable parts, new design paradigms tend to explore and validate as early as possible, at system level, the architectural design space. Therefore, the RTOS (Real-Time Operating System) services that manage the recon gurable parts of the SoC can be re fined. In such a context, gathering numerous hardware tasks scheduling and placement algorithms of various complexity vs performance trade-o s in a kind of library is required. In this thesis, proposed algorithms in addition to some existing ones are purposely implemented in C++ language, in order to insure the compatibility with any C++/SystemC based SoC design methodology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore