
978-1-4673-9406-2/15/$31.00 c©2015 European Union

1

A Multiobjective Reconfiguration-Aware Scheduler
for FPGA-Based Heterogeneous Architectures

Enrico A. Deiana, Marco Rabozzi, Riccardo Cattaneo, Marco D. Santambrogio
Politecnico di Milano, Milan, Italy

enrico.deiana@mail.polimi.it, {marco.rabozzi, riccardo.cattaneo, marco.santambrogio}@polimi.it

Abstract—Designing applications for heterogeneous systems,
like Multiprocessor System-on-Chips (MPSoCs) based on Field
Programmable Gate Arrays (FPGAs) is a complex task. In order
to exploit all the capabilities of these systems, such as Partial
Dynamic Reconfiguration (PDR) and hardware acceleration, the
designer still has to develop large parts of the system unassisted,
establishing the design choices (i.e., whether to assign a task of
the application on a hardware region of the FPGA or a general
purpose processor of the SoC) mostly on his/her experience.

In this paper we present a Mixed-Integer Linear Programming
(MILP) formulation for mapping and scheduling of applications
on heterogeneous and reconfigurable devices taking into account
PDR, module reuse and configuration prefetching. Starting from
a target architecture and a description of the application in terms
of tasks and data dependencies, the proposed formulation allows
the designer to optimize a linear combination of different metrics
such as execution time, peak power and energy consumption.

I. INTRODUCTION

The evolution of heterogeneous architectures such as FPGA-
based MPSoCs is placing new challenges for system designers,
due to the fact that many features and techniques have to be
taken into account in order to achieve an acceptable application
design, related, in our case, to the phases of mapping and
scheduling of the application tasks. Among these features and
techniques there is PDR [1], which is the possibility to change
a portion of the FPGA configuration at runtime. If we look
at the FPGA as a matrix, such change can affect the whole
height of the FPGA with respect to the region that has to be
reconfigured (1D reconfiguration) or only part of it, leading
to a smaller and more precise reconfiguration (2D reconfig-
uration). The reconfiguration time is directly proportional to
the bitstream size of the area that has to be reconfigured, the
smaller the area the quicker is the reconfiguration. Hence,
module reuse [2] (i.e., sharing resources among equal tasks
that have already been placed on the FPGA) is desirable
in order to reduce the number of reconfigurations. Another
important feature is reconfiguration prefetching, which allows
the configuration of a task to be performed ahead of time,
prior to actually requiring the corresponding task execution,
hence the reconfiguration time can be hidden more effectively
by the execution of other tasks.

Since the better these techniques and features are exploited
the better is the resulting solution, and taking into account that
the space of the solutions is considerable, it is necessary the
use of automatic tools in order to help the system designer in
building the best possible application schedule with respect
to his/her needs. Such requirements refer not only to the

overall execution time (like most of the other schedulers
in the literature do [2]–[8]), but also to power and energy
consumption of the design. This means addressing a specific
Resource Constrained Scheduling Problem (RCSP) [9], that
takes into consideration the reconfiguration aspects with a
focus on power and energy metrics that are becoming crucial in
designing applications targeting heterogeneous architectures.
Following this view we propose an iterative off-line sched-
uler, based on a MILP model, which provides the following
contributions:
• the possibility to tune different performance metrics

among execution time, peak power and energy consump-
tion, or a linear combination of them;

• the consideration of the features and techniques offered
by current FPGA-based devices (PDR, module reuse,
reconfiguration prefetching);

• the opportunity to easily trade-off the quality of the
desired scheduling solution with respect to the execution
time of the algorithm.

The remainder of the paper is organized as follows: Section
II shows the related works in the literature, Section III presents
a description of the problem and the proposed approach,
Section IV discusses the proposed MILP model, Section
V shows how the model is exploited within the iterative
scheduling algorithm, Section VI evaluates our approach on
different problem instances and, finally, Section VII draws the
conclusions.

II. RELATED WORK

In literature there are many approaches addressing variants
of the RCSP problem that rely on heuristic algorithms ([2],
[5]–[7], [10], [11]) and exact algorithms ([2]–[4], [8], [12]).
What follows is a description of these works in which we
highlight their contributions and limitations.

Among the variety of heuristic approaches we report the
work in [4] that uses a KLFM-based heuristic for simul-
taneous mapping and scheduling of tasks on heterogeneous
architectures. Still, it does not take into account module reuse
and it only considers architectures with 1D reconfiguration,
which is a limitation with respect to the potentialities of
current available FPGAs that feature 2D reconfiguration. The
same authors present in [6] a greedy scheduler called PARL-
GRAN that tries to add as many copies of data parallel tasks
as it can, in order to maximize the number of concurrent
operations. However, as in the previous work, the reuse of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55258908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

tasks configurations is not exploited. On the other hand, in
[7] it is proposed a heuristic for the mapping of tasks on
hardware and software components, which is based on a
genetic algorithm and a list-based scheduler. This approach
does not take into consideration reconfiguration prefetching.
An original idea, that focuses on reducing communication
overhead for scheduling applications, is proposed in [5]. It
applies clustering techniques to group tasks that exchange a
high amount of data in order to reduce the transfer overhead,
yet it is not addressing PDR. Another approach is suggested
in [2], where, by means of a reconfiguration-aware scheduler
called Napoleon, it targets FPGA-based architectures with
more than one 2D reconfigurator and takes into account both
module reuse and reconfiguration prefetching, but it only
optimizes the schedule duration. A last noteworthy heuristic
is PaRA-Sched [10], a scheduler that takes advantage of Ant
Colony Optimization (ACO). The algorithm considers all the
previous cited features and techniques during the design space
exploration. Nevertheless, as it will be shown in this paper, the
quality of its solutions can still be improved.

Among the exact approaches, the authors in [3] propose
an algorithm that models the communication among hardware
components, adding the time spent for the exchange of infor-
mation to the task execution time. The applicability of this
solution is limited by the following assumptions: any number
of reconfigurations can take place at the same time and recon-
figuration prefetching is not allowed. In [4] an Integer Linear
Programming (ILP) formulation is introduced. It considers
many aspects of heterogeneous architectures, such as recon-
figuration prefetching, simultaneous mapping and scheduling
of tasks on both hardware and software components and also
PDR. Nevertheless, the model makes use of 1D reconfiguration
only. Another ILP model is described in [8]. Even though it
addresses PDR, each task of the considered applications is
assumed to occupy the same area on the chip (simplifying the
mapping phase) and to have negligible delays compared to the
reconfiguration ones. Overcoming the previous limitations, the
authors in [2] present an ILP formulation that is able to model
multiple 2D reconfigurators. However, the approach is limited
to time domains discretized into a small number of units due
to the considerable amount of binary variables required.

It is also worth to notice that all the previous proposed
solutions currently use as quality metrics the schedule execu-
tion time only, while other performance metrics such as peak
power or energy consumption are not considered. On the other
hand, [12] and [11] focus on power minimization. [12] uses
an ILP model with time constraints on the schedule execution
time and targets heterogeneous architectures composed by
a General Purpose CPU (GPCPU) and co-processors, while
[11] exploits cluster techniques for mapping operations to
microprocessors or Application Specific Integrated Circuits
(ASICs). However, both approaches to not reconfigurable logic
(i.e., FPGAs) and PDR. Most of the previous works do not
take into account all the three main features of current FPGAs
discussed in the previous section: PDR, module reuse and
reconfiguration prefetching. Those which do ([2], [10]) have
limitations related to the quality of the solution or the time
needed to obtain the result.

TABLE I
SCHEDULER INPUT DATA

Target architecture description
Cs set of available software components (i.e., processors)

Ch set of hardware components (i.e., reconfigurable regions

on the FPGA)

C set of all components (Cs ∪ Ch)

R set of FPGA resources (i.e., CLB, DSP, BRAM, ...)

bitr average bitstream size for a resource of type r

Trec reconfiguration time for each unit of bitstream

Prec average power consumption for reconfiguration

Taskgraph representation
T set of tasks to schedule

P set of tasks precedences: (t1, t2) ∈ P if t2 depends on t1

Tasks implementations
Is set of software implementations for all tasks T

Ih set of hardware implementations for all tasks T

I set of all implementations (Is ∪ Ih)

TIC set of valid mappings: (t, i, c) ∈ TIC if task t ∈ T can be

mapped on component c ∈ C with implementation i ∈ I

timei execution time of implementation i ∈ I

poweri power consumption of implementation i ∈ I

energyi energy consumption of implementation i ∈ I

resi,r resources of type r ∈ R required by implementation i ∈ Ih

III. PROBLEM DESCRIPTION AND PROPOSED APPROACH

The input of the scheduling on heterogeneous architectures
problem consists of: (1) an architectural template (e.g., Zed-
Board with ZynqTM-7000 AP SoC) containing information on
the General Purpose Processors (e.g., dual core ARM Cortex-
A9) and the programmable logic (e.g., Xilinx XC7Z020), (2)
a description of the application in terms of a taskgraph, that is
a Directed Acyclic Graph (DAG) where nodes represent tasks
of the application and the directed edges represent the data
dependencies among tasks. Each task can have several hard-
ware and software implementations with different execution
time, energy and power consumption. The hardware imple-
mentations are also characterized by the resources they need
on the programmable logic, such as the number of BRAMs,
CLBs, DSPs. A complete formalization of the discussed input
data is presented in Table I.

The goal of the scheduler is to assign each task to an
implementation, map it on a hardware component (i.e., a
reconfigurable region on the programmable logic) or a soft-
ware one (i.e., one of the available processors) and then
schedule it in a time slot according to a user defined objective
function. Moreover, the scheduler must take into account the
reconfigurations that may be required among subsequent tasks
mapped on the same reconfigurable region.

Within this paper we propose an iterative approach based
on a MILP formulation of the problem that simultaneously
maps and schedules the tasks of the application. Our approach
considers the reconfigurations as dynamic tasks with their own
dependencies that are added to the taskgraph when required.
In this fashion, module reuse and reconfiguration prefetching
are directly taken into account as in [10].

3

TABLE II
MILP VARIABLES AND ADDITIONAL SETS

Additional sets
RT reconfiguration tasks

AT all tasks (RT ∪ T)

TI couples (t, i) such that task t ∈ T can use implementation i

TC couples (t, c) such that task t ∈ T can be mapped on component c

CP couples of tasks (t1, t2) : t1, t2 ∈ T such that it is possible

to schedule t2 right after t1 on the same hardware component

OT couples of tasks (t1, t2) : t1, t2 ∈ AT such that there exists

a schedule in which t1 and t2 overlap in time

CT couples of tasks (t1, t2) : t1, t2 ∈ T such that both tasks have

at least a common hardware implementation

Real non negative variables
bt the begin time of task t, ∀t ∈ AT

et end time of task t, ∀t ∈ AT

occ,r the amount of resources of type r needed by hardware

component c, ∀c ∈ Ch, r ∈ R

bitcc bitstream size for hardware component c, ∀c ∈ Ch

mibot1,t2,i forced to 1 if bot1,t2 = 1 and mit2,i = 1

(variable required for linearization), ∀(t1, t2) ∈ OT, (t2, i) ∈ TI

Binary variables
mict,i,c set to 1 if task t is mapped to component c

with implementation i, ∀(t, i, c) ∈ TIC

mit,i set to 1 if task t is assigned to implementation i, ∀(t, i) ∈ TI

mct,c set to 1 if task t is mapped to component c, ∀(t, c) ∈ TC

cpt1,t2 set to 1 if task t2 is executed right after task t1 on the same

hardware component, ∀(t1, t2) ∈ CP

cftt,c set to 1 if task t is the first task executed

on hardware component c, ∀(t, c) ∈ TC : c ∈ Ch

rttrt,t set to 1 if task t requires reconfiguration rt prior to

its execution, ∀t ∈ T, rt ∈ RT

rtcrt,c set to 1 if reconfiguration task rt is performed

on hardware component c, ∀rt ∈ RT, c ∈ Ch

bat1,t2 set to 1 if task t1 begins after the beginning of task t2,

or at the same time of t2, ∀(t1, t2) ∈ OT

bbt1,t2 set to 1 if task t1 begins before the end of task t2

or at the end of t2, ∀(t1, t2) ∈ OT

bot1,t2 set to 1 if the beginning of task t1 overlaps in time with task t2

(i.e., task t1 begins when t2 is in execution), ∀(t1, t2) ∈ OT

It is worth noting that if the final solution includes tasks
mapped on the reconfigurable hardware, a subsequent floor-
planning of the reconfigurable regions is required [13]. In
order to ease floorplanning, within the scheduling algorithm
we round up the resource requirements of the hardware imple-
mentations taking into account the granularity of the minimal
reconfigurable unit on the selected FPGA [14]. Furthermore,
if the final solution cannot be successfully floorplanned, the
scheduler is re-executed virtually reducing the number of
available resources until a feasible floorplan is identified. If
each task admits at least a software implementation, the latter
approach is guaranteed to find a feasible scheduling.

IV. MILP FORMULATION

Within this section we show how the previous problem
description has been translated into a suitable MILP model.
The set and parameters previously defined in Table I are
augmented with some extra sets from Table II that are required
for the definition of the formulation. Furthermore, Table II

also report the list of variables used within the MILP model
grouped by variable type.

One of the main addition with respect to the original
problem description is the definition of set RT that is used to
take into account potential reconfiguration tasks that might be
needed in the schedule. Since we do not not know beforehand
which is the number of reconfiguration tasks that will be
performed, we consider the worst case scenario in which each
task, except for the first one, requires a reconfiguration before
its execution. Overall, within set RT we consider |T | − 1
elements, while a special binary variable (rttrt,t) is used to
determine if the element represents a required reconfiguration
or not. Most of the variables listed in Table II are support
variables that are needed to ensure the semantics of the model,
but are redundant with respect to the definition of a schedule.
Indeed, a solution can be fully determined by specifying
the begin time bt and end time et of each task (includ-
ing reconfiguration tasks), the selected implementation and
component mict,i,c for each task, and, the binding between
reconfiguration tasks and application tasks rttrt,t.

Due to limited space and for the sake of clarity, we report
here only the main constraints of the model1. By means of the
following constraints, the MILP model:

• ensures the dependencies among the tasks

∀(t1, t2) ∈ P : bt2 ≥ et1 (1)

• avoids overlap among tasks mapped on the same com-
ponent (we exploit the fact that if bot1,t2 = bot2,t1 = 0
there is no overlapping among tasks t1, t2 ∈ OT)

∀(t1, t2) ∈ OT, ∀c ∈ C | (t1, c), (t2, c) ∈ TC :

bot1,t2 +mct1,c +mct2,c ≤ 2
(2)

• ensures non overlapping also with respect to cp (i.e.,
given a task t, there is at most one previous task and
one subsequent task on the same hardware component)

∀t ∈ T :∑
(t,t2)∈CP

cpt,t2 ≤ 1
∑

(t2,t)∈CP

cpt2,t ≤ 1 (3)

• avoids overlapping between the potential reconfiguration
tasks by enforcing a sequential order (to state this in-
equality we assume the reconfiguration tasks assigned to
unique natural numbers in the interval [1, |T | − 1])

∀rt ∈ RT | rt > 1 : brt ≥ ert−1 (4)

• ensures that the hardware components do not exceed the
resources provided by the FPGA

∀r ∈ R :
∑
c∈Ch

occ,r ≤ maxResr (5)

• ensures that between two subsequent tasks t1, t2 ∈ T
mapped on the same hardware component with different
implementations a reconfiguration must be performed to
configure task t2

1For a complete description we refer the reader to the extended formulation
available at: http://home.deib.polimi.it/santambr/prj/scheduler/scheduler.htm

4

∀(t1, t2) ∈ CP,∀i1 ∈ Ih | (t1, i1) ∈ TI ∧ (t1, t2) ∈ CT :∑
rt∈RT

rttrt,t2 ≥ cpt1,t2 +mit1,i1 +
∑

(t2,i2)∈TI|
i2∈Ih∧i16=i2

mit2,i2 − 2

∀t ∈ T :∑
rt∈RT

rttrt,t ≥
∑

(t2,t)∈CP :(t,t2)/∈CT

cpt2,t

(6)

• guarantees that a reconfiguration between tasks t1 ∈ T
and t2 ∈ T is executed after t1 and before t2 (Tmax

identifies the maximum possible execution time for the
schedule)

∀rt ∈ RT,∀t ∈ T :

bt ≥ ert − (1− rttrt,t) · Tmax

∀rt ∈ RT,∀(t, t2) ∈ CP :

et ≤ brt + (2− rttrt,t2 − cpt,t2) · Tmax

(7)

Notice that the proposed model currently does not directly
consider the delay due to communication among tasks. How-
ever, Equation 1 can be easily modified to take into account
a fixed λt1,t2 communication time among tasks t1 and t2 that
is not dependent on the selected implementations:

∀(t1, t2) ∈ P : bt2 ≥ et1 + λt1,t2 (8)

Starting from the variables and parameters previously de-
fined, it is possible to compute and thus optimize the following
three different metrics:
Makespan (Tcost): the overall execution time needed to com-

plete the computation of all the tasks of the schedule
including reconfiguration tasks;

Peak power (Pcost): the estimated power reached by the
schedule, computed considering the maximum overall
power consumption reached within a single time unit;

Energy consumption (Ecost): the estimated energy consump-
tion for the schedule, it is computed considering the
specific implementation selected for each task and the
energy needed for all the reconfigurations.

Overall, a possible objective function for the problem can be
obtained with a linear combination of Tcost, Pcost and Ecost:

min

{
q1 ·

Tcost
Tmax

+ q2 ·
Pcost

Pmax
+ q3 ·

Ecost

Emax

}
(9)

Where Tmax, Pmax and Emax are normalization terms rep-
resenting the maximum value that Tcost, Pcost and Ecost can
achieve respectively, while q1, q2 and q3 are weights that can
be set according to the designer preferences.

V. ITERATIVE SCHEDULING ALGORITHM

Even though the model in the previous section could be
solved directly by a MILP solver to achieve the optimal
solution, this approach can only be adopted for taskgraphs
with a small number of nodes. Indeed, the size of the model
increases quadratically with respect to the number of tasks, so
that the resulting formulation becomes challenging to solve.
In order to overcome this issue, we consider an iterative
approach that schedules a subset of the tasks per iteration

reducing the size of the formulation. For each iteration the
solver computes the optimal solution, with respect to the
objective function provided by the designer, for the reduced
formulation; then, this solution is forced into the following
iteration setting some binary variables of the MILP model
(mict,i,c, cpt1,t2, cftc,t, rttrt,t) reducing the solution space
even further. Forcing the mict,i,c variables means that in the
following iteration the tasks t that have been already scheduled
can not change their implementation i or component c where
they are mapped on. Forcing the cpt1,t2 variables avoids that
two tasks t1 and t2 mapped on the same hardware component
change their scheduled order, even if they are not constrained
by a precedence relation in the taskgraph. Forcing the cftc,t
variables means that the first task t on a hardware component
c can not be changed. Finally, forcing the rttrt,t variables
ensures the reconfiguration rt for the scheduled tasks t. Notice
however that the values of the beginning bt and the end et
variables of the tasks are not forced, this leaves some flexibility
to perform backtracking of previous decisions. The pseudo
code of the iterative scheduler is shown in Algorithm 1.

input : mod: the MILP model
k: number of tasks to consider at each iteration

output: solution of the MILP model
taskQueue ← topologicalSort(mod.T , mod.P)
mod.T ← ∅
while taskQueue is not empty do

for i← 1 to k do
mod.T = mod.T ∪ taskQueue.pop()

end
sol ← computeMILPSolution(mod)
mod.mict,i,c ← sol.mict,i,c
mod.cpt1,t2 ← sol.cpt1,t2
mod.cftc,t ← sol.cftc,t
mod.rttrt,t ← sol.rttrt,t

end
return sol

Algorithm 1: Iterative scheduling algorithm

In Figure 1 are shown the iterations of our iterative sched-
uler on a 7 tasks application scheduling k = 3 tasks at the time.
In the first iteration the optimal solution for the first 3 tasks
is found and passed to the following iteration setting those
already discussed binary variables. In the second iteration the
next 3 tasks are scheduled without additional constraints, while
the previous 3 are forced in the current solution. Eventually, in
the third iteration, the last task of the application is scheduled,
while the previous 6 are forced in the final schedule.

VI. EXPERIMENTAL EVALUATION

In this section we present an evaluation of the iterative
scheduling algorithm comparing the achieved results with
respect to the ACO-based algorithm [10] that we enhanced
adding the evaluation of the peak power and energy con-
sumption metrics. The iterative scheduler was implemented
in python using Gurobi 6.0 [15] for the optimization of the
MILP model, while the experiments were performed on a Intel
Core i7-2630QM under linux.

5

Iteration 3

cpu

fpga_0

fpga_1

reconf.

1

3 6

5

2 4

3 ! 6

7

5 ! 7

Iteration 2

cpu

fpga_0

fpga_1

reconf.

1

3 6

5

2 4

3 ! 6

Iteration 1

cpu

fpga_0

fpga_1

reconf.

1

3

2

1

2

3

4

5

6

7

Fig. 1. Iterative scheduler example execution with k = 3 (IS-3).

In order to evaluate the effectiveness of our approach we
considered a case study consisting of real tasks in the context
of image analysis. The task graph of the application is shown
in Figure 2 and it consists of two main computation chains.
The first chain includes the tasks: histogram, Otsu filter and

Laplace

filter

 Read
data Gray scale

Histogram Threshold 1 Otsu filter

Threshold 2

Write
data

Gauss
filter

Fig. 2. Taskgraph of the image analysis case study.

threshold 1, the goal of this chain is to binarize the image
applying the Otsu separation algorithm [16]. The second
chain consists of the tasks: Gauss filter, Laplace filter and
threshold 2, the purpose of this part of the computation is
to perform edge detection within the image. For both the
computations the image needs to be gray scaled while the
final results are stored in main memory.

The target architecture considered for our application is the
ZedBoard with ZynqTM-7000 AP SoC that provides a dual
core ARM Cortex-A9 CPU and a Xilinx XC7Z020 FPGA. For
each of the tasks (except for the initial read data and final write
data) we generated both hardware and software implemen-
tations. Multiple hardware implementations were generated
using Vivado HLS with and without loop unrolling, moreover
each hardware core was placed and routed separately in order
to obtain performance and power consumption estimates. The
execution time of the hardware implementations was estimated
considering the HLS reports together with the clock frequency
for the design, on the other hand, the execution time of the
software implementations was measured directly on the CPU.
The communication between the tasks is accomplished using
DMA and the communication overhead is added directly to
the estimated execution time of each task.

Since the number of tasks involved in the application is
manageable, we performed a full search of the solution space

by executing the iterative scheduler with k = 9, while the
execution time of the MILP solver was limited to 100 seconds.
On the other hand, 10 different executions of the ACO-based
algorithm [10] were executed and the best solution was con-
sidered for comparison. The weights of the objective function
were set to q1 = 0.5, q2 = 0, q3 = 0.5 so that execution
time and energy consumption were taken into account to
the same extent. The solutions obtained by [10] and the
proposed approach are shown in Figure 3 and 4 respectively.
The y axis shows the software (arm0, arm1) and hardware

arm0

arm1

reg0

reg1

reg2

reg3

reg4

reconf.
controller

Time [ms]
100 200 300 400 500 600 700 800 50 150 250 350 450 550 650 750 850

Read data
SW

Gray scale
HW no unroll

Gauss filter
HW with unroll

Histogram
HW no unroll

Otsu filter
SW

Write data
SW

Reconfiguration
Gray scale ! Laplace filter

Laplace filter
HW with unroll

Threshold 1
HW no unroll

Threshold 2
HW no unroll

0

Fig. 3. Solution obtained by [10] on the image analysis case study.

(reg0, reg1, ...) components together with the reconfiguration
controller, while the execution time of the tasks is represented
on x axis. For the tasks implemented on the reconfigurable
regions the figures also report if loop unrolling was used
or not. Overall the iterative algorithm achieved a schedule

arm0

arm1

reg0

reg1

reg2

reg3

reg4

reconf.
controller

Time [ms]
100 200 300 400 500 600 700 800 50 150 250 350 450 550 650 750 850

Read data
SW

Gray scale
HW no unroll

Gauss filter
HW with unroll

Histogram
HW no unroll

Otsu filter
SW

Write data
SW

Reconfiguration
Gray scale ! Laplace filter

Laplace filter
HW no unroll

Threshold 1
HW no unroll

Threshold 2
HW no unroll

0

Reconfiguration
Histogram ! Threshold 1

Fig. 4. Solution obtained by the iterative scheduler on the image analysis
case study.

execution time of 721ms with an energy consumption of
1221mJ, while the schedule obtained by [10] requires 817ms
for completion and has an energy consumption of 1512mJ.
The 11.8% reduction in the execution time is mainly achieved
by exploiting reconfiguration prefetching of the Laplace filter
task. On the other hand the 19.2% energy saving is due to both
the reduction of static power consumption and to the selection
of implementations that have higher energy efficiency. Notice

6

TABLE III
SCHEDULE MAKESPAN AND ALGORITHM EXECUTION TIME COMPARISON

Tasks
Average schedule makespan [ms] Average execution time [s]

[10] IS-1 IS-2 IS-3 IS-4 IS-5 [10] IS-1 IS-2 IS-3 IS-4 IS-5

10 536 450 511 481 477 468 9.23 0.95 0.76 0.84 0.94 34.71
20 1266 1082 987 928 819 845 28.36 5.86 4.28 5.66 37.51 749.58
30 2272 1676 1516 1379 1351 1168 52.14 26.02 17.32 17.61 79.75 764.16
40 6216 5002 4641 4802 4760 4527 76.08 36.86 21.85 21.08 47.12 393.79
50 3984 2876 2950 2861 2515 2219 119.4 115.6 71.01 61.4 151.74 1079.34

also that the iterative scheduler exploits module reuse for
tasks threshold 1 and threshold 2 that perform the same
functionality. This leads to a reduced number of reconfigurable
regions and a corresponding reduction of resources required on
the FPGA. For a broader validation of our approach, we also
performed some tests on a set of 36 pseudo-random generated
taskgraphs having different numbers of nodes in the range
[10, 50]. For each task we generated, on average, 4 different
hardware/software implementations ensuring the presence of
common functionalities to allow the exploitation of module
reuse. Furthermore, the implementations have been generated
taking into account that generally larger resource requirements
are correlated to a smaller execution time. For each problem
instance we executed the iterative scheduler (IS-k) varying the
number of tasks per iteration (k from 1 to 5) and we compared
the results of our approach with respect to [10], considering
both the schedule makespan and the energy consumption in
different test sessions. Table IV summarize the improvements
obtained by IS-k over the ACO-based algorithm, while Table
III reports detailed information on the makespan benchmark.
It is worth noting that IS-4 gives an average reduction of the
makespan of 23.7% with an execution time that is comparable
to [10]. On the other hand, even though IS-5 leads to higher
quality solutions, the time needed to solve the MILP model is
in general significantly higher.

TABLE IV
AVERAGE SCHEDULE IMPROVEMENTS W.R.T. [10]

metrics IS-1 IS-2 IS-3 IS-4 IS-5

makespan 16.0% 19.0% 21.4% 23.7% 27.7%
energy consumption 38.2% 38.6% 37.8% 38.1% 38.3%

VII. CONCLUSIONS

We introduced a novel MILP formulation for scheduling
applications on heterogeneous architectures, which takes ad-
vantage of PDR, module reuse and reconfiguration prefetching
in order to improve the returned schedule. Furthermore, we
shown that our approach is able to improve the quality of state-
of-the-art algorithms within a comparable execution time.

Future work we will investigate the possibility of reducing
the size of the MILP model in terms of number of variables
and constraints. This could lead to a faster exploration of
the solution space and the opportunity to apply the iterative
scheduler using larger subset of tasks. We will also consider
to extend the model to take into account different kind of
communications among tasks on heterogeneous architectures.

REFERENCES

[1] B. L. Hutchings and M. J. Wirthlin, “Implementation approaches for
reconfigurable logic applications,” in Field-Programmable Logic and
Applications. Springer, 1995, pp. 419–428.

[2] F. Redaelli, M. D. Santambrogio, and S. O. Memik, “An ilp formula-
tion for the task graph scheduling problem tailored to bi-dimensional
reconfigurable architectures,” Int. J. Reconfig. Comput., vol. 2009, pp.
7:1–7:12, Jan. 2009.

[3] S. Fekete, E. Kohler, and J. Teich, “Optimal fpga module placement
with temporal precedence constraints,” in Design, Automation and Test
in Europe, 2001. Conference and Exhibition 2001. Proceedings, 2001,
pp. 658–665.

[4] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Integrating physical con-
straints in hw-sw partitioning for architectures with partial dynamic
reconfiguration,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 14, no. 11, pp. 1189–1202, Nov 2006.

[5] Y. M. Lam, J. Coutinho, W. Luk, and P. H. W. Leong, “Mapping and
scheduling with task clustering for heterogeneous computing systems,”
in Field Programmable Logic and Applications, 2008. FPL 2008.
International Conference on. IEEE, 2008, pp. 275–280.

[6] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “PARLGRAN: parallelism
granularity selection for scheduling task chains on dynamically recon-
figurable architectures,” in Proceedings of the 2006 Conference on Asia
South Pacific Design Automation: ASP-DAC 2006, Yokohama, Japan,
January 24-27, 2006, 2006, pp. 491–496.

[7] B. Mei, P. Schaumont, and S. Vernalde, “A hardware-software partition-
ing and scheduling algorithm for dynamically reconfigurable embedded
systems,” in Proceedings of ProRISC. Citeseer, 2000, pp. 405–411.

[8] S. Ghiasi, A. Nahapetian, and M. Sarrafzadeh, “An optimal algorithm
for minimizing run-time reconfiguration delay,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 3, no. 2, pp. 237–256, 2004.

[9] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch,
“Resource-constrained project scheduling: Notation, classification, mod-
els, and methods,” European journal of operational research, vol. 112,
no. 1, pp. 3–41, 1999.

[10] R. Cattaneo, R. Bellini, G. Durelli, C. Pilato, M. Santambrogio, and
D. Sciuto, “Para-sched: A reconfiguration-aware scheduler for recon-
figurable architectures,” in Parallel Distributed Processing Symposium
Workshops (IPDPSW), 2014 IEEE International, May 2014, pp. 243–
250.

[11] J. Henkel, “A low power hardware/software partitioning approach for
core-based embedded systems,” in Proceedings of the 36th Annual
ACM/IEEE Design Automation Conference, ser. DAC ’99. New York,
NY, USA: ACM, 1999, pp. 122–127.

[12] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and
F. Zhao, “Energy-optimal software partitioning in heterogeneous multi-
processor embedded systems,” in Proceedings of the 45th annual design
automation conference. ACM, 2008, pp. 191–196.

[13] M. Rabozzi, A. Miele, and M. D. Santambrogio, “Floorplanning for
partially-reconfigurable FPGAs via feasible placements detection,” in
Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE
23nd Annual International Symposium, 2015, pp. 252–255.

[14] Xilinx Inc, “Vivado Design Suite User Guide: Partial Reconfiguration,”
2014.

[15] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2015.
[Online]. Available: http://www.gurobi.com

[16] N. Otsu, “A threshold selection method from gray-level histograms,”
Automatica, vol. 11, no. 285-296, pp. 23–27, 1975.

