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Abstract

Run-time reconfigurable FPGA-based systems create both opportunities and challenges for

hardware-software codesign. On the one hand, it has been shown that significant speedups

could be obtained for computations when performed on the reconfigurable hardware fabric

and this potential speedup can be achieved without re-fabrication costs. On the other hand,

the virtualization of the hardware resources comes at a price. Hardware computation mod-

ules have to be pre-loaded onto the FPGA prior to execution and the time taken to preload

these modules can be significant. In order to obtain quality solutions for implementing

applications on these platforms, we need to navigate the trade-off between the speedup

achievable for individual components and the reconfiguration costs required to load them.

Envisioning that run-time reconfigurable computing will be a major part of mainstream

computing, this thesis studies and proposes methodologies that can be incorporated into the

design process of single, sequential programs written in high-level programming language

(e.g. Java, C etc) for reconfigurable computing platforms. This thesis makes the following

contributions.

First, we propose a novel design-space search framework for hardware-software parti-

tioning of a single, sequential program. A key feature of this framework is that it facilitates

the efficient computation of reconfiguration costs. Our definition of neighboring relation-

ships between design points, when coupled with execution traces encoded in SEQUITUR

grammar, speeds up the process of reconfiguration cost estimation when the search moves

between neighboring design points. To our knowledge, this is the first work that examined

the problem of implementing neighborhood searches of both the temporal and spatial par-

titioning space. Our experiments show that searches can be speeded up by up to 2 orders

of magnitude when all the key features of our framework are employed.

xv



Second, although the design-space search framework allows efficient computation of

reconfiguration costs, it has been assumed that the reconfiguration costs cannot be hid-

den through techniques such as configuration prefetching that can occur in parallel with

computation. In the second part of the thesis, we propose a novel, polynomial time algo-

rithm that examines an execution trace and schedules placement-aware configurations to

minimize overall execution time. This algorithm is provably optimal and our experiments

show a speedup of up to 40% when compared with schedules done by online scheduling

algorithms that relies on hardware predictors.

Finally, we visit the problem of inserting configuration prefetching calls into an In-

terprocedural Control-Flow Graph statically. While the algorithm described above yields

optimal schedules, the schedules that it produces are very specific for particular input ex-

ecution traces. Through the usage of profiled execution frequencies of control-flow edges,

our proposed algorithm estimates placement-aware probabilities of reaching hardware exe-

cution for each basic block. The prefetches are then generated based on these probabilities.

Experiments show that our proposed algorithm makes significant improvements over the

state-of-the-art prefetching strategies that do not consider placement conflicts.

xvi



Chapter 1

Introduction

Reconfigurable computing is an alternative computing paradigm to the traditional Von Neu-

mann model of computation. Typically, a general purpose processor (GPP) is coupled with

a reconfigurable hardware for the purpose of application acceleration. By the word ‘recon-

figurable’, it is intended to refer to the feature that the hardware may be configured multiple

times (e.g., either during application run-time or prior to execution) to perform different

computation in a way that is analogous to different programs being loaded into memory for

execution. These ‘softer’ hardware – sometimes termed configware and usually a Field-

Programmable Gate Array (FPGA)– carves a middle ground between the flexibility of gen-

eral processors and the high performance of traditional hardware. The reconfigurability

of the hardware allows rapid modifications of the platform, decreasing the time-to-market

delay and prototyping costs. Although the performance of carefully designed custom hard-

ware (e.g., Application Specific Integrated Circuits (ASICs)) still surpass that of FPGAs,

studies have shown that applications are sped up by orders of magnitude compared to run-

ning the same on a general purpose machine. Due to these advantages, reconfigurable

computing is now considered a viable option, especially in embedded systems, due to in-

creasing complexity and requirements imposed by applications.

1



Although reconfigurable computing has been the subject of intensive research and de-

velopment during the past decade, the success of reconfigurable computing remained beset

by a dearth of automatic design tools for efficient implementation of applications written in

high-level languages (e.g., C, C++ etc.). In particular, most current state-of-art design tools

still assume that the developers have deep understanding of both hardware and software

designs and it is their responsibility to fully exploit the benefits of this approach. On the

other hand, traditional hardware-software co-design techniques cannot be easily extended

for such architectures. The main issue is that traditional hardware-software co-design tech-

niques are applied to small, embedded systems where the number of applications running

in the system are few and limited. Furthermore, these techniques do not consider run-time

reconfiguration in general because their target platform is ASICs instead of FPGAs. Thus,

the overhead of run-time reconfiguration are not considered in traditional approaches.

In this thesis, we focus on proposing novel methodologies that could be adapted into de-

sign tools for reconfigurable computing platform. These innovations in hardware-software

partitioning and reconfiguration scheduling seek to exploit the run-time reconfiguration

features of reconfigurable computing platforms for designs that are written in high-level

languages such as C.

In this chapter, we outline the motivation and problem overview of the thesis within

the context of FPGA Run-Time Reconfiguration (RTR) in Section 1.1. In Section 1.2, we

outline the major contributions and the organization of this thesis.

1.1 Motivation and Problem Overview

In traditional hardware-software codesign, it is a usual practice to transfer a proportion of

the computation of an application to hardware for the purpose of application acceleration.

2



Assuming that a proportion P of the computation can be transfered to the custom hardware

(e.g., ASICs) and that this proportion P can be improved by a speedup of Q, Amdahl’s law

states that the maximum speedup S achievable is

S =
1

(1−P)+ P
Q

.

However, in the case of reconfigurable computing platforms, the situation is different.

The support for run-time reconfiguration of the hardware implies that the resources avail-

able in that hardware can be time-multiplexed and shared by different computations. Thus,

for the same silicon area, having a run-time reconfigurable unit implies that the proportion

P that can be transferred onto the hardware (e.g., FPGA) can be larger than before. While

this may increase the potential for greater speedup, the speedup achievable is offset by the

overhead needed during run-time to configure the FPGA. By denoting this overhead as R,

the maximum speedup S achievable is

S =
1

(1−P+R)+ P
Q

Let us consider a single, sequential program 429.mcf that is to be executed on machine

based on the abstract reconfigurable computing architectural model shown in Figure 1.1.

This is an application taken from SPEC2006[58], In the architectural model that we are

considering, the CPU and the FPGA co-processor share the same memory address space

through a shared bus connection. The reconfiguration manager is responsible for config-

uring the FPGA with hardware modules by loading bitstreams stored in memory onto the

FPGA. It should be noted that the reconfiguration manager enables loading of bitstreams to

be done in parallel with CPU execution. Although details may differ in actual implemen-

tations of reconfigurable architectures (see Chapter 2 for an overview of reconfigurable

3



CPU

Bus

FPGA
Reconfiguration 

ManagerMemory

Figure 1.1: Abstract model of reconfigurable architectures.

architectures), this abstract model is fairly representative of the architectures that we are

interested in for application acceleration.

Table 1.1 shows the top most 8 computationally-intensive loops for 429.mcf and the

respective proportion of the total computation time taken up by them1 . The loops are in-

dexed alphabetically and the loop names are taken from the function names of the C code

and the loop ids suggested by the compiler2. We shall use this benchmark information to

illustrate the complexity of implementing an optimized, efficient program on a reconfig-

urable architecture.

Figure 1.2(a) and 1.2(b) shows us two FPGA models: a run-time reconfigurable FPGA

and a partially run-time reconfigurable FPGA. For the sake of convenience, we refer to

the former as rFPGA and the latter as pFPGA for the rest of the thesis. Any references to

FPGA should be considered generic and applicable to both models of FPGA. We shall now

proceed to outline the factors involved when considering the implementation of (429.mcf)

for a rFPGA and then for a pFPGA.

1The profile was taken and estimated by running 429.mcf on a PowerPC machine and scaling it the

number of cycles to the typical clockspeed of PowerPC embedded processors.
2It should be noted that while we have identified these loops as the computationally intensive portions

that’s to be implemented in hardware, computationally intensive basic blocks or even functions could be

suitable candidates as well.
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Index Loop Name No. of Cycles Proportion of Computation

(func name-loop id) (Nearest ’000000 cycles) (%)

A primal bea mpp-2 24206 0.36

B price out impl-2 8995 0.13

C refresh potential-2 2682 0.04

D sort basket-2 2632 0.04

E primal iminus-1 1394 0.02

F primal bea mpp-4 1337 0.02

G sort basket-3 830 0.01

H update tree-1 60 0.01

total 0.62

Table 1.1: The top 8 most computationally-intensive loops for benchmark 429.mcf.
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Figure 1.2: Two different FPGAs supporting runtime reconfiguration.
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Figure 1.3: 429.mcf An example control flow graph. Basic blocks are shown in blue.

Hardware regions are shown in red.
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1.1.1 Run-Time Reconfigurable FPGA

For the rFPGA, only one configuration may be loaded at any one time instance. However,

the configurations may be shared by various hardware modules. As shown in Figure 1.2(a),

hardware module g (or the hardware instance of loop g) occupies a single configuration

while hardware instances of loops a and b share a configuration.

On a FPGA, there are both routing resources (e.g., I/O pins, interconnect switches etc),

computation resources (e.g., lookup-tables, hardware multipliers) and storage resources

(e.g., Block RAMs, flip-flops etc). The amount and type of resources used by a hardware

module depends upon the requirements of the hardware module. For example, modules

that read video input may need to use the I/O pins that are connected to the VGA inputs.

Other modules may require specific hardware resources such as hardware multipliers to

optimize the computation.

In the case where there are sufficient resources on the rFPGA for all the hardware

modules to be loaded, the solution becomes trivial. All the computationally intensive loops

shall be selected for hardware implementation. However, given the increasing complexity

of applications and the practical constraints imposed by cost and size considerations, this

luxury cannot be realistically enjoyed. In the light of this, the following are the factors that

affect the quality of the solution:

• The selection of a subset of the candidate kernels for hardware implementation

If the rFPGA resources are insufficient for all hardware modules to be loaded at the

same time, we can only choose a subset of the hardware kernels for implementation.

We can still choose to have all the candidate kernels to be implemented in hardware,

but this entails that we need to reconfigure the rFPGA during run-time so that the

FPGA resources can be virtualized and time-shared.
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• The selection of suitable candidate kernels to share a configuration Although

the rFPGA resources may be insufficient for all hardware modules to be loaded at

the same time, it may have sufficient resources to hold a subset of the hardware

instances of the candidate kernels. Consequently, a good solution needs to determine

which candidate kernels should share a configuration.

• The selection of one of the alternative implementations of the candidate kernels

The search for a good solution is being made more complex when one considers that

each of these candidate kernels may have alternative implementations. In general,

the more parallelism that is exploited, the more resources that would be needed to be

employed. Thus, a good solution would need to strike a balance between resources

used on the rFPGA and the speedup that may be obtained.

Therefore, a quality solution needs to consider both temporal and spatial partition-

ing. Temporal partitioning is the selection of configurations that would be loaded into the

rFPGA during run-time (hence time-sharing or time-partitioning the rFPGA). Spatial par-

titioning is the selection of candidate kernels to share the rFPGA resources in one config-

uration (hence spatially sharing the rFPGA). When considering both spatial and temporal

partitioning, a design point may fall into one of the following categories, as shown in Figure

1.4

• Static single kernel(SS): A single kernel is implemented in hardware without dy-

namic reconfiguration. Neither spatial nor temporal partitioning is required. In Fig-

ure 1.4, loop a is selected to be realized in hardware. Loop b, c and d are executed

in software.
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…
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…

for(…){
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}
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…
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Figure 1.4: Four partitioning strategies for hardware software codesign.
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• Static multi kernel(SM): Hardware is spatially partitioned among multiple kernels.

However, there is no dynamic reconfiguration, i.e., no temporal partitioning. In Fig-

ure 1.4, loops a and c share the hardware. Loop b and d are executed in software.

• Dynamic single kernel (DS): Hardware is temporally partitioned such that at any

point exactly one kernel occupies the entire hardware. There is no spatial partitioning

in this case. In Figure 1.4 loop a and loop c occupy the hardware at time t0 and t2,

respectively. Loop b and d are executed in software.

• Dynamic multi-kernel(DM): Hardware is both spatially and temporally partitioned.

In Figure 1.4, loop a, b share the hardware between time t0 and t2 and they are

swapped out by loops c, d at time t2.

1.1.2 Partially Run-Time Reconfigurable FPGA

The configuration architecture of the pFPGA is organized as an single-dimension array of

minimum columnar reconfigurable regions marked out by dotted lines in Figure 1.2(b). In

the example shown in the diagram, there are 5 such reconfigurable regions numbered 0 to

4.

Instead of having to occupy the entire pFPGA, a configuration only needs to span across

a multiple of the minimum reconfiguration regions. One particular feature of such pFPGAs

is their ability to perform computation in parallel with reconfiguration under the condition

that the regions being reconfigured are not the same as those performing the computations.

Thus if hardware module b is to be replaced by loading in hardware module c, hardware

module a can continue computation without interruption. This highlights one of the ma-

jor differences between this and the previous configuration architecture. Namely, while
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rFPGAs allow reconfiguration to be in parallel with software execution, pFPGAs allow

reconfiguration to be in parallel with both software and hardware execution.

However, this added advantage comes with increased complexity to the problem. In

addition to the three factors mentioned above in Section 1.1.1, a good quality solution that

targets the partially RTR FOGA needs to consider the following factors as well.

• Selection of placements of configurations We refer to the exact location that hard-

ware modules occupy on the pFPGA as placements. In Figure 1.2(b), module a

occupies reconfiguration regions 0 and 1. Hence the placement of module a begins

at 0. Placements of hardware modules (i.e., the reconfigurable region they occupy)

are usually decided during design-time for 3 reasons. Firstly, if the hardware modules

require specific I/O, the positions of the I/O pins constrains the region the hardware

module can occupy. Secondly, since the placement of hardware modules are usu-

ally embedded within the configuration bitstream information, relocation of hard-

ware modules during run-time could be a costly operation. Thirdly, due to the above

mentioned fact that hardware modules may require specific resources, the placement

of such modules are constrained to be in reconfigurable regions that contain such

resources.

Hardware modules that share the same reconfigurable regions are said to be in ’con-

flict’ with one another(i.e., if a and b are in conflict, they cannot be loaded on the

pFPGA at the same time. The rFPGA could be considered as a pathological case

of having only one reconfigurable region, thus making every distinct configuration

in conflict with one another. In general, a configuration for pFPGA only conflicts

with a subset of other configurations. Thus, the placements of configurations affects

the number of conflicts and since configurations in conflicts cannot be loaded on

the pFPGA at the same time, the number of conflicts in turn influence the number
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of reconfigurations that occur during run-time and hence the overall reconfiguration

overhead as well.

• Reonfiguration scheduling As noted above, pFPGAs make it possible for recon-

figuration to occur in parallel with both hardware and software execution. It is not

trivial to schedule reconfiguration for a single, sequential program that is presented

in a control flow graph as shown in 1.3 because the control flow of the execution

changes dynamically during runtime.

In summary, in order to implement an efficient, accelerated single, sequential program

for a machine based on the model shown in Figure 1.1, the factors mentioned above, espe-

cially with regards to run-time reconfiguration overhead, need to be considered. It should

be noted that these factors are inter-dependent and inter-related.

1.2 Contributions and Thesis Organization

The main aim of this thesis is to study the effects of run-time reconfiguration overhead and

propose new novel methodologies that address run-time reconfiguration issues that can be

incorporated into the design process of applications for reconfigurable computing. Run-

time reconfiguration overhead can be adversely increased by a wrong choice of candidate

kernels and mis-prefetches during configuration scheduling. Consequently, a design frame-

work of applications for reconfigurable computing platform needs to factor in these issues

for application acceleration.

The main contributions of this thesis are the development of methodologies that can be

incorporated into such frameworks. Specifically, this thesis makes the following contribu-

tions to the state of the art:
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1. For a design space that spans both temporal and spatial partitioning, we have imple-

mented a framework in which efficient neighborhood searches can be implemented.

Through defining the neighborhood relationship between the design points carefully,

the run-time reconfiguration cost can be efficiently computed when moving from

one design point to its neighbor during the search. Our experiments show that the

employment of this framework speeds up neighborhood searches (specifically, hill

climbing and Tabu search) by up to two orders of magnitude., compared to imple-

mentations of these neighborhood searches that either a) do not use the framework at

all or b) use the framework in a partial manner.

2. We present a novel, polynomial time algorithm for scheduling reconfiguration given

an execution trace of hardware modules that is both provably optimal and placement-

aware. The algorithm includes a dependence analysis to determine whether for each

instance of hardware module execution, a reconfiguration task is needed prior to its

execution in hardware. A formal proof that our scheduling algorithm is optimal with

respect to the application’s overall execution time is also given. Our experiments

demonstrate how previously proposed online scheduling algorithms fare in compari-

son with the optimal algorithm.

3. We present a novel static reconfiguration scheduling algorithm for programs defined

in control-flow graphs. Using profiling information, we first perform an interpro-

cedural, path-sensitive reachability analysis of the control flow graph. The analysis

estimates for each basic block, the probability of reaching a hardware module with-

out encountering conflicting configurations on the way. Our experiments show that

the proposed novel algorithm performs better than current state-of-the-art algorithms

across varying sets of conflicing hardware modules.
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This thesis is organized as follows: In Chapter 2, we give an overview of FPGA and

discuss previous and related work in reconfigurable computing, especially work in recon-

figurable architectures, hardware-software partitioning and configuration prefetching; in

Chapter 3, we present the neighborhood search framework for the efficient implementation

of neighborhood searches of the hardware-software partitioning design space; in Chapter

4, we present MLS, a provably optimal reconfiguration scheduling algorithm for an exe-

cution trace of hardware modules; in Chapter 5, we present a static scheduling algorithm

for a control-flow graph specification. Finally, we conclude the thesis by summarizing the

contributions of this thesis before discussing future research directions in Chapter 6.
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Chapter 2

Run-Time Reconfigurable Computing

and Hardware-Software CoDesign

Reconfigurable computing has been the subject of intensive research for the past decade.

However, research for implementing applications written control-flow specifications (or

programs written in high-level languages) have often focused on synthesizing the spec-

ification for hardware implementation. In comparison, there has been fewer works that

focused on hardware-software partitioning and configuration scheduling for the such ap-

plications. In this chapter, we review the background and related works of this thesis. In

Section 2.1, We begin with an overview of FPGAs, especially with regards to the reconfig-

uration technology available in commercial chips such as Xilinx Virtex II Pro and Xilinx

IV. In Section 2.2, we present a classification of reconfigurable architectures and describe

some of their distinguishing features. In Section 2.3, we review some of the key works in

hardware-software partitioning for run-time reconfigurable computing. In Section 2.4, we

focus on the current state of the art in configuration scheduling.
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Figure 2.1: Basic computation units in modern FPGAs.

2.1 FPGA Overview

Field-programmable gate arrays(FPGA) are integrated circuits that are re-programmable

after fabrication (hence field-programmable). In contrast with ASICs that are set in stone

once fabricated, FPGAs are reprogrammable(i.e., more flexible) and therefore have a low

non-recurring engineering cost. Traditionally, it has been used as a prototyping platforms

for chip design, but due to increasing complexity of the requirements of applications there

have been increasing attempts to use FPGAs as co-processors for program acceleration.

The main reason why FPGAs are ‘programmable’ is the insight that any computation

can be represented as a Boolean equation. In turn, any Boolean equation can be expressed

as a truth table. Lookup tables (LUTs) could be used to implement any truth tables. Us-

ing these truth tables as the basic unit of expression of a computation, complex and even

17



conditional statements (e.g., classic statements such as if-then-else) can be expressed by

combining these LUTs to form a complex computational structure. LUTs give FPGAs the

generality to implement arbitrary digital logic.

LUTs alone are insufficient if you consider the need to hold state information, espe-

cially for recursive/iterative computations that depends on the results from previous states.

However, if we add a flip-flop register and a multiplexer to the LUT as shown in 2.1(a),

the new circuit is enabled to hold previous state information. Figure 2.1(a) shows a typical

example of a logic block that forms the basic unit of computation for an FPGA. Depending

on the multiplexer input bit, this piece of logic will either output the previous value held in

the flip-flop register or the output from the LUT directly.

This logic block can be programmed through the use of SRAMs. For example, by ini-

tializing the 16-bit SRAM in Figure 2.1(b) with appropriate values, we can implement any

4-input boolean logic. The flip-flop register and multiplexer can also be initialized with

single-bit SRAMs. The size of the LUT was the subject of considerable research[56]. 4-

LUTs is the usual size for modern FPGAs although the new Virtex-5 SRAM-based FPGA

from Xilinx has a 6-LUT architecture. Figure 2.2 shows a typical island-style FPGA where

the individual logic block ’islands’ are organized in a mesh-like matrix in a ‘sea’ of inter-

connects.

2.1.1 Run-time Partial Reconfiguration of FPGAs

Xilinx has supported partial run-time reconfiguration since the Virtex II Chip[71]. Instead

of reconfiguring the entire FPGA, synthesis tools provided by Xilinx are able to generate

partial bitstreams that configure on parts of the chip. The smallest reconfigurable unit of

the Xilinx FPGA series is called a ‘frame’. In Virtex II Chips, the frames are 1-bit wide

configuration data for logic cells that spanned the height of the device[73]. All hardware
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Figure 2.2: A typical island-style FPGA. The interconnect shown is an abstraction and not

intended to represent realistic implementations of the FPGA.
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module designs must occupy at least one frame. The fact that each frame spans the height

of the FPGA implies a potential inefficiency in terms of resource utilization because the

hardware module design may not be placed and routed in such a way as to fill up the entire

height of the device. So, even if the hardware module utilizes only half the height of the

device, the entire height still needs to be configured. Starting from the Virtex 4[75] chips,

each frame has a fixed height that forms the unit of the column height of the device. This

means that each column constitutes a multiple of frames. For example, each column of

Virtex 4 LX25 chips contains 12 frames and each frame has a fixed size of 328 bits. This

configuration architecture improves resource utilization and hence the efficiency of run-

time reconfiguration as well. Figure 2.3 shows the difference between the two architectures.

2.1.2 Heterogeneous Processing Elements

Figure 2.2 shows a basic architecture of FPGAs that is a two-dimensional array of ho-

mogeneous logic blocks and this is reflective of traditional FPGAs. However, modern

FPGAs are increasingly heterogeneous. Besides the traditional LUTs, hardware multipli-

ers, BRAMs(in Virtex II series) and even hardcore PowerPCs (in Virtex II Pro chips [70])

have been embedded into the design of modern FPGAs. The current Virtex 6 [76] chips

contain DSP processors within its core. Recent research[28] have studied the advantage of

embedded floating point cores within the FPGA. All these show that the trend of having

heterogeneous processing elements is here to stay. These developments provide a greater

challenge for the placement problem described in chapter 1.
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regions, (2) bitstreams are integrated at run-time, (3) the
target bitstream is read from configuration memory before
the integration operation, which enables (4) more sophisti-
cated integration operations to be used.

Another tool widely used in dynamic reconfiguration
research is JBits [10]. As with merge reconfiguration,
JBits uses bitstream information read from the device at
run-time, and has been used for logic relocation [11].
Significantly, the JBits interface is low-level and
architecture-dependent, and it does not integrate easily
with high-level design flows. This makes JBits more suit-
able for fine bitstream manipulations than module-level
reconfiguration and relocation. Addressing this problem
by combining JBits with a high-level HDL is the subject
of recent unfinished research [12].

The work reported here was originally published in the
work of Sedcole et al. [13]. This expanded paper provides
further details, and describes the application of the merge
dynamic reconfiguration method to the latest generation
of Xilinx FPGAs, the Virtex-4.

2 Virtex configuration architecture

The configuration architecture of the Virtex family of
FPGAs is described in a Xilinx Application Note [14],
and is essentially the same for Virtex-II [15] and Virtex-II
Pro [16] devices. The configuration is stored in SRAM
memory that can be read from or written to without
halting the device. The smallest unit of configuration
memory that can be read or written is a ‘frame’, which
spans the entire height of the device (including I/O
blocks) and a fraction of one column (Fig. 2).

It should be noted that Virtex-II/Pro FPGAs have the
characteristic of ‘glitchless dynamic reconfiguration’: if a
configuration bit holds the same value before and after con-
figuration, the resource controlled by that bit will not
experience any discontinuity in operation [17], with the
exception of LUT RAM and SRL16 primitives. It is there-
fore possible for a reconfigurable module to occupy an arbi-
trary area, provided that (1) the areas above and below the
module area do not contain LUT RAM or SRL16 logic and
(2) the configuration data written to these areas when the
module is replaced overwrites the existing configuration
with exactly the same values. Similarly, static, system-level
routing may pass through a reconfigurable region if its con-
figuration data are persistent when the module is
reconfigured.

The latest generation of Virtex FPGAs, the Virtex-4
family, marks a significant change in layout over previous
devices. As shown in Fig. 3, the configuration architecture
is still frame-based, but a frame spans 16 rows of configur-
able logic blocks (CLBs) rather than the full device height
[6]. Clock distribution regions are also aligned in blocks
of 16 CLB rows, unlike earlier Virtex devices, where
clock regions were defined to be quadrants. Note that I/O
blocks are arranged in columns (like all other resources)
rather than a ring. The Virtex-4 shares the glitchless
dynamic reconfiguration property of earlier devices, but
this now applies to all primitives including LUT RAM
and SRL16 logic.

3 Direct dynamic reconfiguration

In the direct dynamic reconfiguration process, reconfigur-
able modules are composed from complete frames of con-
figuration memory. This implies that a module occupies
the full height of the device, including the I/O at the top
and bottom of the reconfiguration region (Fig. 4). The
module may be a variable number of CLB columns in
width, and all logic and routing within the reconfiguration
region are dedicated to the module. Using this scheme, a
module may be replaced very simply by writing over the

Fig. 3 Virtex-4 configuration architecture

Fig. 1 Bitstream sizes for Virtex FPGAs Fig. 2 Virtex-II configuration architecture
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module is replaced overwrites the existing configuration
with exactly the same values. Similarly, static, system-level
routing may pass through a reconfigurable region if its con-
figuration data are persistent when the module is
reconfigured.

The latest generation of Virtex FPGAs, the Virtex-4
family, marks a significant change in layout over previous
devices. As shown in Fig. 3, the configuration architecture
is still frame-based, but a frame spans 16 rows of configur-
able logic blocks (CLBs) rather than the full device height
[6]. Clock distribution regions are also aligned in blocks
of 16 CLB rows, unlike earlier Virtex devices, where
clock regions were defined to be quadrants. Note that I/O
blocks are arranged in columns (like all other resources)
rather than a ring. The Virtex-4 shares the glitchless
dynamic reconfiguration property of earlier devices, but
this now applies to all primitives including LUT RAM
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figuration memory. This implies that a module occupies
the full height of the device, including the I/O at the top
and bottom of the reconfiguration region (Fig. 4). The
module may be a variable number of CLB columns in
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region are dedicated to the module. Using this scheme, a
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Figure 2.3: Different configuration architectures of Xilinx FPGAs.
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2.2 Reconfigurable Architectures

A reconfigurable system is loosely defined as any architecture in which a general processor

is augmented with reconfigurable fabric. Kiran[5] identified a wide spectrum of architec-

tures which may be termed as such. The architectural details will have an impact upon

hardware software codesign for the system. For example, loose coupling between the pro-

cessor and the reconfigurable hardware will imply communication overhead that needs to

be taken into consideration when designing applications for the system. The following

aspects clarifies the distinctions between the various architectures:

2.2.1 Types of Coupling with Host

In most reconfigurable systems, the processor is known as the host. There is a master-

slave relationship between the processor and the attached reconfigurable logic. The host

is expected to configure the programmable logic with the appropriate configuration before

initiating computation. The host is also responsible for marshaling the proper inputs and

reading back outputs produced by the configured computation. The communication be-

tween the host and the logic is a potential bottleneck. Roughly speaking, these are the

classifications of various type of coupling (following the classifications given in [5]):

• Loose Coupling through I/O peripherals A typical example of a system that employs

this kind of coupling would be the situation where a FPGA board is attached on a the

CPU, communicating with the CPU through the PCI bus interface. The communica-

tion overhead between the host and the FPGA is high. Also, data access is expensive

for the reconfigurable logic since it does not share the same memory interface as the

host processor. As such, the granularity of computation which can be put into the
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hardware must be large because the communication overhead would be too costly to

cover any speedups that may be gained.

• Loose Coupling on a Chip Level An example of this would be PRISM-1[2] that

consists of a 10 Mhz M68010 processor directly linked to four Xilinx 3090 FPGAs

through a direct 16-bit bus connection. Although this is an improvement upon the

previous type of coupling, PRISM[2] reported a communication overhead of 48 to

72 processor cycles to transfer input arguments, which is significant.

• Tight Coupling on Single-Chip There has been considerable academic and commer-

cial research efforts that produced various architectures where the host and the recon-

figurable fabric are placed on the same chip, effectively reducing the communication

overhead to the minimum. This is part of the trend of that moved towards the ‘System

on a Chip’. A trend that was encouraged by increasing silicon density predicted by

Moore’s law. GARP[27], Chimaera[77], AEPIC[62], eMIPs[51] and MOLEN[66]

are examples of such systems. There is no doubt that the advent of these reconfig-

urable systems which promise potential performance gain creates the need for the

design and implementation of new hardware-software partitioning algorithms.

• Multi-cores including Reconfigurable Fabric This is an extension of the previous

category where traditionally, a single general processor is tightly coupled with one

reconfigurable co-processor on the same chip. However, silicon technology has de-

veloped to a stage where it is possible for multiple CPU cores to be placed in the

same chip. One of these cores could be a reconfigurable FPGA. The Intel FSB-

FPGA[33] with FPGA accelerators pluggeed into Intel Xeon processor sockets is a

prime example of this recent development.
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2.2.2 Interface with Reconfigurable Logic

The way the hosts interfaces with the reconfigurable logic depends on the way the recon-

figurable logic is coupled with the processor. In general, a reconfigurable logic can be

placed on the datapath of the general processor and serves as a reconfigurable functional

unit (RFU) or it can be a co-processor akin to dual cores architectures. Chimaera[77] and

Stretch[1] are examples of the former while GARP[27] and AEPIC[62] are examples of

the latter.

In order to create new custom instructions for architectures like Chimaera and Stretch,

data-flow graphs are constructed and patterns of subgraph are mapped into custom instruc-

tions. The RFUs that execute these instructions usually do not access memory and impose

a restriction on the number of inputs and outputs. The execution of the RFUs is usually

transparent to the CPU. However, the ISA design for these architectures must accomodate

space for opcode extension. As a result, there is a limit to the number of custom instructions

that can be supported by such systems.

By contrast, the interface between the CPU and the reconfigurable logic for architec-

tures such as GARP and AEPIC resembles function call semantics. As the reconfigurable

logic is a co-processor that shares the same bus as the CPU instead of being placed on the

datapath, the communication overhead when executing the reconfigurable logic is higher.

However, the advantage is that larger granularity of computation can be accelerated and the

system places no limits on the number of hardware accelerators supported.

2.2.3 Reconfiguration Latency Hiding

As mentioned in the previous chapter, reconfiguration latency is a potential performance

bottleneck in these systems. Some architectures reduce the reconfiguration latency by sup-

24



porting multiple configuration contexts in its configurable hardware. AEPIC’s[62] recon-

figurable hardware is called Multiple-context Reconfigurable Logic Array (MRLA), which

consists of a two-dimensional array of programmable logic and interconnection blocks,

collectively known as programmable elements. Through a configuration store being asso-

ciated with each programmable logic, the entire programmable hardware is effectively an

array of FPGAs. When presented with a context id, the various programmable elements

will employ the associated configuration indexed by context id into the configuration store.

Chimaera[77] reports a similar structure, supporting multiple contexts for its Reconfig-

urable Functional Unit (RFU). These hardware features are further supported by the pres-

ence of configuration caches in both cases. That is, when a particular configuration is used

and not present in the configuration store, the desired configuration may be swiftly fetched

from the configuration cache, avoiding a full reconfiguration of the hardware. This scheme

can be further improved by having a design of hierarchical configuration memories analo-

gous to the memory hierarchy’s in traditional computer architectures. On the other hand,

not all reconfigurable architectures support and supply multiple contexts through the above

mentioned method. GARP[7] reduces the reconfiguration overhead by having a wide data

path between the GARP’s array and memory coupled with the employment of its configu-

ration cache.

Many of the surveyed reconfigurable architectures are attempts to build better silicon

devices for reconfigurable computing. Unfortunately, while many innovations and ad-

vances have been proposed, as of now, almost none of these systems are commercially

viable. For this reason, our thesis has focused on developing new codesign methodolo-

gies that targets systems coupled with FPGAs, especially from the Xilinx family of FPGA

chips.

25



2.3 Hardware Software Partitioning

The subject of hardware-software partitioning[34, 16] has been extensively researched over

the years. Stated informally, the problem of hardware software partitioning is to find a suit-

able designation of the various portions of an application to either hardware or software

implementation so that certain performance metrics (e.g., minimize overall execution time,

energy savings) can be achieved. In the early 90s, the hardware-software partitioning prob-

lem was being solved for traditional architectures (i.e., CPU with ASIC). While it may be

possible extend the standard techniques proposed then applied to these traditional archi-

tectures, run-time reconfigurable architectures present new challenges to an old problem.

As we have indicated so far in this thesis, minimizing reconfiguration overhead is critical

for obtaining a quality solution. However, as we have tried to show in the thesis thus far,

this overhead is in turn influenced by factors such as latency hiding and the heterogeneity

of resources available on the FPGA. There have been several works on hardware-software

partitioning [17, 40, 10, 22, 46, 60, 52, 3] over the years. However, most of these works

do not consider both temporal and spatial partitioning. In the following, we offer brief

descriptions of certain notable and related projects.

Nimble

The Nimble compiler[40] is built on top of the garpcc[6] to address hardware-software

partitioning issues not dealt with in garpcc. Given a set of loops within the program code,

the Nimble compiler seeks to choose between the loops for implementation in hardware

through a cost function estimate. This work did not exploit either partial reconfiguration

nor pre-fetching. Rather, it heuristically tried to identify loops which may compete for the

hardware through the loop-procedure hierarchy graph. After clustering such loops which

may be in contention, the compiler selects loops to be moved into hardware so that overall
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cuting. We plan to extend our methodology to multi-threaded
specifications, where more than one block can execute at the
same time.

3.2 Target Architecture Model

RC1        RC2

 Figure 5. Target Architecture
The target architecture model is illustrated in Figure 5. The
PRC device is split into two parts, RC1 and RC2. The design
is implemented on the RC such that, when T Pi executes on
RC1, T Pi+1 reconfigures on RC2. Similarly, when TPi+1 ex-
ecutes on RC2, T Pi+2 reconfigures on RC1. The PRC device
is divided into two parts as at any time there exists only two
active events on the device at a given time: execution and
reconfiguration. RC1 and RC2 have a fixed area and position
on the PRC device. This ensures that a TP on either of these
parts remains undisturbed between the time it reconfigures
and executes, thereby aiding partial reconfiguration.

3.3 Host-PRC Interaction Model

Partitioning/Pipelining phase

PRC

HOST-SIDE CONTROLLER

Execute
Load/

signals
Control

DEVICE

directives

Figure 6. Host-PRC Interaction Model

A host-side controller handles the interaction between the
PRC device and the host processor. The host processor is re-
sponsible for loading and executing the partitioned modules
on the PRC device. The host-side controller provides a hand-
shaking protocol between the host and the device. The con-
troller is a finite state machine (FSM), where in every state
the partitioned modules are either loaded, executed or no op-
eration is performed on them. State transitions are based on
control signals obtained from the design executing or recon-
figuring on the PRC device. The FSM is derived from a set of
host-controller semantics that are generated by the partition-
ing and pipelining phases. These directives are explained in
more detail along with the algorithm in the following section.

4 Temporal Partitioning
Given the block graph specification, the partitioner has to
temporally partition the graph into k segments such that:

(1) area(TPi) � area(RC1) 8 odd i 1 � i � k
(2) area(TPi) � area(RC2) 8 even i 1 � i � k
(3) 9 no loops across T Ps

When a design is too large to fit on the PRC device, the
procedure Temporal Partitioning(BBIF, blk area, prc area)
traverses the block graph and performs appropriate actions
based on the area and the block type of individual blocks,
which can be either a loop block (Lblk), conditional block
(Cblk), or a non-control construct block.

The procedure Partition Block(blk) is invoked to partition the
operation graph of a block when the estimated area of that
block violates the area constraint imposed on the partitioner.
Any operation graph partitioning algorithm can be used for
this purpose. The conditions imposed on such a partitioner
is as follows: (1) The partitioner should not introduce cycles
in the block graph (2) The partitioner should minimize the
average number of data transfers between partitions.

The block–partitioner generates a sequence of acyclic par-
titioned segments. The next block that is traversed by the
procedure Temporal Partitioning(BBIF, blk area, prc area is
the last segment in the sequence of the partitioned segments.
The last segment in the sequence is assigned the same type
as the original block. This will ensure that if the type of the
original block is Lblk or Cblk, the corresponding procedures
are invoked based on the type. The block–partitioning sce-
nario is illustrated in Figure 8.

The procedure Handle Loop is invoked when a block of type
Lblk is encountered in the BBIF block graph. The procedure
obtains the cumulative area of all the blocks in the entire loop
structure using an area estimator. If the estimated area meets
the area constraint, all the blocks in the loop are merged into
a single partition. If the area constraint cannot be met, the
exception is handled by grouping all the blocks in the loop
structure so that the loop fits on the entire PRC device. Ex-
ception handling is done to accommodate large loop bodies
in the input specification. If the loop does not fit on the entire
device either, the partitioner reports a failure as otherwise the
loop has to be partitioned across temporal segments.

If the block type encountered is a Cblk block, the procedure
Handle Conditional obtains the area of all the branches of
the conditional evaluating block. If the estimated area meets
the partitioner’s area constraints, these blocks are grouped
into a single partition. If the area constraint is violated, a host
polling strategy is adopted. Performing Partition Block be-
fore handling conditionals ensures that if a conditional block
is too large to fit on a device partition, it is partitioned into
smaller blocks before Handle Conditional is invoked on that
block.

The effect of the partition methodology described above on
the associated execution model is detailed in the following
sub–sections.

4.1 Execution Model for Loop Handling
When a Lblk structure is encountered in BBIF, the entire
loop is grouped into a single temporal partition if the area
constraint is not violated. This ensures that the correspond-
ing temporal partition spends a significant amount of time
in execution. The execution time can be maximally over-
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(a) Division of the hardware resource
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Abstract
Partially reconfigurable processors provide the unique abil-
ity by which a part of the device can be reconfigured, while
the remaining part is still operational. In this paper, we
present a novel partitioning methodology that temporally
partitions a design for such a partially reconfigurable pro-
cessor and improves design latency by minimizing reconfig-
uration overhead. This is achieved by overlapping execu-
tion of one temporal partition with the reconfiguration of an-
other, using the processors partial reconfiguration capability.
We have incorporated block-processing in the partitioning
framework for reducing reconfiguration overhead of parti-
tioned designs. A highlight of our partitioner is it’s ability
to handle loops and conditional constructs in the input spec-
ification. The proposed methodology was tested on several
examples on the Xilinx 6200 FPGA. The results show signif-
icant reduction in the design latency, leading to a consider-
able speed-up due to partial reconfiguration.

1 Introduction
Dynamically reconfigurable processors have the potential for
achieving high performance at a relatively low cost for a
wide range of applications. Reconfigurable devices, such as
Field Programmable Gate Arrays (FPGA), can also imple-
ment large designs by the virtue of partitioning the design
in time [1, 2] leading to run-time reconfigurable implemen-
tations of the design. However, the reconfigurable proces-
sors typically have a high reconfiguration overhead, which
degrades the performance of the design.

Certain partially reconfigurable processors [3, 4] possess the
unique capability by which a part of the device can be oper-
ational while the remaining part is being reconfigured. This
feature can be used to overlap execution and reconfiguration
of different portions of the design leading to partial, if not
complete, amortization of the reconfiguration overhead and
significant improvement in the design latency. This advan-
tageous feature of such partially reconfigurable computing
(PRC) systems motivates the work in this paper. We pro-
pose a novel technique to generate RTR designs for a PRC
device, that improves design latency by reduction of the re-
configuration overhead posed by the device. A highlight of
our partitioner is the capability to handle control constructs

�This work is supported in part by the US Air Force, Wright Laboratory,
WPAFB, under contract number F33615-97-C-1043.

in the input specification.
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Figure 1. Partitioning/Pipelining Methodology

Figure 1 depicts the overview of our approach. The first step
is to partition the design into a sequence of temporal seg-
ments. This is followed by a pipelining phase, where the
execution of each temporal partition is pipelined with the re-
configuration of the following partition. Referring to Figure
1, at the ith instant, TPi executes and TPi+1 reconfigures on
the PRC device. Reconfiguration time of segment T Pi+1 is
reduced due to overlap with execution of T Pi. Similarly, the
(i+ 1)th instant involves overlap of execution of T Pi+1 and
reconfiguration of TPi+2. This process is continued until all
the temporal segments have been loaded and executed.

Let Ri and Ei be the reconfiguration and execution time re-
spectively, of the ith TP segment on the target architecture.
The total latency of the design using our proposed technique
is:

Latn = R1+
n�1

∑
i=1

max(Ri+1;Ei)+En (1)

Hence when

Ri+1�Ei � 0 8i 1� i � n�1 (2)

there is complete amortization of the reconfiguration over-
head using partial reconfiguration. Hence, it is clear that
in order to obtain significant improvement in design perfor-
mance, the reconfiguration time of T Pi+1 should be com-
parable to the execution time of TPi. This allows maximal
overlap between execution and reconfiguration and results in
considerable reduction in reconfiguration overhead. When
device reconfiguration times are much higher than design ex-
ecution times, it becomes essential to group computationally
intensive structures, e.g. loops, in a single temporal segment
to increase Ei and thereby minimize Ri+1�Ei.

1

(b) Pipelining the application into temporal segments

Figure 2.4: Using pipelining to reduce reconfiguration costs.

performance may be optimized, having estimated the reconfiguration costs. The Nimble

compiler is bench-marked against a locally optimal algorithm and an idealized performance

upper bound for the benchmarks. Experiments have shown that the Nimble compiler gives

near optimal solution when compared with the performance upper bound.

Physically-aware Hardware-Software Partitioning

Banerjee et al. [3] have focused solving a co-partitioning and scheduling problem for task

graphs. The proposed algorithm determines for every task, whether it is implemented in

hardware and if so, when to configure the task and when to execute it so as to minimize the

the entire schedule. The main motivation for their work is the fact that existing scheduling

algorithms may suffer from producing so-called ‘optimal’ schedules that are physically

unrealizable due to placement constraints. Figure 2.5 shows a schedule where T1 and T3

occupies one column each while T2 occupies two columns, assuming that the resource

contains only 4 columns. Although by the time t2, two columns are free to be reconfigured,

yet T4 which requires two contiguous columns may not be configured. The point is that
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Figure 3: Heterogenous FPGA with partial RTR

our work, we currently do not exploit such resource-sharing across
tasks. We focus on integrating key architectural constraints and
placement considerations into the scheduling formulation for the
more realistic scenario of varying task sizes.

Our work is most closely related to [6] and [7]. Mei et al. [6]
present a genetic algorithm for partial RTR that considers colum-
nar task placement. However, their approach does not consider
prefetch or the single reconfiguration controller bottleneck. Jeong
et al. [7] present an exact algorithm (ILP) and a KLFM-based
approach. Their ILP considers prefetch and the single reconfigu-
ration controller bottleneck– however, while scheduling, they do
not consider the critical issue of physical task placement. We will
demonstrate that an optimal formulation that does not simultane-
ously consider placement while scheduling can generate schedules
which can not be placed and hence are not physically realizable.
Another distinctive feature of our work compared to existing work
is our consideration of heterogeneity in resources, a key feature of
modern reconfigurable architectures.

3. PROBLEM DESCRIPTION
We consider the problem of HW-SW partitioning of an applica-

tion specified as a task dependency graph extracted from a func-
tional specification in a high-level language like C, VHDL, etc. In
a task dependency graph (Figure 2), each vertex represents a task
that can start execution only when all its ancestors have completed.

Our target system architecture as shown in Figure 1 consists of a
SW processor and a dynamically reconfigurable FPGA with partial
reconfiguration capability. The processor and the FPGA commu-
nicate by a system bus. We assume concurrent execution of the
processor and the FPGA. We assume that the dynamically recon-
figurable tasks on the FPGA communicate via a shared memory
mechanism– this shared memory can be physically mapped to local
on-chip memory and/or off-chip memory depending upon memory
requirements of the application. Under this abstraction, communi-
cation time between two tasks mapped to the FPGA is independent
of their physical placement. Thus, when adjacent tasks in the task
graph are mapped to the same device (processor or FPGA), the
communication overhead is considered insignificant, while tasks
mapped to different devices incur a HW-SW communication delay.

On such a system architecture, a task can have multiple imple-
mentations: as a simple example, compiler optimizations like loop
unrolling often result in a faster implementation with more HW
area. Another example is the possibility of a very area-efficient
implementation using dedicated resources like embedded memory.

Our objective is to minimize the execution time of the applica-
tion while respecting the architectural and resource constraints im-
posed by the system architecture. Thus, our desired solution is a
task schedule where each task is bound to HW or SW along with a
suitable implementation point for each task.
Dynamically reconfigurable FPGA

Our target dynamically reconfigurable device as shown in Fig-
ure 3 consists of a set of configurable logic blocks (CLB) arranged
in a two-dimensional matrix. Additionally, a limited number of
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Figure 5: Detailed infeasible
specialized resource columns are distributed between CLB columns
(the Xilinx Virtex-II architecture is an example of such a device).
The basic unit of configuration for such a device is a frame span-
ning the height of the device. A column of resources consists of
multiple frames. A task occupies a contiguous set of columns.
Such a device is configured through a bit-serial configuration port
like JTAG or a byte-parallel port. However, only one reconfigura-
tion can be active at any time instant. The reconfiguration time of
a task is directly proportional to the number of columns (frames)
occupied by the task implementation.

4. KEY ISSUES IN SCHEDULING
4.1 Criticality of linear task placement

Each task implementation mapped to the target reconfigurable
device occupies a set of adjacent columns. Under our abstraction
that communication between such tasks is realized through a shared
memory accessible from each task, task placement on such a device
reduces to simple linear placement.

LEMMA 1. For a given scheduled task graph with inter-task
communication via shared memory and equal size tasks, a feasi-
ble and optimal placement is guaranteed and can be generated in
polynomial time.

PROOF. The problem for equal sized tasks reduces to graph col-
oring on interval graphs and thus efficient algorithms like left-edge
algorithm can be applied [3]. More details in [16].

However, for tasks that occupy a different number of columns
in the implementation, placement feasibility is not guaranteed
even with an exact algorithm. (detailed explanation in [16]) In
Figure 4 we demonstrate an instance of such infeasibility using an
exact approach for partitioning and scheduling followed by linear
placement for such multi-column tasks. This is a two-dimensional
view of the task schedule where the Y-axis (length) corresponds to
time, the X-axis (width) corresponds to number of columns. The
FPGA has 4 columns and 3 tasks mapped onto it. Tasks T1, T2,
T3 occupy columns C1, (C2,C3), and C4 respectively. At time t2, a
model that does not consider placement information would indicate
that 2 units of area were available. So a new task, say T4, that
requires 2 columns, could be scheduled at time t2. However, this
would be incorrect as 2 adjacent columns are not available at t2.

In Figure 4, of course there is the opportunity for better place-
ment by initially placing task T2 into columns (C3,C4)– then, at

336

Figure 2.5: An example of infeasible placement.

algorithms that do not consider physical placement of hardware may end up with physically

unrealizable reconfiguration schedules. Therefore Banerjee’s work has focused on tackling

this issue by incorporating hardware placement into the partitioning algorithm, using an

extension of the KLFM heuristic proposed by Vahid et al.[65]

Temporal Partitioning with Pipelining

Vemuri et al. [22] integrate partial reconfiguration with temporal partitioning to improve

overall performance. The key to their technique lies in dividing the pFPGA into 2 spe-

cific reconfigurable regions, as shown in Figure 2.4(a). By pipelining the application into

temporal partitions(TP) as shown in Figure 2.4(b), we can overlap computation with re-

configuration time to reduce the reconfiguration overhead. For example, the execution of

TP1 overlaps with the configuration of TP2 on the hardware. The reconfiguration over-

heaed is incurred only when the execution time of the temporal partitions is less than the

reconfiguration delay.
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Iterative Approach

Huynh et al.[30] have focused on the problem of performing both spatial and temporal

partitioning for run-time reconfigurable custom instructions. For a set of candidate custom

instructions of size N, they seek to find a suitable subset for hardware implementation while

reducing the run-time reconfiguration ovehead at the same time. The proposed iterative

algorithm relied on the the insight that the optimal solution could choose to implement n

custom instructions, where 0 ≤ n ≤ N. This is the only work we know of that performs

both spatial and hardware partitioning for control-flow specified applications.

2.4 Configuration Scheduling

Techniques to reduce the reconfiguration overhead include configuration compression [41,

35], configuration caching [41], and configuration prefetching [26, 42, 11, 18]. While

configuration compression is supported in commercial FPGAs, the chips proposed that

support configuration caching have yet to be fabricated. We shall focus on the configuration

prefetching in this section.

Although configurations can be loaded as and when they are requested, a significant

overhead is incurred when the entire execution stalls while waiting for the loading to com-

plete. Instead, configurations can be requested to be loaded ahead of time in anticipation

of their usage. This process is called prefetching and as indicated in chapter 1, is done so

that reconfiguration can occur in parallel with application execution. Although this is an

effective method for reducing the reconfiguration overhead, one must be careful of mis-

prefetches that may result in evicting hardware modules that are executed later.

Early work[26, 63] has focused on prefetching for reconfigurable fabrics that can only

hold one configuration at a time. Later works have targeted platforms with multi-context
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FPGAs[54, 46, 47, 23]. More recently, research[59, 29] has begun to focus on scheduling

configurations at the level of operating systems scheduling. Prefetching technique is also

being employed for High-performance Computing research[15] that attaches a supercom-

puter with a reconfigurable device. Solutions proposed may be divided into 2 categories -

online (or run-time) and offline approaches.

2.4.1 Online Scheduling

Online scheduling requires hardware support and additional storage to keep track of his-

torical information and monitor the dynamic state of execution. The advantage of online

approaches is that these solutions are both highly adaptive and do not require access to ap-

plication’s source code for implementation. Noguera[46, 47] technique relies on an event

window by which the system anticipates the next hardware event to be configured. Their

work targets a special hardware architecture with multiple homogeneous rFPGA devices

and the method depended on prefetching for the highest priority task within the event win-

dow as new incoming tasks occur. Fu[21] proposed another window-based scheduler that

uses a multi-constraint knapsack approach to select configurations with best speedup for

the next window of time. Li[42] and Chen[11] proposed a hardware-based predictor based

on building a Markov-chain and a least-mean square model during run-time. Banerjee et

al.[4] proposed an online heuristic scheduling for a linear sequence of task (a task chain)

that takes into consideration the bandwidth required by the tasks as an added constraints.

Although this work targets pFPGAs, they do not prefetch tasks out of order because the

focus is upon scheduling the tasks to achieve maximum data parallelism. Resano[54] pro-

posed a hybrid scheme that schedules prefetches for multiple dynamically reconfigurable

hardwares but their approach does not consider a Xilinx-like pFPGAs. This thesis shows in

Chapter 4 that the state-of-the-art online prefetching techniques are still considerably sub-
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optimal. We expect online scheduling to be helpful in particular because reconfigurable

systems are moving into mainstream computing.

2.4.2 Offline Scheduling

Offline scheduling can be classified in two categories. The first takes in a task graph as a

specification while the latter takes in a Control-Flow Graph as a specification for the in-

put application. This difference is not trivial because the task graph is usually a DAG in

which the edges are merely precedence constraints (i.e., successive tasks can immediately

be fired off once precedence conditions are satisfied) while the control-flow graph is a di-

rected graph that contains cycles and the executed control-flow is conditional upon input

and run-time information. Furthermore, while task graphs are usually at most hundreds in

terms of size, the number of basic blocks on control-flow graphs can be tens of thousands

for small applications and the execution traces obtained could be in the order of millions.

Immediately, offline scheduling of task graphs that uses ILP formulation[18, 53] could not

be applied to control-flow graph specifications and scalability becomes an intractable issue

for such approaches. There have been relatively less research on configuration scheduling

for control-flow graphs. The control-flow graph prefetching problem is usually formulated

as an instruction scheduling problem[49, 26, 42] (i.e., where to insert the prefetch instruc-

tion to load configurations in advance). Offline scheduling are important for either systems

that run relatively a small, static set of applications or in environments where the operating

system does not support configuration management.
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Chapter 3

Design Space Search for

Hardware-Software Partitioning

When mapping an application that has multiple kernels onto a rFPGA, it may be necessary

to share the hardware among these kernels through spatial partitioning [64] so as to acceler-

ate overall execution. A reconfigurable computing architecture allows for the virtualization

of hardware through run-time reconfiguration. In this case, the kernels can be swapped in

and out of hardware at runtime. This is useful if the total area required to realize different

kernels in hardware exceeds the available area. Run-time reconfigurability adds another

dimension to the already complex design space exploration problem. We need to consider

the temporal partitioning of the kernels in addition to the spatial partitioning. Moreover,

the key to success is to ensure that the benefits derived from hardware acceleration of a

kernel are not overwhelmed by the overhead of runtime reconfiguration [14]. Thus, this

overhead should be taken into account in the partitioning decision.

For a single, sequential program, the executions of these kernels are mutually exclu-

sive, i.e., only one kernel can execute at any point in time. The spatial partitioning problem

looks at the optimal choice and placement of kernels constrained by the amount of available
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hardware resource (area). The problem is further complicated by the fact that there often

exist multiple instantiations of a candidate kernel. For example, applying different opti-

mizations (e.g., loop unrolling) on a loop kernel results in a number of different hardware

implementations with varying area and performance. The design space exploration needs

to take all these different instances of the kernels into consideration in order to obtain an

optimal solution.

Neighborhood searches such as GRASP[19] and Tabu[24] have been used to solve com-

plex combinatorial problems effectively. Thus one way to traverse the design space is to

use some form of neighborhood search. A key insight in speeding up such searches is

that all these techniques involve evaluating the neighbors of the current design point. Such

evaluations are often time-consuming. In this chapter, we will propose a way of speeding

up such neighborhood searches.

The rest of the chapter is organized as follows. Section3.1 states the problem formu-

lation. Section 3.2 describes the various aspects of the framework that we proposed that

supports fast evaluation of neighboring points, including the key contribution: a neigh-

borhood relationship among design points, a method for computing reconfiguration cost.

After that, we show how these various aspects put together to improve the efficiency of the

neighborhood searches. In Section 3.3, we present and analyze the experimental results,

where we evalute the results of our framework with Tabu and Hill-Climb Search. This is

followed by a conclusion.

3.1 Problem Formulation

In this section, we formally define notions used in the description of our technique in Sec-

tion 3.
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3.1.1 The Design Space

The design space in the context of this chapter is defined in terms of the following param-

eters.

• K1 . . .KN : Candidate kernels (loops)

• ki,1 . . .ki,mi: Different hardware implementation instances of kernel Ki with varying

area and performance

• a(ki, j): Area required by kernel instance ki, j

• s(ki, j): Savings in execution time due to hardware implementation instance ki, j of

kernel Ki over its software execution

• Loop trace indicating the run-time execution sequence of the candidate kernels

• A: Total hardware area constraint

• ρ: Time to perform one reconfiguration

The loop trace and candidate loops can be obtained through profiling [61, 40]. The savings

and area estimates of alternate hardware implementations can be obtained through behav-

ioral synthesis [57] and other methods of estimation. The details of profiling and estimation

are beyond the scope of this chapter and are orthogonal to its contribution. For a particular

reconfigurable hardware, we assume that ρ and A are constants.

3.1.2 Configurations and Partitions

We define a configuration to be a non-empty set of kernels. A configuration instance is a

particular implementation of a configuration. A configuration instance is obtained from a
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configuration by choosing particular instances corresponding to each member kernel. Us-

ing the example in Figure 1.4, a configuration can be of the form {Ka,Kb} but configuration

instance will be of the form {ka.i,kb. j}, where ka.i,kb. j are hardware instances of loops a

and b, respectively. The total area required by all the kernel instances in a configuration

instance must not exceed the hardware area constraint. Given a configuration, selecting

an optimal configuration instance is a sub-problem of the entire design-space exploration

problem. Switching from one configuration to another incurs a reconfiguration cost.

A set of configurations is called a partition. Similarly, a partition instance is a particular

implementation of a partition. A partition instance is obtained from a partition by choosing

particular instances corresponding to each member configuration. A partition consisting

of a single configuration corresponds to static configuration. This is SS when the config-

uration is a singleton, and SM otherwise. A partition with more than one configuration

implies dynamic reconfiguration. This is DS when all the configuration are singletons, and

DM otherwise. An empty partition implies that no kernel was chosen for hardware im-

plementation. It should be noted that a chosen partition implicitly implies that the other

kernels have been designated for software implementation. For a partition P, we refer the

set of kernels designated for hardware implementation as HW (P) and the set of the kernels

designated for software implementation as SW (P) = {K1, . . . ,KN}−HW (P).

We have chosen to enforce a constraint that a loop kernel can appear in at most one

configuration in a partition. The reason for such a constraint is if a loop is allowed to have

multiple hardware versions, then it becomes necessary to dynamically infer the context

under which a particular hardware version of the loop should be loaded, which further

complicates the problem.

Our approach aims to minimize the total execution time of the application by acceler-

ating candidate loops in hardware. Therefore, we define a set of functions to compute the
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savings corresponding to kernel instances, configuration instances, and partitions.

s(ki. j) = tsw(Ki)×nsw(Ki)−o(ki. j)×nhw(ki. j)

−thw(ki. j)×nhw(ki. j)− tsw(Ki)×nsw(ki. j) (3.1)

Equation 3.1 shows the savings corresponding to a hardware implementation of a kernel.

The terms on the right-hand side of the equation represent the software execution time,

communication overhead, hardware execution time, and software execution time of the

remainder loops, respectively.

We now define the savings (in execution time) for configuration and partition instances.

s(C) = ∑
ki, j∈C

s(ki, j) (3.2)

s(P) = ∑
C∈P

s(C)−n(P)×ρ (3.3)

Equation 3.2 shows the savings of a configuration instance. The savings of a configuration

instance is simply the sum of the savings of its member hardware kernel instances. We

compute the total savings of a partition instance in Equation 3.3 by offsetting the total

reconfiguration time against the total savings of the member configuration instances. n(P)

is the expected number of reconfigurations for partition instance P and ρ is the time to

perform one reconfiguration.

PROBLEM Develop a design space framework by defining the neighborhood relation-

ships and an efficient evaluation function to facilitate the implementation of efficient neigh-

borhood searches that solves the above problem i.e., maximize the savings of each config-

uration as to achieve overall execution time minimization.

We shall now describe how our neighbors of a given current point in the design space

can be evaluated over a SEQUITUR-compressed trace of loops.
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3.2 Fast Evaluation of Neighboring Design Points

We consider the exploration of the design space described above using some neighborhood

search scheme. One of the key components that is common among these search strategies

is the evaluation of the design points within a certain neighborhood. We shall now describe

a neighborhood relationship between partitions that 1) is complete in coverage of the par-

titioning space and 2) does not recompute unnecessarily when evaluating the neighbors of

an evaluated partition. The necessary components of our techniques are:

• Loop traces encoded using SEQUITUR grammar

• Evaluation of a single partition (without any evaluated neighbors)

• The neighborhood relationship proper

• Evaluation of a partition’s neighboring points

We shall now describe each of these.

3.2.1 Evaluating Partitions

We evaluate a partition by determining the optimal way to implement the partition. The

savings of a partition instance depends on the savings of its member configuration instances

and the number of reconfigurations. However, all the partition instances corresponding to

a partition requires the same number of reconfigurations for a given loop trace. In the

example shown in Figure 1.4, if loops a and b are put in one configuration, and c and d are

put in another, there will be only one reconfiguration per iteration of the outer while loop,

regardless of the instances of the loops chosen to be implemented in hardware. Therefore,

an optimal partition instance can be obtained by simply choosing optimal configuration

instances. Given this insight, we need both a method for choosing an optimal configuration
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A -> BBd
B -> CCDDEE
C -> ab
D -> ac
E -> bc

Figure 3.1: DAG representing a SEQUITUR grammar.

instance and a method for calculating the number of reconfigurations. These are described

in the following subsections.

3.2.1.1 Computing Optimal Configuration Instance

Each loop kernel is associated with a number of alternative hardware implementations. A

naive approach to find the optimal instance corresponding to a configuration would be to

enumerate all feasible instances. However, this approach does not scale either with the

number of kernels or with the number of instances corresponding to each kernel.

We handle this problem by pruning the number of instances corresponding to a kernel.

We only keep the pareto-optimal instances corresponding to each kernel. Intuitively speak-

ing, these instances are more efficient in terms of area utilization, giving better speedups

with less area. After this pruning, the optimal configuration instance is found by an exhaus-

tive enumeration of the remaining feasible configuration instances. We do not synthesize
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Figure 3.2: Pareto-optimal kernel instances.

the configuration instances at this stage. Rather, the savings of a particular configuration

instance is estimated using Equation 3.2 along with the area requirement.

For example, Figure 3.2 shows all the instances corresponding to a loop kernel taken

from the JPEG encoding benchmark. The estimated rFPGA area in terms of slices is plot-

ted against the expected execution time of a single loop iteration for each of the kernel

instances. Among the eight kernel instances, we only keep the ones on the pareto-optimal

front.

3.2.1.2 Loop Trace Compression Using SEQUITUR Graph

We can compute the reconfiguration cost of any given partition by going through the entire

trace. However, this step could be costly in terms of computation due to the size of the

traces. Therefore, we compress the loop trace using SEQUITUR, in a format amenable for

reconfiguration cost computation, as shown in the later subsections.

The SEQUITUR algorithm developed by Nevill-Manning [45] compresses a sequences of

symbols (loop ids) by building hierarchical structures of frequently repeated sub-sequences.

The SEQUITUR algorithm represents a finite string σ as a context free grammar. whose lan-

guage is a singleton set {σ}. The SEQUITUR grammar can be represented as a directed
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acyclic graph. Each leaf vertex in the DAG corresponds to a candidate loop. Each inter-

mediate vertex in the DAG represents a sub-trace and the root vertex represents the entire

loop trace. An in-order traversal of the sub-graph rooted at a vertex retrieves the corre-

sponding sub-trace. For example, an in-order traversal of the graph shown in Figure 3.1

generates the sequence ababacacbcbcababacacbcbcd. It should be noted that the same

vertex can be a direct sibling of itself, as shown in the figure.

3.2.1.3 Counting Reconfigurations

We can efficiently compute the number of reconfiguration of a partition through a single

bottom-up traversal of the SEQUITUR DAG G = (V,E) where V is the set of vertices and

E the set of edges with complexity O(V +E). During the traversal for a particular partition,

each vertex v in the DAG is labeled with the following: (1) the first and last hardware

kernel in the the loop sub-trace represented by v, and (2) total number of reconfigurations

for the loop sub-trace represented by v. During the same bottom-up traversal, we can

compute the labels corresponding to an intermediate vertex by looking at the labels of its

children as follows. Let v be an intermediate vertex with children v1 . . .vk. Let n(v), f (v),

and l(v) represent the number of reconfigurations, first and last configuration of vertex v.

Then n(v) = ∑
k
i=1 n(vi)−∑

k−1
i=1 xi, where xi is equal to 1 if l(vi) = f (vi+1) and 0 otherwise.

The leaf vertices would be the base case where the loop sub-trace consists of only one

candidate loop corresponding to the leaf vertex. Let v be a leaf vertex. n(v) would be 1 if

the candidate loop has been designated for hardware, 0 otherwise. f (v) and l(v) would be

the candidate loop if the candidate loop has been designated for hardware, null otherwise.

At the end of the traversal, the label at the root vertex yields the number of reconfigurations

corresponding to the entire loop trace.
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3.2.2 The Neighborhood Relationship

The neighbor of a partition (in the design space) is obtained by either (1) removing a hard-

ware kernel from any of the member configurations (removing the entire configuration if

the configuration becomes empty) or (2) adding a kernel currently in software into the

partition(thus designating it for hardware implementation), either into one of the existing

configurations or as a new configuration containing only this new kernel.

Figure 3.3 shows a partition {{a},{b,c} with all of its neighboring partitions. The

removal of kernel c from the partition gives us the neighboring partition {a},{b}. There are

3 ways to add kernel d into the partition. Thus, adding d gives us partitions {{a},{b,c,d}},

{{a,d},{b,c}} and {{a},{b,c},{d}}. Removal of kernel b gives us partition {{a},{c}}

and removing kernel a leaves us with {b,c}. There are 6 neighbors in all. The partition

{{c}} cannot be {{a},{b,c}’s neighbor because they differ by more than one kernel.

A partition {{Kc}} cannot be P’s neighbor because they differ by more than one kernel.

In general, a partition P has |SW (P)|× (|P|+1)+ |HW (P)| neighbors, where HW (P) and

SW (P) are the set of hardware and software kernels for partition P, respectively. |P| is the

number of configurations in partition P. This relationship is complete in the sense that any

partition may be constructed starting from an empty partition (by adding the kernels one

by one) and the empty partition may be reached by deconstructing any partition as well (by

removing the kernels one by one).

From Figure 3.3, we observe that the reconfiguration cost of the neighboring design

points cannot be computed simply by adding or subtracting the number of occurrence of

the kernel added or removed to the design point. For example, when kernel c is removed,

the reconfiguration cost does not decrease by 2 even though c’s occurrences in the loop

trace is 2. In the next section, we propose a way to compute the reconfiguration cost of

neighbors efficiently by making use of the SEQUITUR graph.
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partition: {a}, {b,c}
rec count: 4

partition: {a}, {c}
rec count: 4

partition: {ad}, {b,c}
rec count: 6

partition: {a}, {b,c,d}
rec count: 4

partition: {a}, {b}
rec count: 3Trace: acbdbac

partition: {a}, {b}
rec count: 3

partition:{b,c}
rec count: 1

Figure 3.3: An example of a partition with its neighboring design points and the associated

reconfiguration costs.

3.2.3 Simulataneous Evaluation of Neighbors

In Section 3.2.1.3, we have shown how to compute the number of reconfigurations of a

partition efficiently using a compressed loop trace. However, the number of neighbors of

a partition can be quite large. Therefore, traversing the SEQUITUR graph for each neighbor

can be quite expensive. Instead, given a partition P, we propose a method to compute

the reconfiguration cost of all its neighbors through a single bottom-up traversal of the

SEQUITUR graph.

Our method is based on the observation that only certain sequences in the loop trace

need to be considered in order to compute the reconfiguration cost of a neighboring parti-

tion. Let K be an arbitrary kernel in configuration C of partition P, i.e., K ∈C ∈P. The loop

trace contains many sequences of the form of < Kx,S,K,S′,Ky > where Kx,Ky ∈ HW (P)

and S,S′ are (possibly empty) sequences of software kernels. In each of these sequences,

there are three mutually exclusive possibilities:

1. Kx or Ky is in the same configuration as K. In this case, removing K has no effect on

the number of reconfigurations.

2. Kx and Ky are in the same configuration, but not in the same one as K. In this case,

removing K results in the savings of two reconfigurations.
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3. Kx, Ky and K are in distinct configurations. In this case, removing K results in the

saving of one reconfiguration.

The effect of removing a kernel K can thus be computed after identifying all distinct se-

quences of the form s =< Kx,S,K,S′,Ky > and the number of times, w(s), each of these

sequences occurs in the trace. The decrease in number of reconfigurations d(s) can then be

computed based on the three cases above. The total savings in number of reconfigurations

is ∑s d(s)×w(s). The effect of adding kernels can be computed in a similar way.

Therefore, given a partition P, we need to enumerate all sequences of the form <

Kx,S,Ki,S′,Ky > and their frequency for each candidate kernel Ki (1 ≤ i ≤ N). This will

allow us to compute the number of reconfigurations of a partition obtained through addi-

tion (if in software) or removal (if in hardware) of kernel Ki from partition P. This can be

performed efficiently though a single bottom-up traversal of the SEQUITUR graph by ap-

propriately labeling the vertices through an extension of the labeling proposed in Section

3.2.1.3.

3.2.3.1 Labeling Extension and Sequence Enumeration

We observe that these sequences < Kx,S,Ki,S′,Ky > will always span two consecutive sub-

traces. The extreme case of these sub-traces would be one sub-trace having one loop and

the other sub-trace having two loops. Given that the each vertex in the SEQUITUR graph

represents a sub-trace, we need to label the vertices in a way that allows such sequences to

be identified easily.

Consider sub-traces represented by (not necessarily distinct) vertices vi and vi+1 that

are next to each other in the original trace (i.e., vi and vi+1 would be children of the same

parent vertex direct siblings). Assume further that the sub-trace represented by vi to be

< .. . ,K1,S1,K2,S2 > and the sub-trace represented by vi+1 to be < S3,K3,S4,K4, . . . >

43



EC

a b c

D

B

A

H:a,_,
_,_

S:{},
{}

H:_,_,
_,_

S:{b},
{b}

H:c,_,
_,_

S:{},
{}

H:a,_,
_,_

S:{},
{b}

H:a,c,
a,c

S:{},
{}

H:c,c
c,c

S:{b},
{}

H:a,a,
c,c

S:{b},
{b}

H:a,a,
c,d

S:{b},
{}

ababacacbcbcababacacbcbcd

d
H:d,_,
_,_

S:{},
{}

2cac

2aca

4cbc

4aba

countsequence

Figure 3.4: A SEQUITUR graph labeled with H and S tags given a partition that has put

kernels a, c and d in hardware.
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where K1,K2,K3,K4 ∈ HW (P) and S1,S2,S3,S4 represents (possibly empty) sequences of

software kernels. In order to enumerate the < Kx,S,K,S′,Ky > sequence that spans these

2 sub-traces, we need to consider two cases. If K is in hardware, then both K2 and K3 are

candidates for K. If K is in software, then all kernels occurring in S2 and S3 are candidates

for K. We further note that once Ki is identified, Kx and Ky can be easily identified by

finding the nearest preceding and subsequent hardware kernel.

The above consideration leads to the conclusion that both the first two and the last two

hardware kernels of the sub-traces are needed to identify Kx, K and Ky. Any software ker-

nels in the sub-trace occurring before the first hardware kernel and after the last hardware

kernel are also needed. Recall from section 3.2.3 that an in-order traversal of any vertex

recovers a sub-trace. Thus, We label each vertex, vi, with a H tag and an S tag, as shown in

Figure 3.4, where kernels a, c and d have been chosen for hardware implementation.

The H tag consists of two pairs of indices The first pair would be the first two hardware

kernels of the sub-trace represented by vi. The second pair would be the last two hardware

kernels in the same sub-trace. In cases when the sub-trace represented by the vi does not

contain at least 2 hardware kernels (e.g., in the case of leaf vertices), the non-existent

hardware kernels would be labelled with ‘ ’.

The S tag consists of two (possibly empty) sets of indices. The first set contains the

software kernels that occur in the sub-trace represented by vi before the first hardware

kernel. The second set contains the software kernels that occur in the sub-trace represented

by vi after the last hardware kernel. In cases when the sub-trace does not contain any

hardware kernels, all the kernels contained in the sub-trace are added to both sets.

This labeling process, i.e., computing the H and S tags, is done in a single bottom-up

traversal of the SEQUITUR tree. Assuming that all the children vertices of vi are properly
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labelled, the H and S tags of vi can be computed using the H and S tags of the first and last

child of vi.

With the H and S tags in hand, we can now enumerate the <Kx,S,Ki,S′,Ky > sequences

of vi. It turns out that this can be done in the same bottom-up traversal by examining the

labels of vi’s siblings and concatenating the possible sequences. For example, according

to the tags of vertex C, there is only one hardware kernel a that occurs in the sub-trace

represented by vertex C and b is the only software kernel that occurs after a. According

to the tags of vertex D, the first hardware kernel of the sub-trace represented by vertex D is

a. Thus the the sequence <a,b,a> spans the two sub-traces represented by vertex C and

D. In fact, the sequence <a,b,a> also spans the sub-traces represented by two consecutive

occurrences of vertex C. Thus, this sequence occurs twice in the sub-trace represented by

vertex B and since vertex B itself has an occurrence count of 2, the sequence <a,b,a>

occurs four times in total.

With all the necessary sequences enumerated, all the neighbors of a design point can be

evaluated easily based on Equation 2.

3.2.4 Employing the Entire Framework

A crucial step during a neighborhood search usually involved the following steps: evalua-

tion of the current design point, comparison with neighboring design points and eventually

selecting one particular neighboring design point to be the next step of the search. Figure

3.5 shows what happens during such a step in a search. It shows a partial view of the rel-

evant design space, enumerated sequences and labeled SEQUITUR graph for 2 consecutive

steps of a search. The current design point is shown in bold while the ignored design points

during the step are shaded.
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Figure 3.5: An example showing the change in annotation of the SEQUITUR graph and

enumeration of sequences after a move between neighboring design points.
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Initially, the current partition of the search is {{a},{c,d}}. When considering the move

of adding kernel b into configuration {a} (i.e., move to {{a,b},{c,d}}), the occurrence

count of enumerated sequences < a,b,a > and < c,b,c > used to compute the change in

the reconfiguration cost in such a move. Since kernel a and b would be in the same config-

uration, the increase in reconfiguration count is 4. Similar computations can be made for

the other neighbors and are left as an exercise for the reader. The partition {{a,b},{c,d}}

is selected(the criterion depends on the search algorithm) for the next step in the search.

Consequently, the SEQUITUR tree needs to be relabeled according to the methods described

in section 3.2.3.1. To complete the move, sequences < a,c,b > and < b,a,c > are enumer-

ated to reflect the case that kernel b is now in hardware. The search can thus continue after

the move is completed.

3.3 Experimental Evaluation

3.3.1 Experimental Setup

We use four non-trivial benchmarks for our experimental evaluation: a JPEG encoder(cjpeg),

a JPEG decoder (djpeg), an encryption key exchange program (dh), and an MPEG encoder

(mpegenc). cjpeg, djpeg and mpegenc are taken from the Mediabench [38] benchmark

suite while dh is taken from NetBench[44]. We use the Trimaran compiler infrastructure [9]

to generate the input parameters for the design space exploration problem. In particular,

we have implemented a loop profiler that selects a loop kernel (both inner and outer) as a

candidate if its computation time exceeds more than 1% of the entire application.

In view of a lack of estimation tools, we have to pre-generate the area and timings

estimation. We applied loop unrolling with various loop unroll factors to each candidate

loop kernel. To obtain hardware performance and area required for each kernel instance,
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we automatically generate Handel-C code [8] from Trimaran’s Elcor intermediate repre-

sentation. The timings and area estimations of these alternate hardware implementations

are subsequently obtained through synthesis using the Celoxica DK design suite and Xilinx

ISE tools. The target rFPGA for synthesis is the Xilinx 2000E model[69]. To evaluate our

framework, we developed three algorithms: Exhaustive, Hill-Climb and Tabu search.

Exhaustive search In a pre-processing phase, we compute the optimal configuration

instances corresponding to all possible configurations of the candidate kernels using the

method described in section 3.2.1.1. The main phase then enumerates all possible par-

titions. The enumeration algorithm used is by Kreher and Stinson [37]. This algorithm

ensures the proper enumeration of all the partitions. The savings of a partition is defined

as the savings of its optimal instance. Evaluation of the savings of a partition is described

in Section 3.2.1. The partition instance with the maximum savings is chosen as the opti-

mal partition instance. It should be noted that apart from how the optimal configuration

instances are chosen, the Exhaustive search algorithm does not make use of the rest of the

framework.

Hill-Climb search We start with an empty partition. This ensures that our solution is at

least as good as an all-software solution to begin with. We then evaluate all its neighbors

using the technique described in the previous subsection. We choose the neighbor with

the maximum savings (i.e., minimum execution time). The search then moves to this new

design point and examines its neighbors. We always maintain the best partition obtained

so far. The search terminates at a design point if we cannot find any partition in the neigh-

borhood that is better than the current best partition. It should be noted that our Hill-Climb

search draws heavily on the framework described in Section 3.2, making full use of the

neighborhood relationships and the efficient evaluation of the neighbors.
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Tabu search We modify the Hill-Climb search to obtain the Tabu search. The main dif-

ference being that the search does not terminate when a local maximum is reached. Instead,

we maintain a tabu list of design points which have been visited and the most profitable

neighbor is always visited, irregardless of whether the neighbor yields more savings than

the current design point. If the particular neighbor design point is on the tabu list, the next

most profitable neighbor not present on the tabu list is visited. The search terminates when

the number of moves made reaches a certain limit. In our experimentation, we have fixed

the number of entries on the tabu list to be 100 and the limited number of moves to be a

logarithm of the design space size to base 1.05.

Benchmark Num. of Size of Avg. Exhaustive Avg. Hill-Climb Avg. Tabu

Candidate Comp. Trace Search Time Search Time Search Time

Kernels KBytes (sec) (sec) (sec)

cjpeg 11 1 17719.72 0.24 3.17

djpeg 7 4.3 17.34 0.04 1.06

dh 7 72 3837.87 3.73 112.04

mpegenc 6 74 245.88 0.96 18.44

Table 3.1: The running times of exhaustive search, Hill-Climb algorithm and compressed

trace sizes.

We have implemented the search algorithms in C++ compiled by gcc version 4.1.2. We

run the experiments on a 2.8 GHz Pentium 4 machine in the GNU-Linux environment.

All the run-time of the search algorithms reported are based on Pentium’s hardware cycle

counters. The Trimaran framework allows us to define a VLIW machine with 4 integer
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units, , 1 branch unit and and 1 load/store unit. We obtain the cycle-accurate measure of

the all-software solution based on the simulator reports of the Trimaran framework.

Table 3.1 show the number of candidates kernels for each benchmark and the average

running times of the implemented searches for all benchmarks. These values are obtained

by running the experiments with varying input parameters described in section 3.3.2. This

table demonstrates the infeasibility of the exhaustive search approach. The number of ker-

nels increases the running exponentially, even though cjpeg has the smallest compressed

trace among all the benchmarks, the running time was close to 4 hours to run the exhaustive

search. Table 3.1 shows the average running time of the Hill-Climb search and Tabu search

as well. It should be noted that the length of the trace dominates the running time when the

number of kernels is the same. We can conclude this by observing that the running time

of dh is longer compared to djpeg even though the number of kernels is the same. Our

experiments show that Hill-Climb is able to find the optimal design point more than 90%

of the cases while Tabu search found the optimal design point in all of our experiments.
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Figure 3.6: Optimal speedups plotted against increasing hardware resource.
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Figure 3.7: Optimal speedups plotted against increasing reconfiguration time.

3.3.2 Scaling Hardware Resources and Reconfiguration Time

Both Figure 3.6 and Figure 3.7 plots the results of exhaustive search in order to give an

idea of the design space. The lines on the graphs have been labelled with the benchmark

name and the plotted points with shapes to indicate the type of the solution. For example,

following Figure 3.6, benchmark dh yields a SM partition under a resource constraint of

5K slices and then a DS partition under the resource constraint of 6K slices. Beyond, the

resource constraint of 16K slices, dh is optimally implemented with SM. It should be noted

that while many of the plotted points show DM to be the optimal partition, the kernels

included in the partition are not uniformly the same for the same benchmark. Sometimes,

as resource constraints increase or decrease, certain kernels has to be moved to software or

hardware, though the resulting partition is still ostensibly DM.

Figure 3.6 plots the speedups of the optimal design point through exhaustive search

against increasing resource area. The reconfiguration time is set at 10 µseconds. We ob-

serve that placing multiple kernels in hardware yields the optimal results in most cases

except for dh. For the dh benchmark, if the resource available goes beyond 15K slices,
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the SM will give better speedup than DM. This is because when the area is large enough

to be shared by all the kernels, we no longer gain from dynamic reconfiguration. If the

resources available decrease below 7K slices, DS and SM gives better speedup. This could

be because the available resources becomes too small to hold multiple kernel. It should be

mentioned that though the graph shows DM to be an optimal design point most of the time,

the partition solutions for each benchmark are not the same throughout.

Figures 3.7 plot speedups of the optimal design point as reconfiguration time increases.

The area is fixed at 10,000 logic slices. The speedups of cjpeg and djpeg remain almost

constant because the optimal design point gives a partition which yields quite a small re-

configuration cost while achieving the speedup at the same time. As a result, the change in

the reconfiguration cost is insufficient to alter the optimal design point. For the dh bench-

mark, if the reconfiguration time is small, it will still employ dynamic reconfiguration with

multiple kernels. The trade-off between more kernels and reconfiguration cost comes in

when the reconfiguration time increases beyond 15µseconds.

3.3.3 Impact of Using SEQUITUR and Label Extensions

In order to demonstrate the difference made when the SEQUITUR compressed trace and

label extensions are used, we implemented -trace and -seq versions of the Tabu and

Hill-Climb search. The -trace version traverses the uncompressed loop trace stored in

memory to compute the reconfiguration cost of a design point. The -seq version traverses

the compressed SEQUITUR loop trace and calculates reconfiguration cost without the label

extensions, i.e. using the technique described in section 3.2.1.3 every time a design point

is evaluated. Table 3.2 shows the various slow-downs of these implementation compared

to the Tabu and Hill-Climb searches that employ both the SEQUITUR compressed trace

and neighborhood relationship. The slow down is significant. Although using the -seq
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version gives about an order of magnitude of speedup compared with the -trace version,

employing the neighborhood relationship makes the search a further order of magnitude

faster in general, except in the case of Hill-Climb search for cjpeg.

Benchmark tabu-trace tabu-seq hc-trace hc-seq

cjpeg 97.24x 10.34x 10.12x 1.13x

djpeg 21.77x 8.57x 6.20x 13.92x

dh 45.35x 11.06x 31.62x 8.33x

mpegenc 439.18x 18.72x 242.92x 9.29x

Table 3.2: Experiment results showing how many times Tabu and Hill Climb slowed down

when not using SEQUITUR and neighborhood relationship.

3.4 Summary

In this chapter, we considered the problem of exploring the design space of dynamically

reconfigurable SoCs for spatial and temporal partitioning . Specifically, we proposed a

means of speeding up neighborhood searches of such design spaces by a novel method of

estimating the design points near the current one in a compressed trace. We showed that

our technique works for both Hill-Climb and Tabu search. On four benchmarks, we found

that using our neighboring design point computation method, the searches were faster by

up to two orders of magnitude while reporting near-optimal solution most of the time.

The framework we proposed is generic. It can be easily extended to apply to any gran-

ularity of code fragment besides loop kernels and other non-FPGA reconfigurable architec-

ture as well.
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Chapter 4

Optimal Scheduling of Hardware

Reconfigurations

The design space search framework presented in Chapter 3 has assumed an rFPGA archi-

tecture where the configuration time is not reduced through configuring the FPGA in par-

allel with application execution. In this chapter, we consider the configuration scheduling

problem for pFPGAs.

A typical architecture that we consider here is shown in Figure 1. One of the key

challenges in achieving real speedups using such an architecture is that hardware recon-

figuration of today’s massive pFPGAs can be very costly. It often takes thousands, if not

hundreds of thousands of clock cycles to reconfigure. If this high reconfiguration cost can-

not be reduced, then all benefits of hardware acceleration may be lost as the application has

to wait for reconfiguration to complete. Configuration prefetching [26] seeks to address

this problem by overlapping (partial) reconfiguration with the execution of the application

in pFPGA. However, a prefetch miss is costly because of the additional reconfigurations

that may be needed to recover from the miss. Therefore, the scheduling of reconfiguration

is crucial.

55



In this context, this chapter solves the following problem. Given a sequence (trace) of

actors (an invocation of a hardware module):

• Determine whether for a given actor in the trace, it is necessary to schedule a recon-

figuration task before it. This will depend on whether part or all of the resources

required by the hardware module is currently being used by another (different) mod-

ule. In other words, the two modules’ placements overlap.

• Compute the earliest possible time a required reconfiguration task may be scheduled.

For the current technology, at most one reconfiguration task is typically allowed at

any time.

In essence, we will present a polynomial-time (in terms of the length of the trace and the

number of distinct hardware modules) algorithm that schedules all the required reconfig-

urations such that the overall execution time (latency) of the given actor trace is provably

minimized. To the best of our knowledge, this is the first time an algorithm of this nature

has been proposed.

In the following, we present an overview of the contents of the chapter: Section 4.1

is a preliminary description of our architectural and scheduling model. Next, we provide

an analysis of the dependencies between actor invocations into (a) data dependencies, (b)

resource conflicts, and (c) reconfiguration dependencies in Section 4.2. Our scheduling

algorithm is then described in Section 4.3. In the same section, we will sketch the proof

of its optimality. Finally, in Section 4.4, we provide a detailed case study to illustrate the

benefits of this algorithm before we conclude with an outlook of future work.
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4.1 Preliminaries

4.1.1 Architecture Model

We consider an architecture with one micro-processor that receives a trace of actors (Figure

4.1). For each actor, we assume a corresponding hardware accelerator module that may be

loaded into the FPGA for subsequent execution by means of partial hardware reconfigura-

tion.

CPU

Bus

Reconfiguration 
Interface

a3 a2

a5a6a7a12�a13

a4 FPGA

Figure 4.1: Architecture model: A CPU (left) controlling the reconfiguration interface of

an FPGA (right) used as a hardware accelerator for an incoming task sequence.

4.1.2 Scheduling Model

Example 4.1.1 Figure 4.2 shows an example of a given application consisting of a se-

quence of five actors (corresponding to four tasks) with data dependencies, and a given

conflict relation concerning the shared use of FPGA resources. For example, when task B

conflict with C, this would mean that they share some common hardware resources on the

FPGA which may be either I/O pins, memory resources (such as block rams), or slices.
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a1=B a2=C a3=C a4=A a5=Da0=Td

Set of Tasks = {A,B,C,D,Td}
B conflicts with C, C conflicts with D, Td conflicts with A,B,C,D
Sequence of actors a0 to a5: a0=Td, a1=B, a2=C, a3=C, a4=A, a5=D

Figure 4.2: Example of actor trace.

Assume for now that this conflict relation is given statically, i.e., no module relocation is

allowed. Thus we know the conflicts between every pair of actors at compile time. More

formally, we define an actor trace and the corresponding conflicts as follows:

1. Trace of actors: Sa = (a0,a1,a2, . . . ,an) with ai ∈ T, i 6= 0. T is a set of tasks, and

‖T‖ = N, where N is number of tasks. We define a dummy task Td that always

corresponds to the dummy actor a0. Td takes zero execution time and it can always

be inserted at the beginning of any sequence of actors without loss of generality.

2. Resource conflicts: The relation C = {(Ti,Tj)|Ti � Tj} denotes that the placement of

Ti conflicts with placement of Tj. Td is by definition in conflict with all the members

of T .

3. Any actor ai ∈ Sa can only be scheduled for execution on the FPGA if all its preceding

tasks have completed execution. Furthermore, if the corresponding module is not

yet resident on the FPGA, it needs to be loaded, i.e., the corresponding resources

reconfigured, prior to execution.

4.2 Problem Formulation

Before defining the scheduling problem, we need to distinguish three different types of

dependencies: The first one, data dependencies, is obvious. The second is the conflict
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relation introduced above that is due to the sharing of FPGA resources among the hardware

modules. Finally, the third kind of dependencies arise because some actors cannot begin

execution until its corresponding configuration task is completed. In order to compute this,

we first need to discuss the problem of reconfiguration task generation.

4.2.1 Reconfiguration Tasks Generation

Definition 4.2.1 (True dependence) Given a sequence of actors Sa. ai is called truly de-

pendent on a j, written a j ≺ ai iff

@k, j < k < i : (ak � ai)∧ (∀k′,k < k′ < i : ak 6= ai)

True dependence is based on the intuition that, for an actor ai of task t ∈ T , not every

occurrence of conflicting predecessors in the trace matters. It is the conflicting predeces-

sor ak that is closest to ai that will have an impact on the reconfiguration decision for ai.

Furthermore, ai must be the first actor of task type t in the trace subsequent to ak.

Example 4.2.1 In Figure 4.2, a2 is truly dependent on a1 but a3 has no true dependence

because it executes after another actor, a2, of the same task. Also, because task A does not

conflict with any tasks except task Td , actor a4 is truly dependent only on actor a0.

Now, each first appearance of a task in a trace will also necessitate exactly one recon-

figuration task. Hence, the set of required reconfiguration tasks Sr = (r1, . . . ,rl) may be

found by inspecting the given trace once.1

Theorem 4.2.1 (Reconfiguration task instantiation) For an actor ai in a given trace Sa,

there needs to be a corresponding reconfiguration actor (task) ri if, and only if, ∃a j ∈ Sa :

a j ≺ ai. In other words, if there exists a predecessor a j in Sa on which ai is truly dependent.

1Note that the subscripts of reconfiguration tasks in Sr are in sequence but not necessary running as they

correspond to the subscript of the associated actor, and not all actors need reconfiguration.
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For each reconfiguration task ri, two additional dependencies must be created. First,

each ri must complete before the corresponding actor ai starts executing. Second, for a j

such that a j ≺ ai, reconfiguration task ri for ai cannot start earlier than the completion

of a j on which ai is truly dependent on because ri affects the execution of a j. The two

dependencies are shown by adding an outgoing edge from ri to ai and one incoming edge

from a j to ri.

Example 4.2.2 Figure 4.3 shows the set of reconfiguration tasks generated for the running

example as introduced in Example 4.1.1 as well as the additional scheduling dependencies

in Figure 4.4. Note that actor a3 does not induce a reconfiguration task to be created

because it is preceded by a2, an actor of the same task. It should be noted that while r1 and

r4 should be preceded by a0, the constraint is not enforced in practice since Td has zero

execution time.

a1=B a2=C a3=C a4=A a5=Da0=Td

r1 r2 r4 r5

Figure 4.3: Reconfiguration task generation.

a1=B a2=C a3=C a4=A a5=Da0=Td

r1 r2 r4

r5

Figure 4.4: Dependence relations.
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In summary, we have to consider the following three types of dependencies for schedul-

ing after having all the required reconfiguration tasks generated:

• Sequential precedence:

Ps = {(ai,a j)|(0≤ i≤ n−1)∧ ( j = i+1)};

• Conflict (resource) precedence:

Pc = {(a j,ri)|a j ≺ ai}; and

• Reconfiguration precedence:

Pr = {(ri,ai)|(∃ri ∈ Sr)}.

The complete dependence relation is thus P = Ps∪Pr∪Pc.

4.2.2 Minimizing Schedule Length

Given the above, we are now in a position to state the scheduling problem formally. The

following notation will be used throughout this chapter:

• l(ai): latency of actor ai

• s(ai): the start time of actor ai

• f (ai): the end time of actor ai

• l(ri): latency of reconfiguration task ri

• s(ri): the start time of reconfiguration task ri

• f (ri): the finishing time of reconfiguration task ri

Definition 4.2.2 (Feasible schedule) A feasible schedule is an assignment of end times

f (ai) and f (ri), respectively, to every actor ai ∈ Sa and reconfiguration task ri ∈ Sr such that
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all the above mentioned precedence constraints are satisfied, i.e., ∀ j such that (Xi,X j) ∈ P

then s(X j)≥ f (Xi).

Example 4.2.3 Figure 4.5 shows an example of a feasible schedule for five actors a1,a2,a3,a4,a5

and the associated reconfiguration tasks.

r1

a1
r4 r2 r5

a5

0 100 200

a2 a4a3 f(a5)=135

l(a1)=20,  l(a2)=l(a3)=10,  l(a4)=25,  l(a5)=15,
l(r1)=15,  l(r2) =20,  l(r4)=35,  l(r5)=30

Figure 4.5: Feasible schedule for the problem introduced in Example 4.2.3.

Obviously, the reconfiguration interface may be regarded as a separate resource. The

aim of a scheduling algorithm for this problem is to find a feasible schedule where f (an) is

minimized for a trace of actors Sa = (a0,a1,a2, . . . ,an).

4.3 Algorithm MLS

We shall now present the main result of this chapter, namely a polynomial time, latency-

optimal scheduling algorithm for actors and reconfiguration tasks that we call Modified List

Scheduling (MLS). The algorithm assumes that reconfiguration tasks can be pre-empted

and resumed later. This is based on the way frame-based reconfigurable devices operate.

Configuration for frame-based devices such as Xilinx FPGAs is achieved by writing a set

of frames into the SRAM configuration memory of the device. It does not matter whether

the reconfiguration process is carried out in 1, 2, or more phases as long as the affected
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area is not again rewritten by other module configurations in between. Also, the algorithm

prioritizes reconfiguration tasks by the order of appearance of their corresponding actors in

the actor trace.

The MLS algorithm is shown in Algorithm 1. It consists mainly of two passes through

the actor trace. In the first pass, the algorithm seeks to discover true dependences between

the actors and generate the corresponding reconfiguration tasks Sr. To do this, we maintain

a flag ft for each task t ∈ T and an index prevt . We traverse the trace from a1 to an.

Assume that ai is the current actor. If flag fai is true, a corresponding reconfiguration

task ri will be created, and if prevt 6= −1, ri is to be preceded by actor aprevt (i.e., truly

dependent on aprevt ). prevt = 1 when the reconfiguration task created is needed for the

first occurrence of ai. Furthermore, we record all ready reconfiguration tasks in a heap

data structure H, ordered by the relative appearance order of the associated actor in the

actor trace. In order to facilitate the preemptive scheduling of reconfiguration tasks, we

maintain a TimeRemaining attribute for each of the tasks and this is initialized to the full

reconfiguration latency required.

The second pass through the trace computes the actual scheduling time using preemp-

tive scheduling of reconfiguration tasks. current A is the current ready actor. In the case

when there are no ready actors, we schedule a ready reconfiguration task r whose associ-

ated actor has the earliest appearance order in the actor trace. Otherwise, we schedule actor

current A. In the time l(current A), we will try to schedule as many reconfiguration tasks

sequentially as possible to configure the FPGA in parallel with the execution of current A.

However, the space given by the scheduled actor may not be enough for the TimeRemain-
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ing of r to fill up. Such r’s are inserted back into H with updated TimeRemaining. The

algorithm terminates when the last actor an is scheduled.

Algorithm 1: MLS algorithm.

Input: Trace of actors: Sa;
Set of Conflicting Hardware Modules: C;
Set of tasks: T ;
Result: Optimal Schedule Length
ForAll( ft ,prevt : t ∈ T) ft ← true; prevt ←−1;
for ai← a1 to an : ai ∈ Sa do

if fai is true then
CreateReconfigurationTask (ri);
(ri).TimeRemaining← l(ri);
if prevai 6=−1 then AddEdge (aprevai

, ri;);
AddEdge (ri,ai);
ForAll(t ∈ T) if (t,ai) ∈C then ft ← true; prevt ← i;
if ri has no preceding tasks then Insert (H, ri);

if TaskReady (a1) then current A← a1; else current A← empty;
length← 0;
while current A 6= an do

if current A is empty then
r← ExtractMax (H);
length← length +(r).TimeRemaining;
current A← NextTask (r);

else
length← length +l(current A );
T ← l(c);
while H not empty ∧T 6= 0 do

r← ExtractMax (H);
if l(r)< T then T ← T − l(r);
else

r..TimeRemaining← r.TimeRemaining −T ;
T ← 0;
Insert (H, r);

ForAll(r ∈ DependsOn (current A)) Insert (H, r);
if TaskReady (NextTask (current A)) then

current A← NextTask (current A);
else current A← empty;

length← length +l(an);
return length;
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r1

a1
r4 r2 r5

a5

0 100 200

a2 a4a3 f(a5)=120

r4

r4 pre-empted 
and resumed

tb

Figure 4.6: Example of optimal feasible schedule produced by MLS.

4.3.1 Bubbles in the Reconfiguration Schedule

Before describing the optimality proof of our algorithm, we will illustrate a key idea used

in the proof by means of an example.

Example 4.3.1 Figure 4.6 shows the result of applying the MLS algorithm to our running

example. In the schedule of the reconfiguration tasks, we can see ‘bubbles’, i.e., time inter-

vals in which there are no reconfiguration tasks occupying the reconfiguration interface of

the FPGA. By the greedy nature of list scheduling, if a ready task exists, it will always be

scheduled. Therefore, a bubble can only exist at a time instant tb when there are no ready

reconfiguration tasks to be scheduled at tb. In the example, a bubble exists between r4 and

r5 because there are no ready tasks before the completion of a3. The figure also shows the

preemption of reconfiguration task r4. r4 is preempted at time 35 before being continued at

time 55.

4.3.2 Proof of Optimality

We shall now present the induction proof for the optimality of the MLS algorithm. Note

that while in general list scheduling is but a heuristic, in the case of MLS, the order of an

actor’s appearance in the schedule is pre-determined by the trace. Furthermore, due to the

fixed priority function, the time slots occupied by a reconfiguration task cannot be used
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(a) Base case
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(b) Inductive step: an has no reconfiguration task

r1

a1

0 100 200

r1

a1

0 100 200

an-1 an

f(a1) .. f(an-1) minimized

r1

a1

0 100 200

an-1 an

f(a1) .. f(an-1) minimized

�

�ai �
all bubbles
filled with rn

leftover of rn from 
filling the bubbles

(c) Inductive step: an has reconfiguration task rn

Figure 4.7: Induction proof cases for MLS.

by any other once the actor trace and conflicts are known. These two facts combined to

guarantee the optimality of MLS.

Theorem 4.3.1 (Optimality) Given a trace of actors Sa of length n with the required re-

configuration tasks introduced in accordance to Theorem 4.2.1 and the corresponding de-

pendencies added, the MLS algorithm with (a) preemption of reconfiguration tasks, and (b)

task priority given by the number of successor tasks in the precedence graph will yield a

schedule with the smallest possible f (an).
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Proof.

We show Theorem 4.3.1 by induction on the length of the actor trace Sa.

Base case: |Sa|−1 = n = 1. Figure 4.7(a) shows the base case. The dummy actor a0 = Td

that has zero latency is not shown. r1 followed by a1 is the optimal schedule. MLS would

trivially generate exactly this schedule.

Inductive Step:

Consider now a trace of length n > 1 and assume that f (ai) is minimal for 1 ≤ i < n. We

need to show that when an is considered: (1) the resulting schedule created by including an

is still optimal, and (2) that this schedule can be computed by MLS.

There are 2 possibilities:

• an has no reconfiguration task as a predecessor.

This trivial case is shown in Figure 4.7(b). an is simply appended to the actor sched-

ule. Since f (an−1) is optimal, f (an) is also optimal since there is no bubble between

an−1 and an. It is easy to see that MLS will yield exactly this schedule.

• an has a preceding reconfiguration task rn.

There must then exist an actor ai,0 ≤ i < n such that ai ≺ an. Observe from the

assumption made in the induction step that f (ai) is minimal, i.e., ai cannot be sched-

uled earlier. Due to the precedence constraints and inductive assumption, rn cannot

be scheduled earlier than f (ai). So, the time to schedule rn is in the interval from

f (ai) to s(an). Now preemption allows us to schedule and split the latency l(rn) of

the reconfiguration task rn to fill up all the bubbles between f (ai) and f (an−1) left

in the reconfiguration schedule. Any leftover time of l(rn) will be simply scheduled

after f (an−1). Figure 4.7(c) shows this case. The bubbles between f (ai) and f (an−1)

exist because there are no reconfiguration task r j, j < n, that can use them. Either
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the total length of these bubbles is (a) completely sufficient to absorb l(rn), or (b)

insufficient and hence there is some amount of outstanding l(rn). For the former, the

schedule is optimal since all we need to do is to append an immediately after an−1.

For the latter, the schedule obtained by first scheduling the remainder of rn followed

immediately by the start of an is also optimal. Finally, note that scheduling rn using

MLS will not interfere or preempt other previously scheduled reconfiguration tasks

r j, j < n as these will have higher priorities, and only those bubbles starting from

f (ai) (unusable by any r j, j < n) are used for rn.

Thus, we have shown that if the inductive step holds, the resulting schedule for Sa of length

n is optimal. Since the base case is true, the proposed property holds true for all traces Sa

of any size more than one.

4.3.3 Further Clarifications

The optimality of the proposed algorithm is constrained by 2 factors: 1) available hardware

resources on the FPGA and 2) the conflict relationships between the tasks. Furthermore, it

is important to note that while the pre-emption of reconfiguration tasks frees the reconfig-

uration port so that other reconfiguration tasks can proceed, the configured resources (e.g.

frames, columns) are not freed to be occupied by other tasks. We shall further illustrate

clarify the workings of the algorithm with one pathological case here.

In the first pathological case, all tasks are placed on the FPGA. Each tasks require sig-

nificant hardware resources for implementation and thus every task more or less occupies

the whole FPGA. In this case, every tasks conflicts with one another. An analogous situ-

ation would be the case where the hardware resources available are so few that all tasks

placed on the FPGA are forced to be in conflict with one another. Our algorithm will still

return an optimal schedule in this case. It should be noted that since each task is in re-
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source conflicts with all other tasks, it is not possible to configure the FPGA in parallel

with the execution of the tasks. The only and hence optimal schedule in this case would be

to configure the FPGA each time a different task is being executed.

4.4 Case Study

4.4.1 H264-encoder Case Study

We use a H.264 [67] encoder application as a case study of the effectiveness of our al-

gorithm. Based on profiling, we identified 15 loops that take up most of the computa-

tion time in the application. The hardware implementation of these loops were synthe-

sized using Xilinx’s ISE. Table 4.3 gives the details of the loops. The loops are named by

their containing functions’ names and identifiers assigned by the compiler. For example,

biari encode symbol-6 is loop 6 in function biari encode symbol. The target device

for synthesis is Xilinx Virtex-II XC2V6000 device[72].

Table 4.1 shows the characteristics of the application using two actor traces obtained

with the 15 loops. It shows the length of the actor traces and the number of unique patterns

occurring within the trace. A pattern is a maximal acyclic sequence of actors that occurs

repeatedly in the trace. Two patterns are considered different if they differ in at least one

actor. Intuitively speaking, the more unique patterns they are in the trace would imply

greater adaptability and variation for the given input. We obtained the shorter trace by

encoding one frame and the longer trace by encoding two consecutive frames. The frames

are 704 by 576 pixels in size. All the hardware modules are assumed to be running at a

frequency of 50 MHz.

We tested the effectiveness of Algorithm MLS by observing the scheduling results

for different sets of resource conflicts. Prefetching is beneficial only if there is sufficient
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amount of time between the execution of conflicting hardware modules. Otherwise, there

is no concurrency between execution and reconfiguration of the hardware modules. We ob-

tained different sets of resource conflicts by allowing conflicts (i.e., placement overlap) to

occur if the minimum average number of execution cycles between the actors involved are

at least above a given threshold number of cycles. Table 4.2 shows the resource conflicts

for thresholds between 700 to 1300 cycles. Obviously, the number of conflicts decreases

when the threshold is increased. We shall report the impact of different number of conflicts

on the schedule length in Section 4.4.3.2.

Trace Num. of Num. of Num. Of

Frames Encoded Actors Unique Patterns

Short 1 35,622,092 52

Long 2 185,232,537 100

Table 4.1: Characteristics of the two traces.

4.4.2 Experiment Setup

To demonstrate the effectiveness of our approach, we compared it against three algorithms:

two different online Least Mean Square Predictor, and a simple scheduler.

Simple Scheduler The Simple Scheduler does not attempt any form of prefetching. In-

stead, it simply maintains a record of the currently FPGA configuration and only schedules

a reconfiguration on demand if the actor to be executed is not yet in the FPGA. It is reason-

able to expect that any prefetching approach should do no worse than the Simple Scheduler.
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Minimum avg. cycles Num. of

btw conflicting resource conflicts

700 48

800 42

900 39

1000 36

1100 25

1200 15

1300 7

Table 4.2: Resource conflicts.

We therefore used the schedule length computed by the Simple Scheduler as the baseline

for our comparisons.

Least Mean Square Online Predictor A (LMSA-a) This is an online predictor that is

similar to that described in [42, 11]. The Least Mean Square Filter is used as the predictor

function. However, because the target FPGA architecture considered in this thesis is differ-

ent (their architecture [13] supports relocation and defragmentation), our approach does not

use the priority function that is based on the configuration sizes and the different eviction

policies. Rather, the hardware module evicted are those in conflict with the module current

being prefetched.

Least Mean Square Online Predictor B (LMSA-b) This is a modification of LMSA-a.

Instead of predicting the next hardware task, the algorithm predicts the next conflicting

task. An important difference here is that instead of keeping historical information for only
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Loop Name Num. Of Num. Of Cycles Num. Of Cycles

(func name-loop id) Slices (long trace) (short trace)

biari encode symbol-1 1552 1,787,969,064 393,559,992

biari encode symbol-6 1486 458,442,739 103,953,560

dct luma-1 1597 979,861,500 159,476,940

dct luma-3 3316 8,100,188,400 1,318,342,704

dct luma-4 1428 740,339,800 120,493,688

dct luma-5 3314 2,917,809,800 474,886,888

dct luma-8 1052 152,422,900 24,807,524

dct luma-9 1388 609,691,600 99,230,096

Mode Decision for 4x4IntraBlocks-4 1234 106,317,960 21,263,592

Mode Decision for 4x4IntraBlocks-5 1472 567,029,120 113,405,824

reset coding state-1 1268 18,720,876 3,593,348

RDCost for 4x4IntraBlocks-1 1222 106,317,960 21,263,592

RDCost for 4x4IntraBlocks-2 1351 425,271,840 85,054,368

writeLumaCoeff4x4 CABAC-1 1812 466,152,012 107,780,832

write significant coefficients-1 1985 1,674,754,726 365,849,786

Table 4.3: Hardware modules, the hardware area occupied and the number of cycles taken

up in the application.
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the currently executing task, LMSA-b requires the information for all tasks to be kept in

order to predict the next conflicting task.

4.4.3 Experimental Results

4.4.3.1 Scaling the Reconfiguration Overhead

We seek to show the effect of increasing configuration overhead on the scheduling length.

For the FPGA we used, empirical measurements showed a configuration time of about

400µsec per CLB column. Using this high overhead, most applications stand to gain little

by hardware acceleration via dynamic reconfiguration. Fortunately, recent works [43, 12]

have shown that the overhead of configuring partial bitstreams can be potentially reduced

by factors of 20 or more. In particular, assuming the geometry of a Xilinx device, we ran

experiments by varying the reconfiguration speed from between 1µsec to 20µsec per CLB

column.

-5

0

5

10

15

20

25

30

35

40

45

50

55

1 5 10 20
Reconfiguration time (microsec per CLB column)

Pe
rf

or
m

an
ce

 in
cr

ea
se

 o
ve

r  
ba

se
lin

e
(P

er
ce

nt
ag

e)

MLS (short trace) LMSA-a (short trace) LMSA-b (short trace)
MLS (long trace) LMSA-a (long trace) LMSA-b (long trace)

Figure 4.8: Speedup over baseline plotted against increasing reconfiguration time.
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Figure 4.8 shows the performance increase of the different approaches over the sched-

ule produced by the Simple Scheduler. The threshold of the minimum average execution

cycles between two conflicting hardware module is set to 1000 cycles for this experiment.

We observe that as reconfiguration speed decreases, the performance gain achieved by all

the approaches decreases. With a high reconfiguration overhead, execution just has to wait

till reconfiguration completes. The single reconfiguration port also becomes a bottle-neck.

Over the range of reconfiguration overheads we considered, the schedule produced by MLS

outperforms the others in every case. At best, it can be 30 percent better than those pro-

duced by the other schemes.

Another interesting observation is that LMSA-b performs better than LMSA-a in gen-

eral. This could be because predicting the next conflicting hardware module gives prefetch-

ing more time and a miss in the prefetching is less costly. LMSA-a and LMSA-b also per-

form worse in the longer trace because the execution order is more complex, as shown in

the higher number of unique patterns. Another interesting note is that LMSA-a can perform

worse than the Simple Scheduler. Prefetch misses can sometimes increase the number of

reconfigurations beyond what is normally needed because incorrectly predicted prefetches

can evict hardware modules which are otherwise not evicted by the Simple Scheduler.

4.4.3.2 Scaling the Number of Conflicts

Figure 4.9 shows the performance of the different approaches under the different conflict

sets listed in Table 4.2. We set the reconfiguration speed to be 10µs per CLB column for

this experiment. We observe that as the number of conflicts decreases, the performance

gain of the schedules increases for MLS. However, the same cannot be said of LMSA-a

and LMSA-b. We attribute this to the fact that different conflict sets can cause different

mispredictions for the same actor trace. MLS outperforms LMSA-a and LMSA-b in all
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cases. In the case of the long trace, the difference between the schedules are significant.

This shows that the more complex the execution order, the more difficult it is for the online

prefetcher to yield a good schedule. Interestingly, in the longer trace, the LMSA-a performs

better than LMSA-b when the number of conflicts is larger.
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Figure 4.9: Speedup over baseline plotted against decreasing number of conflicts.

4.5 Summary

In this chapter, we presented an algorithm for the scheduling of reconfiguration tasks for

FPGA-based hardware acceleration at the electronic system level. For a given trace of

complex computational kernels for which there exist hardware accelerators, we analyze

the dependencies between actors into (a) data dependencies, (b) resource dependencies

(conflicts), and (c) reconfiguration dependencies. Our algorithm inspects each actor in the

trace and determines whether a reconfiguration task is needed and if so, schedules such
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a task in accordance with given dependencies. We provided a proof that the algorithm

always yields the optimal result in terms of the overall execution time (latency) of the

trace. Furthermore, it is polynomial in the length of the given trace of actor activations.

A realistic case study using the H.264 encoder has been provided to show the benefits and

sensitivity of the results.

We had assumed that the conflict relation between actors are given. Conflicts are depen-

dent on the placement of the corresponding hardware modules in the FPGA. In the future,

we would like to extend and optimize also the following scenarios: Assuming that an actor

may be executed either in software or has several instances that can be placed onto different

locations in the reconfigurable fabric, then we would like to find the best implementation

and placement decisions that will optimize the overall execution time of the application.

Due to its polynomial nature, our algorithm scales better than previously proposed ILP

approaches. Nonetheless, the analysis of a long trace is still quite time-consuming. Hence,

we would like to investigate heuristics that work at the level of the (static) control flow

graphs of the application. While such heuristics may not always produce the optimal so-

lutions, they may yield solutions that are “good enough” in practice, without the need for

obtaining and processing long traces.
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Chapter 5

Interprocedural Placement-Aware

Configuration Scheduling

In general, hardware implementations of computation are faster than the equivalent com-

putation performed on general purpose processors. However, the speedup obtained by

computation executed in FPGAs are offset by the huge reconfiguration latency required to

configure the FPGA during run-time. Chapter 1 and 2 has shown that pFPGAs provide

an additional opportunity for this reconfiguration to occur in parallel with both hardware

and software execution. Thus reconfiguration scheduling becomes critical for the reduc-

tion of the reconfiguration overhead. The reconfiguration schedule needs to maximize the

parallelism between the necessary reconfigurations and the execution, both hardware and

software, of the application,

The configuration scheduling problem is made complicated by the fact that the hard-

ware modules that are to be executed may compete with each other for resources on the

FPGA. Such modules are said to be in ‘conflict’. In cases where two hardware modules

A and B conflict with each other with module A is already loaded in the FPGA, it follows

that it is necessary to load B into hardware before B is executed. Therefore, whether a re-
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configuration is necessary is dependent on the conflicts relationship between the hardware

modules.

In this chapter, we propose an algorithm that provides appropriate cues for the compiler

to insert configuration commands into the control flow graph of the application so that

the overall execution time is minimized. This algorithm relies on characteristics of the

compiled software application and the conflict information of the hardware modules to

achieve this goal.

The chapter is organized as follows. Section 5.1 gives the background information that

forms that context of the problem we are solving. After illustrating our motivation with two

examples in Section 5.2, we present the problem formulation in Section 5.3. Section 5.4

describes the proposed algorithm. In Section 5.5, we present the experiment results before

concluding in Section 5.6.

5.1 Background

5.1.1 Architecture Model

We consider the architecture model as shown in Figure 5.1. The model is realistic for

archtectures such as the Xilinx Virtex Family of FPGAs, especially Virtex-II Pro, IV and

V. We show the major components of interest in Figure 5.1. Memory is where the software

code and data are stored, together with the bitstreams to be loaded onto the reconfigurable

region. The CPU is the main controller of application execution and is responsible for

initiating reconfiguration of the reconfigurable region. The reconfiguration manager is a

hardware module that loads bitstream data from the memory upon requests issued by the

CPU.
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Figure 5.1: Architecture model for interprocedural placement-aware configuration schedul-

ing.

The reconfigurable region is where the hardware modules of the application are exe-

cuted. It contains n slots where hardware modules can be placed. Each hardware module

must be placed on contiguous slots within the reconfigurable region. Through the bridge

interface, the hardware modules can read the memory in bursts and share the same address

space as the CPU. Although it is possible for hardware modules to be relocated during run-

time, it could be computationally expensive because the bitstreams for relocation needs to

be generated at run-time. As such, the placement of the hardware modules are decided

during design time. We consider any two placements of the hardware modules that overlap

with each other to be in ‘physical placement conflict’ (or just ‘conflict’ for the rest of the

chapter). For example, if one hardware module is placed on slots 1 and 2 and the another

hardware module is placed on slots 2 and 3, these two hardware modules are in conflict.
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Conflicting hardware modules cannot be loaded and run on the reconfigurable region si-

multaneously.

Informally, we aim to minimize the execution time of a single, sequential application

for this platform. The application consists of a combination of a program and m hardware

modules. These hardware modules are required to be loaded on the reconfigurable region

prior to their execution.

5.1.2 Reconfiguration Library Support

The architecture described above supports the preemption and subsequent resumption of

a hardware module. This is based on the insight that frame-based devices such as Xilinx

FPGAs allow the configuration loading to occur in non-contiguous temporal segment as

long as previously loaded bits are not overwritten. To support the software control of re-

configuring the reconfigurable region, we define a set of library calls that interfaces with

the reconfiguration manager and yet hide the underlying architecture details from the pro-

grammer.

The library requires some internal data structures to maintain the following information:

(a) the state of FPGA(i.e. what hardware modules are currently loaded on the FPGA), (b)

the hardware module being loaded onto the FPGA (if any), (c) the conflict information

between modules, (d) the location and length of the hardware module bitstreams, and (e)

the reconfiguration data required for resumption of reconfiguration. The last one requires

some further explanation. Suppose we preempt the reconfiguration of a hardware module

that consists of 5 CLB columns and 3 columns have been loaded thus far. We need to

remember the information about how much of the hardware module has been reconfigured

so as to support a future resumption of the reconfiguration of this module. We shall now

proceed to explain how the information (d) and (e) mentioned above are stored.
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We maintain a structure called HW load info for each hardware module to store the

information needed to support the reconfiguration of the module. It has 3 fields: address,

length and recon unit size. address is where the bitstream is located in the memory.

length is the size of the bitstream that needs to be loaded. recon unit size is the basic

reconfiguration granularity at which the hardware module is to be atomically configured

each time. If recon unit size is 1 CLB column, then 1 CLB column of bitstream data

will be loaded onto the reconfigurable region at a time. In other words, when a recon-

figuration is preempted, the library ensures that a multiple of recon unit size have been

loaded always. The actual value of recon unit size is target-device dependent, given that

different devices have different column lengths. We store the structures of each hardware

module in in an internal data structure HW LOAD TABLE that is declared in the following in

C-like pseudo code. It should be noted that by each hardware module is assigned a unique

hw id that is also used as an index of this table.

typedef struct hw load info
{

void *address;
int length;
int recon unit size;

} HW load info;
HW load info HW LOAD TABLE[NUM OF HARDWARE];

We maintain the information needed to support resumption of reconfiguration in a

structure called HW resume info for each hardware modules. HW resume info is iden-

tical to the HW load info except except that it contains a field called valid that indicates

whether resumption is still valid for the hardware module. RESUMPTION Q holds all the

HW resume infos of the hardware modules.
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typedef struct hw resume info
{

void *address;
int length;
int recon unit size;
int valid;

} HW resume info;
HW resume info RESUMPTION Q[NUM OF HARDWARE];

The following library calls support the software control (i.e. initialization, pre-emption,

and resumption) of run-time partial reconfiguration:

load(hw id): This is a non-blocking library call that loads the bitstream of a hardware

module hw id. load looks up the valid field of hw id’s entry in the RESUMPTION Q. If it

is invalid (i.e. the hardware module is not yet loaded on the FPGA), load looks up hw id’s

entry in HW LOAD TABLE for the starting address and length of the bitstream to be passed

to the reconfiguration manager. If it is valid (i.e. configuration resumption is possible),

load will pass the values stored in RESUMPTION Q to the reconfiguration manager. This

is a non-blocking call because the reconfiguration manager will start the loading of the

hardware module. When a hardware module is loaded, all it’s conflicting modules’ entries

in RESUMPTION Q will be invalidated.

currently reconfiguring(): Returns the id of the hardware module currently being

reconfigured, if any. Returns -1 if there are no hardware modules being reconfigured.

is loaded(hw): This returns a boolean value indicating whether a hardware module is

loaded on the reconfigurable region.
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hw exec(hw id, ...): A blocking call that returns upon the completion of the execu-

tion of the hardware module indicated by hw id. The rest of the parameters are inputs

(usually some register and address values) that are needed to be transferred to the hardware

module. If hw id is already loaded on the FPGA, the execution starts immediately. If the

hw id is not yet loaded, execution of hw may be delayed by either full or partial loading of

the hardware module. This delay forms the reconfiguration cost paid in expense of better

performance. However, we seek to reduce this delay through configuration prefetching.

5.1.3 Interprocedural Control Flow Graphs

The control flow graph(CFG) is a common, intermediate-level data structure used by com-

pilers to represent applications. The CFG displays all the possible paths that might be

traversed for the procedure that it represents. Every node in the graph is a basic block, that

has only one entry instruction and one exit instruction and no jump instructions in between

the entry and exit instructions.

The CFG usually represents the control flow of a single procedure. While the CFG is

useful for intra-procedural (i.e. within a procedure) optimizations, it may not be suitable

for optimizations that spans across procedure call boundaries. In such cases, an interpro-

cedural control flow graph (ICFG)[25] may be a better choice as a representation of the

application for optimization. All possible paths that might be taken during run-time are

represented completely in an ICFG.

As an example, we present in Figure 5.2 the C code for computing HeapSort and its

associated ICFG in Figure 5.3. The ICFG contains the control flow of all the procedures

of the HeapSort program. It should be noted that the CFG of the swap procedure is not

included because it is inlined after applying compiler optimizations. Observe the following

about our construction of the ICFG:
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#include <stdio.h>
#include <stdlib.h>

void HEAPSORT(int heap[100], int n);
void swap(int *p, int *q);
int BUILD HEAP(int heap[100], int n);
void HEAPIFY(int heap[100], int i, int heap size);

#define PARENT(i) ((i)/2)
#define LEFT(i) (2*(i))
#define RIGHT(i) (2*(i)+1)

static inline void swap(int *p, int *q)
{

int t;
t = *p; *p = *q; *q = t;

}

void main()
{

int i, j, n, heap[110];
while (1) {

printf("Enter the number of element (0 to exit): ");
scanf("%d", &n);
if (n == 0) break;
for (i = 1; i <= n; ++i) scanf("%d", &heap[i]);
HEAPSORT(heap, n);
printf("The sorted List is:\n");
for (i = 1; i <= n; ++i) printf("%d ", heap[i]);

}
}

Figure 5.2: HeapSort C code example.
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void HEAPSORT(int heap[100], int n)
{

int i, heap size;
heap size = BUILD HEAP(heap, n);
for (i = n; i >= 2; --i) {

swap(&heap[1], &heap[i]);
--heap size;
HEAPIFY(heap, 1, heap size);

}
}

int BUILD HEAP(int heap[100], int n)
{

int i, heap size;
heap size = n;
for (i = floor(n / 2); i >= 1; --i) HEAPIFY(heap, i, heap size);
return heap size;

}

void HEAPIFY(int heap[100], int i, int heap size)
{

int l, r, largest;
l = LEFT(i);
r = RIGHT(i);

if (l <= heap size && heap[l] > heap[i]) largest = l;
else largest = i;
if (r <= heap size && heap[r] > heap[largest]) largest = r;
while(largest!=i)
{

swap(&heap[i], &heap[largest]);
i = largest; l = LEFT(i); r=RIGHT(i);
if( l<=heap size && heap[l] > heap[i]) largest=l;
else largest=i;
if (r <= heap size && heap[r] > heap[largest]) largest = r;

}
}

Figure 5.2: HeapSort C code example.
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• Entry and Exit Nodes. In the ICFG, every procedure has a single entry and single

exit. While it is possible to have multiple return instructions for a procedure written

say in a high-level language such as C, we add an additional exit basic block and

replace the multiple return instructions with a branch to the added exit basic block.

Also, we have included a start and end node to indicate where the program begins

and ends normally. Normally, the program begins at the start of the main procedure

and end after the exit basic block of the main procedure.

• Call and Return Control Flow Edges. Apart from edges that indicate the usual

control-flow transfers (i.e. branch taken or fall-through), ICFGs include two addi-

tional types of control-flow edges. For example, the edge from node 3 to node 7 de-

notes a procedure call being made by the main procedure to the HEAPSORT procedure.

Similarly, the edge from node 18 to node 9 indicates that upon the completion of the

procedure call to BUILD HEAP, the control returns to node 9 of procedure HEAPSORT.

In Figure 5.3, the call edges are indicated by thicker lines in bold while the return

edges are indicated by dotted lines. It should be noted that if a call site makes a call

through a procedure pointer, it is possible for the call site to have multiple out-going

edges.

• Invalid Paths. While the ICFG contains all the possible paths that could be traversed

during run-time by the application, it contains paths that are invalid. For example,

the path 15→ 19→ 20→ 21→ 22→ 26→ 11 is invalid. 15→ 29 is a call edge that

indicates a procedure call made by BUILD HEAP to HEAPIFY. We normally expect the

call to return to the caller, but 26→ 11 is a return edge to HEAPSORT, thus making the

above given path invalid. It should be noted that for every call edge there is exactly

one corresponding return edge.
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Figure 5.3: HeapSort interprocedural control flow graph.
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• Hardware Nodes. The regions that are designated for hardware implementation are

collapsed into a node in the ICFG. In Figure 5.3, the loop in procedure HEAPIFY

is converted into a single block of code that begins with a call to hw exec(0), fol-

lowed by necessary control flow to other basic blocks in the ICFG. We refer to these

converted blocks of code that begins with a hw exec call as ’hardware nodes’ be-

cause these blocks of code initiate the execution of hardware modules. It should

be noted that these hardware nodes could contain multiple jump instructions, akin

to superblocks[31] that has a single entry instruction and multiple exit instructions.

The hardware nodes are depicted by a rectangular box and the software basic blocks

are indicated by ovals in figures showing ICFG. Furthermore, every hardware node

contains exactly one hw exec call.

For the rest of the chapter, we denote an ICFG as a directed graph G=(V,E,C, I,U,HW ).

V is the set of all the nodes in the ICFG. E is the set of edges denoting all possible con-

trol flow transfers in the program. head(e) and tail(e) refers to the begin and end nodes

of edge e respectively. C is the set of all call sites and C ⊂ V . I is the set of all entry

nodes of each procedure and I ⊂ V . U is the set of all exit nodes of each procedure and

U ⊂ V . HW ⊂ V is the set of all the hardware nodes in the ICFG. Each hardware node is

assigned a unique ID. Recall that every hardware node contains exactly one hw exec call.

For convenience’s sake, we shall refer to the hardware node and its corresponding hardware

modules interchangeably. Thus, two conflicting hardware nodes hw1 and hw2 are written

as hw1� hw2.
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5.2 Motivation

After replacing the regions designated to run on FPGA with hardware nodes, the com-

piled ICFG should execute on the reconfigurable platform. However, without inserting the

load library calls for optimization, the execution of such executables results in what we

call “fetch-on-demand”(FOD) schedules during run-time. Consider the execution sequence

abcb for hardware modules a,b and c . Figure 5.4(a) shows how the execution of the hard-

ware modules pan out during run-time. According to the hw exec call semantics, since

no hardware modules are preloaded, execution of the hardware modules are preceded by

a reconfiguration phase if the desired hardware module is not yet present on the FPGA.

Thus, in the example shown in Figure 5.4(a), we need to reconfigure a, b, c prior to their

execution. However, it should be noted that the last execution of b did not require a recon-

figuration since there are no conflicts between b and c and thus hardware module b is still

present on the FPGA after the execution of c.

The FOD schedule is sub-optimal and it can be improved upon with appropriately

placed load library calls. Figure 5.4(b) shows that by inserting an appropriate load c

call during the execution of b, the overall execution time is reduced. This is because the

reconfiguration of c can occur in parallel with the execution of b as c and b do not conflict

with each other. On the other hand, a misplaced load library call may result in a schedule

that is longer than FOD. Figure 5.4(c) shows the case that a load a call during the execution

of c results in an additional reconfiguration of b later, hence lengthening the original FOD

schedule. Although load library calls are necessary to improve upon the execution time,

these calls must be appropriately placed and the current chapter aims to insert these library

calls so that overall execution time is minimized. The following examples show how the

insertion of load library calls to prefetch hardware module is a complex issue.
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Figure 5.4: How prefetching affects overall execution time.
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To our knowledge, the two works that are most closely related to our work are done by

Panainte et al. [50] and Li et al. [42]. Panainte proposed a static interprocedural analysis

on call graphs that determined regions not shared between 2 conflicting hardware modules.

It should be noted that their paper gave no details as to exactly which basic block should

the load instructions be inserted. In our view, this approach could be too conservative and

loses chances of hiding more configuration latency. Figure 5.5(a) shows the control flow

graph of a function a will either call function b or c, depending on the branch taken at the

beginning of the function. Function b and c will execute hardware modules HW1 and HW2

respectively. Given that HW1 and HW2 conflicts with each other, the approach by Panainte

will not prefetch them beyond the boundaries of their respective functions (because the call

graph loses detailed path information). However, basic blocks A and B are probably at least

the safest earliest points where HW1 and HW2 can be prefetched.

Li proposed a probabilistic algorithm where a probability is attached to each edge in the

control flow graph, to indicate how probable those edges will be taken, should their source

be executed. After simplifying the control flow graph(that involves removing all cycles

in the graph), the probability to reach each hardware reconfiguration can be computed

by propagating the probabilities using a bottom-up approach. However, this approach is

less satisfactory when applied to situations where there are placement conflicts between

hardware modules. Figure 5.5(b) shows the case where the probability of reaching HW1 and

HW2 are computed for basic block A. The probabilities indicate that HW2 should be loaded

first. Given that HW1 and HW2 conflicts with each other, we should load HW1 first, contrary

to what is indicated by the computed probabilities. This is because if we will reach HW2

from basic block A, we are most likely to reach it through HW1. Furthremore, it is not

known whether the removal of cycles in the CFG will lead to the loss of precious path
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(b) Motivating example 2

Figure 5.5: Motivating examples.

information. These examples show that both path and conflict information are important in

order to improve the prefetching of configurations.

5.3 Problem Formulation

PROBLEM Given a directed, weighted ICFG G = (V,E,C, I,U,HW ), we would insert

load calls into the ICFG so that a compiler system, together with the reconfiguration library

support described in Section 5.1.2 will produce an executable that runs on the platform

described in Section 5.1.1 so as to minimize the necessary reconfiguration overhead of
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the application. One assumption that we make is every computation region is only either

executed in software or hardware.

5.4 Interprocedural Placement-Aware Configuration Schedul-

ing

The algorithm that we propose has the following 5 major stages:

1. Using profiling information, obtain the frequency of executing each control-flow

edge and prune the edges accordingly.

2. Compute the immediate post dominator for every node.

3. Compute the intra post dominator paths (IPDP) i.e., paths that do not extend beyond

the immediate post-dominator of the starting node of the path.

4. Compute for every node on the graph the estimated placement-aware probability of

reaching each hardware node with the IPDP and post-dominator information using

an iterative method.

5. Reduce the redundant prefetches and generate code for prefetching for each basic

block.

In the first stage, we profile the application by inserting a profiling instrumentation code

at the beginning of every basic block of the ICFG. By doing this, we are able to obtain the

execution trace information and execution frequencies for each control-flow edge. In order

to improve the efficiency of the algorithm, all edges with zero frequencies are removed at

this stage. The weight function w for each edge is computed using the below equation:

w(e) =
frequency of edge e

total frequency count of node head(e)
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Figure 5.6: An example ICFG. The squares represent hardware nodes while ovals represent

basic blocks. The thick edges represent call edges between procedures and the dotted lines

represent the return edges from the procedures.

A node g of the CFG post dominates node v if every path from v to the exit node of

their procedure passes through g. We denote the set of post-dominators for each node v

to be pdoms(v). For each node v ∈ V −{U}, there exists an immediate post-dominator g

where g∈ pdoms(v) and @n∈ pdom(v) : n∈ pdom(g) (i.e., g post-dominates v but does not

post-dominate any other post-dominators of v). We denote the immediate post-dominator

of each v to be ipdom(v). Classic algorithms [39] exist for obtaining the post dominator

information. We proceed to describe steps 3 to 5 of the algorithm in more detail for the rest

of this section.

5.4.1 Finding the Intra Post Dominator Paths

As mentioned above, intra post dominator paths are paths begins with a node v in the

ICFG but never extends beyong the immediate post dominator of v. It is important for our

algorithm to find these paths. Before defining what it is formally, we give an intuition as

to why we require this information. Consider the ICFG shown in Figure 5.6 and procedure
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e in particular. Suppose that the probability with which node 1 will reach the hardware

node C is to be computed. A naive way of doing so would be to compute all possible paths

between node 1 and C. Otherwise, we can observe that C is a postdominator of 1 and hence

the probability of reaching C is 1. However, as hinted in section 5.2, this is insufficient

as this probability is not placement-aware. If C were to conflict with D or A, we need to

estimate the probability with which node 1 will reach C without encountering A or D on the

way. Intuitively speaking, a node should have the same probability of reaching all hardware

nodes as its immediate post dominator provided it does not encounter conflicting ones on

all paths from it to its postdominator. In order to know whether this is the case, we need

path information for every node before its immediate post-dominator.

Definition 5.4.1 Intra Post Dominator Paths (IPDP) Given a ICFG G=(V,E,C, I,U,HW ),

a path p of length j from node m to node n is a sequence of j edges, which will be de-

noted by [e1,e2, . . . ,e j] such that for all i,1 ≤ i ≤ j− 1, head(ei) = tail(ei+1). For con-

venience, we also denote that begin(P) = head(e1) and end(P) = tail(e j). Although p

is a path and a sequence of edges, we abuse notation by referring to nodes along the

path using the set notation. Hence, v ∈ p means that node v occurs in path p. The esti-

mated probability of taking a path Ppath(p) is the product of the weightage of the edges

Ppath(p)∏
j
i=1 w(ei). An IPDP p is a path as defined above with the following added prop-

erties: a) ∀v ∈ p,@n ∈ p : n 6= v∧ v ∈ pdom(n). There does not exist any node along the

path that is a post-dominator of any other node along the path and b) Ppath(p)> threshold,

the estimated probability of this path being taken is greater than a threshold value. This

threshold value is set to be 0.0005 in our experiments.

Algorithm 2 shows the pseudo-code for how the IPDP information is computed for each

node v ∈V . The set of IPDPs for each node v ∈V is denoted as IPDPv. The algorithm con-

sists of two loops. In the first loop, we initialize IPDPv for each node v with the immediate
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outgoing edges of v if the destination of the edge is not a post-dominator of v. The second

loop is a classic working list algorithm loop, where outgoing edges of end(p) are being

added to the set IPDPv as long as the destination of the edge does not post-dominate any

nodes in the path being concatenated to. It should be noted that the IPDP information does

not extend beyond procedure boundaries (i.e., all paths leading to call sites or exit nodes

terminate there).

Algorithm 2: Obtaining Intra-PostDominator Paths

Input: ICFG: (V,E,C, I,U,HW );
Result: Intra-PostDominator Paths Collected ∀v ∈V
forall all nodes v ∈V −U do

forall all outgoing edges (v,s) ∈ E of v do
if s is not a postdominator of v i.e. s /∈ pdoms(v) then

initialize p with edge (v,s);
insert path p into set IPDPv;

forall all nodes v ∈V −U do
Change← true;
while Change do

Change← false;
foreach path p ∈ IPDPv do

foreach all outgoing edges s : (end(p),s) ∈ E of end(p) do
if s is either an exit node or call node i.e. s ∈U ∨ s ∈ I then

continue;
if ∀n ∈ p : s /∈ pdoms(n) then

Concatenate path p with edge (end(p),s) to get path pnew;
if probability of path pnew is higher than threshold then

Insert pnew into the set IPDPv;
Change← true;

5.4.2 Iterative Placement-Aware Estimated Probability Updating

As mentioned above, each node should have the same estimated probabilities reaching

hardware nodes as its immediate post dominator. However, conflicting hardware nodes
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may exist in a path between the node and its immediate post dominator. To avoid enumer-

ating all possible paths (which may also be inter-procedural) between each node and its im-

mediate postdominator, we compute the estimated probabilities of reaching each hardware

node through a fixed point iterative process starting from the hardware nodes. Algorithm

3 shows a main loop that iterates through all the nodes in the graph during each iteration

and continues doing so until a fixed-point (i.e., the estimated probabilities for each node

have stabilized.) is reached. For this stage of the proposed algorithm, we maintain two

two-dimensional vectors IPDP Prob and P. IPDP Prob(v,hw) maintains the estimated

probabilities that a node v may reach a hardware node hw through its IPDP paths. P(v,hw)

maintains the estimated probabilities that a node v may reach a hardware node hw through

all possible paths while P(v) refers to the vector of estimated probabilities for node v. All

P(v,hw)s are initialized to zeros except when v = hw, where P(v,hw) is initialized to 1. A

procedure may have multiple callers. Due to the uncertainty of the call context, we do not

update the estimated probabilities for the exit nodes of the procedures.

We distinguish between the general case and call sites for the updating of estimated

probabilities. Algorithm 4 shows how the estimated probabilities for a general node v is

updated. The main thing is to compute a vector of estimated probabilities temp p that will

be used to update P(v) if these 2 vectors are different. In the case when P(v) is updated, a

change is reported.

The computation of vector temp p is done by computing a max prob for each hw ∈

HW . During each iteration of the main loop, max prob is the greater of two probabili-

ties: One of them is the estimated probability of reaching hardware node hw through its

IPDPs. This probability is given by new prob = P path(p)×P(end(p),hw) for path p.

The other probability is the estimated probability of reaching hardware node hw through

its post-dominator. This probability is given by f actor×P(ipdom(v),hw) where f actor
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is computed by a summation of all the possibilities of reaching conflicting nodes of hw

through its IPDPs, f actor = 1−∑hw′�hw IPDP Prob(v,hw′).

Algorithm 3: Iterative Probability Updating

Result: Final Placement-Aware Probabilities Computed For Each Basic Block
∀v ∈V

forall v ∈ V do
forall hw ∈ HW do

IPDP Prob(v,hw)← 0;
if v = hw then

P(v,hw)← 1;
else

P(v,hw)← 0;

change← true;
while change do

change← false;
forall v ∈ V do

if v is an exit node i.e. v ∈ U then
continue;

else if v is a call site i.e. v ∈ C then
tmp change← update probabilities for call site(v);

else
tmp change← update general probabilities(v);

if tmp change then
change← true;

return P;

Furthermore, IPDP Prob(v,hw) is updated whenever a larger estimated probability of

reaching hw through a node’s IPDP is found. We compute new IPDP prob by deducting

P(ipdom(v),hw) from new prob. This is done to avoid double counting since it is possible
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for the end of a IPDP path to reach a hardware node through the immediate post dominator

of node v. new IPDP prob is used to update IPDP Prob(v,hw) if it is a greater value.

Algorithm 4: update general probabilities(v)

Input: v
Result: Update probabilities for v based on post-dominator and IPDP Prob

information
change← false;
forall hw ∈ HW do

if v is hw or conflicts with hw i.e. v = hw ∨v � hw then
continue;

max prob← -1;
forall p ∈ IPDPv do

if no nodes in p conflicts with hw (i.e. @n : n ∈ p∧n� hw) then
new prob← Ppath(p)×P(end(p),hw);
new IPDP prob← new prob − P(ipdom(v), hw);
if new IPDP prob > IPDP Prob(v,hw) then

IPDP Prob(v,hw)← new IPDP prob;
if new prob > max prob then

max prob← new prob;

factor← 1.0;
forall hw′ ∈ HW : hw′ � hw do

factor← factor − IPDP Prob(v,hw′);
if factor × P(ipdom(v), hw) > max prob then

max prob← factor × P(ipdom(v), hw);

if max prob < threshold then
temp p(hw)← 0;

else
temp p(hw)← max prob;

if ∃ hw ∈ HW : temp p(hw) 6= P(v,hw) then
change← true;
P(v)← temp p;

return change;

Similarly, in the case of updating the estimated probabilities for call sites, we compute

a variable temp p that will update P(v) if these 2 vectors are different. The pseudo-code

is given in Algorithm 5. Recall that w(e) is the weight function for edge e, temp p is
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computed using the following equation in the first loop:

temp p(hw) = ∑
e ∈ out(v)

w(e)×P(tail(e),hw)

Here, out(v) is the set of outgoing edges of node v. It should be noted that while we

normally expect a call site to call only one callee, this is not generally true for call sites that

make calls through procedure pointers. We rely on profiling results to determine which

procedures are being called.

Algorithm 5: update probabilities for call site(v)

Input: v
Result: Update probabilities for call node v based on post-dominator and

IPDP Prob information
change← false;
Initialize all values of array temp p to 0;
forall outgoing edges e of v do

foreach hw ∈ HW do
temp p(hw)← temp p(hw) + w(e) × P(tail(e), hw);

forall hw ∈ HW do
if temp p(hw) = 0 then

val← P(ipdom(v), hw);
forall hw′ ∈ HW : hw′ � hw do

val← val − temp p(hw′);
temp p(hw)← val;

if ∃ hw ∈ HW : temp p(hw) 6= P(v,hw) then
change← true;
P(v)← temp p;

return change;

We post-process the temp p computed thus far by updating it with the estimated prob-

abilities of the corresponding return site of v where needed. It should be noted that the

corresponding return site of v will be its immediate post-dominator. temp p(hw) will be

updated when it is zero. We deduct the estimated probabilities of reaching the conflict-

ing hardwares of hw in temp hw from the estimated probability of reaching hw from the
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return site P(ipdom(v),hw). If this value is greater than zero, it will be used to update

temp p(hw).

5.4.3 Prefetch Reduction and Code Generation

Thus far, we have computed the estimated probabilities of reaching the hardware nodes

from each basic block and the results are stored in the two-dimensional vector P. Consider

a node v with its associated probability vector P(v). We generate the prefetching code for

node v using two code templates shown in Figure 5.7 and Figure 5.8 in pseudo-C code1.

Firstly, we sort the hardware probabilities in descending order. After that, we insert the code

template in Figure 5.8 into the beginning of node v based upon the sorted probabilities. It

should be added that only hardware nodes that do not conflict with the most probable

hardware are considered. In other words, we do not generate load calls for hardware nodes

that conflict with the most probable hardware. Next, we fill in the inserted template with the

loading template shown in Figure 5.7. The final condition for calling load for a hardware

node is predicated upon a) the difference in probability between reaching this hardware

node and its conflicting hardware node is small enough and b) whether the hardware node is

already loaded. In cases where both conditions are true, we do not reconfigure the hardware

node in question. In general, we will attempt to load the most probable reachable hardware

node if it is not loaded and only consideer loading other hardware nodes if there are no

hardware modules being reconfigured currently.

Naively, every basic block that has a non-zero probability of reaching a hardware node

should be a candidate for inserting the load library call. However, this is needlessly expen-

1A compiler will insert these codes using low-level intermediate representation. We omit details here for

the sake of brevity
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//Suppose hardware nodes conflicting with hw
// are c0, c1 c2 ...
if( (P[v][hw]-P[v][c0]>THRESHOLD || !is loaded(c0)) &&

(P[v][hw]-P[v][c1]>THRESHOLD || !is loaded(c1)) && ...)
{

load(hw);
}

Figure 5.7: Loading code template for hardware node hw. The condition for is expressed
as a product of sums.

if(!is loaded(most probable hardware node A))
//Insert loading template for A

else if(currently reconfiguring()==-1)
{

if(!is loaded(2nd most probable hardware node B))
//Insert loading template for B

else if(!is loaded(3rd most probable hardware node C))
//Insert loading template for C

else if(!is loaded(4th most probable hardware node D))
//Insert loading template for D

}

Figure 5.8: Cascading ifs code template to be inserted at prefetch points

sive. The prefetch points can be reduced by clearing the probabilities for nodes where all

its parents have the same probabilities of reaching the hardware nodes as itself.

5.5 Experimental Evaluation

5.5.1 Experimental Setup

We performed experiments with three applications 401.bzip2, 429.mcf and h264enc

to study the effectiveness of our algorithm. 401.bzip2 and 429.mcf were taken from

the SPEC2006 benchmark suite [58]. h264enc was taken from the MediaBench II video

benchmark suite [20]. 401.bzip2 is a block-sorting compression application while 429.mcf

is a program used for single-depot vehicle scheduling. h264enc[67] is an implementation
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of H.264/AVC(Advanced Video Coding) encoder, the latest state-of-the-art video compres-

sion standard.

In our implementation of the architecture model, we employed the concept of ReCoBus

by Koch et al[36] to support complex run-time reconfiguration. The ReCoBus’s reconfig-

uration regions are organized in terms of reconfigurable slots i.e. the slots are the smallest

granularity that the hardware modules will occupy on the pFPGA. The minimum size of

each slot is 6 CLB Columns. Through profiling, we have identified 6 compute-intensive

regions for 429.mcf and 401.bzip2. For h264enc, 7 such regions have been identified.

These compute-intensive regions mapped to either basic blocks or loops in the original

program. Table 5.1 shows these regions and the estimated number of slots (based on the

software code size) that they occupy on the pFPGA. It has been assumed that the hard-

ware performance is faster than software by 5 times for our experiments. We refer to the

hardware regions by their indexes for the rest of this section.

For our experiments, we assumed a hardware device that has a similar geometry as

Xilinx Virtex II Pro[70] FPGAs (i.e. column based), which is organized as a CLB matrix of

80 rows and 56 columns. The PowerPC CPU is operating at 300MHz. Every CLB column

consists of 22 frames and each frame in turn requires 6,592 bits of configuration data.

Thus, each CLB requires 145,024 bits of configuration data. Different FPGA architectures

support different bit-widths of reconfiguration. For example, the Virtex IV Family supports

a bitwidth of 32 bits for the SelectMap interface for the reconfiguration of the FPGA while

the Virtex II Family supports a bitwidth of 8 bits. We assumed a single reconfiguration port

running at 100MHz and performed experiments for reconfiguration bitwidths 8 and 32.

Table 5.2 shows the different reconfiguration overheads of reconfiguring a single ReCoBus

slot for different bitwidths. Obviously, the wider the bitwidth the lower the overhead.

103



Benchmark Index Region from Procedure No. Of Slots

401.bzip2 B0 mainQSort3 2

401.bzip2 B1 fallbackSort 3

401.bzip2 B2 copy input until stop 3

401.bzip2 B3 generateMTFValues 2

401.bzip2 B4 mainSort 1

401.bzip2 B5 mainSimpleSort 2

h264enc H0 FastFullPelBlockMotionSearch 2

h264enc H1 SetupFastFullPelSearch 2

h264enc H2 SATD 2

h264enc H3 writeRunLevel CABAC 2

h264enc H4 biari encode symbol 2

h264enc H5 dct luma 3

h264enc H6 dct luma 1

429.mcf M0 primal bea mpp 2

429.mcf M1 price out impl 2

429.mcf M2 sort basket 2

429.mcf M3 refresh potential 2

429.mcf M4 primal iminus 3

429.mcf M5 primal bea mpp 2

Table 5.1: The regions selected for hardware implementation in the h264enc and 429.mcf

benchmarks.
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Bit Widths Reconfiguration Overhead for 1 ReCoBus Slot

(PowerPC cycles at 300MHz)

8 6592
8 ×

100
300 ×22×3 = 326304 cycles

32 81576

Table 5.2: Reconfiguration Overhead of 1 ReCoBus Slot for different bit-widths.

The benchmarks were compiled using the Open IMPACT compiler[48]. While Open

Impact was targeted for the Itanium machine[32], we made changes so that the compiler

backend generated code for PowerPC 405[74] instead. The CPU cores embedded in Xilinx

Virtex II Pro chips are of the PowerPC 405 model. The changes made enabled us to compile

applications that targets the Xilinx FPGA platforms. Information such as the control-flow

graph and basic block IDs were obtained from the Open IMPACT compiler.

Through code instrumentation, we were able to obtain a trace of basic block IDs from

the execution of the application and measure the average execution time for each basic

block. The average execution time for the basic blocks of the h264enc application was

measured by running the instrumented code on the Xilinx University Program Board[68].

For 429.mcf and 401.bzip2, the measurements were taken by running the instrumented

code on a PowerPC machine and the execution times were later scaled back to match the

execution frequency of 300MHz. An inhouse developed trace-based simulation used the

trace and the execution time information to compute the expected execution time. Finally,

we compared the performance of our algorithm by comparing it against three scenarios:

fetch-on-demand(FOD), optimal and the placement-blind probabilistic algorithm.

Fetch-On-Demand: The Fetch-On-Demand schedule has been described earlier in Sec-

tion 5.2. Basically, there are no load library calls being made at all. The hardware modules
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are loaded onto the pFPGA if they are encountered during execution and if it is not already

loaded onto the pFPGA. It is reasonable to expect that any prefetching approach to improve

upon this case. We used the expected execution time of the Fetch-On-Demand scenario as

the baseline for comparison in our experiments.

Optimal: The optimal case is when the entire execution trace is already known before-

hand and every prefetching decision is made based upon this foreknowledge. Our imple-

mentation of this scenario relied on the algorithm described in [55]. We do not expect a

static approach described in this chapter to be as good as the optimal case, but the gap

between the Optimal and Fetch-On-Demand is useful for gauging the effectiveness of our

approach.

Placement-blind Probabilistic algorithm: The implementation of the placement-blind

probability algorithm is based on [42]. Some changes such as identifying back-edges and

removing them need to be made to the control flow graph before we use this algorithm.

Basically, it is a bottom up approach of propagating the probability of reaching the hard-

ware nodes. This technique is developed for relocatable and defragmentable FPGAs and

not for the Xilinx FPGA architectures. Therefore, this approach does not account for the

placement conflicts between the hardware modules and serves as a good gauge of what

happens when we are not placement-aware.

5.5.2 Experimental Results

The placement of the hardware modules determines the conflict relationships between

them. To evaluate the effect of different conflict sets for our algorithm, we generate differ-

ent placements for the selected regions in Table 5.1 so that the number of conflicts/overlap
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between the hardware modules is minimized. We omit the placement details and instead

abstract them by showing the different conflicts in Table Table 5.3.

Placement Labels Conflicts

bzip2-s3-1 {B0� B1,B1� B3,B0,� B3,B2� B4,B2� B5}

bzip2-s3-2 {B1� B4,B1� B5,B2,� B3,B2� B0,B0� B3}

bzip2-s3-3 {B1� B4,B0� B1,B2,� B3,B2� B5,B3� B5}

bzip2-s4-1 {B1� B2,B0� B5}

bzip2-s4-2 {B1� B2,B0� B3}

bzip2-s4-3 {B1� B2,B3� B5}

h264-s3-1 {H0� H5,H3� H5,H0� H3,H1� H4,H2� H4,H1� H2}

h264-s3-2 {H4� H5,H1� H4,H1� H5,H0� H2,H0� H3,H2� H3}

h264-s3-3 {H0� H3,H0� H1,H1� H3,H4� H5,H2� H5,H2� H4}

h264-s4-1 {H1� H3,H0� H5,H2� H4}

h264-s4-2 {H1� H5,H0� H3,H2� H4}

h264-s3-3 {H1� H4,H0� H3,H2� H5}

h264-s3-4 {H1� H2,H0� H3,H4� H5}

mcf-s3-1 {M0�M1,M0�M2,M1�M2,M5�M3,M5�M4,M3�M4}

mcf-s3-2 {M5�M1,M5�M2,M1�M2,M0�M3,M0�M4,M3�M4}

mcf-s3-3 {M5�M1,M5�M3,M1�M3,M0�M2,M0�M4,M2�M4}

mcf-s3-4 {M5�M2,M5�M3,M2�M3,M0�M1,M0�M4,M1�M4}

mcf-s4-1 {M1�M5,M4�M3,M4�M2}

mcf-s4-2 {M0�M4,M5�M4,M2�M3}

mcf-s4-3 {M4�M1,M4�M2,M3�M5}

mcf-s4-4 {M4�M1,M4�M3,M2�M5}

Table 5.3: Benchmarks with different placements.
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The labels in Table 5.3.for each different placement bear some explanations. All the

labels are named after the corresponding applications. Specifically, labels starting with

bzip2- refers to placements for 401.bzip2. Labels starting with h264- refers to place-

ments for h264enc and labels starting with mcf refers to placements for 429.mcf. The

placements that are labeled with ‘s3’ are placements generated for a ReCoBus implemen-

tation with 2 separate Reconfigurable Region of 3 configurable slots while placements la-

beled with ‘s4’ are generated for a ReCoBus implementation with 2 separate Reconfig-

urable Region of configurable 4 slots. Each of these placements form a separate test case

for our experiments. Obviously, we observe that the number of conflicts decreases when

the amount of resources available increases.
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Figure 5.9: Speedups over baseline for 8-bits wide reconfiguration port running at 100MHz.

108



 

-100

-80

-60

-40

-20

0

20

40

p
e
rf
o
rm
a
n
c
e
 o
v
e
r 
b
a
s
e
li
n
e
 

(p
e
rc
e
n
ta
g
e
)

different placement sets 

Optimal
Placement-aware
Placement-blind

Figure 5.10: Speedups over baseline for 32-bits wide reconfiguration port running at

100MHz.

Figure 5.9 and 5.10 show us the various speedups/slowdown over the baseline for recon-

figuration bit-widths of 8 bits and 32 bits respectively, after applying the placement-blind

probability, optimal and our placement aware algorithm to the various placement sets. We

make the following observation of the results shown:

• All algorithms performs better in the case when reconfiguration port’s bitwidth is

32 bits. This shows that higher reconfiguration speeds creates more temporal space

during execution for prefetch to occur.

• The performance of our algorithm is worse in placements for 401.bzip2. However,

we observe that the gap between the optimal and baseline is almost negligiable for

401.bzip2. This implies that there is not much space for the execution to be opti-

mized through configuration prefetching. However, our algorithm still manages to

perform better than baseline in two of the test cases for 401.bzip2 despite the nar-
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row gap. It should also be observed that the size of the gaps between baseline and

optimal is dependent on the Hardware-Software partitioning of the application. In

this case, the partitioning for 401.bzip2 is not ideal in the first place.

• We observe that performance degrades seriously for when conflicts are not taken

into account. The placement-blind probability suffers a maximum of 90% slowdown

and a 20% degradation in performance for most of the placement sets tested in our

experiments. This shows the inadequacy of the placement-blind algorithm for the

pFPGA architecture we are targeting.

• For the same benchmark, the speedup that can be gained through configuration schedul-

ing differs across varying placement sets. In particular, h264-s3-1 is the best for

h264enc, achieving a speedup of almost more than 30% for the optimal algorithm.

This shows how the placements affect both the overall performance and the opportu-

nities available for configuration prefetching.

Another way to measure the quality of our algorithm is by showing how close the result

of our algorithm is to the optimal when it performs better than baseline. To do this, we

compute what is called optimal proximity score by

Optimal Proximity Score =
Performance increase of placement-aware algorithm

Performance increase of optimal algorithm
×100
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Figure 5.11: Proximity to optimal by normalizing the range between baseline and optimal

(8 bits wide reconfiguration port).

The optimal proximity score shows where the results of the placement-aware algo-

rithm falls within the normalized range between the baseline and the optimal. Figure 5.11

and 5.12 show the optimal proximity for 8 bits and 32 bits wide reconfiguration ports re-

spectively. Higher optimal proximity score indicates better proximity to the optimal. For

example, in the case when the reconfiguration port is 32 bits wide, h264-s3-1 has a score

of 72% while h264-s4-1 has a score of 17%. This shows that the result of h264-s3-1 is

much closer to optimal compared to h264-s4-1.
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Figure 5.12: Proximity to optimal by normalizing the range between baseline and optimal

(32 bits wide reconfiguration port).

5.6 Summary

In this chapter, we have described a novel method that statically determines for each basic

block what it ought to pre-load into the FPGA so as to reduce the reconfiguration overhead.

Our approach is consistently better than baseline and performs better than state-of-the-art

prefetching algorithms based upon static analyses. However, our experiments show that

there is still room for improvement in our approach. For a static approach, it is important

to avoid being too conservative and too speculative at the same time. The former will

lead to less reconfiguration latency hiding while the latter will cause mis-prefetches that

may increase the number of reconfigurations initiated. A better approach would need to

sensitive to the context of the execution i.e. the code becomes ‘aware’ of the phase it is

executing in and prefetches according to the probabilities estimated for that phase instead.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis, we have studied the hardware software co-design for FPGA-based systems

with the aim of improving overall execution time by reducing run-time reconfiguration

overhead. This overhead can potentially wipe out any speed up obtained by implement-

ing the computation in a FPGA. This consideration and the opportunities afforded by the

advances in architectural support for more efficient reconfiguration form the motivation of

this thesis. The main contributions of this thesis are as follows:

• In Chapter 3, we presented a framework for the efficient implementation of neigh-

borhood searches of the temporal and spatial partitioning design space. It is demon-

strated in this chapter that both temporal and spatial partitioning affects the number

of reconfigurations, thus making it difficult to estimate the run-time reconfiguration

overhead incurred by a particular design point. A naive solution would be to scan

through the entire trace every time a design point is evaluated. Apart from the in-

tractable size of the design space, this solution does not scale with increasing length
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of the execution trace. Our framework provides an efficient way of computing the

run-time reconfiguration cost through (a) a novel definition of the neighboring re-

lationship between design points, (b) using a loop trace encoded with SEQUITUR

grammar, and (c) an algorithm that leverages the former two to compute the change

in run-time reconfiguration cost when moving between 2 neighboring points. This

way, once an initial computation of the reconfiguration cost is known for one de-

sign point, we can efficiently compute the reconfiguration cost for all its neighbors

and transitively, for the rest of the design space as well when required. We eval-

uated the efficiency of this framework with the implementation of 2 neighborhood

searches, namely hill climbing and Tabu search using this framework. Our experi-

ments showed that hill climbing is able to find the optimal design point more than

90% of the cases while Tabu search found the optimal design point in all of our ex-

periments. It was also shown that the searches were sped up by up to two orders of

magnitude when the proposed framework is employed.

• While the framework presented in Chapther 3 allows the design space of both tem-

poral and spatial partitioning to be searched, it does not consider the possibility of

further configuration overhead reduction on pFPGAs. In Chapter 4, we examined the

following sub-problem: Given an execution trace, the associated hardware modules

and their placements on a pFPGA, find the optimally feasible schedule that mini-

mizes the overall execution time. This is a complementary, orthogonal problem to

the one solved in Chapter 3. To solve this problem, we present a novel, polynomial

time algorithm that solves this problem by scheduling the reconfiguration of hard-

ware modules to occur in parallel with application execution whenever possible. The

resultant schedule is shown to be provably optimal. A key to the algorithm is a de-

pendence analysis that determines whether for each instance of the hardware module
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execution, a prior reconfiguration is needed. Experiments performed using the H.264

benchmark shows that the current state-of-the-art online prefetching algorithms per-

form considerably worse than the schedule returned by our algorithm. The difference

between the two in terms of speedup over the baseline can be as large as 40%.

• Although the algorithm in Chapter 4 returns an optimal schedule for a particular ex-

ecution trace, a program’s execution pattern may differ with varying inputs. It is not

feasible to schedule for every possible input of a program. In Chapter 5, we examined

the following sub-problem: Given a program that is represented in an interprocedural

control flow graph, together with the hardware modules and their associated place-

ments on a pFPGA, find suitable prefetch points in the graph for the insertion of

library calls that will load the hardware modules ahead of time so that overall execu-

tion time is minimized. By making use of profiled execution frequencies of control-

flow edges, our proposed novel algorithm solves this problem through an iterative

approach that estimates placement-aware probabilities of reaching hardware execu-

tion for each basic block. Placement-aware probability refers to the probability of

reaching the execution of a hardware module without encountering conflicting mod-

ules on the path of the interprocedural control flow graph. Experiments show that our

proposed algorithm makes significant improvements over state-of-the-art prefetching

strategies that do not consider placement conflicts.
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6.2 Future Works

6.2.1 Granularity of Reconfiguration and Configuration Scheduling

To our knowledge, there have been no previous work that discusses how the possibility

of splitting a single reconfiguration of a hardware module into distinct temporal phases

affects configuration scheduling. The work presented in this thesis has assumed that the

cost of pre-emption and resumption to be minimal compared with the entire reconfigura-

tion overhead. However, in practice, reconfiguration needs to occur in multiple of frames

and there is a setup-cost involved in initiating a reconfiguration. For example, it is possible

to break down the configuration of a hardware module consisting of ten frames into ten

distinct stages (i.e., during each stage, only one frame is loaded.). While the flexibility of

scheduling the configuration of this hardware module has increased, the overall configu-

ration overhead has increased as well because a setup cost hsa to be paid for each of the

ten stages. However, reconfiguring at a larger granularity will result in a loss of this flex-

ibility. Therefore, the granularity of reconfiguration affects the problem of configuration

scheduling and this should be considered in future works.

6.2.2 Hardware-Software Co-Placement and Partitioning

Both Chapters 4 and 5 have assumed that the hardware partitioning is already done and the

placements of the hardware modules are decided beforehand. The focus was on the relative

speedup between the fetch-on-demand schedule and the desired optimized schedule. This

problem is orthogonal to that of selecting a suitable conflict set so that overall execution

time is minimized. Our experimental data from these studies show that the difference in

execution time between 2 different sets of conflicts could be as large as 60%. The problem

of hardware-software co-placement and partitioning could be expressed as follows: Given a

116



single sequential program and its constituent compute-intensive regions, how do we decide

which of these regions should be implemented in hardware? For the selected hardware

implementations, how shall we place these hardware modules on the FPGA so that the

conflict relationships between them will minimize the run-time reconfiguration overhead?

Obviously, these two questions are inter-related and need to be answered to obtain a quality

solution that minimizes the overall execution time. Therefore it makes sense to combine

the two into a unified co-design problem.

6.2.3 Configuration Management for Multi-core Reconfigurable Com-

puting

This work so far has concentrated on architecture models that consist of a single CPU

and a single FPGA co-processor. However, given the advent of multi-core architectures

like FSB-FPGA[33], the challenge would be for general purpose programs to harness the

potential speedup possible from the attached reconfigurable device. Although there are

ongoing research in this area[29], many open problems remain unsolved especially in the

domain of general purpose reconfigurable computing, where the set of applications running

in the system is dynamically changing according to the demands of the users.
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