66 research outputs found

    Modern control system theory and human control functions

    Get PDF
    Optimal control system theory applied to manual control systems - adaptive control - mathematical model

    Method and apparatus for creating time-optimal commands for linear systems

    Get PDF
    A system for and method of determining an input command profile for substantially any dynamic system that can be modeled as a linear system, the input command profile for transitioning an output of the dynamic system from one state to another state. The present invention involves identifying characteristics of the dynamic system, selecting a command profile which defines an input to the dynamic system based on the identified characteristics, wherein the command profile comprises one or more pulses which rise and fall at switch times, imposing a plurality of constraints on the dynamic system, at least one of the constraints being defined in terms of the switch times, and determining the switch times for the input to the dynamic system based on the command profile and the plurality of constraints. The characteristics may be related to poles and zeros of the dynamic system, and the plurality of constraints may include a dynamics cancellation constraint which specifies that the input moves the dynamic system from a first state to a second state such that the dynamic system remains substantially at the second state

    Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective

    Get PDF
    Plug-in hybrid electric vehicles (PHEVs) offer an immediate solution for emissions reduction and fuel displacement within the current infrastructure. Targeting PHEV powertrain optimization, a plethora of energy management strategies (EMSs) have been proposed. Although these algorithms present various levels of complexity and accuracy, they find a limitation in terms of availability of future trip information, which generally prevents exploitation of the full PHEV potential in real-life cycles. This paper presents a comprehensive analysis of EMS evolution toward blended mode (BM) and optimal control, providing a thorough survey of the latest progress in optimization-based algorithms. This is performed in the context of connected vehicles and highlights certain contributions that intelligent transportation systems (ITSs), traffic information, and cloud computing can provide to enhance PHEV energy management. The study is culminated with an analysis of future trends in terms of optimization algorithm development, optimization criteria, PHEV integration in the smart grid, and vehicles as part of the fleet

    Motion design, control and implementation in robot manipulators

    Get PDF
    The dynamic performance of robots, specifically the tracking accuracy and motion duration, is influenced by both the nominal motion profile and the feedback control method employed. Three schemes are developed and experimentally tested to tackle the improvement of dynamic performance, in the absence of accurate dynamic models. Model Referenced Adaptive Controller Schemes (MRACS) can be designed to facilitate the characterisation of otherwise complex system dynamics. In one scheme an MRACS is used to force the robot to behave as if it were linear and decoupled, enabling simple model based dynamic tuning methods to be applied to the motion laws. Its promise as a technique is demonstrated, but the controller performance is found to be degraded by practical limitations. It is applied to both joint and Cartesian based motion laws. A computer controlled robot contains all the elements necessary for an autonomous self experimentation system. This feature is exploited in the derivation and implementation of two further schemes which are termed self learning. In these, the robot's trajectory is stored as a set of discrete data. Algorithms are developed for tuning this data subsequent to each run. Their use requires minimal knowledge of the dynamics, no additional transducers and little computation. The first of the self learning schemes is used to cyclically reduce the tracking errors. Once complete, the updating process can be curtailed. Errors on completion are close to the transducer resolution. The second of these schemes involves an incremental reduction in the duration of a given motion. Various parameters for detecting saturation are proposed and tested. A normalised ratio of peak to average velocity is found promising. Combining these two schemes, tuning for speed to near saturation then tuning for accuracy, provides a method for obtaining a near minimum time trajectory, with maximum possible tracking accuracy, at low cost

    Evaluation and optimisation of traction system for hybrid railway vehicles

    Get PDF
    Over the past decade, energy and environmental sustainability in urban rail transport have become increasingly important. Hybrid transportation systems present a multifaceted challenge, encompassing aspects such as hydrogen production, refuelling station infrastructure, propulsion system topology, power source sizing, and control. The evaluation and optimisation of these aspects are critical for the adaptation and commercialisation of hybrid railway vehicles. While there has been significant progress in the development of hybrid railway vehicles, further improvements in propulsion system design are necessary. This thesis explores strategies to achieve this ambitious goal by substituting diesel trains with hybrid trains. However, limited research has assessed the operational performance of replacing diesel trains with hybrid trains on the same tracks. This thesis develops various optimisation techniques for evaluating and refining the hybrid traction system to address this gap. In this research's first phase, the author developed a novel Hybrid Train Simulator designed to analyse driving performance and energy flow among multiple power sources, such as internal combustion engines, electrification, fuel cells, and batteries. The simulator incorporates a novel Automatic Smart Switching Control technique, which scales power among multiple power sources based on the route gradient for hybrid trains. This smart switching approach enhances battery and fuel cell life and reduces maintenance costs by employing it as needed, thereby eliminating the forced charging and discharging of excessively high currents. Simulation results demonstrate a 6% reduction in energy consumption for hybrid trains equipped with smart switching compared to those without it. In the second phase of this research, the author presents a novel technique to solve the optimisation problem of hybrid railway vehicle traction systems by utilising evolutionary and numerical optimisation techniques. The optimisation method employs a nonlinear programming solver, interpreting the problem via a non-convex function combined with an efficient "Mayfly algorithm." The developed hybrid optimisation algorithm minimises traction energy while using limited power to prevent unnecessary load on power sources, ensuring their prolonged life. The algorithm takes into account linear and non-linear variables, such as velocity, acceleration, traction forces, distance, time, power, and energy, to address the hybrid railway vehicle optimisation problem, focusing on the energy-time trade-off. The optimised trajectories exhibit an average reduction of 16.85% in total energy consumption, illustrating the algorithm's effectiveness across diverse routes and conditions, with an average increase in journey times of only 0.40% and a 15.18% reduction in traction power. The algorithm achieves a well-balanced energy-time trade-off, prioritising energy efficiency without significantly impacting journey duration, a critical aspect of sustainable transportation systems. In the third phase of this thesis, the author introduced artificial neural network models to solve the optimisation problem for hybrid railway vehicles. Based on time and power-based architecture, two ANN models are presented, capable of predicting optimal hybrid train trajectories. These models tackle the challenge of analysing large datasets of hybrid railway vehicles. Both models demonstrate the potential for efficiently predicting hybrid train target parameters. The results indicate that both ANN models effectively predict a hybrid train's critical parameters and trajectory, with mean errors ranging from 0.19% to 0.21%. However, the cascade-forward neural network topology in the time-based architecture outperforms the feed-forward neural network topology in terms of mean squared error and maximum error in the power-based architecture. Specifically, the cascade-forward neural network topology within the time-based structure exhibits a slightly lower MSE and maximum error than its power-based counterpart. Moreover, the study reveals the average percentage difference between the benchmark and FFNN/CNFN trajectories, highlighting that the time-based architecture exhibits lower differences (0.18% and 0.85%) compared to the power-based architecture (0.46% and 0.92%)

    Dynamics and control of electromagnetic satellite formations

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Includes bibliographical references (p. 197-203).Satellite formation flying is an enabling technology for many space missions, especially for space-based telescopes. Usually there is a tight formation-keeping requirement that may need constant expenditure of fuel or at least fuel is required for formation reconfiguration. Electromagnetic Formation Flying (EMFF) is a novel concept that uses superconducting electromagnetic coils to provide forces and torques between different satellites in a formation which enables the control of all the relative degrees of freedom. With EMFF, the life-span of the mission becomes independent of the fuel available on board. Also the contamination of optics or sensitive formation instruments, due to thruster plumes, is avoided. This comes at the cost of coupled and nonlinear dynamics of the formation and makes the control problem a challenging one. In this thesis, the dynamics for a general N-satellite electromagnetic formation will be derived for both deep space missions and Low Earth Orbit (LEO) formations. Nonlinear control laws using adaptive techniques will be derived for general formations in LEO. Angular momentum management in LEO is a problem for EMFF due to interaction of the magnetic dipoles with the Earth's magnetic field. A solution of this problem for general Electromagnetic (EM) formations will be presented in the form of a dipole polarity switching control law. For EMFF, the formation reconfiguration problem is a nonlinear and constrained optimal time control problem as fuel cost for EMFF is zero. Two different methods of trajectory generation, namely feedback motion planning using the Artificial Potential Function Method (APFM) and optimal trajectory generation using the Legendre Pseudospectral method, will be derived for general EM Formations.(cont.) The results of these methods are compared for random EM Formations. This comparison shows that the artificial potential function method is a promising technique for solving the real-time motion planning problem of nonlinear and constrained systems, such as EMFF, with low computational cost. Specifically it is the purpose of this thesis to show that a fully-actuated N-satellite EM formation can be stabilized and controlled under fairly general assumptions, therefore showing the viability of this novel approach for satellite formation flying from a dynamics and controls perspective.by Umair Ahsun.Ph.D

    LLV - Lunar Logistics Vehicle Final report

    Get PDF
    Design of unmanned space vehicle for landing 2500 pound payload on moo

    Neuro_Dynamic Programming and Reinforcement Learning for Optimal Energy Management of a Series Hydraulic Hybrid Vehicle Considering Engine Transient Emissions.

    Full text link
    Sequential decision problems under uncertainty are encountered in various fields such as optimal control and operations research. In this dissertation, Neuro-Dynamic Programming (NDP) and Reinforcement Learning (RL) are applied to address policy optimization problems with multiple objectives and large design state space. Dynamic Programming (DP) is well suited for determining an optimal solution for constrained nonlinear model based systems. However, DP suffers from curse of dimensionality i.e. computational effort grows exponentially with state space. The new algorithms address this problem and enable practical application of DP to a much broader range of problems. The other contribution is to design fast and computationally efficient transient emission models. The power management problem for a hybrid vehicle can be formulated as an infinite time horizon stochastic sequential decision-making problem. In the past, policy optimization has been applied successfully to design optimal supervisory controller for best fuel economy. Static emissions have been considered too but engine research has shown that transient operation can have significant impact on real-world emissions. Modeling transient emissions results in addition of more states. Therefore, the problem with multiple objectives i.e. minimize fuel consumption and transient particulate and NOX emissions, becomes computationally intractable by DP. This research captures the insight with models and brings it into the supervisory controller design. A self-learning supervisory controller is designed based on the principles of NDP and RL. The controller starts “naïve” i.e. with no knowledge to control the onboard power but learns to do so in an optimal manner after interacting with the system. The controller tries to minimize multiple objectives and continues to evolve until a global solution is achieved. Virtual sensors for predicting real-time transient particulate and NOX emissions are developed using neuro-fuzzy modeling technique, which utilizes a divide-and-conquer strategy. The highly nonlinear engine operating space is partitioned into smaller subspaces and a separate local model is trained to for each subspace. Finally, the supervisory controller along with virtual emission sensors is implemented and evaluated using the Engine-In-the-Loop (EIL) setup. EIL is a unique facility to systematically evaluate control methodologies through concurrent running of real engine and a virtual hybrid powertrain.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89829/1/rajit_1.pd

    FC³ - 1st Fuel Cell Conference Chemnitz 2019 - Saubere Antriebe. Effizient Produziert.: Wissenschaftliche Beiträge und Präsentationen der ersten Brennstoffzellenkonferenz am 26. und 27. November 2019 in Chemnitz

    Get PDF
    Die erste Chemnitzer Brennstoffzellenkonferenz wurde vom Innovationscluster HZwo und dem Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU durchgeführt. Ausgewählte Fachbeiträge und Präsentationen werden in Form eines Tagungsbandes veröffentlicht.The first fuel cell conference was initiated by the innovation cluster HZwo and the Fraunhofer Institute for Machine Tools and Forming Technology. Selected lectures and presentations are published in the conference proceedings

    Behaviour based autonomy for single and multiple spacecraft

    Get PDF
    Current research in space systems engineering has highlighted the requirement for increasingly autonomous spacecraft and planetary rovers to meet the stringent needs of future missions. The purpose of this thesis is to present a new approach in the concept and implementation of single and clustered micro-spacecraft. The one true "artificial agent" approach to autonomy requires the micro-spacecraft to interact in a direct manner with the environment through the use of sensors and actuators. As such, there is little computational effort required to implement such an approach, which is clearly of great benefit for limited micro-satellites. Rather than using complex world models, which have to be updated, the agent is allowed to exploit the dynamics of its environment for cues as to appropriate actions to take to achieve mission goals. The particular artificial agent implementation used here has been borrowed from studies of biological systems, where it has been used successfully to provide models of motivation and opportunistic behaviour. The so called "cue- deficit" action selection algorithm considers the micro-spacecraft to be a non linear dynamical system with a number of observable states. Using optimal control theory, rules are derived which determine which of a finite repertoire of behaviours the satellite should select and perform. The principal benefits of this approach is that the micro-spacecraft is endowed with self-sufficiency, defined here to be the ability to achieve mission goals, while never placing itself in an irrecoverable position
    corecore