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FOREWORD
 

Steve Dickerson
 

0.1. Introduction 

NASA, the University of Houston and Rice University intent
 

that the Summer Faculty Programs in Systems Engineering ac

quaint the faculty of selected engineering colleges with the
 

systems approach to complex design problems. The technique
 

used is to involve the participating professors in a real
 

conceptual design of a space system. See Figure 0.1-1. These
 

summer educational experiences are based on Dr. William Bollay's
 

initial graduate courses at MIT and Stanford. It is hoped
 

that some of the major beneficial results of the program are
 

the following.
 

o The participants will have a better understanding of
 

NASA's contributions, goals,. and operations.
 

o The participants will be able to organize new or modify
 

existing design courses at their home institutions along
 

the lines of the summer program.
 

o The participants and their students will have a better
 

appreciation of the contributions of other disciplines,
 

including the non-engineering~and the need for effective
 

cross fertilization.
 

o A study of value to NASA will result.
 

0.2 Participants
 

Nineteen professors and instructors from eighteen different
 

universities and colleges attended the program. By discipline
 

there were three in electrical engineering, five in mechanical
 

engineering, five in civil engineering, three in aerospace
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engineering, one in physics and two in geology. Table 0.2-1
 

contains a complete list of the participants. With one
 

exception they had no previous experience in space system
 

engineering.
 

0.3 Time Table
 

The program started June 9 and ended August 22, 1969.
 

This eleven week period was broken into three phases, character

ized roughly as the problem and alternative definition phase,
 

alternative evaluation phase, and the reports preparation phase.
 

Oral reports on project progress were prepared by the parti

cipants and presented at the end of each phase to members of 

the Engineering and Development Directorate at the Manned 

Spacecraft Center. The presentation for Phase III was a 

complete summary of the erdikMproject and was open to the 

public. A chronological listing of the major milestones 

during the summer are given in Table 0.5-1. 

TABLE 0.3-1 PROJECT MILESTONES 

Date Milestones 

June 9 Program begins 

June 13 

June 27 

July 1 

Project teams organized, Phase I leadership 
selected. 

Phase II leadership selected 

Phase I oral review - statement of problem, 

alternative solutionsprelevant tectnical material. 

July 25 Phase III leadership selected 

July 29 Phase II oral review- trade off studies and 
recommendation of basic design. 

Aug 19 Final oral report -review of entire project and 
presentation of recommended LLV design. 

Aug 22 All final report contributions due. Program ends.
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0.4 Organization
 

The coordination of the team effort was accomplished
 

by structuring the group as indicated in Figure 0.4-1. The
 

project manager and group leaders were elected for each
 

phase and were members of the executive committee. This
 

committee met daily and was charged with overall technical
 

direction of the project. The three project groups also
 

met daily to coordinate efforts in their areas of responsi

bility. If a task required special attention and in the
 

opinion of the executive committee could not properly be
 

assigned to one of the project groups, an ad hoc committee
 

was formed to accomplish the task in a specified time and 

prepare a report. It was then dissolved. The staff advisors
 

primary functions were support of the technical work through
 

continuous review, arranging for outside inputs, arranging
 

for experimental work, model building, computer aids,
 

audio-visual aids, drafting work, etc. All final technical
 

decisions were in the hands of the participants.
 

0.5 Acknowledgements
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Paul Thorng and Bass Redd for providing close technical
 

liaison and Jim Youngblood for admistrative support. It
 

should be borne in mind, however, that MSC or NASA are not
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do they necessarily support the conclusions.
 

The participants thank the many individuals who addressed
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ABSTRACT
 

The preliminary design of an unmanned space vehicle that can
 

land a payload of 2500 pounds on the moon is presented. The design
 

is based on a maximum use of developed, space qualified hardware
 

so that the vehicle can be made operational by 1973. The TLtmn
 

III-D Centaur will be the launch vehicle. This booster combination
 

can insert a 12,000 pound spacecraft into a translunar trajectory.
 

Total program costs for an eight mission program would be approx

imately $400,000,000, exclusive of payload costs.
 

Lunar touchdown 3-sigma landing dispersions of one kilometer
 

relative to targeted geological features anywhere on the visible
 

face of the moon are proposed. These can be obtained with the use
 

of direct descent trajectories and terminal guidance corrections
 

based on remote television transmissions. The vehicle can be
 

safely landed in lunar slopes of up to 35 degrees with the aid of
 

low touchdown velocities, held-down rockets, and a four-pad landing
 

gear. Retro propulsion is provided by a main cryogenic stage that
 

consists of a Pratt & Whitney RL-10A-3-3 engine, and is jettisoned
 

after burnout at low altitude. Touchdown is accomplished with the
 

use of a monomethyl hydrazine, nitrogen tetroxide vernier propul

sion system that consists of sixteen modified Marquardt R-4D
 

thrusters.
 

Other proposed major subsystems include a fuel cell *gITimary
 

battery power supply, and a guidance and navigation system composed
 

of the Lunar Module landing radar, inertial measuring unit, and
 

modified guidance computer.
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CHAPTER I
 

INTRODUCTION
 

Joe Robertshaw
 

1.1 Mission Objectives
 

1.1.1 Types of Missions
 

The primary mission of the Lunar Logistics Vehicle (LLV) is
 

to accurately soft-land a variety of payloads at any selected
 

site on the visible face of the moon to support lunar exploration.
 

The LLV is to be capable of performing in conjuction with separ

ately-launched manned spacecraft and independently in unmanned
 

missions. Some of the possible payloads are the Apollo Lunar
 

Science Experiment (ALSEP), a shelter for the extension of
 

astronaut stay-time, a lunar rover vehicle, lunar flying units,
 

mobility supplies and propellants, life-support equipment, tools
 

and equipment to be used by astronauts, a large stationary geo

logical/geophysical package, an astronomical observatory, and
 

various saientjic payloads.
 

1.1.2 Mission Functions
 

The primary function of the LLV is to transport payload to
 

the moon. However, it is desirable that the LLV systems be able
 

to determine the condition of the payload after landing, verify
 

deployment of the payload, and provide some support to the payload.
 

Furthermore, if more than one spacecraft is to land at a given
 

site, the LLV should have a beacon or transponder so that it can
 

be easily located by following spacecraft.
 

1.1.3 Principles of Alternative Evaluation
 

The principle measure of effectiveness of the LLV system is
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useful payload landed on the moon. Cost, mission success proba

bility, development risks, flexibility in accommodating various
 

payloads, ease of payload deployment, and growth potential were
 

evaluated to aid in the selection of the configuration. It was
 

assumed that there would be a total of eight missions.
 

1.2 M:ission Constraints
 

1.2.1 Constraints Due to the Launch Vehicle and Trajectories
 

The LLV will be launched by a Titan III-D Centaur, which has
 

the capacity to insert 12,000 pounds into a translunar trajectory.
 

The LLV must be compatible with this launch vehicle and hence
 

have a total weight of 12,000 pounds or less. The overall
 

dimensions of the LLV are limited by the payload envelope of the
 

Titan III-D Centaur which is about 300 inches long with a diameter
 

varying from 120 inches to 150 inches. The LLV-Centaur interface
 

is a 120-inch diameter structural ring with twelve hard points.
 

The LLV must be able to withstand launch accelerations of 6g
 

vertical and 2g horizontal.
 

The following trajectory ground-rules were laid down for the
 

LLV:
 

Translunar Trajectory
 

60 to 120 hour trip time
 

60 hour:4500 fps hyperbolic excess velocity
 

120 hour:2500 fps hyperbolic excess velocity
 

Midcourse Correction Budget
 

LV = 1a fps 

Lunar Phase
 

Orbital and/or direct descent
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Landing site redesignation budget AV = 150 fps
 

Constant attitude final approach
 

Hover: 20 seconds minimum
 

1.5% flight performance reserves
 

0 to 90 dugree flight path angles with respect
 
to lunar horizon at initiation of retro
 

Maximum vertical landing velocity - 15 fps
 

Maximum horizontal landing velocity - 5 fps
 

It is desirable that the LLV land within a 3a 1 km radius
 

of the target, and it would enhance the effectiveness of the
 

LLV if it had the capability, either built-in or through slight
 

modification, to lift off after landing and "hop" to another site.
 

Therefore, design considerations included the cost of a post

landing hop of 1 km.
 

1.2.2 Constraints Due to Payload
 

The LLV must interface with the payload through a structural
 

ring. The C.Q. of the payload is confined to a conical frustum
 

2.5 ft high located coaxially with the payload. The base diameter
 

is 2 ft, and the ton diameter is 1 ft. (See Figure 1.2-1.) It is
 

desireable that the LLV payload capabitity be 2500 lb or more.
 

The volume of the payload compartment must be compatible with
 

the types of payloads mentioned in Section 1.1.1. In particular,
 

the rover vehicle and lunar shelter provide upper limits to the
 

payload envelope. The lunar rover is about 5 ft x 5 ft x 10 ft,
 

and the shelter is 9 ft in diameter and 7 ft in length. Thus,
 

the payload volume must be at least 7 ft high and wide enough
 

to accomodate the lunar rover in a horizontal position, i.e.
 

10 ft or more.
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1.2.3 Constraints Due to Lunar'Srtad&C6nititns
 

It is desirable that the LLV be able to land in the rough
 

terrain of the lunar highlands. Therefore, design considerations
 

include safe landing on slopes up to 350 and among boulders of
 

one foot diameter.
 

The LLV systems must function long enough in the extreme
 

temperature conditions of the lunar environment to make immediate
 

post-landing checkouts that determine the condition of the payload
 

and success of payload deployment. It would enhance the effectiveness
 

of the LLVJff the life of the LLV systems could be extended.
 

Therefore, design considerations included LLV system lifetimes up
 

to 90 days and resultani costs.
 

1.2.4 Cost and Schedule Constraints
 

The LLV design objectives include low cost, maximum flexibil

ity, and moderate growth potential. Maximum use of flight-proven
 

systems such as those on Surveyor, Lunar Orbiter, and Apollo had
 

to be made. There were to be few exceptions to this constraint.
 

The LLV is scheduled for use in the 1973-76 time period.
 

Development time for any recommended systems must meet this
 

constraint.
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//// 
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FIGURE 1.2-1 PAYLOAD ENVELOPES
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CHAPTER II
 

ALTERNATIVE SPACECRAFT DESIGN AND SELECTION
 

George Hauck 
Frank Hendel 

2.1 
2.2 

Fred Davidson 2.3 
Floyd Calvert 
George Glass 
George Pincus 

2.4 
2.5 
2.6 

2.1 Alternative Space Frame Configurations 

In selecting a frame and packaging the various subsystems a
 

truly infinite number of options are open to the structural design

er, even with the constraints listed in the foregoing. M'any basic
 

configurations offer feasible solutions and each allows a variety
 

of structural schemes and even more possibilities for geometric
 

arrangement and component proportioning. Thus it should be noted
 

at the outset that true optimization is impossible, and that the
 

search must be directed to a good solution.
 

2.1.1 Alternative Landing & Payload Packaging Systems.
 

Any evaluation must proceed on a hierarchial basis, starting
 

with a manageable number of quite general schemes, and ending with
 

the selection of one well-defined system. This development took
 

place in the following manner.
 

a. Basic Arrangement. A craft of the type considered consists
 

essentially of a linear array of four elements: propulsion plant,
 

landing device, equipment space and payload. The landing device
 

may, however, in certain cases be removed from this array and
 

attached to the sides of one or more of the other elements. The
 

equipment may be stowed in several locations, e.g. some below the
 

payload, some above.
 

Since important mass savings can be realized by jettisoning
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the main propulsion plant before landing (at a slight structural
 

penalty) this element clearly must be in the lowest location. The
 

landing device, if in the array, must be at one of its ends,
 

occupying the lowest position in the landed structure. This leaves
 

the possibilities of bottom or top-mounted payload structures. In
 

the flight configuration the propulsion plant can be-rttached to
 

either end, but structural considerations clearly demand-its 1oca

tion at the bottom of the configuration with respect to both lift

off and landing orientations. Thus the choice of possible arrange

ments of the four elements can rationally be narrowed to two, as
 

follows:
 

Top-Mounted Payload Bottom-Mounted Payload
 

Payload Equipment Space
 

Equipment Space Payload
 

Landing Device* Landing Device*
 

Propulsion Plant Propulsion Plant
 

Both of these arrangements promise advantages and were investigated
 

more closely.
 

b. Initial Concepts. A number of promising initial concepts
 

were developed for each of the two arrangement possibilities and
 

are shown diagramatically in Figure 2.1-1. Of interest were
 

structural theme, packaging in the launch vehicle shroud, landing
 

gear deployment and landing characteristics. The Configuration Group
 

evaluated these seven concepts in a design conference, applying
 

qualitative judgment with respect to general mission capability.
 

The results are summarized in Table 2.1-1 and shown graphically in
 

Figure 2.1-2. Four concepts were thought to warrant further deve

*If part of the array.
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lopment, namely:
 

(a) Crushable Bowl Lander (CBL), a vehicle using an approxi

mately hemispherical shell covered with shock-absorbing material
 

as a landing device; the payload may be top- or bottom-mounted.
 

(b) Bottom-Mounted Payload Lander (BMPL), a configuration
 

that allows the payload to be dropped just prior to landing
 

(Separable Version) or the vehicle to be landed intact (Integral
 

Version).
 

(c) CAMEL, a top-mounted payload lander that maximizes the use
 

of proven concepts, primarily of a modified, scaled-down Apollo
 

LM type landing gear.
 

Further, two hybrids concepts were offered. One of these would 

employ basically the BMPL (Int.) structure in combination with the 

CBL landing concept by using a BMPL (gep) type landing dovice for 

the entire vehicle. The other combines essentially the BMPL (Int)
 

and CAMEL concepts by shifting part of the support equipment, especial

ly the vernier engines with their tanks, to the bottom, thus creating
 

an Intermediate-Mounted Payload Lander (IMPL).
 

c. Candidate Configuration. The four primary aondeptz
 

were developed to the extent of preliminary structural design, center

of-gravity determination, and deployment penalty estimates. An
 

attempt was made to achieve sound and advantageous designs, but
 

rigorous optimizations could not be carried out. The four competitive
 

designs are indicated in Figures 2.1-3 through 2.1-6, and the
 

estimated values of several pertinent parameters are summarized
 

in Table 2.1-2.
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BOTToM MOUNTED PAYLOAD LANDER (SEPARABLE) 

FIGURE 2.1-5
 

0 
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BOTTOM MOUNTED PAYLOAD LANDER (INTEGRAL)
 

FIGURE 2.1-6
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TABLE 2.1-2 CONFIGURATION COMPARISON TABLE
 

CAMEL BMPL CBL 

Structural Weight (LBS) 605 
(INT) 

605 
(SEP) 

475 770 

Ri-Fly Penalty (LBS) <30 <30 N.A. 0 

Stability Ratio H/R 1.6 0.93 0.81 0.97 

Height of Payload (IN) 79 37 47 57 

Ramp Penalty (LBS) 51 17 24 33 

2.1.2 Evaluation and Selection
 

The CBL, BMPL, (Iht.), BMPL (Sep.), and CAMEL each offer some
 

unique advantages and drawbacks. Inspection reveals for each con

figuration favorable as well as unfavorable traits distinctive
 

enough to aid in the selection process. The arguments are briefly
 

tabulated below:
 

Vehicle Pro 
 Contra
 

CBL Landing stability High Mass
 

BMPL (Int.) I Offt-load.iease
 

BMPL (Sep.) Low mass 
 Lack of PL Support
 

CAMEL Conventionality Off-load difficulty
 

In addition, it should be noted that the BMPL vehicles are
 

subject to local hazard to the payload (while the equipment is
 

'ndangered in the cases of the CBL and CAMEL). 
 In addition to the
 

obvious implication in regard to off-loading, thermal considera

tions, on the other hand, indicate a preference for mounting
 

equipment on top to enhance its survivability.
 

A final aspect deserving attention is the low state of art in
 

the matter of stabilizing arms used by the BMPL (Sep.) and the CBL.
 

These devices would indubitably require lengthy development study.
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In view of these arguments the Institute decided, upon recom

mendation by the Configuration Group, to propose the development
 

of the BMPL (Int.), subject to reasonable modification. Upon a
 

subsequent consultatiod Mith NASA, the one major modification
 

decided on was the placement of most of the vehicle support e

quipment below the payload deck. The shift implies thermal control
 

penalties for the vehicle, which are partially offset by a lowering
 

of the center of gravity and improved thermal conditions for the
 

payload. Structural penalties are not obvious: landing conditions
 

favor original version; loads the modification; thus the differences
 

are probably not appreciable. The recommended concept forms the
 

basis for the design described in Chapter VIII, hereafter referred
 

to as the Lunar.Logistics Vehicle (LLV).
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2.2 	Alternative Propulsion Systems
 

2- 2.2-1 Main Retro System.
 

The following candidates for the main retrograde (retrol
 

rocket were considered and evaluated;
 

(1) 	RL 10 engine (several models) which use LOX and LH2 as pros
 

pellants;
 

(2) 	SRM-MSC a military solid propellant motor Cclassified) special
 

ly adapted for the LLV spacecraft;
 

(3) 	Several military solid propellant motors Cclassified) readily
 

available;
 

(4) 	Surveyor solid propellant motor (used as a retro rocketl; the
 

following configurations were considered:
 

(a) 	 three Surveyor motors in the first stage and one Surveyor
 

motor in the second stage;
 

(b) 	 four Surveyor motors in the first stage and one Surveyor
 

motor in the second stage;
 

(5) 	Descent engine of the Lunar Module (Apollo spacecraft);
 

(6) Ascent engine of the Lunar Module (Apollo spacecraft);
 

(7) 	Main engine of the Service Module (Apollo spacrcraft);
 

(8) 	Agena engine (several models).
 

The Section 4.7 shows the reasons why the trade-off analysis
 

pointed out that the RL 1OA-3"3 engine had to be selected in order
 

to meet the payload requirement.
 

2.2-2 Vernier System.
 

The 	following candidates for a vernier system Were considered;
 

(a) .,,.Acluster of Apollo engines R-4D each 10 lbf thrust;
 

(b) 	'K cluster of R-4D engines each 130140 lbf thrust (after
 
increasing the feed pressurel;
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(c) 	Bell 8570 engine of 325 lbf thrust (not qualifiedl;
 

(d) 	Rocketdyne RS-21 engine of 30G lbf thrust (not qualifiedl;
 

(e) 	New engines specially developed for LLV, thtottleable
 
from 500 lbf to 50 lbf;
 

(f) 	Viking engine throttleable from 400 lb to 50 lbf thrust
 
(not developed).
 

The engines (a) through e) use N20 and derivatves of N2H 4 as
 

bipropellants. The Viking engine will use N2H4 as a monopropellant
 

and, hence, will have the lowest specific impulse.
 

Trading off the development costs, specific impulse, flexibility,
 

weight, power consumption, and reliability E-V R-4D with a higher
 

thrust was selected.
 

2.2-3 Reaction Control System.
 

The 	following candidates for a reaction control system were used;
 

(a) 	Marquardt R-1E engine of 22 lbf thrust (qualified for the
 
MOL spacecraft);
 

(b) 	Bell PBPS engine-of 22 lbf* thrust
 

(c) 	R-4D engines each 100 lb thrust for the use as verniers
 
aid,if specially canted,for roll control- as well.
 

Trading off the development costs, flexibility, reliability, etc.
 

the R-IE engine was selected.
 

2.2-4 Attitude Control System.
 

The following candjdflessfor the attitude control were con

sidered:
 

(a) 	cold nitrogen gas jets;
 

(b) cold hydrogen gas jets Cboil~off from LH2);
 

Cc) cold nitrogen/hydrogen gas jets;
 

(d) 	cold hydrogen/oxygen gas jets (boiloff from LH2
 
and LOX).
 

Considering that hydrogen gas is readily available and that it
 

has the highest specific impulse, hydrogen jets were selected.
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2.3 Summary of Guidance and Navigation System
 

2.3.1 Alternative Guidance and Navigation Systems.
 

Two basic types of guidance and navigation systems were
 

considered - the surveyor type system, and a modified lunar module
 

type system. The 3a ikm landing dispersion radius specified neces

sitated a G&N system capable of altering the LLV preprogrammed des

cent trajectory, since inertial coordinates of possible landing sites
 

on the lunar surface were not known to this accuracy. This re

quirement ruled out the use of a surveyor type G&N system.
 

The LLV mission was broken down into three phases - a
 

coasting phase, a mid-course correction maneuver phase, and a
 

terminal phase. Tat le 2.32-llists the types of G&N systems consider

ed and indicates the choice made.
 

2.3.2 Components used in the LLV 9&N system.
 

Once the type of system was selected, individual components
 

were selected. Table 2.3-2 lists the components used in the select

ed system, and the function of each component.
 



TABLE 2.3-1 ALTERNATIVE GUIDANCE AND NAVIGATION SYSTEMS
 

Mission 
Phase 

Type of Guidance 
and Navigation 
System 

Coasting 
Phase 

inertial sensors 
servo loop 
control of atti-
tude control 
system 

- -

Advantages 


Very accurate 

vehicle attitude, 

angular rate 

information 


Jin 


Celestial sensor, Low electrical 

servo loop power requite-

control over atti ments 

tude control 

system
 

Inertial sen-

Midcourse sorscomputer 

Correc- control Of 
tion R. C. S. 

Celestial 
sensor, 
computer con-
trol of 
R. C. S. 

Inertial sen-
Terminal sor, computer 
Descent television 
Phase 

Very accurate 

execution of 

midcourse 

maneuver 


Low electrical 


Disadvantages Choice
 

Gyro drift rate
 
causes loss of atti
tude information
 
and control as
 
time increases,
 
high electrical Celestial sen
power requirements. sor (sun, Cano-


Less accurate 

vehicle attitude, 

angular rate 

information
 

Requires complica
ted system that has
 
high electrical
 
power requirements 


Poor & limited an-

power'requirements, gular orientation
 
less complicated 

system 


Can alter descent 

trajectory to 

land in hazard 

feee location 


for midcourse man
euver, cannot sense
 
vehicle accelera
tions
 
Poor information
 
about altitudes,
 
velocities of
 
vehicle and never
 
demonstrated as a
 
workable system
 

pus) servo loop

control over
 
attitude control
 
system
 

Inertial sensor,
 
computer con
trol of R. C. S.
 



Inertial sensor Can soft land No ability to 
computer, land- vehicle with all deviate from pre
ing radar velocity compo- programmed landing 

nents less than site. Inertial sensors 
5 fps computers, 

landing radar 
Inertial sen- Redundant, auto- television 
sors, computer, matic soft landing computer con
landing radar system that can tols R. C. S., 
television after descent tra- vernier, main 

jectory to achieve retro propulsion 
a hazard free systems 
landing. 
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TABLE 2.3-2
 

COMPONENTS OF LLV GUIDANCE AND NAVIGATION SYSTEM
 

ITEM DIMENSIONS WEIGHT ELECTRICAL 
POWER 
REQUIREMENTS 

IMU and 12.5" diam. 45 lbs 100 watts 
Navigation sphere; 14 " 
Base diam. ring 

10" legs 

IMU Pulse 
Torquing 
Assembly 2 1/2"xll"xl3l15lbs 90 watts 

Coupling 5.5"xll.3"x20 35 lbs 50 watts 
Data Unit 

Flightr 
Computer 12"xlS"xB" 50 lbs 100 watts 

(20 watts 
at reduced 
power) 

Celestial See Table 
Sensors 3.1-1 5.5 lbs 5 watts 

Landing 20"x24"x65" 42 lbs 200 watts 
Radar (antenna) 

15.7"x6.75"x 
7.35" (elec-
tronics'; 

Power and 24"xlOx3" 60 lbs See Sec 
Servo 5.6 
Electronics 

FUNCTION
 

Provides angular
 
rate, attitude,
 
accelerations
 
experienced by
 
vehicle
 

Resets gyros to
 
desired orienta
tions on command
 
from computer
 

Converts analog
 
sensor signals to
 
digital computer
 
inputs; computer
 
outputs to analog
 
control signals
 

Controls LLV
 
during powered
 
flight. Executes
 
ground commands
 

Provides orient
ation information
 
used by computer to
 
control LLV
 
4ttitudqs during
 
coasting phase of
 
flight
 

Provides very
 
accurate altitude,
 
velocity inforr"
 
mation during low
 
altitude phase of
 
descent (<50,000 ft).
 

Provides proper
 
current, voltage,
 
frequencies to all
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electronics in the
 
vehicle
 

Used in locating
Transponder See Sec 6.2 
 LLV after landing
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2.4 Electrical Power System
 

2.4.1 Alternative Electrical Power Systems
 

Five alternative electrical power systems were evaluated for
 

the spacecraft. The five systems considered are listed in
 

TABLE 2.4-1.
 

TABLE 2.4-1 ELECTRICAL POWER SYSTEM ALTERNATIVES
 

System 


Batteries 


Fuel Cells and Battery 


Solar Cells and Battery 


RTG and Battery 


Fuel Cells 


Power Generating Components
 

Three Apollo LNI ascent stage
 
batteries, each 9 kw-hr
 
capacity
 

Two radiation-cooled Allis
 
Chalmers fuel cells, each
 
200 w rating; one Apollo LM
 
ascent stage battery
 

Solar array 30 square feet
 
in area, orientable array;
 
one Apollo 1! ascent stage

battery
 

Four SNAP 19 RTG modules,
 
each rated 35 w for 90
 
days; one Apollo LM ascent
 
stage battery
 

Two fuel cells, each rated
 
2 kw
 

2.4.2 Evaluation and Selection
 

Evaluation criteria which were used as the basis for selection
 

of the electrical power system are listed in ThbI. 2.4-2. A detailed
 

comparison of the candidate electrical power systems is included
 

in Chapter 5. The reconmmended electrical power system for the LLV
 

spacecraft is the Fuel Cells and Battery system. One 200 watt
 

fuel cell provides the nominal translunar coast phase electrical
 

power and the silver-zinc battery provides supplemental power for
 

peak power periods.
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TABLE 2.4-2 SELECTION CRITERIA
 

System weight
 

System volume
 

Cost
 

Availability
 

Growth potential in mission length
 

and in mission power level
 

Lunar night survivability
 

Payload support and integration
 

Reliability - Redundancy
 

Complexity of interface problems
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2.5 Telemetry and Communications
 

The telecommunications subsystem serves as the link between
 

the spacecraft and its base on the earth. The subsystem must be
 

able to receive information and commands and convert them into use

ful signals for operation of the vehicle. It must also be able to
 

collect data'and information from the spacecraft and its payload and
 

transmit it to Manned Space-Flight Network or Deep Space Network
 

on earth. The specific requirements for various parts of the mis

sion are outlined in Table 2.5-1.
 

2.5.1 Alternative Telecommunication Systems
 

One of the basic tenets in the design of the i! i 
E gtsttaa- .f ie Maacctct W~iiRz 4ftoUU~nflA 

qualification costs by maximizing the use of Surveyor, Lunar Orbiter,
 

Apollo and other flight proven systems. If new systems are required,
 

their introduction should result in substantial improvements or re

duced costs.
 

-One of the mission objectives is to land within one kilometer
 

(3a) of a point on the Lunar surface. Since the map error, for a
 

given point is usually much larger than one kilometer it became
 

evident early in the investigation that guidance based on visible
 

indications of the landing point would be necessary. All of the
 

systems considered have real time todevison.capablity.
 

A summary of the data for each of the four systems considered
 

is given in Table 2.5-2.
 

2.5.2 Evaluation and Selection
 

The criteria used for evaluation the final design were
 

1. Weight
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2. Reliability
 
3. Cost
 
4. TV Capability
 
5. Data Rates
 
6. Power
 
7. Volume
 

Originally the tradeoff study was conducted with .Surveyor, Apollo
 

LM and Apollo CSM as the candidates. The CSM equipment is heavy
 

and more complex than needed, and was eliminated. The LM system 

Vas, eirtcta 'when the following statement was discovered in 

the LM Apollo Operations Handbook, page 2.7-45 1 "S-band lunar 

stay antenna failed. Weakening of LM S-band signals (downlink) at
 

MSFN loss or severe limitation of LMTV capability."
 

The Surveyor system, because of the extremely slow angular
 

rates for the directional antenna aind low uplink data rate, will
 

not meet system requirements (more detailed system requirements are
 

found in Section 6.1 and 6.2). However, it was learned that an
 

Unmanned Lunar Rover concept using two television cameras was being
 

developed by-NASA i The equipment proposed for the Unmanned Rover 

seemed to be capable of meeting system requirements if suitably 

modified. A system was developed and is described in detail in 

Section 6.3.
 

A study of the data in Table 2.5-2 reveals that the modified
 

Lunar Rover is equal to or better than the other three with the ex

ception of the power requirements. The high power transmission
 

periods are relatively short and thus additional energy requirement
 

is correspondingly low. A prime advantage is the modulation cap

ability for television which makes possible the elimination of
 

some conversion equipment at the ground station. This point is
 

discussed further in Section 6.4 A strong justification for using
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Lunar Rover equipment is that some of the vehicle payloads are quite
 

likely to be unmanned rovers and thus the two programs could comple

ment one another. The Modified Lunar Rover telecommunication sub

system is thus recommended for the spacecraft.
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TABLE 2.5-1 TELECOMMUNICATION SUBSYSTEM REQUIREMENTS
 

Mission Phase Functions Required 

Launch - cn Telemetry to send system performance 
data to ground. 

Coast Command signals to acquire the 
sun and canopus for navigation 
control. 

Mid-course 	 Commands to align spacecraft with
 
flight path and engine firing for
 
AV correction.
 

Telemetry to send system performance
 
data to ground.
 

Command signals to acquire the sun and
 
canopus for navigation control.
 

Lunar Approach 	 Commands to align vehicle for tele
vision pictures and retro firing.
 

Transmission of video signal from
 
television camera for landmark
 
recognition and hazard avoidance.
 

Command signals to perform flight
 
maneuvers to reach desired landing
 
designation.
 

Post Landing 	 Telemetry to send system and payload
 
data to ground.
 

Turn on transponder if active one used.
 

Commands to deploy payload.
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2.6 Summary of Proposed Design
 

2.6.1 Spacecraft Design
 

The proposed design may be considered as a space frame en

closing a 9 feet diameter by 7 feet high cylindrical payload
 

envelope. Four landing gears with 20 in. diameter pads are ar

ranged at 900 to each other and placed perpendicular to the
 

four longer sides of the octagon-shaped payload plane. (See
 

Figures 2.6-1tblr6-2t 2nl 0.-l-1.
 

Each landing gear includes 3 members: a 150 in. long main
 

compression strut running from the pad to the top of the structure
 

and two shorter struts spaning from the main compression strut to
 

the end points of the octagon longer sides. The main struts as
 

well as the pads include crushable honeycomb material.
 

Eight diagonal members connect the top and bottom of the
 

structure and there are no vertical elements between those two
 

parallel planes. The octagon-shaped payload support structure in

cludes transverse and stiftening elements within the octagon struc
 

ture and on its plane. These elements are also used to attach the
 

vehicle support equipment (guidance, communications, electronics,
 

fuel cells and tanks, vernier propellant tanks,) to a 24 in. high
 

envelope bounded on the top by the payload plane and on the sides
 

by the octagon perimeter.
 

Channel sections are used for the elements forming the octagon
 

payload support plane. The perimeter elements are subject to the
 

largest loads and primarily function in simple bending in view of the
 

intermediate and ehd support conditions. All other elements of the
 

structure are tubes of up to 3.5 in.-O. D. andwall'thickness up to
 

.146 in. Aluminum alloy 7075 is used throughout the structure.
 



TABLE 2.5-2 TELECOMMUNICATION SUBSYSTEM CANDIDATES - DATA SUMMARY* 

Weght-lbs** 


Volume-f?** 

W/O Antennas 


Power-Watts*** 


Data Rate-Kbits/sec
 
Up-link 

Down-link 


Antenna Slewing 

Rate-degrees/sec
 

Transmitter TV 

Modulation-KHz
 

Transmitter 

Power-Watts 


Surveyor 


106 


9960 

1.21 


100 

33 


0.05 

4.4/0.017 


0.125/0.25 


220 


10 

0.1 


Apollo LM 


163 


12.80 

2.45 


156 

84 


140 

51.2/.6 


20 


500 


18.6 


*Data taken from References Ir, 6a. PhAlpor.y 
**Weight and volume values are for equipment only 

Apollo CSM 


271 


29%50 

3.14 


233 

138 


1.0 

51.2/1.6 


15 


500 


.112 

0.1/0.4 


/
 
Modified Lumar Rover
 

101
 

11.80
 
1.09
 

171
 
58
 

1.0
 
102.4/024
 

20
 

2Q000
 

10
 
0.2
 

- no packaging is included. Total
 
weight 152 lbs plus 85 lbs of cable harness and sensors.
 

**Pcwar t&hues .giivon -e te-rotrnnitttter i:trhiq andsvw ,power 
/Recommended. Subsystem 
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A 26 in diameter S-band steerable antenna is placed on the
 

top of the vehicle at the intersection of the top cross-members.
 

This antenna produces some bending in the top members but the
 

magnitude of the bending stress is smallin comparison with the
 

stresses induced in the members at landing. Four tension wires
 

complete the top structure and these are designed to balance the
 

main cross-member loading.
 

Sixteen verniers, four on each side are attached to the four
 

longer sides of the octagon payload support plane. These verniers
 

feed from a common tank system located at the center of the payload
 

plane. A total of 12 Reaction Control System Thrusters feed from
 

the vernier propellant tanks are placed at the center of the longer
 

sides and disposed in 4-4-2-2tgroups; Small gas jets are attached
 

to each landing gear to serve as an attitude control system that is
 

used during coasting periods of the mission.
 

The thrust structure includes 3 in. 0. D. round tubes and two
 

support space rings. -Four verticalinmembers are continuous from
 

the Centaur hard points to the middle of the short sides of the pay

load octagon structure. Diagonal elements span between the other 8
 

hard points on the centaur and the lower space ring' The upper
 

space ring supports the hydrogen tanks with four brackets and also
 

provides support points for the vertical and diagonal members to
 

the lower space ring and to the payload support octagon structure.
 

2.6.2 Weight Summary
 

TABLE 2.6-1 gives a weight summary for the proposed Lunar
 

Logistic Vehicle, support equipment, thrust structure, propellant,
 

tanks and other elements necessary to implembnt the mission.
 

These are tentative weights and subject to considerable refinement.
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An itemized listing of all the weights is given in Section 8-6.
 

TABLE 2.6.1 

SDkmAXXy OF YEI ;H S 

Ref. Table Item Weight (lbs) 

8.5.1 Lander Structure 330 
8.5.2 Thrust Structure 250 
8.5.3. Propulsion System 933 
8.5.4 Propellant 6378 
8.5.5 Guidance and Navigation System 225 
8.5.,6 Power System 357 
8.5.7 Communications System ill 
8.5.8 Instrumentation 67 
8.5.9 Environmental Control 196 

Payload 2500: 

Total Launch Weight (Approximate) 11,400 lbs 
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CHAPTER III
 

FLIGHT CONTROL SYSTEM
 

Fred Davidson 3.1, 3.2
 
Joe Robertshaw 3.3
 
Frank Swenson 3.4
 

3.1 	'Guidance and Navigation System
 

3.1.1 Introduction / 

The objective of the LLV guidance and navigation system is
 

to soft land the vehicle at the lunar surface within 1 kilometer
 

of a preselected landing site, with a 99% probability of achieving
 

the soft landing within the 1 kilometer distance from the chosen
 

site. Several &&ternative guidance and navigation (G&N) systems
 

were considered. These fell into two classes - the type of G&N
 

system used on the surveyor spacecraft, [l] and various G&N system=
 

that contain a television system and involve some degree of earth
 

based control of the spacecraft during the final phase of descent
 

to the lunar surface [2,3].
 

The principle sources of error in any G&N system are the
 

following:
 

1. 	Tracking errors that result in imprecise information
 

about the tEjectory the spacecraft is actually on.
 

2. 	Inertial measuring unit sensors errors that result in
 

incorrect values of spacecraft velocity, acceleration,
 

and attitude that are used by the.guidance computer in
 

determining the vehicle's state vector.
 

3. 	Powered maneuver execution errors caused by incorrect
 

thrust vector alignment and engine thrust dispersions.
 

4. 	Map errors that result in incorrect inertial coordinates
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for the selected landing site.
 

The largest source of errors in currently available navigation
 

systems are errors in existing maps of the lunar surface. These
 

range in magnitude from a few thousand feet in the best mapped
 

region of the lunar surface to ten to twenty miles for poorly
 

mapped regions near the-extremeties of the lunar front face and
 

the entire rear face. There is little likelyhood of significant
 

improvement in lunar maps before the LLV is to be flown. The
 

next largest errors are earth based tracking errors. Typical
 

values of these errors [4) are shown in Figure 3.1-1. Inertial
 

measurement unit (IMU) sensor errors [5] are typically 2 ft/sec
 

velocity offset errors, 0.1 deg/hr non-acceleration sensitive
 

gyro drift rates, 0.2 deg/hr/g acceleration sensitive gyro drift
 

rates, and generally less than 60 arc sec gyro axis - spacecraft
 

axis misalignment errors. Execution errors generally result in
 

velocity residuals of 1-2 fps.
 

The Surveyor spacecraft guidance and navigation system
 

consisted of three integrating rate inertial gyros (IRIG), one
 

spring type accelerometer, sun and Canopus optical sensors,
 

servo attitude control loops, an altitude marking radar, a
 

velocity sensing three beam landing radar, and a logic sensing,
 

control mode switching device. The logic sensing device received
 

ground commands and performed the desired maneuvers via the
 

control mode switching device. An automatic soft landing was
 

achieved with the use of the landing radar and servo loops that
 

controlled vernier engines. The system was designed to achieve
 

a landing site dispersion radius of 14 kilometers [6], and could
 

not deviate from the preprogrammed intended landing site once
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powered descent had begun.
 

A more accurate and versatile G&N system was used on the
 

Apollo-Lunar Module spacecraft [7]. This type of system contains
 

three IRIGS, three pulse integrating pendulous accelerometers
 

(PIPA), an optical sextant, a landing radar and a flight computer.
 

The system was capable of complete control over the spacecraft
 

and could land the vehicle -at any site s lected by the astronaut
 

with the use of the versatile flight computer. The LM G&N system
 

is highly redundant since it is in a manned space vehicle and hence
 

contains more equipment than would be needed on the LLV.
 

If inertial coordinates of the desired lunar landing site
 

were known precisely, a sufficiently accurate G&N system without
 

the ability to deviate from a preprogrammed landing location could
 

be used. Since precise inertial coordinates of lunar surface sites
 

are not available, the G&N system used on the LLV must be capable
 

of altering the spacecraft landing location during the powered
 

phase of its descent. This,will allow the LLV G&N system to
 

compensate for lunar surface map errors. This type of system could
 

be constructed using a LM type G&N system with -atelevision camera.
 

An earth based operator could then change the vehicle's landing
 

point once he determined that the vehicle would land in an incorrect
 

location unless he alteredtits trajectory. The G&N system
 

designed for the LLV was based on a combination of components
 

found in the Surveyor and LM G&N systems. The details of the
 

design are discussed in the following sections.
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3.1.2 Coasting Phase Guidance and Navigation
 

The coasting phase of the LLV translunar trajectory begins
 

with separation of the vehicle from the Centaur stage of the
 

launch vehicle. Measurements must be made to determine very
 

accurately the actual trajectory of the vehicle so that deviations
 

from the nominal flight path may be corrected with mid-course
 

maneuvers. Exact determination of the orbit and estimations of
 

landing point dispersions require extensive caiculation-, and is
 

best accomplished with ground based computers. Measurements of
 

spacecraft velocities can be obtained from an onboard IMU or from
 

an onboard transponder phase locked to ground tracking stations.
 

The latter method provides better accuracy in measurements of
 

the quantities needed for orbit determination. Figure 3.1-2
 

shows how tracking data improves the estimated landing point
 

dispersion with time [6]. If the asymptotic v&ue of the disper

sion exceeds the required accuracy of 1 Km, a mid-course correction
 

must be made. Precise orbit determinations generally cannot be
 

made based only on IMU measurements because of gyro drifts that
 

increase with time. The errors in velocity and position measure

ments become too large for accurate trajectory determination after
 

only a few hours have elapsed from launch. Earth based tracking
 

and trajectory determination then must be considered the primary
 

LLV navigation system.
 

Attitude control over the spacecraft during the coasting phase
 

of the flight is necessary for thermal control of sensitive
 

electronic components, propellants, and stored cryogenics. It can
 

be achieved with the use of attitude sensors r servo control loops
 

and a cold gas jet system. The attitude sensors may be either the
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IRIGS in an IMU or a combination of celestial sensors. Use of
 

an IMU is impractical because of the high power level required
 

(25-200 watts) and the gyro drifts rates. Celestial sensors
 

(e.g. sun sensor, Canopus sensor) require very little electrical
 

power (less than 5 watts) and will control the spacecraft attitude
 

to within a few tenths of a degree, depending on what dead bands
 

are used in the attitude control system. The sun sensor and.
 

Canopus sensor used on Surveyor were selected in the LLV G&N
 

system. The properties of these sensors are listed in Table 3.1-1.
 

These sensors are coupled to the flight computer (discussed in
 

the next section) with coupling data units that convert sensor
 

analog signal outputs to digital computer inputs. The flight
 

computer then issues commands directly to4. the appropriate cold
 

gas jets.
 

3.1.3 Midcourse Correction Guidance
 

Once it has been established that the LLV is on an incorrect
 

trajectory and will miss the intended landing site, a mid-course
 

correction can be made. This usually consists of making a small
 

change in the spacecraft's velocity which will cause it to land

at the intended location. An accurate procedure has been established
 

for mid-course correction maneuvers by the M.I.T. Instrumentation
 

Laboratory [8]. It involves the determination of a velocity to be
 

gained vector and a steering law that nulls this vector. The
 

actual steering is done as follows, with the use of a combination
 

of two steering laws:
 

Steering Law I.
 

The vehicle is orientated so the thrust acceleration
 

vector is aligned with the velocity to be gained vector.
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T 4+ 
.v9 dv
 

dt
 

v = Velocity to be gained 
g vector 

at = 	Thrust acceleration
 
vector
 

Steering Law II.
 

The vehicle is aligned so that the thrust acceleration
 

vector is directed in such a manner that the V vector is
 

opposite and parallel to the vg vector.
 

v-- dv
 

dt
 

Itr = Velocity to be gained 
g vector 

at = 	 Thrust acceleration 
vector
 

These two laws are combined with a coupling constant y to yield the
 

steering law (Eq 3.1-1),'
 

'Vgx (YP- = 0 (3.1-1) 

that minimizes the amount of propellent needed to perform the
 

maneuver. Use of this type of steering required an accurate
 

determination of the velocity to be gained vector and was accomplished
 

with an IMU and onboard flight computer.
 



Item 


Sun
 

(pitch, 

yaw 

control) 


Canopus
 
(roll 

control) 


TABLE .3.1-1
 

ATTITUDE CONTROL CELESTIAL SENSOR GROUP
 

Weight 	 Power Scale Linear Field of 

Required Factor Region View 


0.4 lb 	 <1 watt 1.7 yaw: ±2 deg yaw: 20 deg 

vrms/ pitch: ±2 deg pitch: 10.5 deg
 
deg
 

5.0 lb 5 watt 2v/deg ±2 deg 	 5 deg x 8 deg 

5 deg adjustable
 

by ±15 deg
 

No. 11
 
Offset
 

0.1 deg
 

0.1 deg
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Since this type of in flight guidance has been successfully
 

used in the Apollo program, it was selected for the guidance
 

system for the LLV. The procedures for its use are well developed
 

and the hardware required is not excessive in terms of weight
 

and electrical power requirements. Furthermore, use of an
 

existing system will minimize the guidance and navigation system
 

development costs for the LLV program.
 

The essential components of the G&N system for powered
 

mid-course guidance are the existing Apollo-LM IMU, the LM
 

coupling data units, and the LM G&N computer. The physical
 

properties of these units are listed in Table 3.1-2. The guidance
 

computer accepts information from either ground based controllers
 

via telemetry or the onboard IMU through the coupling data units.
 

It performs the necessary calculations, and is capable of direct
 

control of the attitude control gas jets, the RCS system, the
 

vernier propulsion system and the main retro engine. Mid-course
 

maneuvers will be performed with the RCS system, since it offers
 

the most accurate means of changing the spacecraft's velocity
 

vector. A complete list of needed computer programs for the entire
 

mission will be given in Table 3.1-3.
 

3.1.4 Terminal Guidance
 

The G&N system requirements are most severe during the
 

terminal, or landing phase of the mission. The LLV must be slowed
 

from a velocity in excess of 9,000 fps and brought to a soft
 

landing at a chosen landing site. The system must contain a
 

television camera for identification of the actual landed location.
 

The television system will also allow an earth based operator
 

to alter the landing trajectory if the LLV is on a trajectory
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TABLE 3.1-2
 

PHYSICAL PROPERTIES OF GUIDANCE AND NAVIGATION SYSTEM
 
COMPONENTS USED IN MIDCOURSE CORRECTION MANEUVER
 

Item Dimensions Power Weight
 
Requirements
 

IMU 12.5" Diam Sphere 100 watts 45 lbs
 

Coupling
 
Data Unit 5.5" x 11.3" x 20" 90 watts 35 lbs
 

Flight
 
Computer 12" x 18" x 8" 100 watts* 50 lbs
 

*Computer can be run at reduced Dower of 20 watts it run at
 
minimum clock speed.
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which will cause it to land in an undesirable location. Several
 

landing systems containing television were investigated and are
 

discussed in Section 34.
 

The LLV soft landing system must furnish accurate horizontal
 

and vertical velocity information to the flight computer. The
 

IMU unit furnishes this data during the high altitude phase of
 

the descent, but is not sufficiently accurate for the low altitude
 

(less than 50,000 feet) terminal phase of the landing. Since
 

this information is not obtainable from the television system,
 

a landing radar must be included in the LLV G&N system. Two
 

radar systems were considered--the LM landing radar and the Surveyor
 

landing radar. Both have approximately the same accuracy in making
 

measurements of velocities and altitudes, and are about equal in
 

weight. However, the LM landing radar requires much less electrical
 

power (maximum 200 watts) than the Surveyor radar (maximum of 590
 

watts), and hence should be the one used on the LLV.
 

The actual descent of the LLV is controlled by the flight
 

computer [9]. Prior to initiation of powered descent, the vehicles
 

state vector as determined from ground tracking is fed into the
 

computer. The computer calcul&tes the time at which powered
 

descent should begin, based on a preprogrammed landing location.
 

Once the main retro engine starts, the-computer performs the
 

following series of computations:
 

1. 	Calculation of the current state vector
 

2. 	Calculation of the position vector to the intended
 

landing site.
 

3. 	Determination of the thrust level needed to keep the
 

vehicle on the intended trajectory.
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4. 	Computation of the throttle commands sent to the main
 

retro engine.
 

5. 	Calculation of the gimbal angles, gimbal angle changes
 

and angular rates to be used by the digital autopilot.
 

The digital autopilot is one section of the computer which directly
 

controls the reaction control system by opening and closing the
 

RCS engine valves.
 

The computer cycles through the listed calculations every
 

two seconds. It determines the vehicle state vector from TMU
 

data or from landing radar data. The intended landing site can
 

be changed by alteration of the terminal point coordinates used
 

in Step 2. This can easily be done by an earth based operator
 

who can determine a new set of end point coordinates from TV
 

data and then load these coordinates directly into the flight
 

computer with a transmitted instruction to the vehicle. The details
 

of this procedure will be discussed in Section 3.5.. The IMU,
 

landing radar and flight computer system can land the vehicle
 

with velocity residuals of less than 5 fps.
 

3.1.6 Summary of Guidance and Navigation System
 

The essential components of the LLV G&N system are a LM
 

type guidance computer, a LM landing radar, Surveyor sun and
 

Canopus sensors, a television system, an Apollo-LM inertial
 

measuring unit and pulse torquing assembly, and LM type coupling
 

data units. The guidance computer need not have as great a
 

capacity as the LM guidance computer, since it does not need to
 

provide astronaut displays. The system is redundant in that it
 

can safely land the vehicle if the television camera fails. The
 

computer contains a variable speed clock which allows it to be
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TABLE 3.1-3
 

LIST OF COMPUTER PROGRAMS
 

Coordinate system transformation routines
 

Celestial sensor lock-on program
 

Coast phase-guidance program - uses celestial sensors
 

for attitude, angular rate information
 

IMU alignment program
 

Midcourse guidance - velocity to be gained, vector
 

determination, steering, thrusting programs
 

Vehicle state vector determination
 

Descent trajectory determination program
 

Powered descent thrusting program
 

Landing radar data processing program
 

Digital autopilot program
 

Steerable antenna programs (high gain communications,
 

landing radar antennas)
 

Subsystem monitoring programs (fuel, temperatures,
 

electrical power)
 

Ground command implementation program
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run at low power during the long coasting periods of the mission.
 

During powered maneuvers, the clock is run at full speed and the
 

computer is operated at full capacity. Table 3.1-3 gives a list
 

of necessary computer programs. Figure 3.1-3 is a block diagram
 

of the LLV G&N system.
 

The G&N system is physically located in the largest equipment
 

box on the LLV. Table 3.1-4 lists the contents of this box.
 

The power and servo electronics unit supplies power at the proper
 

currents, voltages and frequencies to the G&N system and other
 

electronic components in the spacecraft as well.
 

It is difficult to estimate the landing point dispersion
 

ellipse that this system will produce. Since landing site
 

redesignation with the use of a television camera and earth
 

based operator has- never actually been done on a flown mission,
 

extensive simulation studies on the system will have to be carried
 

out before the LLV G&N system is actually flown. The basic system
 

without the television camera should nearly duplicate the accuracy
 

of the Apollo LM system which gives a landing point dispersion
 

ellipse of approximately 3 miles by 4 miles. The dispersion
 

ellipse of the LLV system can be calculated from equations 3.1-2
 

through 3.1-9 [See Ref. 6].
 

Semi-major axis = 	[1/2 (Nt + Nt) + L(Ntll2- Nt12 2+Nt 211/2I1/2 

Semi-minor axis = /2(Nt + Ntl 2 ) - t 11 t 1) +Nt 2 . 

The matrix Nt 6s 	ebtadned from
 

Nt = Nt + Ntr (3.1-3)
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Ntr is the lunar misg covariance natrix, given by
 

N =xUJ U T (3,141
 

U is a transition matrix which converts trajectory parameters
 

into lunar coordinates. J-1 is obtained from
 

j-1 = [ATwA + r-1]-1 (3.1-5)
 

A = matrix of first order partial derivatives
 

W = diagonal a priori weighting matrix
 

r = a priori covarlance matrix on trajectory solution
 

parameters
 

The matrix N is obtained from
 

GaIG T  
Ng = (3.1-6)
 

where G is transition matrix that converts spacecraft inertial
 

system error matrix, a,, to lunar coordinates, o is obtained
 

from
 

a,= Sas/cST (3.1-7)
 

S is the transf6rmation matrix that converts spacecraft coordinates
 

to inertial coordinates and
 

as/c (2 0 )(3.1-8)
 

0 (Y2 0 

y
 

The elements of as/c are obtained from
 

2
ax =y2 [ + (agt)23 lvl2 (3 l-9}
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TABLE 3.1-4.
 

GUIDANCE AND NAVIGATION SYSTEM BOX
 

Item 


IMU and 

Navigation 

Base 


IMU Pulse Torque 


Assembly
 

Coupling Data Unit 


Flight Computer 


Landing Radar 

Electronics
 

Power and 

Servo Electronics
 

Transponder 

Electronics
 

Dimensions 


12.5" diam 6phere 

14" diam ring
 
10" long legs
 

2 l/2"xll"x13" 


5.5"xll.3"x20" 


12"x18"xS" 


15.7"x6.75"x7.35" 


24"x10"x3" 


10"x6"x3" 


Weight 


45 lbs 


15 lbs 


-35 lbs 


50 lbs 


25 lbe* 


60 lbs 


16 lbs 


Electrical
 
Power
 

Requirements
 

100 watts
 

90 watts
 

50 watts
 

100 watts
 
(20 watts at
 
reduced power)
 

200 watts
 

±
 

90 watts
 

*Total landing radar weight including antenna is 42 lbs.
 

±Power consumption listed in Chapter V.
 

http:15.7"x6.75"x7.35
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2= 2 + (lvl) 2 

x, y, z are the spacecraft axes
 

9a = 3a attitude error minus the gyro error 

a = 3a thrusting bias uncertainty 

o = 3a thrusting proportionality uncertaintyp
 

a = 3a gyro drift rate uncertainty
g
 

t = gyro drift time 

v= mid-course velocity correction error
 

Evaluation of these equations is beyond the scope of this
 

study.
 

3.2 Mission Profile
 

The actual sequence in which the G&N system performs its
 

functions is shown in Figure 3.2-1. This sequence permits the
 

system to be run with a minimum expenditure of electrical power.
 

The mission profile is designed to accommodate three mid-course
 

correction maneuvers. The section of the profile enclosed by
 

the dotted lines is to be performed each time a mid-course
 

correction maneuver is made; The operation duration times for
 

each component on the G&N system is shown in-Section 5.2 which
 

discusses electrical power requirements.
 



54
 

FIGURE 3.2-1
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3.3 Some Trajectory Considerations
 

3.3.1 Direct vs Orbital Descent
 

The final descent to the lunar surface may occur by direct
 

descent or via a lunar parking orbit. The direct descent provides
 

more accurate landings (There is continuous tracking by earth
 

stations, and there are less perturbations due to moon inhomo

geneities.), and requires only a single impulse maneuver for touch

down. On the-other hand, the lunar orbit descent makes the total
 

lunar surface accessible, and the manned spacecraft program has
 

furnished a wealth of experience with this mode of descent. The
 

lunar orbit approach poses severe guidance problems since the
 

descent trajectory is tangential in all cases (See Section 3.335).
 

The AV budgets for nominal direct and orbit descents are
 

given in Table 3.3-1. The 60-hr mission sizes propellant require

ments for the lunar orbit descent, and the 60-hr, -900 nm peri

cynthion altitude mission sizes propellants for the direct descent.
 

The orbit descent has an appreciable AV penalty.associated with
 

it compared to the direct descent.
 

The direct descent is considered best for the mission.
 

3.3.2 Hover Penalty
 

One of the groundfules is a 20-sec minimum hover time. This
 

requires a AV budget for the hover and also for the descent of
 

the LLV from the hover altitude. The equation of motion of the
 

LLV is
 

m g , (3.3-1) 

where v is the time derivative of the velocity, T is the engine
 

thrust, m is the mass of the LLV, and g is the acceleration due
 

to lunar gravity. Since the initial and final velocities are
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TABLE 3.3-1 AV BUDGETS FOR LUNAR DESCENT (60 HR)
 

Orbit (60 nm) Direct (hp - -900 nm)
 

Midcourse 100 fps 100 fps
 

Lunar Insertion 3,450
 

Descent to 50,000 ft 71
 

Braking 5,854 9,393
 

Redesignation 150 150
 

Final Approach 506 99
 

H{over 115 115
 

Touchdown 50 50
 
10,296 9,907
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both zero, we get for LV upon integrating Eq. 3.3-1 and using the
 

definition of AV
 

AV T Ot = gt (3.3-2)
om
 

Since g - 5.31 ft/sec2 , we get AV - 106 fps for a 20-sec hover.
 

The optimal descent from hover is accomplished by letting
 

the LIV fall freely until it reaches a height h whereupon the thrust
 

is increased to maximum. The value of h is such that the LLV
 

attains zero velocity at the lunar surface.
 

Consider Figure 3.3-1. We solve for the case of a spacecraft
 

of mass m lifting off the surface with thrust T. At altitude h
 

the thrust is decreased to zero, and the spacecraft coasts to
 

an altitude i. The AV necessary for the (ascent) maneuver is
 

the same as for the opposite (ddscent) maneuver. We assume that
 

the accelerations are constant and that the chanqe in mass of the
 

spacecraft is small. The following relations hold.
 

v22 = 2g(H-h), (3.3-3)
 

and
 

v2= 2alh = 2 (T-na-h (3.3-4)
1 1m 

where vI 
is the velocity at altitude h, and aI is the acceleration
 

during the thrust phase. These equations lead to
 

h - M
T 1 (3.3-5) 

During ascent, v = - - g, and thereforem 

AV ft T dt = v - v + gt = v + gt , (3.3-6)
Jo0 0l
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Eliminating t in Eq. 3.3-6 and Eq. 3.3-7, and using Eq. 3.3-5
 

and Eq. 3.3-4, we get for the AV necessary to ascend to (or 

descent from) an altitude H 

A 2T I1/2 (3.3-8) 

AV vs H for various thrust to lunar weight ratios is plotted in
 

Figure 3.3-2.
 

3.3.3 Post-landing Liftoff or "Hop"
 

It would be desirable for the spacecraft to have the capability
 

to lift off and change its position. This may be accomplished
 

in a variety of ways. We consider two kinds of hop program:
 

(1) straight ascent, translation at constant altitude, and straight
 

descent; (2) an optimal ballistic-type trajectory.
 

The AV required for ascent and descent is given by Eq. 3.3-8,
 

The AV required for translation depends upon the thrust program.
 

Consider first the following thrust program. The thrust is oriented
 

at an angle 0 to the horizontal so that the vertical component of
 

the thrust is equal to mg, the lunar weight of the vehicle. This
 

maintains the altitude constant. The horizontal camponent of
 

thrust produces an acceleration and a translation. When one-half
 

of the desired translation is accomplished, the thrust vector
 

is reoriented so that the horizontal component points opposite
 

to the velocity vector. When the spacecraft stops, the thrust
 

is oriented vertically at a value mg. The minimum propellant
 

solution for this program is described in [10]. The angle 0
 

should be 45 , and the AV required is approximately
 

AV = 4 /gR , (3.3-9)
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whose R is the translation distance. It is assumed that the
 

change in mass is small during the maneuver.
 

The trajectory is more efficient if a coast phase is included.
 

The thhust T is oriented 8 degrees with respect to the horizontal
 

such that the vertical component is-mg. This orientation is
 

maintained for a distance x1 , whereupon the thrust is set vertically
 

so that the craft coasts at constant altitude and constant velocity
 

v2 for a distance x2. The thrust is then oriented at the angle 0
 

with the hovizontal so that the vertical component is opposite to
 

the velocity vector. When the vehicle comes to a stop, the thrust
 

is returned to the vertical position with a magnitude mg. We assume
 

that the change in mass is small so that accelerations are constant.
 

From symmetry the third phase translation distance is equal to the
 

first phase translation distance x1 . This program is represented
 

in Figure 3.3-3.
 

The change in mass Am is given by
 

Am - 2n1tI + m 2 t2 , (3.3-10) 

where m is the time derivative of m during the first and third
 

phases, m2 is the time derivative of m during the second phase,
 

and t1 and t2 are the times of the first (and third) and scoond
 

phase, respectively. From the definition of the specific impulse
 

Is of the engine, we have
 

T (3.3-11)
g s ' (eIl
 

and
 

m 2 mg (3.3-12)

geIs
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where ge is the acceleration due to earth gravity. The total 

distance traveled is-

R - 2x1 + x , (3.3-13) 

where
 

1 
x =I v2 tI , (3.3-14) 

and
 

x2 = v 2 t2 (3.3-15)
 

Eq. 3.3-14 follows from the assumption of constant acceleration.
 

Substituting Eq. 3.3-14 and Eq. 3.3-iS into Eq. 3.3-13 and
 

using the value for v2 produced by constant acceleration; i.e.,
 

= TcosO , (3.3-16)2 t2
 

we get
 

= + 2) =TcosO R v (t + t2 = ms t1 (tl + t (3.3-17) 

Solving Eq. 3.3-17 for t2 , substituting into Eq. 3.3-10, and
 

using
 

TsinO - mg , (3.3-18) 

we get, after arranging,
 

geIs m I 2 + Rtan0 
m A jsinO 1 gt (3.3-19)
 

We find the minimum for Am by setting the partial derivatives of 

Am with respect to e and tI equal to zero. The solution is 
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2 R 

9=300 ,t I . (3.3-20) 

Using Eq. 3.3-17 and Eq. 3.3-20, we get the relation
 

t2 - 2t 1. (3.3-21) 

Thus, the coast phase lasts for one-half of the total translation
 

ti me.
 

"q. 3.3-20 plus Eq. 3.3-19 yield for the minimum mass change
 

g I A 2 R (3.3-22) 

Since
 

V m+ Am )
 

ges mAV=YelmeV , (3.3-23) 

since we have assuned Am/m -< 1. Therefore, the minimum LV for
 

translation using the above program is
 

AV - /LgR = /6.928gR (3.3-24)
 

This relation is plotted in Figure 3.3-4.
 

If the thrust vector is allowed to change continuously during
 

the translation at constant altitude, we may use the calculus of
 

variations to determine the minimum AV. The problem is to minimize
 

AV *g221/2 

AV [g dt (3.3-25)J6 a+ . 

Eq. 3.3-25 may be derived in the following way. The basic equation
 

m 
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is a vector equation. Thus, by the definition of AV,
 

MY= 	 fT = ft Ig2+v 2 ] 

Jo m Jo 
dt 2*2,1/2 dt,
 

where T is the magnitude of the vector T.
 

The minimum AV is (See References [11] and [121f)
 

AV 	- r2gR = /6-.2--3gR . (3.3-26) 

Note that the AV given by Eq. (3.3-26) is only about 5% less than
 

that given by Eq. (3.3-24).
 

The AV recuirements for the three types of thrust program
 

are plotted in Figure 3.3-4.
 

The optimum trajectory which is not limited to constant
 

altitude may also be found by the -calculus of variations. We
 

can determine some properties of the trajectory by inspection.
 

Trhe minimum propellant program should include a coast phase (in
 

this case, a ballistic path) since this saves propellant. The
 

problem should be symmetric if we assume the change in mass is
 

small. Also, in order to minimize gravity losses, the thrust
 

should be as large as possible or zero. Thus, the trajectory
 

should look like that in Figure 3.3-5.
 

To make x2, the ballistic range, a maximum, 0 should be 45*.
 

The basic equation of motion is
 

3.3-27)
= - . 

Thus, we seek to minimize
 

AV-	 fl Tdt ti [.2 + (;+9) 2 11 2dt (3.3-28) 
'O Jo " 
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subject to the constraint
 

T = m* 2 + (V +g)2 1/2 = constant (3.3-29)
 

x y 

and the boundary conditions
 

t-0:vx-vy=0 ; t-t :Vx=vy=vo// (3.3-30) 

In the above equations, the dot indicates time differentiation,
 

the x and y subscripts are the horizontal and vertical com

ponents, respectively, and tI is the thrust time for the first
 

phase. From the symmetry of the problem, the AV during the third
 

phase of the trajectory is equal to that during the first phase.
 

There is no AV required during the ballistic phase.
 

Let
 

+(•+g21/2 .2yg2 1/2
 
" + (VI+g)2 + X(T - [v + (vy+g) 2 1 (3.3-31)
 

where X is a Lagrange multiplier. We also have the relations
 

T 
m = mO - kt ; k = gT 1 (3.3-32) 

Cs 

where ge is the acceleration due to earth gravity and Is is the
 

specific impulse of the engine. We minimize AV by finding the
 

solution to the Euler-Lagrange equations
 

d- L - 0 , iC-TF6. = x,y. (3.3-33)vi
 

After performing the indicated operations and arranging, we get
 

(1-Xm) _x+ Xk -F(l-Xm) = 0 (3.3-34)
 
vX
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and
 

(1-Am) Y + Ak - F(1-Xm) = 0, (3.3-35) 
(vy+g) 

where
 

S+ 2+ (3.3-36) 
x x y y x y 

Thus, 

= i\/(v+g), (3.3-37) 

or 

kn x Zn(vy+g) - in c, (3.3-38) 

where c is a constant of integrati6n. Then
 

CV x = Vy + g (3.3-39) 

From Eq. 3.3-27 we get 

T = mn , T - mv + mg (3.3-40) 
x x y y 

Thus, the optimum thrust program calls for 

Ty - cTx (3.3-41) 

that is, the thrust angle is constant. 

From Eq. 3.3-39, we get 

Vy + gt = CVx + c2 (3.3-42) 

where c2 is an integration constant. Applying the boundary 

conditions (3.3-30), we get 

= 0 , c = 1 + gt1 V-/v O . (3.3-43) 
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Now 

T 2 T2T = + (1+c 2)T = (l+c 2)T2/cos 0 (3.3-44)x y x 

Thus, 

(l+c2 ) Cos2 = 1 (3.3-45) 

Also, 

0 Tcos (3.3-46) 

since we assume the acceleration is constant. Thus, we have the 

approximate relation 

c = 1 + Tcosg0 (3.3-47) 

Using Eq. 3.3-45 and Eq. 3.3-47, we get after some arrangement 

2cos 2e + 2PM coso + 2 -M_ 1 = 0 

and, therefore,
 

- 22 1/2)cos4 - m+T 
-7 - )(3.3-48) 

Now the range R is (See Figure 3.3-5)
 

R - 2x I + x2 (3.3-49)
 

For our assumption of constant acceleration,
 

2v2
2 4Tcos X (3.3-50)
Vo = x lm 
o x mn 

Also, for a ballistic trajectory, the range x2, for *=450, is
 

X2 = X 20V/ g (3.3-51) 
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Substituting Eq. 3.3-50 and Eq. 3.3-51 into Eq. 3.3-49, we get
 

[m)2v 
2
 

x
R + 

i =* -g - (3.3-52) 

Also, from Eq. 3.3-40,
 

vx ftl Tx 
vx CosAV (3.3-53) 

Thus, the total AV is
 

V= 26V - 2 21/2 a (3.3-54) 

Eq. 3.3-48 and Eq. 3.3-54 determine the AV requirement for a hop of
 

distance R for values of the thrust to lunar weight ratio. The
 

AV requirement is plotted in Figure 3.3-6.
 

3.3.4. Site Redesignation
 

A landing site-redesignation AV budget of 150 fps is included
 

in the main retro burn. To determine what change in range is
 

possible with this AV, it would be desirable to consider the optimum
 

thrust program to attain maximum (or minimum) range. This problem
 

has been studied by Isaev [13]. The general results include a
 

time varying thrust orientation with the magnitude of the thrust
 

a maximum or zero; i.e., there may be a coasting phase. However,
 

the thrust program for an actual spacecraft is highly dependent
 

upon the guidance logic used. Therefore, in this section we shall
 

be interested in obtaining an approximate description of the
 

redesignation capability.
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A straight line trajectory is a good approximation to the
 

main retro trajectory (see Figure 3.3-10). Consider Figure 3.3-7.
 

If we neglect gravity losses, the AV along path rI is the same as
 

that along r2. If t0 is small, the difference in gravity losses
 

between paths r1 and r2 is much smaller than 150 fps, the redesig

nation budget. Thus, to a sufficient approximation, we can assume
 

that the entire redesignation budget can be used to change the
 

angle of the trajectory. The change in range AD is then
 

rAG 
AD = cos (3.3-55) 

Assume that the AV is fed in impulsively and perpendicular to the
 

trajectory at a distance r from burn-out. Then
 

6o - A , (3.3-56) 

where v is the velocity of the spacecraft when the V is added. 

Thus 

r AV 
AD - . (3.3-57) 

This relation is plotted in Figure 3.3-8. The values of r, v, and
 

as a function of time were taken from RL10 engine trajectories
 

generated by a computer program and made available by the Manned
 

Spacecraft Center of NASA. The zero nautical mile pericynthion
 

altitude, hp, corresponds to a near tangential approach; whereas,
 

the h = -900 nm corresponds to a near vertical approach.
p
 

Although we have assumed that the AV was added impulsively,
 

in practice, the AV will be added over a portion of the trajectory.
 

For example, if a nominal thrust of 10,000 lb were used, the AXV
 

could be added by pitching the thrust vector and increasing it
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to 15,000 lb so that the thrust component along the trajectory
 

remains at 10,000 lb.
 

It is estimated that the uncertainty in the position of the
 

spacecraft at time of retro initiation, as determined by tracking,
 

is about one-half mile. It is apparent from Figure 3.3-8 that this
 

uncertainty can be nulled. However, there are map error uncertainties
 

in lunar coordinates of the target. These may be as large as
 

tens of miles, and they cannot always be nulled during the main
 

retro phase.
 

3.3.5 Tangential Approaches
 

Figure 3.3-9 shows the angle of incidence (measured from the
 

vertical) of the spacecraft trajectory as a function of longitude
 

on the moon measured along the equator. Note that beyond 750
 

east no landing is possible for some trip times without paying a
 

AV penalty to alter the trajectory. Also, the figure is drawn
 

for nominal values. There is about a 7* variation due to earth

moon distance variations, etc. Thus, about 200 of the eastern
 

limb could require this AV penalty.
 

The tangential approach requires less AV than the vertical
 

approach. Therefore, there is some AU available since the vertical
 

approach sized the propellant requirements. However, the difference
 

in propellant between the tangential and vertical missions for
 

the RL 10 at a nominal thrust of 15000 lb is only about 40 lb.
 

This is equivalent to a AV of about 100 fps. The velocity of the
 

spacecraft is the order of 104 fps. Thus, we can turn it through
 

-
an angle the order of 10 2 radian or one-half degree. Therefore,
 

very little change in altitude is possible since we do not have
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the capability to bend the trajectory so that it intereects the
 

target and also make up for the increased gravity losses due to
 

the steeper trajectory.
 

A computer program supplied by MSC was used to determine
 

the inaccessible areas of the moon. For the 60-hr trip time
 

the entire visible face of the moon was always accessible;
 

however, for the 120-hr trip time the maximum longitude acces

sible sometimes got as low as 600 east, The uncertainty in the
 

results of this program is about ±eo. It thus appears that
 

beyond 75 or 800 east, targeting will be extremely difficult,
 

if possible at all, for some trip times.
 

Figure 3.3-16 shows an RLl0 trajectory for a thrust of 15,000
 

lb, a tangential approach, and a high energy mission. The angle
 

of the trajectory with the local horizontal is only about 80.
 

This poses problems for the guidance system. It would be desirable
 

to raise the trajectory and make it steeper. However, as we have
 

seen above, the AV penalty is large, and very little improvement
 

can be made. Fortunately, the low angle also provides a high
 

magnification for site redesignation (see Figure 3.3-8) so that
 

this guidance problem is somewhat alleviated.
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3.4 Landing Television System (LTVS)
 

3.4.1 Introduction
 

The desired mission landing constraints of a I km (3G) landing
 

point dispersion and a soft landing in the rough terrain of the
 

lunar highlands produce terminal guidance system requirements that
 

are more severe than those for the previously successful soft-landing
 

United States apacecraft, the manned Lunar Modle [14] and the unmanned
 

Surveyor [I]. A Landing Television System (LTVS) is added to the
 

standard guidance and navigation system on the LLV to provide an
 

accurate landing system capable of avoidance of hazardous landing
 

points.
 

The Landing Television System (LTVS) does not directly interact 

with the on-board G&N system, but rather the video data is trans

mitted back to earth for evaluation by a controller at Mission 

Control. The controller comparws the video data with that for the 

nominal trajectory, redesignates a new landing point, and instructs 

the control center computer to calculate a new set of landing 

coordinates which are transmitted to the vehicle as superposed 

inputs to the G&N system. 

Since the flight computer continually recalculates trajectory 

requirements from the latest set of landing coordinates and the 

terminal descent is initially preprogrammed, a loss of controller 

inputs will result in only a continuation of flight along the 

last updated trajectory. A block .Likgram of the *n-baed portiqnz of 

the landing television and its interfaces with the G&N and tele

communications systems are shown in Figure 3.4-1. 

Visual information from the lunar surface is sensed by the
 

television camera which transforms it into electrical signals.
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This video signal and the horizontal and vertical synchronization
 

pulses are then time multiplexed with the telemetry data. The
 

mtltiplexer and the other telecommunications equipment is described
 

in Chapter 6. The multiplexed output signal then passes through
 

the transmitter, diplexer and steerable antenna and is transmitted
 

to the earth-based control center. Command signals and new landing
 

point coordinates are transmitted up-link from earth and pass through
 

the diplexer and receiver to the command decoder and then into the
 

flight computer.
 

The on-off and heater commands go to the TV camera. The firing
 

signal to jettison the TV mirror goes to the mirror mounting bolt.
 

This block diagram does not show the required interface with the
 

vehicle power system. Also, Ehb antenna sterring is shown as
 

controlled by the automatic gain control which occurs when the
 

antenna is locked-on signals from the Iarth based station.
 

The earth-based portion of the control system is shown as a
 

block diagram in Figure 3.4T2. The signal from the LLV is re

ceived at one of the NASA's three large S-band antenna stations.
 

The Goldstone (GDS) Station is shown since the 210-ft antenna has
 

the highest gain of any of the three S-band receiver sites and
 

since the Goldstone-to-Houston microwave communications link has
 

a shorter transmission time delay than the links from Madrid or
 

Canberra-to-Houston which must include relaying through the
 

Communications Satellite Network, COMSAT.
 

At Mission Control in the Manned Spacecraft Center at Houston,
 

Texas, the received signal is demodulated in the receiver and goes
 

from there to video tape for permanent mission record and to the
 

mission control computer for separation of the telemetry and
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television signals. The telemetry data is both recorded and dis

played 	for real-time interpretation. The t&evision signal is sent
 

to both a kinescope display where each frame is photographed by a
 

sequence camera to provide a photographic record and to one or more
 

control consoles. At the control consoles the relevant navigation
 

and guidance telemetry signals and the video signals are displayed
 

for real-time interpretation by one or more controllers.
 

The functions of the controllers during the terminal phase are
 

similar to those for the pilots of the Lunar Module [11]. A partial
 

listing of the controller activities is as follows:
 

i. Monitor the on-board guidance system performance.
 

2. 	 Monitor descent engine ignition and engine gimbal
 
alignments
 

3. Monitor propulsion quantities
 

4. Monitor programmed pitch attitude changes
 

5. 	 Compare the range rate with the guidance boundaries
 
at check times
 

6. 	 C6mpand:&ahdmark looatioih r£tbguidhnue boundankes at
 
check time
 

7. 	 Compare landing radar altitudes with guidahce boundaries
 
at check times.
 

8. 	 Redesignate the trajectory to remain within guidance
 

boundaries
 

9. Evaluate landing area for acceptance or rejection
 

10. 	 Redesignate the landing area to avoid hazardous landing
 
sites
 

11. 	 Null all rates except descent for touchdown
 

12. 	 Evaluate landing point for location of hazards
 

13. 	 Roll the vehicle to avoid hazards at the landing point
 

Functions 4, 5, 6, and 8-13 are all preformed in part of the
 

basis of video information from the landing television systep.
 



is 

The planning of the mission includes the preparation of the nominal
 

trajectory information, lunar maps and landing strategy necessary
 

for the successful preformance of these functions.
 

The redesignation functions can be preformed by the technique
 

suggested by meissinger (3]. A cursor is moved by the controller
 

to the desired landing point. The cursor location and the on-board
 

predicted landing point and the present flight point are compared
 

by a computer program. New guidance system target inputs are calcu

lated and are transmitted to the G&N System on-board the vehicle,
 

once an execute command is given.
 

Previous studies (3, 15] have shown the importance of stability
 

considerations in earth-based closed-lop guidance with long time
 

delays. Table 3.4-1 is an estimation of the total time delay for
 

terminal phase guidance to the lunar surface
 

TABLE 3.4-1 LTVS DELAY TIME
 

Earth-to-moon transission (Round Trip) 2.61 Sec.
 
Earth station transmission time (HUl) or CNB) 0.3 sec.
 
Operator delay time [13] 1.7 sec.
 
Signal processing time 0.1 sec.
 

TOTAL TIME 4.7 sec.
 

The system for redesignation may be further stablized by
 

sufficient spacing between a fixed number of redesignation
 

opportunities which are referred to as terminal course corrections
 

to emphasize their relative correspondence to the mid-course
 

corrections. By providing adequate spacing between the terminal
 

course corrections the controller is prevented from repeating the
 

command for a maneuver before it is completed. The number of
 

terminal course! corrections require for a given landing point
 

accuracy will be dependent on the shape of each trajectory that
 

is flown. A general detailed study of this dependency is strongly
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recommended, and a detailed study for each mission is recommended
 

as a task in the planning of each mission.
 

The number of controller activities, short duration of the
 

mission terminal phase and time sharing of the activities prevent
 

the functions of the controller being completed by one individual.
 

The monitoring activities (1, 2, 3 and 4) are handled at a single
 

controller station. The comparison, evaluation redesignation, null
 

of rates and roll activities are sequential or closely enough related
 

to be time shared by a controller with map matching assistance by a
 

navigator. The tasks of the navigator are to select nominal
 

trajectory overlays and match these map overlays with the video map
 

from the LTVS. When the overlay and the map are aligned and at the
 

same scale, the nominal trajectory display is projected at the
 

controller's console as a superposed image on one of the video
 

screens. The predicted updated position of the vehicle is also
 

superposed on the same screen as a traveling point of light or as
 

a line with a moving end. The updated position coordinates are
 

calculated by the control computer as the time=varying solution of
 

a smoothing updated trajectory equation.
 

The layouts and displays of the consoles, and the training of
 

the control personnel are recommended as topics for further study.
 

Each trajectory should be treated as a manned spacecraft trajectory
 

and be fully planned and simulated.
 

The performance levels for controllers are similar to those
 

required for Lunar Module pilots and the controllers could be an
 

assignment of off-flying-status astronauts. The training and
 

experience of the earth-based controller would be a preliminary
 

step to the training of controllers to perform the same functions
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from the lunar surface.
 

3.4.2 System Performance Parameters
 

The mission constraint of an LLV landing area location being
 

anywhere on the near lunar surface leads to the requirement for a
 

range of both near-vertical-and near-horizontal-approach trajectories.
 

These two types of trajectories are illustrated in Figure 3.4-3.
 

From considerations of approach navigation, the near-horizontal
 

trajectory is the more severe as the landing area is either beyond
 

the horizon at so low an angle that lineal distortion prevents
 

landmark indentification. The approach navigation is accomplished
 

by sightings on landmarks near the vehicle but considerably uprange
 

of the landing area and therefore have unknown map errors of position
 

relative to thb landing area. In the succeeding discussion the
 

television system parameters are discussed in terms of the require

ments for near-horizontal approach..
 

The TV system parameters to be specified from guidance require

ments are:
 

i. TV camera field of view
 

2. Number of horizontal scan lines per TV frame
 

3. TV frame rate
 

4. Video frequency bandwidth
 

Of these parameters, the field-of-view (FOV) is most directly
 

related to visibility requirements. In both the near-vertical
 

and near-horizontal approach, the LTVS is used to evaluate the
 

trajectory from landmark sightings and to evaluate the trajectory
 

from the landmark sightings and to evaluate the landing area for
 

landing hazards, craters, blocks and steep slopes. The TV camera
 

lens FOV is specified from the requirements of scan area for approach
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navigation and scan area for location a minimum-hazard landing point.
 

The scan area is determined from the geometry of the TV field

of-view. The field-of-view geometry can be determined from a
 

consideration of the simpler geometry of a line-of-sight from the
 

LLV to a land mark (LMK) on the lunar surface as shown in Figure
 

3.4-4 and 3.4-5.
 

The notation is forward surface range, R: radius of the moon,
 

rm altitude, H; slant range, S; lunar angle, 0; along-track line

of-sight angle with respect to the local vertical at the spacecraft,
 

a; elevation angle of the LLV with respect to the local horizontal
 

at the LMK, 0; cross-track line of sight angle, y; lateral surface
 

range, W; cross-track slant range, SL; cross-track lunar angle,
 

; and cross-track LLV elevation angle p.
 

The relationships between the geometrical along-track
 

partenters are:
 
R
 

- ." .. (3.4-1)rm
 

tan an (3.4-2)

(l+H. ) - cos €
 

r
 
M 

H = sin ($+a - (3.4-3) 
rm sin a
 

s sin € (3.4-4) 

sin a
 

and
 

r - a-$ 

rm 


(3.4-5)
 

and for the cross-track parameters:
 

C = W. (3.4,6) 
r 
m 
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tan y - sin C (3,4,71 

(+ - - cos 
r 


S = sin (;-ty)
 -
r M s (3.4-8) 

SL s sin r (3.4-9) 

r sin y 

and 

Q =' -Y - (3.4-10) 

The relationships for Equations (3.1-11) in along-track par

ameters and the corresponding Equation (3.4-7) are plotted in
 

Figure 3.1-7.
 

The slant range to the lunar surface is a maximum when the
 

LLV elevation angle is zero. At this range the line-of-sight
 

is to the lunar horizon, for either the along-track or the cross

track geometry. The lunar horizon line-of-sight geometry is shown
 

in Figure 3.4-6. The relationships for a line-of-sight to the
 

along-track horizon are:

-i 

11 Cos '. (3.4-11)
(I 

rl+
 

s. ( I i )sinr-a rm (3.4-12) 
m
 

a = sin-1 (+ ) 
 (3.4-13)
r
m
 

31i - 0 (3.4-14)
 

The corresponding cross-track relationships can be found by
 

renaming the parameters.
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FIGURE 3.4 -6 
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3.4.3 Effective Field-of-View
 

The effective field-of view for the TV camera is smaller
 

than the lens field-of-view because of the non-cicular format of
 

the television field. As shown in Figure 3.4-8, a standard 4x3
 

rectangular format superscribed within the circular cross-section
 

of the conical lens view field reduces the effective values, B and
 

y, for a lens FOV, t, where:
 

B - nan i (0.8 tan ?) (3.4-14) 

and 
-1 

y = tar. (0.6 tan i) (3.4-15) 

These relationships are plotted in Figure 3.4-2 

In the LTVS, the larger angle, B, is oriented along-track to the 

trajectory and y is oriented cross-track. 

A camera lens system FOV can be selected for a required scan
 

area at an altitude, H, and line of sight angle, a, by finding
 

the effective FOV's, B and y, from Figure 3.4-7 by entering at
 

normalized altitudet and finding dimensionless surface ranges *l
 
rm 

and 02 for , and a-3/2 respectively, and C, for an a=y. 

The dimensionless along-track range is then - 2 and the dimension

less cross-track range is 2 c. 

The corresponding scan area is then-approximately equal to 

the following. 

A = 2.0KW (3.4-16) 

and 

A 2 ( 12(rm) 2 )W (3.4-17) 

Previous studies for NASA (7,8,9,20] show that the scan area re

quired for recognizing landmarks patterns is dependent on the vehicle 

altitude, phase angle of the line-of-sight with respect to the sun 
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GEOMETRY OF EFFECTIVE FIELDS-OF-VIEW
 

FIGURE 3.4-8 
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line to the landmark, sun elevation angle, and the slant range
 

to the object as well as the camera resolution for each scan line.
 

The required scan areas are determined from the requirements for
 

approach navigation and for avoiding hazards in the landing area.
 

The scan area required for finding in the field-of-view at least
 

on hazard-free landing site in the lunar rough highiands is deter

mined from Figure 9.6-2.
 

3.4.4 Resolution
 

The vertical resolution of the TV camera system is estimated 

by dividing the effective along track field-of-view, in radians, 

by the number of horizontal scan lines which result in the angle 

subtended by each scan line. This value is then degraded by 

multiplying by 0.7, which is commonly accepted value [21] for 

the ratio of the number of active lines in a television format to 

the total number of horizontal lines. Finally, the resulting 

values is multiplying by the number of lines required by the tele

vision viewer to detect and recognize an object. A commonly accept

ed value is 3 lines 131] in the view region of sharpest focus of 

the viewers. The distance relationship of the practical re

solution of the TV system bases on the above consideration is then 

AR = 2.10 B(rad)
 
S NL (3.4-18)
 

where
 

AR = minimum resolved distance on the lunar surface
 

S = surface slant range
 

8 - effective along-track field of view 

N = number of horizontal scan lines per television frame 

The horizontal resolution is limited by the response rate 
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of the television scan to changes in scene contrast between two
 

adjacent points in the scene. The horizontal resolution is also
 

constrained by the available bandwidth of the associated comarrunica

tions system as shown in the approximate Equation 3.4-18 [171,
 

f-aN 2 P (3.4-19)
A
 
where f is the bandwidth frequency, P is the number of frames Der
 

second, N is the number of horizontal lines per frame and (aN) is
 

the equivalent number of horizontal lines for a determined hori

zontal resolution. The frame rate, P, that is required for the
 

LTVS depends on the relative motion allowable between frames, the
 

amount of video map information required for evaluation of the
 

trajectory, permissable additional delay time, compatability with
 

com,"mercial television systems so that scan conversion is not re

quired, and as is shown in Equation 3.4-27, the frequency band

width of the associated telecommunications equipment. The selection
 

of the Landing Television System hardware is discussed in Section
 

3.4.5 LTVS Performance
 

The use of a landing television system is an addition to
 

present guidance and navigation strategies for lunar landings. Its
 

inclusion in the IAN design is justified on the basis of increased
 

mission effectiveness. The effectiveness measure, E, for the LLV
 

design is the landed payload, WL multiplied by the probability,
 

PSI of a successful mission. P is the product of the probabilities
 

of a sequence of n successful events as follows:
 

E = W P (3.4-20) 
E = WIP P2I...1n-3 P n-2 Pn-iPn ) (3.4-21) 
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where P is.the.prpgR41.iy of.a sugcessful launch, P2 is the pro

bability of a successful trans-lunar injection, P is the pron-3
 

bability of a successful last mid-course correction, P the pron- 2 

bability of temmia&L.dsent to the selected landing area, Pn-l' 

the probability of a soft landing; and P the probability of sucn 
cessful post-landing operation. A decrease in the maximum possible
 

delivered payload is a penalty associated with the addition of the
 

LTVS to the vehicle. Associated benefits are the increases in the
 

probability, Pn-2' of landing in the desired area and probability,
 

Pn-l' of a successful soft landing. 

The change in the effectiveness is shown in Equation (3.4-22). 

dE = (SE:)dWL + ( E )dP 2 + ( 3E )dP (3.4-21) 

L) n-2 n- -

The relative increase in effectiveness is 
dW dP dP' 

dE - L + n-2 + n-l (3.4-22) 
E ."L Pn-2 Pn-l 

If the change in effectiveness is positive, the system should be in

cluded; if negative, the LTVS should be deleted. 

3.4.6 Recommended Studies
 

Continuation studies should be made of the following:
 

1. Terminal course corrections required for near-vertical
 

and near-horizontal trajectories.
 

2. Landing area viewing time for near-vertical and near

horizeoital trajctories.
 

3. Vehicle redesignation capabilities for open-loop landing
 

systems with long time delays.
 

4. Vehicle redesignation capabilities with multiple full
 

throttle engine burns.
 

http:prpgR41.iy
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CHAPTER IV 

PROPULSION
 

Angelo Perna 4.1 
Frank Hendel 4.2-4.7 

4.1 	 Propulsion Requirements
 

The following section contains the analysis of the mission
 

requirements for the ILV study as they relate to the "on board"
 

propulsion system. The mission requirements were defined to meet
 

the below-listed operational objectives:
 

(1) High Energy Mission (V = 4500 fps; hp -900 m) 

(2) Midcourse Correction: AV 100 fps 

(3) Site Redesignation: AV- 150 fps
 

(4) Minimum Hover Time @ 100 ft: 20 sec 

(5) Hop Possibility After Landing
 

(6) AV Budget to Include 1 1/2% FPR
 

Based on data (See Figure 4.1-1) obtained from NASA consultants
 

[I] a LV budget was prepared for the mission and is presented in 

Table 4.1-1. All propulsion systems investigated for use on the 

LLV were compared based on this AV budget. 

in order to facilitate engineering analysisparametric stud

ies were undertaken to determine the effect of performance vari

ables of individual propulsion subsystems on propellant require

ments for a given mission objective. These studies are presented 

in graphical form in the pertinent sections. 
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TABLE 4.1-1 PROPULSION SYSTEM AV REQUIREMENTS 

FOR HIGH ENERGY MISSION 

Propulsion Maneuver 

Midcourse Correction 

Retro Phase 

Site Redesignation 

Terminal LVPS 

Initiation to Hover 

Hover 

Hover to Touchdown 

Propulsion 
System 

RCS* 

MRE** 

MRE 

LVPS*** 

LVPS 

LVPS 

Regd. 

100.00 

9392.75 

150.00 

104.36 

106.00 

55.00 

AV 
FPR**** 

1.50 

143.00 

2.25 

1.57 

2.00 

1.00 

Total 

101.50 

9535.75 

152.25 

105.93 

108.00 

56.00 

* Reaction Control System 

** Main Retro Engine 

Liquid Vernier Propulsion System 

Flight Performance Reserves 
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4.1.1 Midcourse Correction
 

The first major maneuver to be accomplished by a propulsion
 

subsystem after separation from the launch vehicle is to correct
 

for any error in the trajectory. The maximum IN budgeted for this
 

operation is 101.5 fps. Although this maneuver can theoretically
 

be performed by any of the propulsion subsystems (See Figure 4.1-3)
 

the propulsion group recommends and has designed for the Reaction
 

Control System (RCS) to accomplish this correction. The maneuver
 

requires more propellant with the RCS system than the Liquid
 

Vernier Propulsion System (LVPS) or the Main Retro Engine (MRE).
 

The finer control and alleviation of plume problems more than com

pensates for the extra propellant (approximately 5 ibs) required.
 

In addition the time available for the budgeted AV for nidcourse
 

correction (See Table 4.1-2) is maximized.
 

The amount of on board propellant for this task was calcualated
 

to be 133 lbs. This amount includes 3 per cent residuals.
 

TABLE 4.1-2 MAXIMUM BUR' TIME FOR MIDCOURSE CORRECTION 

System F 
lbs 

M 
lbs 

t 
sec 

RCS 
Two R-lE Engines 44 12000 840.00 

LVPS 
Two R-4D Engines 200 12000 186.50 

MRtE 
RLIOA3-3 
Throttleable 

15000 
5000 

12000 
12000 

2.70 
7.44 
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4.1.2 Main Retro Engine Burn Phase
 

During the retro phase the majority of the AV budget
 

is used. For the high energy mission the total
 

.%V requirement in the MRE is 9688 fps with 152.25 fps of the AV
 

requirement being for site redesignation.
 

For the above AV value the burnout velocity of 99 fps at 200
 

feet altitude is achievable. This burnout point maximizes the use
 

of the MIRE while minimizing the requirements on the LVPS.
 

The site redesignation budget is for correcting last minute
 

trajectory errors as well as for any gross changes in the touch

down landing site.
 

Parametric studies based on operating characteristics of
 

various engines were developed for the previously listed MRE
 

mission profile and the results are presented as a series of graphs
 

and tables on the following pages.
 

Analysis of the results indicate a throttleable (3/1 ratio)
 

RLIOA3-3 is the best candidate engine for the retro phase of the
 

mission. Although the RLIOA3-3 is presently a qualified
 

fixed thrust (15000 Ib) engine, it has been flight certified for
 

the throttleable condition. The upgrading of the engine to flight
 

qualified status should cost approximately five million dollars
 

which can be justified in terms of increased payload and mission
 

flexibility. An additional increase in payload can be realized by
 

extending the engine nozzle 19 inches at a cost of 35 pounds
 

which increases the I to 449 and results in a propellant savings

SD
 

of 0.5 per cent.
 

It should be pointed out that since the recommended engine
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burns a mixture of cryogenics, liquid hydrogen and oxygen, pro

pellant penalties are involved. These weight penalties are as
 

follows:
 

(1) Insulation of Tanks [2]
 

H2 = 71 lbs
 

02 - 12.5 lbs/tank
 

(2) Transit Boil off [2]*
 

H2 = 35 lbs
 

02 - 35 lbs
 

(3) Engine Burn losses
 

H2 - 30 lbs
 

02 = 16 lbs
 

(4) Additional Volume required for Above
 

12 	 Boil off 8.31 ft3
 

Engine loss 6.83 ft3
 

02 	 Boil off 0.51 ft3
 
Engine loss 0.24 ft
 

(5) Additional Tank Weight (3]
 

H2 - 10 lbs
 

02 - 0.5 lbs/tank
 

Improvements in insulation and engine operation characteristics
 

can reduce these losses significantly, resulting in larger payloads.
 

The total weight of propellant for this phase of the mission
 

is 5861 pounds, which includes 0.5 per cent residuals.
 

* 	 Based on a 60 hour mission. For a 120 hour mission the transit 
boil off losses double and items 4 and 5 should be scaled up 
appropriately. 
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4.1.3' LVPS Terminal Phase Initiation
 

After MRE burnout at a velocity of 99 fps and an altitude
 

of 200ftthe LVPS R-4D engines remove any AV remaining. A reduc

tion in weight of approximately 900 pounds is achieved at LVPS
 

ignition by dropping the MRE stage with associated tanks and sup

port structure. This operation reduces the propellant require

ments by reducing the weight of the vehicle by about 16 per cent.
 

The AV required prior to hover-is 106 fps based on a hover alti

tude of 100 ft. Results of studies based on engine and vehicle
 

parameters are presented in Figure 4.1-6 to Figure 4.1-12.
 

Analysis of the results indicate a propellant requirement for this
 

mission task of 60 pounds with 3 per cent residuals.
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4.1.4 Hover Maneuver
 

The primary purpose of the hover capability incorporated in
 

the mission is for orientation of the LLV for landing and slight
 

translational movement for small hazard avoidance. This maneuver
 

is accomplished with the LVPS and RCS engines. The minimum LV re

quirement for 20 second hover is 106 fps. Figure 4.1-13 gives the
 

results of a parametric study on hover requiremtns. Since the
 

majority of the AV requirements are in the MRE, the hover propellant
 

requirements change very little with altitude. In actuality the
 

hover altitude only affects the LVPS terminal phase from hover to
 

touchdown since the MRE is targeted for burnout at the proper
 

altitude and a AV of 99 fps (See Table 4.1-3). The hover phase of
 

the mission was targeted for 100 feet altitude, to achieve a balance
 

between propellant expenditure and TV requirements, and requires a
 

programmed amount of propellant of 60 pounds, including 3 percent
 

residuals. Although the work study directive asked for only 20
 

second minimum hover time, an additional amount of propellant
 

should be programmed into a contingency budget for increasing the
 

time for this maneuver.
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4.1.5 End of Hover to Touchdown
 

The final prelanding phase is immediately at the conclusion
 

of the hover phase. This mission objective was analyzed utilizing
 

various hover heights. The results of this are presented in Table
 

4.1-3. Examination of these results shows one should hover as
 

close as possible to the ground for minimum propellant require

ments. Although this last phase allows for a maximum touchdown
 

velocity of 15 fps, the calculations were based on a landing
 

velocity of zero fps which allows for some excess in the propel

lant requirement. The programmed budget for this final maneuver
 

is a AV of 56 fps (optimum AV is 42 fps) and the propellant re

quirement based on all previous maneuvers being carried out is
 

30 lbs including 3 per cent residuals.
 

TABLE 4.1-3 EFFECT OF HOVER ALTITUDE ON PROPELLANT 

REQUIREMENTS FOR TOUCHDOWN MANEUVER 

Mass @ End Hover Height IIPV Propellant Required 
of Hover End Hover-Touchdown 

lbs ft ILfps* sec lbs** 

5000 42.63 292 23.30
i100 

5000 500 97.44 292 53.10
 

5000 800 117.74 292 64.10
 

5100 100 42.63 292 23.76
 

5100 500 97.44 292 54.16
 

5100 800 117.74 292 65.37
 

* Includes FPR 
** Includes 3% Residuals 
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4.1.6 Post-Landing Propulsion System Operation
 

One of the proposed functions for the LVPS after landing was
 

a hop of one km with the possibility of this maneuver taking place
 

up to ninety days after touchdown. Parametric studies (See Figure
 

3.3-6) were undertaken in conjunction with the Dynamics Group in
 

order to determine the AV budget and thus the propellant weight
 

for this operation. The results of the study are based on an op

timum trajectory (ballistic) and a simple case trajectory (a
 

square traverse). Table 4.1-4 lists the results of the investiga

tion. No attempt was made to integrate electrical, thermal or
 

structural penalties into the study. The penalty paid for this
 

maneuver is mainly in the extra propellant the LVPS must carry.
 

The additional tank weight represents eleven pounds, and the ad

ditional propellant volume can be accommodated by utilizing
 

available qualified tanks.
 

The recommendation of the Design Institute is that this
 

maneuver not be programmed into the mission.
 

TABLE 4.1-4 PROPULSION SYSTEM PENALTY FOR PROPOSED HOP
 

Distance 1 km Maximum 

Landed Weight 5000 lbs 

Thrust/Weight Ratio 0.44 

AV Budget 
Ballistic 360 fps 
Square 429 fps 

Mass of Propellant* 

Ballistic 203 lbs 
Square 227 lbs 

Additional Tank Wt 11 lbs 
*No FPR or Residuals Included 
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4.1.7 Summary
 

An analysis of the propulsion requirements for a soft land

ing of a Lunar Landing Vehicle based on a high energy mission
 

(V - 4500 fps and hp = -900 nm) was undertakenand the propellant
 

requirements based on the below-listed subsystems is presented in
 

Table 4.1-5. 

(i) Main Retro Engine One P & W RLIOA3-3 
Throttleable (3/I ratio) 

(2) Liquid Vernier System Sixteen Marquardt R-4D Engines 

(3) Reaction Control System Twelve Marquardt R-IE Engines 

The above systems were chosen to be the best qualified from the
 

following considerations:
 

(1) Availability
 

(2) Cost
 

(3) Reliability
 

(4) Minimum Propellant Requirements
 

(5) Growth Potential
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TABLE 4.1-5 SUMMARY OF REQUIREMENTS FOR PROPULSION SYSTEM
 

Propulsion 

Function 

Propulsion 

System 

AV 

Programmed 

fps 

Propellant 

Programmed 

lbs 

Isp 

sec 

Midcourse RCS 101.50 138.30 280 

Main Retro Phase 
Bulk AV MRE 9535.75 5796.66 444 

Site Redesig. MRE 152.25 64.73 444 

Losses 116.00 

Intermediate LVPS 106.00 60.00 292 

Hover LVPS 108.00 60.00 292 

Final LVPS 56.00 30.00 292 

Attitude 
(Roll-Pitch-Yaw) RCS -- 50.00 270 

Contingencies for 
Extended Hover Time and Minor Translation 
LVPS Variations 
RCS Variations 
Increased Hover Height 
Launch Vehicle Separation 
Posigrade prior to Retro 

61.70 
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Equations Used in Calculations 

F I IspW (1) 

Ft = I W (2) 

AV - I G in 
SI - .%, 

(3) 

VGGL = gt 

AV = VI + VGL 

Where 

M = Weight, lbs 

W, = MI = Initial Weight, lbs 

MpP Propellant Weight, lbs 

F - Thrust, lbf 

ISp = Specific Impulse, sec 

t - Time 

W = Mass flow Rate, lbs/sec 

G = constant = 32.2 ft/sec
2 

AVGL = Velocity Gravity Losses, fps 

AV, - Initial Velocity, fps 

AV - Characteristic Velocity,fps 

g t Acceleration of gravity, ft/sec
2 
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4.2 Main Retro System
 

The main retro (retrograde) power plant removes the bulk
 

of the AV during the terminal descent of the LLV. The site re

designation (up to 6 miles) is also performed by the main
 

retro at lower approaches to the lunar surface with or without
 

the help of the verniers and the reaction control system (RCS).
 

After the main retro has performed its mission, it is jet

tisoned together with its tanks (which may still contain some
 

unused propellants).
 

RL-10 Engine. The reason why the RL-10 has been selected
 

as the main retro is shown in Section 4.7. This engine was
 

originally developed for the Centaur and Saturn S-IV programs
 

(1,2,3,4] and proved to be very reliable. The engine uses LOX
 

and LH at a mixture ratio of 5.0 which with the engine length of
2
 

70.2 inches gives a thrust level of 15,000 1 300 lbf and a
 

vacuum specific impulse of 444 lbf-sec/lbm.
 

Tables 4.2-I and 4.2-2 show the specifications and perform

ance of two different engine models: RL lOA-3-3 (Fig. 4.2-1)
 

and ,RL 1OA-3-7. The first one has a minimum of three restarts
 

and is in general non-throttleable, while the second has 50 re

starts and is throttleable from 15,000 lbf to 1500 (idle condi

tion) lbf thrust at a specific impulse of 420 lbf-sec/lb m .
 

Pratt & Whitney proved that the 3-3 model can idle with a thrust
 

of 400-700 lbf, depending on the pressure in the propellant tanks
 

[2]. Thus, when the retro fires and is shut down for a short
 

time, it can idle during that time without the rotation of the
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TABLE 4.2-1 RLIOA 3 3 LIQUID ROCKET ENGINE SPECIFICATION
 

VACUUM PERFORMANCE [ 1] 

Thrust Rating 15000 ± 300 lb
 

Specific Impulse, Nominal 444 sec
 

Specific Impulse, Minimum (30) 439 sec
 

Mixture Ratio, Nominal (Factory Setting) 5.0 i 2.00%
 

Acceleration Time (From Start to 90% Rated
 
Thrust) 2 sec maximum
 

Start Impulse (To 2 sec from Start and
 
5400R) 14,200 t 4000 lb-sec
 

Shutdown Time (From Removal of Start
 
Signal to 5% Rated Thrust) 0.15 sec maximum
 

Shutdown Impulse 1180 t 150 lb-eec
 
(based on 380 sec run
 
duration)
 

Mission Start Capability 3 minimum
 

Nominal Running Time per Start 450 sec
 

Service Life 4000 sec
 

Thrust Vectoring (Gimbal Range) ±4.Q(square pattern)
 

Geometric Thrust Axis Location (From
 
Gimbal Point) !1/16 in
 

Including Standard Equipment, Shall
 
Not Exceed 290.0 lbs
 

Type--Regeneratively-cooled,turbopump-fed liquid-oxygen,
 
liquid-hydrogen rocket engine
 

Maximum Engine Diameter (at room temperature)39.67 inches
 

Maximum Engine Length (at room temperature) 70.23 inches
 

Maximum Radial Projection from Centerline 20.25 inches
 

Fuel Specification, Liquid Hydrogen Preliminary Specifi
cation MILrP-27201
 

http:temperature)39.67
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TABLE 4.2i CContdl 

Oxidizer Specification, Liquid Oxygen MIL O25508A 

Helium Specification, Gaseous Helium Bureau of Mines 

Type A 

Nozzle Area Ratio 57:1 



TABLE 4.2-2. RLIOA-3-7 LIQUID ROCKET ENGINE SPECIFICATION
 

VACUUM PERFORIANCE II]
 
Tank Head
Rated Pumped Idle Idle 

Thrust Rating (Throttleable,
pumped idle to rated) 15,000 : 300 lb 1500 t 150 lb * 

Specific Impulse, Nominal 444 sec 435 sec 410 sec
 

Specific Impulse, Minimum 
(3 ) 439 sec 430 sec 405 sec
 

Mixture Ratio, Nominal (Factory
 
Setting) 5.0 t 2.00% 5.0 
 5.00%
 

Acceleration Time (From Start
 
to 90% Maximum Thrust) 2 sec maximum
 

Start Impulse (0 to 95% Thrust
 
and 540 0 R) 3450 ± 1000 lb-sec 1850 500 lb-sec
 

Shutdown Time (From Removal of
 
Start Signal to 5% Rated Thrust) 0.15 sec max 0.095 sec max
 

Shutdown Impulse 
 1180 i 150 lb-sec 285 : 50 lb-sec
 

Nominal Running q'ime 
 900 sec 900 sec 900 sec
 

Minim.um PSP required at engine inlet:
 

Fuel 2 psi 0 psi 0 psi
 

Oxidizer 4 psi 0 psi 0 psi
 

http:Minim.um


TABLE 4.2-2. (Contd)
 

Number of Starts During Service Life 


Service Life 


Thrust Vectoring (Gimbal Range) 


Geometric Thrust Axis Location (From Gimbal Point) 


Including Standard Equipment, Shall Not Exceed 


Type--Regeneratively-cooled turbopunp-fed liquid
oxygen, liquid-hydrogen throttleable rocket engine
 

Maximum Engine Diameter (at room temperature) 


Maximum Engine Length (at room temperature) 


Maximum Radial Projection from Centerline 


Fuel Specification, Liquid Hydrogen 


Oxidizer Specification, Liquid Oxygen 


Helium Specification, Gaseous Helium 


Nozzle Area Ratio 


50
 

4000 sec
 

±6.0*(square pattern)
 

i1/16 in
 

315 lbs
 

39.7 inches
 

70.2 inches
 

20 inches
 

MIL-P27201A
 

MIL-O-25508D
 

Bureau of Mines Type A
 

60:1
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turbine. It also has been demonstrated that the 3-3 model can
 

be throttled down to 5000 lbf.
 

The 3-7 engine requires a very low NPSH which is 2 psi for
 

LH pump and 4 psi for the LOX pump, while the 3-3 engine re

quires 6 and 10.5 psi, respectively. Both engines can start
 

within 2 seconds and shut down within 0.15 seconds. The 3-3
 

engine has a nominal running time of 450 seconds while the 3-7
 

engine is doubling this figure. The thrust vectoring (gimbal
 

range) in the first engine is ±4° while in the other one it is
 

±60.
 

The model 3-3 weighs 290 lbs, costs $300,000 and is quali

fied. The model 3-7 weighs 315 lbs, costs $400,000, has been
 

extensively tested, demonstrated its capability, but is not
 

qualified. Although it is better to use a throttleable engine
 

as the main retro of the LLV, lower NPSH for the pumps, longer
 

running time, 47 additional restarts, and a higher gimbal range
 

are not required. Hence, only throttling of the RL 1OA-3-7 must
 

be qualified. It is estimated that such qualification should
 

cost between $5,000,000 and $10,000,000. Table 4.2-3 summarizes
 

the differences between these two engines.
 

Throttling of the main retro helps in site redesignation
 

during the retro phase descent. The throttleable retro can bring
 

the spacecraft to an altitude of a few hundred feet above the
 

lunar surface, while in the case of the non-throttleable engine
 

the height should be greater and the descent to the lower alti

tude must be accomplished by verniers and RCS as described in
 



TABLE 4.2-3. MAIN DIFFERENCES IN RL1OA-3 ENGINES
 

Engine Type RLIOA-3-3 RL1OA-3-7 

Thrust, lb, 15,000 z 300 15,000 ! 300 

Throttleable No* Yes to 1500 t 150 

NPSH for LH 2 , psi 6 2
 

NPSE for LOX, psi 10.5 4
 

Gimbal range f:40 60
 

3 50
Restarts 


Running time, sec. 450 900
 

Weight, lbs 290 315
 

Cost, $ 300,000 400,000
 

Qualified Yes No
 

* Throttleability from 15,000 down to 5,000 was demonstrated.
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the next section. In general site redesignation and terminal
 

descent can be performed with the RL lOA-3-3 engine when throt

tling it to 5000 lbf. However, this is not as convenient as
 

with the 3-7 model which is fully throttleable.
 

Both engines use a regeneratively-cooled thrust chamber
 

assembly and a turbopump feed system. Fig. 4.2-2 shows the flow
 

diagram of this system. LIH 2 flowing through the nozzle and
 

thrust chamber tubes cools the walls and absorbs heat, which
 

fully vaporizes the cryogenic liquid. Gi2 then enters the in2
 

jector to the thrust chamber where it meets the spray of LOX. A
 

small flow rate of GH is used to pressurize (after reducing its
2
 

pressure by the pressure regulator) the LH2 tank, as shown in
 

Fig. 4.2-3.
 

The L112 pump brings the pressure of the fuel to 900 psia,
 

while the LOX pump brings the pressure of the oxidizer to only
 

450 psia. The higher pressure of LH2 is necessary for the regen2
 

erative cooling of the nozzle and thrust chamber.
 

Propellant Tanks. Cryogenic tanks holding 1,12 and LOX must
 

be properly insulated; this includes all tubes and valves attached
 

to the tanks. The tanks and valves must be properly supported to
 

reduce the heat inputs which otherwise will increase the boil
 

off [5, 6, and 7].
 

Pressurization of Tanks. Pressurization of the LOX tanks is
 

accomplished by diverting a very small flow rate of LOX from the
 

pump outlet to a heater below the rocket nozzle. The heater can
 

be in the form of a coil or in the form of a hollow ring of the
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size of exit area periphery as shown in Figure 4.2-3. Pressure
 

regulator, such as sonic flow control nozzle in the GO2 line,
 

will reduce the pressure of the evaporated oxidizer to between
 

40 and 100 psia (as required). At the same time the pressure
 

regulator regulates the flow of LOX to the heater.
 

As the engine exhaust gases are not immediately hot after
 

the start of the engine, it may become necessary to increase the
 

pressure in the LOX tanks prior to the start of the engine. This
 

can be accomplished by an increase in the setting of the relief
 

valve of the LOX tanks. During most of the lunar trajectory the
 

relief valve should be set at not over 50 psia; however, several
 

hours before firing the retro the relief valve should be set to
 

open at 100 psia. This will insure a build-up of pressure in the
 

I.OX tanks due to boil-off, and this, in turn, will nrovide a good
 

NPSH to the LOX pump during the first few seconds of engine oper

ation, i.e. during transient condition when LOX in the pressuri

zation stream is not yet fully evaporated. Alternative systems of
 

LOX tanks pressurization will require gaseous helium and would
 

make the pressurization system much heavier.
 

Figure 4.4-1 shows the utilization of the hydrogen from the
 

L12 tank for the attitude control jets. This figure also shows
 

the lines which have to be severed by a guillotine cutter or
 

quick disconnect at the time when the RI. 10 engine and the tanks
 

are jettisoned. The lines should be severed on one side of the
 

propellant tanks so that the remaining pressure in the tanks will
 

cause a side thrust on the mass that is being jettisoned. This
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will push the mass away from the descending trajectory of the
 

spacecraft so that the spacecraft will not land on top of the
 

jettisoned mass.
 

Circulation of Lii and LOX. In weightless conditions, liquid
 

cryogenic propellant behavior during extensive period of flight
 

causes a problem in the location of bubbles (from ullage gas and
 

boil-off) and the unequal heat inputs from outside [8). It has
 

been found that liquids behave as if they were covered by a con

tractible membrane in uniform tension. This tension acts along
 

the surface and tends to make its surface as small as possible.
 

The force-per-unit length acting normal to any line drawn in the
 

surface is defined as the interfacial or surface tension. During
 

and shortly after the formation or destruction of new surfaces,
 

the apparent surface tension may differ somewhat from its equil

ibrium value. This modified surface tension is called the dynamic
 

surface tension.
 

When a liquid drop comes in contact with a solid surface,
 

three angles are formed in a plane perpendicular to the three

phase line in the solid surface. The angle measured within the
 

liquid between the solid and the tangent to the liquid-gas inter

face at the three-phase line is called the contact angle. The
 

value of the contact angle is related to the relative magnitude of
 

the microscopic adhesive and cohesive forces.
 

Most researchers consider that in zero-gravity the bubbles of 

the gas or vapors congregate in the middle of the tank; others, 

however, found that the bubbles, especially in cryogenic liquids, 

congregate on the surface of the tank. Surface bubbles could create 
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a problem caused by external heat inputs(from supports of the tanks, 

piping connections, and non-perfect insulation). The overall 

heat transfer coefficient through the bubbles is different than
 

through the liquid. This causes overheating of certain parts of
 

the tank walls, which, in turn, causes evaporation of some liquid
 

when during a space maneuver the cryogenic liquid will come in
 

contact with the warmer wall by a sloshing movement. Such slash

ing may produce a large quantity of vapors which could result in 

a too rapid increase in tank pressure to be relieved by relief
 

valves.
 

In order to prevent the sudden increase in pressure, each
 

tank containing LOX or LH2 is provided with a circulator (Figure
 

4.2-3), which will circulate the cryogenic propellants, at least 

one minute every few hours. In the Apollo spacecraftfuel cells
 

require cryogenic tanks with hydrogen and oxygen under super

critical (or near supercritical)high pressure conditions, These
 

tanks have circulators (called fans) which require 26.4 watts 

motors in the oxygen tank and 3.6 watts in the hydrogen tank, 

Each ta:nk has two circulators. Takir.g under consideration the 

sizes of the LLV cryogenic tanks and the viscosity of the liquids 

one 30 watt circulator for the LH!2 tank and one 72 watt circula

tor for each LOX tank were selected. 

These circulators are shown in Figure 4.2-3. Each takes
 

suction from the middle of the tank and discharges the liquid
 

into the tubes leading toward the propellant pumps (as described
 

below). The propellant in each tube then returns to the respec

tive tank and flows around a baffle toward the periphery of the
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tank, mixing up the bubbles and the liquid.
 

The circulators should not be used too often as they cause
 

some heating of the cryogenic propellant and, in turn, an increase
 

in boil-off.
 

Geysering Effect. The term "geysering" is applied to that
 

phenomenon which occurs in a cryogenic liquid system when a col

umn of liquid in long vertical lines is expelled by the release
 

of vapors at a rate in excess of that rate which may occur as a
 

normal function of bubble release. The result is an expulsion of
 

liquid from the vertical line. Refilling the line by gravity ac

tion from the tank above the line results in a pressure surge
 

analogous to water hammer. The pressure surges produced as a
 

result of geysering can be very large, and damage feed lines, valve
 

supports, etc.[9]. In weightless conditions geysering is
 

no problem; however, when the ullage maneuver necessary to settle
 

the cryogenic propellants before the retro will fire, geysering
 

may become a problem.
 

The usual approaches to minimize this problem are: (1) he

lium injection, (2) subccoled topping, and (3) cross-feed circula

tion. The first two methods waste either helium or the cryogenic
 

propellant. The third method was adopted with a certain change.
 

it is shown in Figure 4.2-3 and utilizes circulators to cause the
 

movement of the liquid in the tubes below the tanks.
 

Helium System. The RL-IOA engine requires gaseous helium in
 

an amount of 0.044 lbs for pneumatic valve actuation at each
 

start. After each actuation helium is removed overboard.
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Helium is taken from the GHe tank which is mainly used to
 

pressurize the vernier and RCS propellant tanks (Figure 4.4-4).
 

Growth Potential. The growth potential of the RL-10A system
 

lies in the possibility of extending the nozzle of the engine and
 

thus increasing the specific impulse of the propellant combina

tion. This increase and the associated with it weight penalty are
 

shown in Figure 4.2-4 and 4.2-5. The increased specific impulse
 

will permit a reduction in propellant weight [10.
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FIGURE 4.2-6. MAIN ROM SYSTEM 
(Photograph of a Model)
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4.3 Vernier System
 

The vernier system consists of 16 engines, two propellant tanks,
 

one helium tank, and appropriate tubing, valving, instrumentation,
 

and heaters. The propellant and helium tanks are common with the
 

reaction control system.
 

Engines. The verniers are the same Marquardt R-4D liquid
 

engines which were used in the Apollo Service Module and Lunar
 

Module [11]. These engines use N204 as the oxidizer and either
 

MMH (monomethyl-hydrazine) or a 50% blend* by weight of hydrazine
 

and UDMH (unsymmetrical dimethyl-hydrazine) as the fuel.
 

Figure 4.3-1 shows the engine assembly which weighs 5.25 lbs.
 

It consists of a radiation-cooled thrust chamber, an injector,
 

and two solenoid operated propellant injection valves. The design
 

incorporates a preigniter chamber where initial combustion occurs.
 

The purpose of this chamber is to minimize overpressurization or
 

"spiking," which is a transient condition, but if sufficiently
 

severe, can lead to destruction of the engine.
 

Spiking is caused by the formation of unstable intermediate
 

products of low-temperature combustion, which occurs when the
 

engine is cold. In vacuum of space, the injected propellants im

mediately flash by adiabatic evaporation and lower the temperature
 

of the spray. The lower temperature produces a mixture of vapors,
 

liquids, and solids of both the fuel and the oxidizer. Under
 

these conditions, the initial reaction rate is apparently very
 

* This blend is often referred to as Aerozine. 
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slow, thus allowing an explosive mixture to accumulate. That is
 

why it is very important to preheat the engine up to 30 minutes
 

before firing. In the Lunar Module these engines were preheated
 

with electrical heaters to between 1380 and 140 0 F.
 

To further minimize spiking the preigniter chamber is pre

pressurized by fuel lead.
 

When the engine propellant valves receive an "open" command,
 

approximately 9 milliseconds are required for both valves to ful

ly open. Propellants flow immediately through the valves into
 

the injector and reach the combustion chamber about 11 millisec
 

onds after the "open" comnmand, with ignition occurring approxi

mately 1 millisecond later. In steady-state operation the cham

ber pressure is 100 psia, the delivered vacuum thrust is 100 ibg
 

and the delivered specific impulse is 290 lbt-sec/lbm. In
 

pulsed operation all these values are somewhat lower.
 

Marquardt Corporation has demonstrated [12] that higher flow
 

rates of propellants can be used by increasing the inlet pressure
 

to 300 (or even to 600) psia. This resulted in 185 (or 297) psia
 

chamber pressure and a correspondingly higher thrust level, but a
 

lower specific impulse of 276 sec. These conditions required a
 

modification of the injector to reduce the propellant pressure
 

drop.
 

In the LIV design it was decided to increase the flow rates
 

of propellants to a value which will not require any modification
 

of the R-4D engine. An increase of thrust level to 140 ibf is
 

considered compatible with the existing, qualified model of the
 

engine. The following calculations show the thrust levels for the
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Apollo R-41 engines, modified R-4D engines, and the LLV verniers.
 

Using equations 4.5-6 and 4.5-2.
 

I W = CF AT PC 

For a constant CF and AT we obtain up to 0.496 lb/sec for the new
 

propellant flow rate (Table 4.3-1).
 

Quads. The verniers will be used only during the last part
 

of the terminal descent, i.e. (1) from the retro engine burn-out
 

to hover, (2) for hover, and (3) from hover to the final
 

touchdown. Figure 4.3-2 shows the need for a thrust of at least
 

2000 lb., which increases the thrust to mass (or earth weight)
 

ratio to 0.4 in order to greatly reduce the gravity loss during
 

the first phase of the descent with verniers. This phase will be
 

done with 16 verniers arranged in quads (Figure 4.3-3), each quad
 

attached to the "mouse-house" (a nickname used in Apollo).
 

The hover and the final descent phase require a thrust of
 

less than 1000 lb,, because at that time the lunar weight of the
 

spacecraft is slightly below 1000 lbf. The reduction of the thrust
 

can be done by changing the steady-state mode of engine operation
 

to a pulsed mode and/or by shutting off two verniers in each quad.
 

Landing on Slopes. The touch-down on the lunar surface re

quires special consideration, especially if the slope of the sur

face is between 150and 350. Small stabilization solid rockets
 

firing upwards (as described in Section 9.3) and/or the verniers
 

tiring downwards can be used to reduce angular rates after
 

touchdown. Although no analysis has been conducted, allowing
 

the attitude control system to continue operation for a few
 

seconds after initial lunar contact may reduce the tendency to
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TABLE 4.3-1. PROPELLANT FLOW RATES FOR P-4:) ENGINES [12)
 

Engine Thrust, lbf Chamber Delivered Flow Rates
T Pressure, psia 
 Specific Im-
 lb/sec.
 
pulse, sec.
 

Apollo 10000 0 290 0.345
 

Modified 185 185 276 0.670
 

I.LV Vernier 130 130 283 estimated 0.460
 

I.LV Vernier 140 140 282 estimated 0.496
 

ILV Vernier (growth
 
potential) 185 185 276 estimated 0.670
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overturn on landings. During this period the verniers would
 

resist LLV angular rates umparted by the landing gear.
 

The firing of the verniers on the lunar surface will cause
 

some dust to raduce visabAita This, however, does not pre

sent any problem, because at that time the television system will
 

not be used for command guidance.
 

Tanks. Propellant and helium tanks and the pressurization
 

system are shown in Figure 4.3-4.
 

is in a
Helium in gaseous form, in an amount of 2.5 lb 


tank made of Ti 6AI-4V alloy similar to the sphere used on the
 

Surveyor spacecraft [3]. Its proof pressure is 8400 and bunst
 

pressure is 11,000 psig.
 

Glie is used to pressurize the tanks for propellants for both
 

the verniers and the reaction control system (RCS engines). The
 

helium pressure for these tanks is held by the pressure regulators
 

at 295 psia.
 

A small amount of GH2 is also used to operate several pneu

matic valves of the RI 10A engine. Another pressure regulator
 

reduces the helium pressure to between 440 and 500 psia (while
 

its temperature is between 3000 and 6000R). When the RL 10A en

gine is jettisoned the helium line must be severed upstream of
 

the pressure regulator. This is best done by a pyrotechnically
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operated guillotine after the isolation valve (upstream of the
 

severance location) is closed by a solenoid.
 

The propellants are M&MI (154 lb) and N204 (246 lb). 

because of the difference in densities these propellants can be 

stored in identical tanks. The tanks selected for these propel

lants are both spheres each of 5,195 in3 (3 ft3) volume for an 

operating pressure of 295 psia. Similar tanks were used on Gemini 

for 1414H and N204 [14]. 

Each sphere weighing 11.5 lbs has a diameter of 21.9 inches,
 

has a proof pressure of 500 psia and a burst pressure of 670 psia.
 

The tanks were manufactured by Rocketdyne Division of North Amer

ican Rockwell Corp. from Ti 6A!-4V alloy. Each tank requires an
 

expulsion bladder and a perforated stand pipe.
 

Growth Potential. The above tanks can be replaced by larger
 

22.0 inch diameter spherical tanks, each having a volume of 5,575
 

in and an operating pressure of 300 psig. The tanks were also
 

made of Ti 6A2-4V alloy and although the burst pressure was higher
 

than of the tanks described previously, the weight was only 8.0
 

lbs per tank. The tanks were manufactured by Yanstee], Inc.
 

These tanks (designation No. 103172) were used on Gemini for the
 

positive expulsion of fuel and oxidizer.
 

The higher operating pressure will permit higher flow rates
 

to verniers, especially if they are modified to reduce the pres7
 

sure drop across the injector valves.
 

Extended hover time and hop capability require more propel

lants for verniers and RCS engines and hence larger propellant
 

and helium tanks.
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Instead of using three new tanks consideration may be given
 

to a novel system called by the Jet Propulsion Laboratory(of Cali

4ornia Institute of Technology> ALPS or Advanced Liquid Propul

sion System. This system with certain modifications is shown in
 

Figure 4.3-5.
 

The first figure shows that the fuel and the oxidizer are lo

cated in a single spherical tank where they are surrounded by
 

individual expulsion bladders. A proper selection of these blad

ders will insure no permeability of the propellants into the pres

surizing gas.
 

Pressurization of the propellants may be performed either by
 

hydrazine (N2114 ) or by a pressurizing gas. When hydrazine flows
 

through a catalyst bed of e.g. Shell 405 pellets, hot decomposi

tion gases are obtained. Prior to entering the spherical propel

lant tank the gases are cooled by propellants flowing to the
 

vernier and RCS engines.
 

An alternative pressurization system is shown in Figure
 

4.3-6. It consists of a Glie sphere with one or more solid gas
 

generators to augment the helium pressure at the time when this
 

pressure becomes low.
 

An increased hover time from 20 to 30 seconds will require
 

approximately 30 lbs of propellant.
 

Hop Maneuver. If in future missions a hop to relocate the
 

spacecraft to a distance of one kilometer is required, all verniers
 

will fire to perform such a maneuver. The least amount of propel

lant(i.e. 203 lbs)is required to ascend almost vertically from the
 

surface, pitching into the proper trajectory, and then perform a
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"short range ballistic trajectory" by firing all the verniers
 

(and four RCS thrusters) for a few seconds. After the powered
 

ascent the spacecraft will coast to the apex and then downrange
 

where the powered descent will slowly bring the spacecraft to the
 

new location. During the coasting part of the trajectory the at

titude of the spacecraft must be changed to a proper position of
 

the verniers for descent tiring. The AV and propellant calcula

tions are performed in Section 3.3. In addition the range in feet
 

(X), the maximum altitude in feet (h), and the flight duration in
 

seconds (t) can be approximated using modified short range ballis

tic trajectories:
 

AV 2 sin 2'
 
2 -GL
 

h - (6 sin A)2 1
 

t - 2(AV ) sin I
 
GL
 

where, AV = total AV required for the hop by a ballistic
 
trajectory, ft/sec
 

GL = local lunar gravity, ft/sec 2
 

€ - launch angle with the local horizontal, degrees
 

The propellant tanks must be changed to accommodate the in
 

creased amount of propellant for the hop.
 

As the television lens will be covered with dust, the hop
 

should be executed by the astronauts to properly guide the space

craft to the best location.
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4.4 Reaction Control System
 

Reaction control system consists of 12 thrusters, two propel

!ant tanks, one helium tank, and appropriate tubing, valving, in

strumentation, and heaters. The propellant and helium tanks are
 

common with the vernier system.
 

The thrusters are the Marquardt 4-1E liquid rocket engines
 

each having a thrust of 22 lb,. Figure 4.4-1 phows tbtj5t W4X.
 

The engines were developed for the Air Force MOL (Manned Orbiting
 

Laboratory) program and do not require additional qualification.
 

The engines can be used in a pulse mode (Figure 4.4-2) or in a
 

steady operation mode. The delivered specific im

pulse is between 275 and 289 lbc-sec/lbm depending on the propel

lant temperature and the mixture ratio, the optimum ratio being
 

1.7.
 

The reaction control engines are arranged as shown in Figure
 

4.3-1. This arrangement permits pitch, yaw, and roll control and
 

also translation, if required. The engines will be used for the
 

following maneuvers:
 

a) Posigrade maneuver, which is required to remove the 

spacecraft from the Centaur stage; 

b) Mid-course correction maneuvers; 

c) Ullage maneuvers to settle L02 and LH2 before firing the 

i'. RL-10 engine; this maneuver is not mandatory as the RL-10 

engine has its own capability to settle L02 and LH2 in 

their tanks; 
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d) Roll control during the RL-10 firing;
 

e) Descent to hover (after the retro engine and its tankage
 

has been jettisoned;
 

f) Hover above the lunar terrain;
 

) Final descent to the lunar surface;
 

h) Hop for relocation on the lunar surface (as growth poten

tial only).
 

The last four maneuvers will be used in conjunction with the ver

nier engines.
 

The RCS engines are located in two quads and two doublets,
 

each quad and doublet in a small structure referred to as the
 

"bird-house". Fach bird-house is attached to one "mouse-house"
 

which is a structure for a quad of four verniers. (Figure 4.3-3)
 

Heating. Fuel and oxidizer lines from propellant tanks to
 

each combination of bird-house and mouse-house are common and have
 

a joint thermal insulation. The insulation and 10 watt electric
 

heaters per fuel-oxidizer line combination will prevent the pro

pellants from freezing during flight and during lunar night[10].
 

Individual heating of each RCS thruster to ]38 0 -140 0 F will be
 

done 15-30 minutes before each firing to avoid "spiking" as de

scribed in section 4.3. For this purpose each RCS thruster is
 

equipped with a 15 watt electric heater.
 

Cant. Each RCS thruster is canted (tilted) 100 to prevent
 

as much as possible the impingement of the hot exhaust plume on
 

the neighboring structure. Figure 4.3-3 shows the thermal shield
 

protecting the nearest vernier engine. Such shield should be
 

made of Inconel alloy and padded, if necessary, from inside with
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a thermal blanket. 

A cant of 10* reduces the 22 lbf thrust of each thruster by a 

negligible amount as shown below: 

Fnet xengine xCos 10° 

Fnet = 22 lbf x 0.9841 - 21.65 lb, 
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4.5 Cold Gas Attitude Control System [17, 18, 19]
 

The attitude control system uses mass expulsion cold gas
 

jets for obtaining "coasting maneuvers" or maintaining the de

sired attitude of the spacecraft. The cold gas jets are used
 

only during coasting of the spacecraft; all other engines on
 

the spacecraft obtain the attitude control during powered flight
 

by the appropriate pitch, yaw, and roll control, as discussed in
 

the sections 4.2 through 4.4.
 

The cold gas sub-system consists of a hydrogen supply and
 

12 on-off gas jets located at the end of each landing leg. Such
 

a location (high L) permits achieving a large angular impulse per
 

weight of hydrogen expended, as shown in the following equations
 

Wp 4 FLt 16r 2 o 
M.F./cycle . L -x - (4.5-1) 

W is W gXsLtc
 

Q/cycle = 4 FAtL= WpIsL (4.5-2) 

2 t86,400 F g 
M.F./day - F )2 I) (4.5-3) 

W/1000 r
16 2) (I)Is
106 -/O 

where,
 

i .change in angular impulse
 

M.F.- mass fraction
 

WO = G112 propellant weight, lb
 

-
W = spacecraft weight, Lb 12,000 lbm
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r = radius of yyration, ft, (- for a cylinder) 

L = radius of jet centerline from c. m. = 117 in -9.75 ft 

g - 32.2 ft/sec 2 

0 - amplitude of motion, radians - (0.04 for coast)
 

tj-period of motion, sec
 

F - thrust of jets, lbf - 0.2
 

At- on-time of jets, sec
 

It is anticipated that during coasting the gas jets will
 

"fire" every 10 to 15 minutes depending on the bombardment of
 

the spacecraft by cosmic dust, micrometeoroids, solar wind, solar
 

proton events, solar electromagnetic pressure, and also on the
 

behavior of liquid hydrogen and liquid oxygen in their tanks.
 

The slight evaporation of these cryogenic propellants depending
 

on the heat inputs from outside and from their own circulators
 

and also the periodic mixing of these liquids by the circulators
 

will create some disturbances in the attitude of the spacecraft.
 

In the Surveyor and Mariner spacecraft the three axes of 

the vehicle were locked on the star Canopus and on the sun. 

The dead-band used by the JPL star tracker was less than ±l/2 ° 

and the gas jets had to '"fire" every 15-30 minutes. The maxi

mum possible dead-band for Canopus lock with the JPL star trac

ker is ±1.00 *. it is recommended to use a dead-band between 

1/2' and :1' or even a "barbecue" mode of operation during 

*Private communication of G Meisenholder of JPL's Star
 
Tracking department to F.J. Hendel
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coast, i.e. a very slow roll of the spacecraft having a lock on
 

the sun only. The "barbecue" mode will permit a better equali

zation of thermal inputs and outputs. The nominal time to re

establish the lock on Canopus by rolling the spacecraft is one
 

hour per 3600.*
 

The gas jets will be used in couples to provide rotation
 

about the three three axes and in pairs to provide translation
 

in six directions(Fig. 4.5-1).
 

Two gas jet pairs attached to leg 1 and leg 3 will be
 

firing in the x-y or horizontal plane to provide roll control
 

and roll maneuver. Two gas jet pairs attached to the same legs
 

but positioned to fire in the z or vertical plane are for pitch
 

maneuver. Two gas jet pairs attached to leg 2 and leg 4 are
 

positioned to fire also in the z or vertical plane; these jets
 

will execute the yaw control or yaw maneuver.
 

Supply of Hydrogen Gas. The gas will come from the large
 

LH2 tank which has a variable but continuous boil-off of gaseous
 

hydrogen due to a heat input from external sources and from
 

the circulator in the tank. The resultant increase in tank
 

pressure above the normal, which is about 35 psia, will cause
 

the relief valve to open and release some of the hydrogen. In
 

weightless conditions the hydrogen will be released either
 

as a liquid and/or gaseous hydrogen. The maximum boil-off of
 

hydrogen is 35 lbs during a 60 hour mission and 70 lbs during a
 

120 hour mission. It follows that instead of wasting such amount of
 

Ibid. (prev.ious page)
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propellant the attitude control gas jets should use it. Thus,
 

a separate line from the tank is provided that will supply all
 

gas jets with hydrogen. It is not known in what phase or pha

ses the hydrogen will flow to that line from the tank in zero
 

gravity conditions. However, the uninsulated 3/16 inch lines
 

to gas jets,each 10 feet long, and the uninsulated filter

accumulator tank of 1/2 gallon capacity will insure that all
 

hydrogen will reach the jets in gaseous form at a temperature
 

somewhere between -300* and +1600 F (1600 R and 6200 R).
 

Specific Impulse. The varying temperature of hydrogen
 

will result in a variation of specific impulse (Is) as calcu

lated from the equation:
 

f21I2kKg Pe(-) 

i s - - Tc[ - (- )-k (4.5-4) 
g g V(k-1)bi Pc 

where,
 

c - effective exhaust velocity, ft/sec
 

g = 32.2 ft/sec
2
 

k = specific heat ratio of 112
 

K = universal gas constant, 1545.4 ft-lbf/It-lbm
 

M = molecular weight of 112
 

Tc- chamber temperature, 0R
 

PL. exit pressure, psia
 

PC= chamber pressure,psia
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By designing the gas jet nozzle with a 60:1 expansion 

area ratio the value of 

11e 

PC negligible, and therefore 

pe k-i(7._)
 
(T,) 0
 

C 
Substitution of numerical values into the is equation pr6duces
 

Is (4.5-5)
 

then for 1600R, Is = 164 lbf - sec/ibm
 

and for 6200R, Is . 300 lbf - sec/ibm
 

Design of Thrusters The above values of Is will produce
 

variation of thrust (F) of the gas jets according to the equations: 

F - Is W (4.5-6 

F cFPcAt (4.547) 

where, 	W = mass flow rate of H2 ' Ibm/sec
 

Pc chamber, pressure, psia
 

At - throat area, in2
 

CF.= 	 thrust coefficient, which is calculated
 

fromthe following equation
 

2k26 2 kol k-i
 

F Vj~t- - !I-*-p-) J+ (Pe-P a)A (4.5-8)
 
c
 

in which Pe is a very small number and, hence, the equation
 

abreviates to
 

cF 	 T2k 2 1.8(F+T) 18(.52 (4.5-9)
 

However, a more conservative value of 1.7 for CF was adbpted.
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The pressure drop calculations show that GH2 will reach the 

gas jet chamber at a pressure of 10-20 psia. Sizing the gas 

jet for Pc - 10 psia and Is = 164 sec and selecting the gas 

jet thrust level as F= 0.2 lbf* we obtain 

W - 0.00122 lbm/seC
 

At = 0.0117 in 2
 

Ac = 60 At - 0.702 in 2
 

The above values for At and Ac were used in the design
 

of 	the gas jets shown in Fig. 4.5-2.
 

Each gas jet pair includes two independent solenoid

operated valves mounted back to back. Each gas jet must be
 

preceded by a flip-flop circuit so that the actuation voltage
 

is relatively independent of the individual gas jet characteris

tics. It is estimated that each gas jet pair will weigh
 

0.15 	lb.
 

The chamber pressure variations will result from changes
 

of pressure in the cryogenic LMi2 tank and in the filter

accumulator where the varying quality of L12 - GH2 mixture will
 

change into GH2 . The changes in demand for attitude control
 

and changes in heating rates of the filter-accumulator and of
 

the uninsulated tubing leading to the gas jets will further
 

influence changes in the chamber pressure.
 

* 	 This value is a scale-up version of the Surveyor 
spacecraft gas jets which had a thrust of 0.057 
lbf+ 30% - 10% [21. 
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The changes in chamber pressure and the changes of specific
 

impulse will, naturally, cause changes in the thrust levels
 

which will be between 0.2 and 0.4 lbf. As the radius of the
 

gas jets from the center of gravity is 117 inches the moment
 

capability of the attitude of each jet is between 23.4 and
 

46.8 in-lb. When jets are used as couples (i.e. when the jet
 

on the other side of c.g. is actuated at the same time) the
 

moment capacility is doubled.
 

By comparison the Surveyor spacecraft (which was six
 

times lighter than the lunar logistics vehicle) had the
 

moment capability of the attitude jet system about each axis
 

of about 4-7 in-lb. Surveyor used GN 2 (Is - 60 sec) in an
 

amount of 4.5 lb. It's nitrogen budget expressed in figures
 

of total impulse was 66.5 Ibf-sec 13.9 lbf-sec for 3e. This
 

was equivalenxt to 

80.4 	 lbf-sec - '.34 lbm of GN2 (4.5-10) 
60 lbf-sec/lb 

This was only 27.9% of the 4.5 lbm. The value 1.34 Ibm included
 

0.45 lbm for ullage and 0.086 lbm of nitrogen for leakage. The
 

hydrogen budget for LLV jets is shown in Table 4.5-1.
 

The operating temperature of GN 2 gas jets was in Surveyor[18]
 

between -400F and +150°F which was the cause of variation in the
 

specific impulse, thrust, and moment of each jet. These variations
 

were not as oronounced as in the present case of GH 2 jets.
 

Analysis of GH, System. The unpredictable thrust and moment
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TABLE 4.5-1 Gl2 BUDGET FOR ATTITUDE CONTROL JETS
 

Event Impulse/Event No. of Total
 
lbf-sec Events Impulse
 

ibf-sec
 

Rate dissipation 50/sec 

(separation from Centaur) 33 1 33 

Sun acquisition 21 3 63 

Roll maneuvers 12 6 72 

Star mapping 9 3 27 

Canopus acquisition 9 3 27 

Yaw maneuver 9 3 27 

Post midcourse 
rate dissipation 36 3 108 

Coast attitude 160 - 160 

Leakage of Gil2 300 - 300 

Contingencies - 200 
Total Wfl 

1017 lb-sec
G12 " 164 lbf-sCc/blb 6.2 m
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levels of the gas jets will cause unpredictable changes in:
 

(a) mass fraction/cycle (eq. 4.5-1)
 

(b) angular impulse (eq. 4.5-2).
 

The lowest thrust level, however, must still permit the execution
 

of the commanded angular maneuver considering the maximum gyro
 

error.
 

For pitch, yaw, and roll control the desired attitude is
 

either set in a gyro before flight, acquired by the sensing de

vices, or telemetered from the ground. This desired attitude may
 

be constant, or may vary according to a preset program.
 

The current attitude signal is fed back to a synthesizer which 

computes attitude error, 0. The attitude error is differentiated 

to give rate of change of attitude f'. Finally, the signal C + 

is relayed to a switch; (K is a positive number, typically 0.1 

sec). If this signal exceeds a threshold value, it activates a 

switch for right (if positive) or left (if negative) Orudder'l 

Ithe "rudder" is a pair of gas jets which produces a torque, 

Figure 4.5-1). 

Using the sequence of rotations shown in Figure 4.5-3, the
 

spacecraft fixed rates are given in terms of Euler rates and angles
 

(C, 'i,V
 

x= + ! sin Y 

y= cos - * cos Y sin 0 

z= sin 0 + cos T cos 

Considering that the moments of inertia are approximately equal
 

and that the normal body rates are considerably less than 0.1
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rad/sec during the coasting phase, and also that for the normal
 

case where the inertial reference and fixed body reference are in
 

near coincidence (i.e. 0, T, and € are small numbers), the body
 

rate equation is
 

Qy
 

Qx
 

=
 z
 

The simplified system response to the attitude control com

mands consists of essentially three parts: (1) The spacecraft
 

moves from zero velocity to the command rate c (2) There is a
 

coasting period; and (3) return to zero velocity. GI:2 is consumed
 

during the first and third parts of the response and consumption
 

is directly proportional to $c, so it is always desirable that $C
 

be kept as small as possible. For large angular maneuvers, the
 

time required for the first and third parts of the response is
 

small compared to the second or coasting period. Thus, the man

euver time could be approximated by
 

An error signal in excess of the set dead-band level is ap

plied to a limiting circuit which prevents gas jet operation when
 

a preset angular rate is achieved, thus conserving G112 as much as
 

possible and making it possible to use this system of greatly
 

varying specific impulse and thrust.
 

The main advantage of this system is the partial utilization
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of the waste boil-off from the LH2 tank and that Gil 2 has a speci

fic impulse, several times greater than GN2.
 

In addition, any failures of gas jet thrusters could be cor

rected by firing the RCS bipropellant thrusters.
 

The growth potential of the GH2 jet system lies in the pos

sibility of elimination of'the RCS thrusters by increasing the
 

thrust level of each gas jet. In this case the moment realized
 

with the gas jets should be as high as the moment realized with
 

the RCS engines. This would reduce the number of propulsion de

vices while more fully utilizing the waste boil-off of both L11 2
 

and LOX.
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4.6 Propulsion Weights, Power Recuirements, and Costs
 

Weiqhts. Table 4.6-1 shows the overall propulsion system
 

weights which amount to 7470 lbs needed to land [,LV on the moon.
 

The retro system weight is 6727.3 lbs, which consists of
 

6000 lbs of propellants (LOX 5000 lbs and 1A12 1000 Ibs), 665 lbs
 

of inerts, 20 lbs of pyrotechnics (explosive severance devices),
 

and 42.3 lbs of contingencies.
 

The vernier and reaction control system weight is 673.6 ibs,
 

which consists of 400 lbs of propellants(154 lbs of monomethyl
 

hydrazine, MMI, and 246 lbs of nitrogen tetroxide, N2 04 ), 253.6
 

lbs of inerts, and 20 lbs of contingencies.
 

The helium sub-system providing gaseous helium to the RLlO
 

engine and for the pressurization of the MMMH and N204 tanks weighs
 

41.1 lbs. This system contains 2.5 lbs of helium under
 

pressure.
 

The attitude control system weighs only 28 lbs which consists
 

of the hardware only. The 6 lbs of GHl2 gas is included in the
 

RI-10 propellant (in the form of L!!2).
 

Power. Table 4.6-2 tabulates the power and energy require

ments for the propulsion system needed to land the spacecraft on
 

the moon. Time of each event is multiplied by the wattage to obr
 

tain the energy.
 

The circulators for the cryogenic propellants will be used
 

only occasionally for 30-60 seconds.
 

The attitude control jets will be actuated, at least every
 

10 minutes. However, before and after each space maneuver this
 

actuation will be much more frequent.
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TABLE 4.6-1. PROPULSION WEIGHTS
 

1. Retro System
 

RL0A-3-3 engine-----------------------.. 295 lbs 
lines, fittings, valves, instrumentation, LOX 
evaporator, and their insulation- ---....... . 40 
LH2 tank (for min. thickness of 0.032 inch; good 
for 50 psia)-------------------------- 95 
1 inch insulation of LH tank-- ......... .. ... 71 
circulator in the LH tink and valving on the tank- - 15 
4 LOX tanks (for minimum thickness of 0.032 inch; 
good for 100 psia) 16 lbs x 4 64 
0.7 inch insulation of LOX tanks - --------- 50 
circulators in the LOX tanks and valving on the tanks--35 
propellants (LOX + 1 2 ) includes ventage, boil-off, 
Gil for gas jets, and unusable propellants 	....- 6000
 
exlosive severance (explosive bolts, guillotines
 
bolt ejectors, flexible linear-shaped charges, and
 
electrical harness)--- 20
 
contingencies 	 42.3
 

Sub-total 67W7T
 

2. Vernier and RCS Systems
 

2 tanks for fuel and oxidizer, 21.9" diam. spheres, 
each 11.5 lbs --- 23 
insulation of the tanks----- 5 
valve assemblies 3 
propellants 400 
lines, fittings, and their insulation-- 25 
thermal control and orotection from RCS plumes-- - 14 
16 verniers, each 5.25 lbs-.. . -... ....... 84- ... 
12 RCS, each 3.46 ibs 41.6 
4 mouse houses (two 15 lbs and two 14 lbs each)-- - 58 
contingencies 

Sub-total 
20 

66 T3 

3. Helium Sub-System
 

sphere, 14.2" diam.-	 27.8 
valve assembly (includes 2 check valves, filter,
 
squib valve, quick disconnects for fuel and oxi
dizer, and outlet ports for fuel and oxidizer)---
 2.8 
gaseous helium (2.42 lbs for verniers and RCS and
 
0.08 lbs for RL-10)-2.5 
lines and fittings 5.0 
contingencies 3.0 

Sub-total 41.1 
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TABLE 4.6-1. (Cont'd)
 

4. Attitude Control System 

12 cold gas jets, 2 lbs per pair (i
solenoid valves) ------------... 

piping, valving, and fittings-
contingencies 

ncluding 
. ... 

Sub-total 

12 
14 
2 

-2 

Total Propulsion 7T70 lbs
 

NOTE: 	 Pining, valving, and pyrotechnic severance were estimated
 

using references 20 and 21.
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TABLE 4.6-2. PROPULSION POWER AND ENERGY REQUIREMENTS
 

Watts Watt-sec
 
1. 	Circulators for Cryogenic Liquids
 

LH: (1 min/12 hrs) x 120 hr x (30) 18,000
 
LO*: 4 x (1 min/12 hrs) x 120 hr x (72) 173,000
 

2. 	 Posigrade--4 RCS
 
4 line heaters: 4 x (15 min) x (10) 35,000
 
heat 4 RCS: 15 min x (7) 6,300
 
1 lie valve: 1 sec x (28) 28
 
fire 4 RCS: 4 x (24 see) x (15) 1,440
 

3. 	Attitude Control Jets
 
6 jets: 6(1 sec/10 min) 120 hrs x (28) 121,000
 

4. 	Three midcourse corrections (20, 40, 55 hrs)
 
4 line heaters: 3 x 4 x (30 min)x (10) 215,000
 
heat 12 RCS: 3 x 12 x (30min) x (15) 975,000
 
fire 4 RCS: 3 x 4 x (160 sec) x (15) 28,800
 
fire 8 RCS: 3 x 8 x (16 sec) x (15) 5,800
 

5. 	Preparation for Retro Fire
 
4 line heaters: 4 x (30 min) x (10) 72,000
 
heat 12 RCS: 12 x (30 min) x (7) 151,000
 
heat 16 Verniers: 16 x (30 min) x (17.5) 505,000
 
fire 12 RCS: 12 x (10 sec) 	 (15) 1,800
 

5. 	Retro Fire
 
Prestart: 50 sec x (62) 3,100
 
Ignition--Start: 10 sec x (190) 1,900
 
tire Retro: 250 sec x (120) 30,000
 
tire 4 RCS(roll): 4 x (100 see) x (15) 6,000
 

6. 	Descent to Hover, Hover, and Final Descent
 
fire 16 Verniers: 16 x (40 see) x (28) 17,900
 
fire 12 RCS: 12 x (40 sec) x (15) 7,200
 

Total 	Energy Required 2,375,268
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The posigrade maneuver, the three midcourse corrections, the
 

preparation for the RL-10 engine to fire (including the ullage
 

maneuver), the descent to hover, the hover, and the final descent
 

to touch-down will occur in the above sequence.
 

The total energy requirement is 2375.3 kw-scc or 0.64 kw-hr.
 

The highest peak of power requirement starts approximately 35
 

minutes before landing on the lunar surface.
 

Cost. Table 4.6-3 gives the estimated cost of all propulsion
 

systems including propellants. The purchase cost of propulsion
 

items per spacecraft amounts to $810,000. The qualification costs
 

of some of the equipment (RL-10, circulators, cryogenic tanks,
 

LOX evaporator, Vernier, Gil2 jet, and stability motor) amounts to
 

$11,000,000. This figure divided by eight spacecraft results in
 

approximately $1,390,000 which when added to the purchase cost
 

gives a grand total of $2,200,000 per spacecraft.
 

The stability solid propellant motors may not be required
 

because the verniers may be sufficient for the stabilization of
 

the spacecraft at touch-down (See Section 4.3). Neither the total
 

cost, nor the total weight of propulsion will change as the small
 

figures in cost and weight for these motors are included in con

tingencies.
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TABLE 4.6-3. ESTIMATED COST IN MILLIONS OF DOLLARS
 

System No; of Purchase Development Total 
Main 

Items 
Cost/S.C. and 

Qualification 
Cost/S.C. 

Retro 1 0.5 6 1.25 

Vernier 16 0.2 4 0.7 

RCS 12 0 
GH2 Jet 12 0.1 1 0.23 

Stability 

Motors 4 0.01 0.1 0.02 

Totals 0.81 11.1 2.2 
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4.7 Trade-off Studies of Alternative Propulsion'§x!tems
 

A lunar landing vehicle which is designed for a soft landing
 

on the surface of the moon must have, at least, two propulsion
 

systems. These are:
 

1. 	Main retrograde (retro) rocket which will reduce the
 

great velocity of the vehicle approaching the lunar surz
 

face to a small velocity;
 

2. 	Small controllable rockets which will permit space
 

maneuvers (mid-course corrections, posigrade and ullage
 

maneuvers, stabilization, attitude control), hover above
 

the landing site and the final descent to touchdown, and
 

also in the future a hop from the landing site to a bet

ter location.
 

Main Retro;Criteria. The main retro could be a solid or li

quid rocket with a thrust as high as possible to reduce the gravity
 

loss during burning of the retro. The characteristic AVch equa

tion shows that an idea vid would be the best with respect
 

to the weight of propellant(s):
 

AVch - JVi& 4gL(cos C)dt (4.7-1)
 

td
 

AV cln -m o
 

* 	 = cin mom 
 (4.7-)
 

c = 	 32.17 Is (4.7-3) 
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where. = local gravity of the moon, ft/sec2 

t = burning time Cfrom start, t0, to finish', tf,'sec 

0 = angle between flight path and the local vertical, 
degrees
 

= effective exhaust velocity, ft/sec
 

Is = delivered specific impulse, lbf±sec/lbm
 

mo = mass of the spacecraft at start of the retro
 
burn, lbm
 

mp = mass of propellant used, ibm
 

It is evident that the gravity loss which is the second term in
 

equation 4.7-1 is the smallest either when the burning time is
 

short or if the angle 0 is approaching 9O1. The latter approach
 

is achieved during low energy missions (120 hour flight timet
 

when the impact with the lunar surface becomes almost.tangential.
 

A limitation to the high thrust, however, is thd requirement
 

that the axial acceleration of the spacecraft will not exceed 6 g
 

i.e. 193 ft/sec2 . During the burn of the retro the mass of the
 

spacecraft is decreasing because of the propellant consumption
 

Thus, a constant thrust of the retro will gradually increase the
 

acceleration of the spacecraft. -When the 6 g level is approaching
 

the thrust level should be lowered to sktisfy the equations
 

F = 6W (41-4) 

W = 32.17m (';J-5) 
where, F = Thrust, lbf 

W = instantaneous earth weight of spacecraft, lbf 

m = instantaneous mass of the spacecraft, slug 
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Another very important criterion for the retro rocket is the
 

specific impulse, Is, which should be as high as possible. A
 

high Is requires for the same AV (equation 4.7-2 and 4.7 3) less
 

propellant mass, or weight, Wp, in order to obtain the required
 

total impulse:
 

I = Fdt I dt (4.7-6) 
to Wo 

dvi
 
where W =-dP
 

dt
 

I = total impulse, ibf-sec
 

Further criteria for the main retro were:
 

(1) 	The rocket should require none or only little develop'
 

ment,
 

(2) 	the rocket including propellants should be inexpensive,
 

(3) 	should be ready available by 1972,
 

(4) 	should be, preferably, small in size,
 

(5) 	should have thrust vector control,
 

(6) 	should be reliable, and
 

(7) 	should be throttleable, if possible (for site redesig
 

nation during retro burn).
 

Taking the above under consideration many rocket power plants
 

were used in trade-off studies.
 

Retro Trade-off Studies Table 4.7-1 shows the main
 

contenders for the retro rocket. Other readily available rocket
 

power plants were considered, but were eliminated early. These
 

were: Agena engines, LM Ascent engine, several military solid
 

propellant motors (classified), and the Apollo SM main engine.
 



Type 


RL-10A-3-3 


RL-10A-3-7 


SRM-MSC 


Surveyor 4 + 1 


Surveyor 3 + 1 


LM Descent 


TABLE 4.7-1 TRADE-OFF ANALYSIS OF RETRO CANDIDATES
 

Propellant I F, f Total Propulsion

lWeight, lb
 

LOX + LH2 444 15,000 7550
 

LOX + LH 2 444/434 15,000/2,000 7470
 

Solid 289.8 36,800/32,000 8600
 

Solid 289.8 36,800/9,200 8800
 

Solid 289.8 27,600/9,200 8900
 

N 0 + Aerozine 305-292 10,000/1,000 8900

24
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The Agena engine Nb. 8096 (single restart) and Nb. 8247
 

(multiple restart) weighing 290 lbs and 310 lbs, respectively,
 

each having a thrust of 16,000 lbf were eliminated because of low
 

specific impulse (293 lbf-sec/lbm) and lack of throttleability.
 

The LM Ascent engine was eliminated because .of a low thrust
 

level.
 

Several military solid motors had a nominal thrust level of
 

about 30,000 lbf but the burning time and the total impulse were
 

either too low or too high and the thrust curves were occasionally
 

progressively increasing to a level which was not compatible with
 

the 6g constraint.
 

The Apollo SM main engine requiring heavy tanks for the
 

pressure-fed propellants was considered but because of the high
 

weights was eStnJ4ted.
 

Table 4.7-1 shows the main retro candidates arranged in order
 

of total propulsion weights for the 60-hour high energy mission.
 

The weights include not only the retro propulsion but also
 

propulsion for space maneuvers, attitude control, hover, and
 

final descent to landing; hop, however is not included. The
 

trade-off analysis required all these weights because, some retro
 

power plants needed auxiliary propulsion for pitch, yaw, and roll
 

control and also a longer duration of burn from retro burn-out
 

to landing.
 

NASA-MSC has preformed studies using RL 1OA-3-3 engine, the
 

descent engine and the Surveyor motors in cluster of three or
 

four motors as the first stage and one motor as the second stage).
 

These studies were presented in numerous graphs to the NASA-ASEE.
 

Summer- Institute (2, 2&,2-4]'. 'hese studies were then further 
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refined and their results reassessed.* Optimization of stages
 

was performed using the calculus of variation with the Lagrange
 

multiplier.
 

In addition a study was made of another type of
 

inexpensive solid rocket motor named SRM-MSC which is a military
 

rocket requiring the following changes.
 

(1) An extension of the nozzle to increase the specific
 

impulse.
 

(2) A "dual thrust" rearangement of the propellant grain,
 

A "wagon wheel" configuration of the perforation, with

out changing the chemical composition of the propellant, can be
 

obtained by inserting a proper core or mandrel into the
 

chamber during casting of the propellant slurry [25,26].
 

The SRM-MSC has a thrust vector control using fluid
 

injection into the nozzle for pitch and yaw and a solid gas
 

generater for roll control.
 

In the beginning the thrust of SRM-MSC 'is up to 36,800 lbf
 

and after 40 seconds of burn it drops to 32,000 lbf to meet the
 

6g maximum constraint at the time when the mass of the spacecraft
 

has decreased after most of the solid propellant has been consumed.
 

The total burn time of the motor is 57 seconds, which is the least
 

time of burn of all retro canditates and, hence, accounts for
 

the smallest gravity loss during aa4 high energy mission.
 

* 	 Help of M. Lausten of NASA-MSC if the selection of the main 

retro rocket is gratefully acknowledged. 
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For low energy missions the SRM-MSC would have to be off

loaded or its thrust termination device for an earlyburn
 

out applied.
 

Table 2.2-1 shows that the RL-10A engines have a much higher
 

specific: Thpulse than the other candidates. However, because
 

the thrust level of the RL-10A engines is much lower than of the
 

SRM-MSC, trade-off and optimization studies were complex. These
 

studies required the following considerations:
 

(1) total propulsion weight, which is approximately 1,000 lbs
 

lower for the RL-10A system;,
 

(2) complexity, which is much lower in case of the SRM-MSC
 

system;
 

(3) cost of the system (including development and
 

qualification cost), which is greater for the RL-10A system
 

but is still acceptable;
 

(4) bulkiness which is much greater in case of the
 

RL10A system;
 

(5) reliability, which is lower for the RL-10A system
 

(because of rotatinq machinery, cryogenic pr6pellants, and
 

presence of large surfaces of tanks which may be punctured by
 

meteoroids).
 

Of the candidate .retro systems the SRM-MSC rocket is prob

ably the most reliable. However, the requirement for a 2500 lbs 

payload could be met only when RL-10A system is used. As the 

presently anticipated payload is not too bulky there is enough 

space for the voluminous RL-10A propulsion. Thus, the trade-off 

studies indicated that the RL-10A system must be chosen.
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The reason why the model RL-10A-3-3 was selected is given
 

in section 4.2. A cluster of-two of these engines to reduce the
 

gravity loss during the high-energy missions was also considered
 

but no overall weight gain was achieved.
 

Small-Controllable Rockets' Criteria. The necessity of these
 

rockets in the LLV spacecraft is given in the beginning of this
 

section. The criteria for the selection of .these rockets were
 

as follows: (1) ready available, (2) high specific impulse,
 

(3) storable propellants,, (4) fine controls, (5) low cost
 

(6) high reliability, (7) very high thrust flexibility, .from
 

1 to 2500 lbf, (8) little development, if any, (9) rapid
 

response to command, (10) pressure feed to the thrust chamber,
 

and ,f) ittle pewer amd energy requirements, (a2) negligible 

thermal problems.
 

The latter requirement was further subdivided as follows:
 

(a) no .4mpingmeirtLhor at least a negligible c'mpin of hot 

rocket plumes (Fg. 4.7-1) on the .equipment and structures of the
 

spacecraft, (b) avoidance of freeze-up of the storable.propellants,
 

and (c) heating of engines using a propellant from the hydrazine
 

family to prevent "spiking" (see Section 4.3).
 

In general all the above criteria could be met with one
 

propulsion system except No. 7-and-N IVA crfteria. 

The reason for the necessity of a very high thrust flexibility
 

are as follows. Very low-thrust levels are needed for the
 

attitude control of .the spacecraft during coasting (see Section 4.51
 

Qnythe other hand fairly high thrust levels of 2000 lb are needed
 
f
 

for the descent to hover, (Pig. 4.3-2), Intermediate thrust levels
 

are needed to hover and to.descent from hover. Other space
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maneuvers (except retro) can be accomplished with either fairly
 

high or intermediate thrust-level engines (see Section 4.3 and 4.4).
 

The thermal criterion Na. 12a could not easily-be met with
 

larger engines performing space maneuvers (mid-course correction
 

etc.) while the LH2 and LOX tanks were still attached. Hence, for
 

the space maneuvers intermediate size engine had to be used and
 

canted, at least 100 (see Section 4.4).
 

The possibility of using RCS engines of intermediate thrust
 

levels for both the space maneuvers and attitude control during
 

coasting was considered. This would eliminate the 12 hydrogen
 

jets. However, when the decision was made to utilize LH2 boil

off tor these jets, weight saving and redundancy was achieded..
 

The hydrogen gas jets have also a growth potential to sub

stitute the RCS engines. This is not feasible in the present
 

design because the LH2 tank is jettisoned well above the lunar
 

surface making the gas jets inoperable for further,controls.
 

Studies were made whether the cold gas jets could be 

replaced by hot gas jets (i.e. by Very small monopropellant or 

bipropellant RCS). All these jets, however, require a location 

on the legs of the LLV ,({se Section 4..5) to robtatln a -momenr 

during thrusting. If & storakle propellant had to be conveyed so 

far trom the main.body of the spacecraft a problem of propellant
 

freezing would be agravated.
 

Trade-off Studies of Small Rockets. Taking the above under
 

consideration three auxiliary propulsion systems were decided on*;
 

* Help of Norman Chaffee in these consideration is
 
gratefully acknowledged (see alsP 8ef. 27).
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(1) 	larger engines called verniers, (at least one close
 
to each leg);
 

(2) medium size engines called RCS (at least two close
to each leg);
 

(3) very small thrusters for the attitude control system
 
during coasting, (at least two close to each leg).
 

Section 2.2 lists all the candidates for the auxiliary
 

propulsion systems and the reason for the final selections.
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5.2 Power System Requirements
 

Table 5.2-1 provides a summary of the power and energy
 

requirements for the various phases of the mission. The duty
 

times used as the basis for the estimation of the.energy re

quirements are also shown in the table. Table 5.2-2 lists the
 

energy requirements of the different phases of the mission.
 

Figure 5.2-1 is an approximate power profile for the LLV mission.
 

TABLE 5.2-2
 

SUMMARY OF ENERGY REQUIREMENTS
 

Mission Phase Energy, w-hr 

Pre-Launch and Launch 1940 

Trans-Lunar 12294 

Course Corrections 2054 

Descent and Landing 1981 

Post Landing 1196 

Total 19,465 

The total electrical energy requirements for the mission
 

are 19,465 w-hr. Adding ten percent for wiring and conversion
 

losses results in an energy requirement of 21,412 w-hr. If, in
 

addition, a twenty percent margin allowance is added, the total
 

electrical energy requirements become 25,700 w-hr. The average
 

power requirement during the long duration translunar phase is
 

106 watts plus losses, or about 120 watts.
 

5.2.1 Peak Power Requirements
 

The spacecraft peak power requirements occur during the
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CHAPTER V
 

ELECTRICAL POWER SYSTEM
 

Floyd Calvert
 

5.1 Introduction
 

The LLV power subsystem generates, stores, converts, and
 

controls electrical power for distribution to the spacecraft
 

subsystems. The energy requirements are based on the 120 hour
 

time in the translunar phase of the mission. The ground rules
 

specified in the work statement for the power system are:
 

Existing, flight proven sub-systems and/or
 
components are to be used to the fullest
 
extent possible
 

Consideration is to be given to extended
 
survival of the power system for periods of
 
up to ninety days
 

Consideration is to be given to the possib
ility of using the power system to provide
 
power to the payload
 

Thus, since development of new equipment is to be mini

mized, such alternatives as thermionic and dynamic power sys

tems are not considered for the present application. The
 

spacecraft's power system will supply energy at a nominal
 

29 volts D C. Alternating current power will be supplied either
 

from a central power conditioner or from individual subsystem
 

power conditioning devices.
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TABL
 

ELECTRICAL
 

PRE-LAUNCH TRANS-

SUB-SYSTEM OR AND LAUNCH 

COMPONENT Avg. Duty Energy Avg. Duty
Load, Time, w-hr. Load, Time 
watts hr. watts hr. 

Guidance and Navigation 

Computer and Celestial Sensors 100 5.0 500 20 115.5 
Inertial Measurement Unit 100 5.0 500 - -
Radar plus Radar Ant. Heater - - - 5 115.5 
IMU Pulse Torque Assembly 90 5.0 450 - -
Coupling Data Units 50 5.0 250 50 115.5 

Communications and Telemetry 48 5.0 240 31 115.5 

Approach TV - - 

Retro-Engine 

Circulating Pumps; H2,0 2 Tanks . ... . 83 0.17 
Valves ... 

Vernier Engines, (16 units) 

Heaters 
Valves ... 

RCS Engines, (12 units) 

Heaters - - - 60 0.2. 
Valves - - - 80 0.0 

Attitude Jets - - - 54 0.J 

Hypergolic Line Heaters - - - 40 0.2 

Squib Devices (Us_ small in( 

Transponder (Consi-de-

SUB-TOTALS I=
 

(TOTAL 19465 w-hr)
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MARY
 

COURSE" DESCENT AND POST LANDING
 
CORRECTIONS. LANDING
 

Avg.' Duty Energy, Avg. Duty Energy, Avg. 'Duty Energy,
 
Load, Time, w-hr Load Time, w-hr Load, Time, w-hr
 
watts hr watts hr watts hr
 

100 4.5 450 100 3.0 300 -- 

100 4.5 450 100 3.0 300 -- 
- - - 190 0.5 95 -- 

90 4.5 405 90 3.0 270 -- 

50 4.5 225 50 3.0 150 -- 

48 4.5 216 170 3.0 510 48 24 1152
 

- - 22 1.0 22 22 2 44 

- - - 250 0.1 25 - - 

- - - 280 0.5 140 - - 
- - - 448 0.05 23 -  -

180 1.5 270 180 0.5 90 - - 
180 0.1 18 180 0.2 36 - - 

40 0.5 20 40 0.5 20 - 

>attery)
 

Load)_
 

2054 1981 


TQ AME
 

1196 



2000 
Note: Random power spikes 

during trahs-lunar coast phase 
are produced by RCS system and 
cryogenic tank circulating pumps. 1640 wf 

1500 A--Guidance and Navigation
B--Telemetry 
C--RCS Engines 
D--Vernier Engines 
E--Attitude Jets 
F--Approach TV 

G1000--Retro Engine 

Descent
& Landing 

A,B;C,D,F,G 

TLaunc h 

/Z-A,B,C E '7 Course Corrections, 788 w 
CDO 

0 500 

B 

See Note 

106wI' Landing

3I,(BF 

0 20 40 60 80 100 120 140 

Mission Time, hours 

FIGURE 5.2-1 POWER PROFILE (Approximate) 
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4) . . {. ...... m4/ . .. 

1100 l h 

1a _ onal175 .. . ... ., I!10' . Ib ; I I I- I t , . 

o~~H. ' . nc1 l ':,,,',.', ;_ 

0 500 1000 1500 2000
 

Time, hr
 

FIGURE 5.2-2 REACTANT AND TANKAGE WEIGHT FOR EXTENDED
 
SURVIVAL (50 'watts power)
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descent and landing phase of the mission. Table 5.2-3 lists the
 

subsystems which contribute to the power peak for the electrical
 

power subsystem.
 

TABLE 5.2-3 

PEAK POWER 

Subsystem Power, watts 

Guidance and Navigation 530 

Telecommunications 170 

Approach TV 22 

Retro Engine 250 

Vernier Engines 448 

RCS Engines 180 

Line Heaters 40 

Total 1640 

The electrical power system must be able to supply a peak
 

power of 1640 watts. The peak-electrical current, at 29 volts,
 

is therefore 57 amperes.
 

5.2.2 Requirements for Extended Survival
 

Thermal control calculations (see.Chapter VII) indicate that
 

the power required for lunar night survival of the telecommuni

cations and power system are on the order of 50 watts.. This
 

power is that required for heater power and/or that required to
 

maintain the telecommunications system at a low operating level.
 

Figure 5.2-2 shows the additional weight of reactants and tanks
 

for extended survival on the surface of the moon (assuming that
 

a Fuel Cell and Battery electrical power system is used).
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If the survival time is to'be longer than 1200 hours, then
 

a supplementary RTG system (two SNAP-19 modules) would be lighter
 

than the additional weight of reactants and tanks required by a,
 

fuel cell system. However, the use of fuel-cells is recommended
 

for extended survival since employment of an RTG system involves
 

severe safety, launch, and radiation of electronic conponent
 

problems.
 

5.2.3 Payload Support
 

The importance rating of the payload support criterion has
 

been given a low value in the design of the electrical power
 

system. Fuel cell and RTG power systems are able to provide
 

payload support. (Additional reactants are required for fuel
 

cells.). Solar cell systems may provide some payload support
 

if solar arrays are .oriented on the surface of the moon. Sup

port of the payload by solar cell systems during lunar night
 

periods would'necessitate use of heavy batteries.
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5; 3 -Candidate Power Systems
 

.Five: alternative power systems have been considered and
 

evaluated. The following paragraphs provide a brief description
 

ofteach of the systems.
 

5.3.1 Batteries
 

A battery power system would require three silver-zinc pri

mary batteries., Suitable batteries would be of the type used in
 

the ascent stage of the Apollo LM spacecraft. Each battery will
 

provide 9 kw-hr of energy and is rated 300, ampere-hours at 30 volts.
 

The battery current rating is 50 amperes at 28 volts for 5.92
 

hours at 800F. Each battery weighs 130 pounds, [5].
 

5.3.2 Solar Cells and Battery
 

This power system concept is based on the use of an orient

ablesolar array or arrays similar to that used on the Surveyor
 

spacecraft. The required solar array area is 30 square feet and
 

the estimated solar array weight is 30 pounds plus 40 pounds for
 

-the positioning mechanism. Spacecraft power would be supplied by
 

the solar array during the trans-lunar coast phase. Peak power
 

requirements during the course corrections and descent phases are
 

to be provided by an Apollo LM ascent stage battery of the same
 

description as given in paragraph 5.3.1.
 

5.3.3 -Fuel Cells and Battery
 

The power generating devices employed in this concept con

sist of two radiation-cooled, capillary matrix type fuel cells as
 

manufactured by the Allis-Chalmers company. Each fuel cell has a
 

nominal power rating of 200 watts at 27 volts do. Supercritical
 

hydrogen and oxygen are to be utilized. The Gemini RSS two-day
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cryogenic tanks are suitable for this application.- The-hydrogen
 

tank weighs 27.5 pounds ahdwill hold 5;6 pounds of reactant.
 

The oxygen tank weighs 20.5 pounds and will hold 45pounds of
 

reactant. One fuel cell will supply all the translun4r coast
 

phase power; the second fuel cell is redundant.-


Peak power loads during'the course -corrections-and descent
 

and landing phases will be supplied by a 300 ampere-hour silver
 

zinc battery of the same description as those in the all battery
 

conbept, paragraph 5.3.1.
 

5.3.4- RadioisotopicThermoelectric Generators and Battery
 

This alternative concept employs four SNAP 19 modules
 

which use plutonium 238 as energy source (fuel). Each two

module nlt~hs-a -power rating of 70 watts for 90 days, [,.]
 

The:7power-rating'at the end-of five years is 50 watts for each
 

two-rodule unit.' The weight of each two-module unit may be es

timated at 105'pounds,'[2]. These generators have flown on the
 

Nimbus spac'ciaft and are-expected to be fully qualified for the
 

Pioneer flight by December of 197Q. Translunar coast phase
 

power is t& be sup~iied by the RTG units.
 

* Peak power'is-tb- be supplied by a'300 ampere-hour battery
 

of the Apollo LM ascent stage type.- This.battery is described
 

in paragraph 5.3.1.
 

5.3'.5' Fiel'Cells

S--The- lal fuel cell concept is based on the utilization of
 

tIwo fuel ciils -each rated at two kilowatts of power;--Candidate
 

fuel ceils are 's follows: :
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Allis-Chalmers, 2 kw, capillary matrix type,
 
gas/liquid cooled, weight: 169 pounds per
 
module, 100 watts parasitic load
 

Pratt & Whitney;Aircraft, Type PC8B-3, 2 kw,
 
105 watts parasitic load, weight: 104 pounds
 
per module, liquid cooled, [3].
 

Two fuel cells are required, one to supply all spacecraft
 

electrical loads and one for redundancy. The Gemini RSS type
 

cryogenic tanks are specified for reactant storage. Noteworthy
 

for this concept is the fact that the magnitude of the fuel
 

cell parasitic load is approximately the same size as the trans

lunar coast phase load. Thus the utilization of the energy
 

content of the hydrogen-oxygen reactants is relatively ineffi

cient during this phase of the mission.
 

A heat rejection radiator is required for this power
 

system concept.
 

5.4 Power System Comparison
 

Table 5.4-1 provides a summary listing of the values for
 

each of the criteria which are considered to be of major im

portance for this application. Table 5.4-2 lists advantages
 

and disadvantages of the five candidate power systems. Table
 

5.4-3 lists the weights of the components in the Fuel Cell and
 

Battery concept.
 

The recommended power system for the Lunar Logistics Vehi

cle is the Fuel Cell and Battery system. Although the Fuel Cell
 

and'Battery (FC/B) concept is slightly heavier than the Solar
 

Cell and Battery (SC/B) concept, it is the preferred choice
 

because of the greater flexibility permitted in the structural
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'Power 
Conditioning 
Unit 

Cell 

Fuel 
02Cell 

Battery -Qd 

Main 
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Electrical 
Devices Squib
 
Battery Bus
 

FIGURE.5.4-I SCHEMTIC ILLUSTRATION--ELECTRICAL.POWER SYSTEM. 



TABLE 5.4-1 COMPARISON OF CANDIDATE POWER SYSTEMS
 

Primary Solar Cell Fuel Cells RTG and Fuel Cells 

Batteries and Battery and Battery * attery 

System weight, lbs 490 300 340 384 396 

Volume, In3 8700 8500 10200 22200 37000 

Availability Available Available Available Available Available 

6 Mo. 18-24 Ma. 18 Mo. 24 Mo. 18 Mo. 

Growth Potential 
Beyond 120 hr 
Mission 

Add Batteries, 
12 lb/kw-hr 

Continuous 
in lunar day 
if oriented 

Add cryo. Inherent 
@1.Q lb/kw-hr. in system 

type 

Add cryo. 
@1.0 ib
/kw-hr. 

Cost,$, 
(Qual./Shipset) 

100K/75K 3M/250K 3M/300K 5M/2M 3M/400K o 

Payload Support None Yes, lunar Yes, add Yes, Yes, add 

Potential day cryo. 100w/5yr cryo. 

Interface Problems Minor Major Moderate Major Moderate 

Number of Modules 3 Battery Solar Array, 2 F. C. 4 RTG 2 P.C. 
1 Battery 1 Batt. 1 Batt. 

Lunar Night 
Survivability 

No Yes, if batt. 
recharged 

Yes, provide 
cryogenics 

Yes Yes, pro
vide cryo. 

prior to 
lunar night 

*Selected System; Fuel Cells and Battery
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TABLE 5.4-2 ADVANTAGES AND DISADVANTAGES
 

CANDIDATE POWER SYSTEMS
 

Electrical Advantages 	 Disadvantages

Power Source
 

Primary Battery 	 ,Low cost dHigh,weight
 
.High reliability .No'payload support
 
,Low volume 'No lunar night
 
-Minor spacecraft potential
 
structure interface
 
problems
 

Solar Array weight 	 inter*Low 	 '*Struc'tural 


and Battery 	 -Low volume face problem, con-,
 
.Extensive flight strains spacecraft
 
experience design flexibility

'Payload support -Spacecraft must be
 
potential 	 oriented
 

Complex system
 

*Fuel Cells and .Low weight 	 system,
*Complex 


Battery 	 Redundant fuel cells supercritical cryo
*Possible payload genics required
 
support
 
Potential to survive
 
lunar night
 

-Greater flexibility 	in
 
spacecraft configura-,
 

tion design
 
-High overload capabilit
 

RTG and Battery Long life Highheat rejec
,Payload Support tion
 
potential -Nuclear radiation
 
.Lunar night surviva- of electronic com
bility ponents
 

*Adds launch pad
 
complexity
 
-Safety questions
 
High cost
 
High-volume
 

Fuel Cells-	 :Redundant system -Large volume
 
.Potential payload -Low efficiency at
 
support translunar power
 
-Potential to survive load level
 
lunar night May require liquid
 

'High-overload capa- heat-rejection
 
bility loop.
 

•Requires 	cryo
genics
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TABLE 5.4-3 POWER SYSTEM WEIGHT
 

FUEL CELL AND BATTERY
 

Item Weight, lbs
 

(2) Fuel Cells 
 60
 

Gemini RSS H2 Tank 27.5
 

Gemini RSS 02.Tank 20.5
 

H2 Reactant 2.3
 

02 Reactant 17.7
 

Battery, 9 kw-hr 130
 

Power Conditioning 60
 

Battery Support and Thermal Control 12
 

Fuel Cell Supports 10
 

Total 340
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configuration design of the spacecraft. Also eliminated is the
 

necessity for orientation of the spacecraft with respect to the
 

sun's rays. In addition, the FC/B concept has improved poten

tial for lunar night power supply over that provided by the
 

SC/B system.
 

The solar cell-battery electric power system alternative
 

involves the following interface problems that may prove to
 

be difficult to overcome:
 

1. A problem of deployment
 

2. Fuel penalties are incurred as a consequence
 
of the necessity to compenst~e for the various
 
static and dynamic perturbations that are
 
caused by the solar cell array
 

3. The problem of orientating the solar array
 
both in space and on the surface of the moon
 

For example, when the solar array tries to orient itself
 

with respect to the sun, a reaction results on the spacecraft.
 

The spacecraft will try to correct for the perturbation forces
 

that the array has introduced. The reverse is also true: when
 

the spacecraft moves to orient itself toward the earth, it will
 

tend to disorient the array and thus introduce perturbations
 

into the solar array servo loop. These particular problems are
 

not associated with the fuell cell-battery alternative.
 

The FC/B concept is based on the use of one Apollo LM
 

ascent stage type battery. An alternate battery-choice is that
 

of two modified Surveyor batteries, [41. Each battery would
 

weigh 73.5 pounds and would have a capacity of 6.1 kw-hr.
 

Figure 5.4-1 is a schematic illustration of the recommended
 

power system.
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5.5 Electrical Davices Battery
 

Electrical power for the Explosive Devices Subsystem is
 

provided by a single 20 cell silver oxide-zinc battery of the
 

type used on the Apollo LM vehicle. Performance and design
 

data for the battery are shown in Table 5.5-1.
 

TABLE 5.5-1
 

PERFORMANCE AND DESIGN DATA
 

EXPLOSIVE DEVICES BATTERY
 

Battery rating 37.1 volts dc, 
open-circuit voltage 
0.75 ampere-hour, 
75 amperes for 36 

seconds 

Height 3.03 inches 

Width 2.75 inches 

Length 6.78 inches 

Weight 3.50 pounds 

5.6 Summary
 

Table 5.6-1 is a summary listing of the specifications for
 

the recommended power system.
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TABLE 5.6-1 DESIGN SPECIFICATIONS
 

FUEL CELL AND BATTERY ELECTRICAL POWER SYSTEM
 

Item 	 Specifications
 

Two fuel cells Each; Allis Chalmers, 200 w,
 
radiation cooled, 27'v dc,
 
.weight 30 ibs, size 7" x 7"x 17",
 
H2 and 02 reactants-, 2w para
sitic power, 200OF operating
 
temperature, 1800 F to 2300 F
 
operating range.
 

Gemini RSS H2 Tank 	 Sipercritical storage, empty
 
tank.weight 27.5 lb, hydrogen
 
capacity 5.6 ibs, 250 psia ope
rating pressure.
 

Gemini RSS-O2 Tank 	 Supercritical storage, empty
 
tank weight 20.5 ibs, oxygen
 
capacity 45 ibs, 850 psia
 
operating pressure.
 

Battery 	 Apollo LM ascent stage type,
 
9 kw-hr capacity, rated 300
 
ampere-hours at 30 volts,
 
current rating 50 amperes at
 
28 volts for 5.92 hours at
 
800 F, weight 130 lbs"
 

Power Conditioning 	 30 v dc to 400 Hertz, 115v ac,
 
reverse current control, dc
 
voltage boost, 60 lbs weight
 

Electrical-Devices See Table 5.5-1
 
Battery
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CHAPTER VI
 

TELECOMMUNICATIONS
 
George Gless 6.1-6.3
 
Frank Swenson 6.4
 

6.1 -Telecommunication Subsystem Requirements
 

The general roquirements of the communication, instrumentation

and vidio subsystems were discussed in Section 2.5 and outlined in
 

Table 2.5-1. The first two subsystems are so closely related that
 

they are both discussed under the title of telecommunications in
 

the first section. The separate subsystems are then describel in
 

more detail in the following sections.
 

In addition to the broad general requirements as listed in
 

Table 2.5-1 there are several more specific items shown in Table
 

6.1-1. Initial acquisition of the spacecraft on earth is facil

itated by the use of Surveyor type omnidirectional antennae and
 

high power from the transmitter. After initial acquisition, the
 

LM steerable S-band antenna is automatically controlled by thp
 

receiver as indicated in the block diagram of Figure 6.1-1. In

itial acquisition may be controlled by commands from the ground or
 

the guidance computer.
 

Part b of Table 6.1-1 indicates the various items to be
 

measured and telemetered to MSFN or DSIF via the S-band communi

cation subsystem. Very little design effort was devoted to deter

mining the actual measurement items needed. An estimate of 150
 

analog channels and 150 digital channels was used as the basis for
 

the selection of the components shown in the block diagram of
 

Figure 6.1-2.
 

A possible mission objective was to provide an active or,
 



STEERALE 

ANTENNA 
RECEIVER 

PCM DATA FROM 
STORED PROGRAM 

NO. 1 DATA PROCESSOR 

g RANGING 

OMNI A_ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ 

DIPLEXER RECEIVER PHASE 

NO. 1 NO. 2 S 
MODULATOR
NO . I-1t 

oIiB P0RNGE. 

POWER 
AMPLIFIER DRIVER MODULATOR 

NO. 1 NO. 1 NO. 2 

DIPLEX
No. 2 

POWER
AMLIFIER 

DLj ERT7 
NO. 2 

MULTIPLEXER 
AND 

anAT. 
-TV 

NO. 2 MIXER 
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TABLE 6.1-1 ADDITIONAL TELECOMMUNICATION
 

SUBSYSTEM REQUIREMENTS
 

a. Communications
 

Mission Phase 	 Function
 

Launch 	 Establish communications between MSFW or DSIF
 
and the tumbling LLV
 

Lunar Approach Align high gain antenna so as to maintain
 
television transmission-to MSFN. LLV may
 
maneuver at rotation rates up to 50/sec.
 
Provide high frame rate television video
 
signals to MSFN to reduce control delay time.
 

b. 	Instrumentation
 

,Mt'sSia Phase Function
 

Launch Measure temperatures, pressures, voltages,
 
frequencies, valve positions, antenna and
 
landing gear deployment, switch positions,
 
attitude information, etc.
 

Coast All above less deployment
 

Mid-course All above plus engine thrust
 

Landing All above plus landing gear stress
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passive transponder on the LLV to aid in making subsequent land

ings in its vicinity. Because of the requirement that the
 

electronics components be placed below the payload, it apperas
 

that it will be difficult to maintain a suitable thermal en

vironment for the electronic packages during the lunar day. If
 

the landing is made shortly before the lunar night, then it is
 

possible to maintain the electronics compartments at a suit

able temperature ( at the cost of the weight of reactants for'
 

the fuel cells ) until the next lunar day. If an active trans

ponder is to be used or a passive device, it is recommended
 

that it be mounted with the payload. This will result in a
 

better viewing angle and improved thermal environment for the
 

transponder antenna and electronics.
 

A summary of the design parameters is presented in Table
 

6.1-2. Some of the requirements are estimated and are marked with
 

an asterisk. The second column gives the capability of the e
 

quipment specified as the preferred subsystem. The DC to 2 mega

hertz modulation capability meets' the requirements of the television
 

system as described in Section 6.4.
 

The high gain antenna is used during television transmission.
 

It is steered automatically by signals from the receiver once the
 

signal from MSFN is acquired. Automatic tracking is possible if the
 

antenna is within 120 of the line of sight to the transmitting
 

antenna on earth. Original positioning of the antenna to enable
 

acquisition would be on command from the earth or the computer on
 

board the LLV.
 

The maximum rate of uplink command transmission would occur
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during the use of the television system. Use of the high rate
 

during television command guidance would aid in keeping the
 

time delay to a minimum. The maximumdownlink rate would occur
 

while measuringengine thrust and landing gear stresses.
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TABLE 6.1-2 COMMUNICATION AND INSTRUMENTATION
 
f DESIXNPflAflWERS 

Item--	 Required Capability 

Transmitter 2280 Mhz* 2280 Mhz
 
Frequency DC to 2 Mhz DC to 2 Mhz
 
Modulation 0.4 & l0_W 0.4 & 10,
 
Power Out
 

Receiver * 

Frequency 2100 Mht 2100 Mhz 
Ranging Yes Yes 

Steerable Antenna
 
Gain 19.5 db (transmit) 19.5 db
 
Slew Rate 50/sec 200/sec
 

Multiplex TV
 
Video and Data Yes Yes
 

Up Data Link 1000 bits/sec*
 
(peakX 1000 bits/sec
 

Down Link Data 	 5x10 3 bits/sec* 1.024/102.4
 
(peak) kWbits/sec
 
5 bits/sec
 
(ave.)
 

Data Channels
 
Analog 150* 192
 
Digital 150* 192
 

* Estimated values - bransmitter and receiver frequencies 
must be compatible with MSFN/DSIF 



223
 

6.2 Communication Subsystem
 

The alternative communication subsystem candidates presented
 

in Table 2.5-2 are here reduced to two, and the detailed tradeoffs
 

made are discussed. The candidate subsystems selected for study
 

in depth were Surveyor and the Modified Lunar Rover. These two
 

systems have a distinct weight advantage and are less complex than
 

the LM and CSM versions.
 

6.2.1 Alternative Communication Subsystems
 

The components for the best two candidates are listed in
 

Table 6.2-1 with the Modified Lunar Rover being the recommended
 

system. Using the criteria of.Section 2.5.2, the two sets of
 

components may be compared as in Table 6.2-2.
 

The Surveyor system is quite attractive if the inadequate
 

television capability and uplink data rates could be improved at
 

low cost. If the sixty pound weight penalty could be tolerated
 

and the television capability improved [7] the Apollo LM equipment
 

would be usable.
 

If the television capability of The Surveyor or LM equipment
 

is used without improvement [71, the television signal will no
 

longer be compatible with commercial equipment and additional
 

ground conversion -facilities will be needed. The conversion time
 

along with low frame rates would introduce.additional time delays
 

of the order of 1 or 2 seconds into the television command guidance
 

system which has an inherent 5 or 6 second delay due to signal trans

mission time, operator reaction time, etc.
 

The Multiplexer and Mixer unit which makes possible the trans

mission of video and telemetry simultaneously uses the "back porch"
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of the video signal as pictured in Figure 6.2 l. The figure
 

illustrates just one horizontal "line" of the 525 possible in each
 

frame. The frame rate is 30 per second with a 2 to 1 interlace.
 

As indicated in Reference 7,-a PeM TM data rate of up to 3x105 bits
 

per second may be tr-ansmitted along with a 2 Mhz video picture
 

(4 Mhz equivalent because of interlace.)
 

6.2.2 Communication Subsystem--Interface Problems
 

Because of the requirement that'the electronics be located
 

below the payload, two rather serious problems immediately arise.
 

The first, thermal environment, has been mentioned previously and
 

is discussed ,in Section 7.1. The second has to do with antenna
 

placement and cable losses. The best location for the steeiale
 

antenna%-gppears-to be on top of the LLV. This location calls for
 

a long cable run which may cause sufficient losses so as to degrad&
 

the television transmissions. The omni antenna locations will have
 

to be studied further to insure adequate gain margins.
 

6.2.3 Communication Subsystem - Equipment Mounting
 

The communications equipment is to be mounted in compartment
 

A which. is av compartment much as used on Surveyor with thermal trays; 

switches, insulation, radiators, heaters, and mounting hardware to 

provide a proper environment. The estimated size of the compartrent 

jg 20 x 15 x-12 inches overall with a total weight of 52.5 pounds 

including equipment and internal cabling. The compartnent is to be 

located in one corner of the.space beneath the payload as indicated" 

in Figure 8,5-1. The particular-location chosen enables the radiators 

to "see" free space.
 

6.2.4 Communication Subsystem Development and Qualification
 



Horizontal Sync Pulse
 

?CM TM (on back porch)
 

ONE HORIZONTAL " LINE " OF TELEVISION SCAN SIGNAL SHOWING 
MIXED VIDEO AND PCM TM DATA 

FIGURE 6.2-1
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TABLE 6.2-1 COMMUNICATION SUBSYSTEM--DETAILED DATA
 

ITEM SURVEYOR MOD. LUNAR ROVER
 

S-Band Steerable
 

Antenna*
 

Size (inches) 46 '26 xI15' '46 x 26 x 15
 

Volume (in3) 17,940" 17,940
 

Weight (lb)
 
e(W/O boom) .27.4 27.4
 
Voltage 28VDC; 115 VAC 28VDC; 115 VAC
 

'400 Hz; 34 400 Hz, 34 

Power (watts) 4.5 - 29 4.5 - 29 

Slew Rate (0/sec) 20 20 

Gain (db) ' 19.5 19.5 

Modes ,Auto Tracking Auto Tracking 
Man. Acquisition Man. Acquisition
 

Heaters A(watts.) 51.7 • 51.7
 

S-Band Omni
 
Antenna 

Size (inches) , 

Cone A.5 x;6 9 4.5 x 6.9 

Arm 2 x 42 2 x 42 

Volume (in3) - 150 150 

Weight (lb) '3.. 3 

S-Band
 
Transponder***
 

Transmitter
 

Size (inches) 4 R.6 x 15 5 x 5 x 4
 

Volume (in3) 360 100
 

Weight (ib) 75
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Trahsmitter (Coitd)
 

Power (watts)
 

Input. 9/70 15/130
 

Output 0.1/10 0.4/10
 

Frequency (est.
 
MHk 2280 2280
-

Modulation 

Video Baseband DC to 0.22 MHz DC to 2.0 MHz 

Receiver 

Size (inches) 3 x 6 x 8 5 x 2.5 x 1.6 

Volume (in ) 144 20 

Weight (ib) 4 1 

Power (watts) 2 5 

Frequency -(est. 
MiI 2100 2100 

Multiplexer & Mixer 

(!TV Auxiliary) 

Size (est. inches) 3 x 6 x 8.5 3 x 4 x 2
 

Volume (est. in3 153 24
 

Weight (est. ib) 4.5 1
 

Power (est. watts) 2 1
 

(See Section 6.4)
 

Updata Link****
 
(Command Decoder)
 

Size (inches) 5.3 x 6 x 13.3 6 x 4.7 x 8.6
 

Volume (in3) 240 242
 

Weight (ib) 5.7 5
 

Power (watts) 1.9 4.4
 

Bit Rate (bits/sec) 48 -1000
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Updata Link (Contd)
 

Data Rate (bits/sec) 20 200
 

Word Length (bits) 24 :16-24
 

Premodulation Pro
cessor* (Sur. Central
 
Signal Processor)
 

Size (inches) 5.3 x 5.7 x 8.8 6.75 x 7.5 x 8
 

Volume (in3 ) 173 405
 

Wright (lb) 4.8 10.5
 

Power (watts) 2.2 4.3
 

Y Re'commended Subsystem'
 

• Apbllo LM item
 

S* Surveyor item--2used
 

•** For each unit--2 used. Transmitter includes high and low
 
power units, modulators and dixplexer.
 

• * See Reference 5.
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1. S-Band Transponders - develop and qualify
 

2. Television - Data Mixer and Multiplexer - qualify 

3. Updata Link - qualify 

4. Compartment A - develop and qualify
 

The estimated cost of development and qualification is indicated in
 

Chapter 10.
 

6.3 Instrumentation Subsystem
 

The original four instrumentation subsystem candidates presen

ted in Table 2.5-2 are here reduced to the best two and further
 

details in the selection process are outlined. The Surveyor and
 

Modified Lunar Rover were the two selected primarily on the basis of
 

low weight and simplicity. A block diagram of the recommended design
 

is shown in Figure 6.1-2.
 

6.3.1 Alternative Instrumentation Subsystems
 

The items which compose the best two candidates are listed in
 

Table 6.3.1." The Modified Lunar Rover is the recommended subsystem
 

as it must be closely coordinated with the communications equipment.
 

The actual comparison as showndm Table 6.3-2 indicates that the
 

Surveyor subsystem is lighter in weight and lower in power required
 

and the recommanded system has more iersatility and growth potential
 

in the area of data format and number of inputs. The Stored -Ptpgram
 

Data Processing Unit has great flexibility in that it can change
 

data format on command thru the Flexible Format Generator and can
 

easily be expanded by adding Remote Acquisition Units up to a total
 

of 16 [6]. If the added flexibility is not needed, the Flexible
 

Format Generator may be eliminated by storing-a format in the Digital
 

Control and Combiner Unit.
 



TABLE 6.3-1 -INSTRUMENTATION SUBSYSTEMS - DETAILED DATA
 

Item Size'in Volume in weight lb Power w Channels Bit Rate
kbits/sec
 

b
Signal Pr6cessor 

Auxiliary l.8x2.4x2.4 10 0.34 0.15 4.4/l.1/0O55
 

Engineering
 
Signal Processor 5.3x8x8 260 6.1 3.9 179 Analog
 
Aux. Engineering
 
Signal Processor, 5.2x5.7x9.9 198 6 6 144 Analog
 
Low Data Rate
 
Aukliliary 2.4x3.0x5 21 0.55 0.1 0.55/9.1375/
 
Mo: 0.0172
 

ROVER
 
Stored Program
 
Data Processor* 102.4/1.024
 
Flexible Format.
 
Generator 5x9xlO 447 11.5 10
 
Digital Control
 
& Combiner Unit 3 x 6 x 10 180- 9.5 5
 
Data Acquisition
 
Unit(eaah_3'used) l.lx4x5 42 1.8 1 64 Analog
 

64 Digital
 
Signal Condi
tioning Unit
 
-est.) 7x8x8 448 4 12
 

VRecommended Subsystem
 

*Includes first three items listed immediately below. Yields 192 Analog and
 
192 digital channels.
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TABLE 6.3-2 INSTRUMENTATION SUBSYSTEM COMPARISON OF
 
CANDIDATES
 

SURVEYOR MODIFIED LUNAR ROVER
 

Less weight, size and power 'Has remote acquisition units
 

'Less flexible 2'Mooe f&ektbhle
 

Little growth potential Simple to expand by adding

small remote acquisition units
 
May easily be used to monitor
 

-.launch vehicle and/or payload
 
[6]
 

Complicates thermal control
 
to some degree Aids in thermal control of
 

compartments
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The large number of conductorsentering the telemetry system
 

causes considerable heat loss during the lunar night. This loss
 

may.be minimized by placing two of the remote acquisition units in
 

the Guidance and Navigation compartment which is to be shut down
 

after touchdown.,, Only four twisted pairs of wires are needed to
 

connect the remote units to the control unit (DCCU). The third=
 

remote unit would be mounted in compartment B and its chief function
 

would be to monitor activity in compartments A and B while the other
 

two would service all equipment external to those compartments.
 

6.3.2 Instrumentation Subsystem - Signal Conditioning and
 

Wiring
 

The Instrumentation Subsystem design will have a great effect
 

on the weight and complexity of the signal conditioning equipment
 

and the interconnecting cables. Most of the measurements of temper

ature and pressure do not need to be made with high accuracy and
 

thus would not require extensive shielding and sophisticated signal
 

conditioning. Much of the information is digital bilevel as in the
 

case of valve and thermal switch positions, etc., and thus the signal
 

level may vary by several percent as long as the actual level is
 

sufficiently far from the 3.0 volt switching point of the Remote
 

Acquisition Unit. Based on the assumption that the accuracy re

quirements will be kept low, it is estimated that the sensors and
 

interconnecting cables will weight 85 pounds.
 

6.3.3 Instrumentation Subsystem - Equipment Mounting
 

The Instrumentation Subsystem is mounted in compartment B
 

which is similar to compartment A as described in Section 6.2.3.
 

As indicated earlier, two of the Remote Acquisition Units are
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located with the Guidance and Navigation equipment. The estimated
 

size of the compartment is 22 x 15 x 16 inches overall with a total
 

weight of 64.3 pounds.
 

6.3.4 Instrumentation Subsystem Development and Qualification.
 

1. Stored Program Data Processor - qualify
 

2. Signal Conditioner - develop and qualify 

3. Cable and Sensors - develop and qualify 

4. Compartment B - develop and qualify
 

The estimated cost of development and qualification is
 

presented in Chapter 10.
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6.4 Operational Considerations
 

The use of video data in approach navigation and the avoid

ance of hazards constrains the lunar landing times to those with
 

satisfactory lighting conditions at the landing area. The .LLV
 

guidelines are the 70 and 20 range of-sun angles at the landing
 

area that is recommended for Apollo missions [8]. The low sun
 

angles would to preferable to give long shadows in landing areas of
 

low relief. The higher angles in this range would be preferred to
 

reduce the shadowed area classified as unknown hazard for high
 

relief areas.
 

As a logistics vehicle, the LLV could land either at sunrise
 

or dusk of a lunar day. In Apollo support missions where the Lunar
 

Module must land in the sunrise of a lunar day due to LM design
 

limitations, the LLV could be landed either at sunrise or dihsk of
 

the preceding lunar day. An LLV dusk landing may be preferred to
 

reduce the minimum required survival time until the LM landing from
 

28 days to 16 days.
 

The LTVS is not operated post-landing so that survival require

ments do not extend beyondd the landing. The thermal survival
 

requirements are satisfied by exterior thermal control coatings and
 

the inclusion of a vidicon heater and an electronic heater in the
 

camera. The powet requirements for these heaters are discussed in
 

Section 7.2.
 

Approach navigation requirements provide that the camera must
 

be on the side of the vehicle facing the lunar surface during the
 

terminal descent phase. The limited camera field-of-view also
 

contains the permissable roll angle range-during the early portion
 

of the powered descent for near-horizontal trajectories.
 



TABLE 6.4-1 CANDIDATE LANDING TELEVISION SYSTEM CAMERAS 

cAMERA CAMERA - REOLUTXON FRAME RATECAEA WEIGHT '(ibs' 'POWER -(WATTSI -(RASTER LINESI FRAMES/sacl 

Surveyor 
 6.9 14..l 
 600 0.28
Lunar Module 4.5 
 6.5 1280 
 0.62
Lunar Rover 
 9.0 20.0 800 
 0.31
Cammand Module 11.2 20.0 200 
 30.0 


REQUIRED
 
SCAN SPACE GROWTH
 

CONVERSION ,QIALIFIED POTENTIAL
 

96-to-i Yes Limited 

108-to-i 
 Yes Limited
 
48-to-i No 
 Limited
 
None For Interior Good
 

Use
 

,BANDWIDTH 
<(SERTZj1
 

0.07 
0,68
 
0.13
0.80
 

,U 
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An optical field seen by the camera may be distorted by re

fraction in passing through the exhaust plumes of the main and
 

vernier engines. A preferred location for the television camera
 

is near the bottom of the upper stage of the vehicle at a location
 

that maximizes the size of the clear fields-of-view. A study should
 

be made of the visibility of lunar terrain viewed by a television
 

system through exhaust plumes in outer space.
 

Lunar dust particles moving in the region of soil distrubance
 

by the vernier engines can obscure the lunar surface and prevent
 

an accurate visual determination of relative velocities. It is
 

recommended that the hover maneuver be performed at an altitude for
 

which the disturbance of the lunar soil is still negligible..
 

Recommended Tasks and Studies
 

The 	following tasks and studies are recommended in addition
 

to those of Section 3.4 for the development of the Landing Television
 

System.
 

1. 	Qualification of a black-and white version of the Command
 
Module television camera for exterior use.
 

2. 	Continued development of the multiplexer for the time
 
multiplexing of telemetry and video data. (Section 6.3).
 

3. 	System-level flight acceptance testing which includes solar
thermal vacuum profile, and vibration-shock environ
 
ments at expected upper bound flight levels.
 

4. 	Study of the optical distortion, if any, of viewing through

the plumes of the RL-10-32 3 and the LLV vernier engines
 
in outer space. A multiple-burn descent may be advisable
 
to permit periodic undistorted video-viewing.,
 

5. 	Operational experience with the Landing Television System
 
prior to the first LLV flight by flight of the system in
 
LM's of the schedule 1971-1973 Apollo Missions.
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CHAPTER VII
 

THERMAL:CONTROL
 

Clift Epps
 

7.1 Thermal Control Requirements
 

7.1.1 Subsystem-Functional Description
 

Thermal control of the LLV is required to maintain the.
 

temperature of each subsystem within specified operatifig limits for
 

each eritical-phase of spacecraft operation., An open system con

figuration is selected with individual temperature control require

ments for each subsystem. -Although this configuration increases,
 

the thermal control hardware design complexity, with its resulting
 

increase in analytical complexity, it minimizes insulation weights
 

as well as power requirements for the lunar night.
 

To maintain each subsystem within specified temperature limits,
 

a variety of control systems -re necessary. To minimizeweight,
 

maximum use should be made of completely passive systems, which
 

includes paints, various metal surface treatments,,reflecters and
 

insulation. Whenever normal environmental heat imputs are insuffi

cient to maintain operating temperatures, active thermal control
 

heaters are required in combination with passive control to
 

minimize energy requirements. For those subsystems that have I
 

large heat rejection requirements, the use of semiactive variable
 

conductance thermal switches,as used on Surveyer [1], is recoimended.
 

Thermal control requirements for the LLV may be subdivided
 

into four phases:
 

1. Transit coast
 

2. Terminal descent
 

3. Lunar day
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4. Lunar night
 

Each subsystem operating during each of the four phases has its
 

own unique thermal control requirements. Unfortunately require

ments for the lunar day and lunar night are basicly incompatible
 

with each other and subsystems that must survive a lunar day-night
 

cycle have different control requirements. The terminal descent
 

phase differ from the coast in that the terminal descent requires
 

a large heat dissipation rate from the electronics and battery
 

subsystem compartments.
 

The primary subsystems that require active or semiactive
 

thermal control considerations are:
 

1. Electronic compartments
 

2. Fuel cells
 

3. Battery compartment
 

4. Guidance euipment bompartrent 

5. Approach television
 

6. Vernier and RCS engines
 

Other systems may be maintained between operating temperature limits
 

by the use of passive control techiniqpes. Preflight conditioning
 

is also required for the propellant tanks of the vernier and RCS
 

propulsion subsystems. Further consideration of the thermal control
 

aesi# for several of the above subsystems is given in Section 7.2. 

Of the subsystems listed above, the first two require therma-l
 

control during post-landing operation. Thus, more consideration
 

must be given to the lunar enviornment exposumetafthese subsystems.
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7.1.2 Lunar Day Environment
 

The most severe thermal control requirements imposed on the
 

spacecraft is the survival of electronics and power subsystems
 

through the hot lunar day. The variation of the lunar surface
 

temperature,neglecting uneven terrain [2], with solar elevation
 

angle may be represented by the equation,
 
1/6 

Tm = 	673 sin OR 7
 

where the noon lunar surface temperature at the equator may be
 

expected to be about 6730 R.
 

Lunar day survival capability of the electronics and power
 

subsystems depends on the ability of these subsystems to reject
 

heat during the lunar day. The cooling loads placed on these
 

subsystems depends on the following factors:
 

1. 	 Required operating temperature
 

2. 	 Location of the principle radiator surface relative to
 

the lunar environment
 

3. Energy dissipation rate
 

Of these, -the controlling factor is the temperature of the radiator
 

through which the internally generated energy is dissipatdd. As
 

an initialestimate of the heat dissipation ability of the radiator,
 

an equilibrium temperature of the radiator surface may be cal

culated. This equilibrium temperature, at a zero internal power
 

generation rate of the electronic equipment, is given by the
 

equation, [2]
 
'4 	 S a cos r 1/4 (7.1-2)Ts,r 	= [Fa ,rm + Y r r 

tC1T 	 F.r 

S = 443 BTU/hr-ft2 

c 
a 0.17,l4xl0-8--BTU/hr-tt 2 0R 

4
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as r = 0.11, solar absorbtivity of radiator 
I surface 

Sr = 0.79, emissivity of radiator surface 

Fa,r = 0.5, configuration factor between vertically 
oriented radiator surface and lunar terrain 

e = angel between incident solar radiation and,
s,r outer normal of the radiator
 

Actual temperatures inside the electronic compartments are
 

greater than the equilibrium temperature of the radiator surface.
 

This increase in temperature is caused by the temperature drop;
 

AT, required to transport heat. Much of the temperature drop in
 

the LLV is across the thermal switches and assorted heat flow
 

paths to the radiator surface. An estimate of the equilibrium
 

temperature of the radiator is given in [Fig. 7.1-1] for a radiator
 

oriented vertically with respect to the lunar surface angles relative
 

to the East-West direction at the lunar equator and solar elevation
 

angel. Also presented is an estimate of the temperature inside a
 

typical electronic compartment for an estimated AT of 5007 and
 

asimuthal angles of 0' and 900. The maximum estimated electronic
 

compartment temperature of 167 0F occurs at a solar elevation angle
 

of 600 and an asimuthal angel of 90*. For an asimuthal angel of 00
 

and a solar elevation angel of less than 450, the electronic
 

compartment temperature remains less than 1250 F, which corresponds
 

to the maximum electronic operating temperature used in the Surveyor
 

Epacecraft([i]-KFetr&iotizotaI radiatdr that"can "see" free
 

space over a 1800 angel, the equilibrium radiator temperature equals
 

-250F and the compartment temperature equals 250F at lunar noon.
 

Although a radiator placed at the top of the spacecraft greatly
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improves the heat dissipation capability of the electronic compart

ments, other design considerations require that the electronic
 

compartments be placed near the bottom of the spacecraft with a
 

vertical oriented radiator. In conclusion, the electronic equip,
 

ment may be expected ,to be operational 450 before sunset or after
 

sunrise for an asimuthal angle of 01 and 200 before sunset or after
 

sunrise for an asimuthal anqde of 900. For other periods of the
 

lunar day, marginal operation may be expected. The number of thermal
 

swithes required for adequate heat dissipation from the electronic
 

compartments is futher discussed in Section 7.2.
 

The other subsystem that must survive a lunar day is the fuel
 

cell power system. This system is an Allis Chalmers., 200 watt,
 

radiation cooled fuel cell that uses proportionally cont:r11W
 

louvers for temperature control [3]. Fig. 7.12 depicts the
 

maximum allowable power output permissible for 200 0F operation
 

against solar elevation angle. As expected, the effectiveness
 

of heat dissipation capability of the module decreases with in

creasing solar elevation angl& resulting in a restricted power
 

capability near lunar noon of 150 watts for an asimuthal angle
 

of 900. Since the nominal power output is 200 watts, it is con
 

cluded that the fuel cell power system will survive through the
 

lunar day if operated at a power output of less than 150 watts,
 

which will meet post-landing power requirements.
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7.1.3 Lunar Night Environment
 

Electronic compartments A and B-and the fuel cell power
 

system must survive the lunar night temperature of .250 0F. The
 

fuel cell module operates during the lunar night at reduced-power
 

loads by having the louvers in a closed position and by having 

standby heaters using part of the power drain to help maintain
 

operating conditions [3]. The electronic compartments may be
 

isolated from the cold lunar night by the use of superinsulation
 

blankets made of multiple layers of double aluminized nylar..
 

Internal energy generation of the electronics and standby heaters
 

provide the energy required to maintain the temperature above
 

minimum operational level of 00 F. The sizing of the heaters is
 

further discussed in Section 7.2.
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7.1.4 Coast and Terminal Descent Phase Environemt
 

During the coast phase, the spacecraft will nominally be
 

aligned with a fixed attitude with respect to the sun (except
 

during midcourse correction maneuvers), Because power requirements
 

for the electronics during coasting are at low levels, electronic
 

compartments A and B may require power to help maintain the
 

temperature at operating conditions. To control the effects of
 

solar radiation on critical subsystems, passive control techniques
 

are used. For example, those subsystems that require minimum
 

solar heat imputs should use surface coatings with low values of
 

the sblar absorbtivity-emissivity ratio while those subsystems
 

that face 00R space require surface coatings with low values of
 

emissivity. Those subsystems that require precise thermal control
 

for the entire transit phase, such as guidance equipment, vernier
 

propellant tanks, cryogenics propellant tanks, electronics, and
 

batteries, require superinsulation for extreme isolation so as to
 

minimize effects from the external environment. Other subsystems
 

such as the approach television, vernier engines, RCS engines,
 

require passive control techniques plus heaters-to bring the sub

systems to operating conditions for that particular part of the
 

mission in which the subsystem will be operating.
 

During the terminal descent phase the electronic and power
 

subsystems operate at high power loads, which may require additional
 

heat dissipation capability. Estimates of the number of thermal
 

switch required for heat dissipation from the electronic compart

ments should be based on worst caseconditions of maximum power
 

dissipation existing during tierminal descent and conditions
 

existing at lunar noon.
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7.2 Thermal Control System Dasign
 

7.2.1 Electronic compartments
 

To aid in estimating the cooling and heating loads through
 

the insulation during lunar day and lunar night operation, a
 

parametric study was preformed. The effects on heat ttansfer
 

through the insulation is predicted for different compartment
 

sizes, surface coatings, number of radiation shields, lunar
 

environmental conditions, and average compartment operating
 

temperatures. For the lunar day, the external environmental
 

heating load through the insulation must be added to the internal
 

electronic energy generation load to determine the total heat to
 

be dissipated to the external radiator and, consequently,.the
 

number of thermal switches required for each compartment. For
 

the lunar night the external heat loss through the insulation must
 

added to the loss through the supporting structure, wire harness,
 

and thermal switches in the open position to determine the heating
 

requirements for the electronic compartments during the lunar
 

night.
 

Based on a model presented in [2], an equation is developed
 

for the average electronic compartment temperature;
 

T ins n -sh + 1/6 T4Fa 
A aSsh all surfaces
 

+ 1/6 ( -_r )qO s,rer
 

a1/4
 
+ 1/6 S--C ( sS ) Z cos 6s 1j7.2 i1 

other surfaces 
except radiator 
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where:
 

Pins 

n 

The heat transfer through the insulation, 
BTU/hr. 

The number of shields in the insulation 

blanket. 

A The total surface area of the compartment, ft2 . 

Ssh The emissivity of the shield equals 0.05. 

6 The emissivity of the other surface equals 0.87
 

as The solar absorbtivityodfthe -othersaufiaees
 
equals 0.23.
 

The configuration factor, V has values depending on the orienta

tion of the various surfaces with respect to the lunar terrain,
 

degree of blockage caused by payload and vehicle support structure,
 

and geometry of lunar terrain. The surface coating properties.
 

of the radiator are assumed to be for aluminized Vycor mirrors
 

and the surface coating properties of the other surfaces are as

sumed to be for inorganic white paint [1]. Equation (7.2-1) also
 

assumes that the compartments are cubic in shape. Only minor
 

variation may be expected from a model that includes rectangular
 

.compartments.
 

Results of the analysis for the lunar day conditions are
 

given in Fig. 7.2-1 where the average compartment temperature
 

is plotted against the quantity Pinsn/A for various external en

vironmental conditions. The results include the effect of
 

blockage of part of the compartment external surfaces by payload
 

and vehicle support structure, location of the vehicle in a
 

crater, and variation of solar elevation angle. The blockage
 

factor, BF, is assumed to be approximately fifty per cent as
 

viewed from a horizontal plane looking upward past the payload to
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free space. The crater elevation angle, A, is assumed to have a
 

value of 150. For these conditions at lunar noon and a closure
 

point temperature of 40°F on the thermal switches, a-value of
 

Pinsn/A of -4.85 is selected for design purposes.
 

Results of the analysis for a lunar night temperature of
 

-250 0 F are given in Fig. 7.2-2 where the compartment temperature
 

is plotted against P insn/A. For a heater set point of 400 F, a
 

value of Pinsn/A of 2.7 is selected for design purposes. Also
 

plotted in this figure is the average compartment temperature
 

during the transit phase for an orientation of the radiator
 

normal to the solar incident direction. A comparison of this
 

curve with the lunar night curve indicates that the transit
 

phase may require some internal heating either from heaters or
 

electronic equipment to keep the compartment at normal operating
 

temperatures.
 

Table 7.2-1 presents the results of the thermal control
 

design for lunar day conditions for electronic compartments A and
 

B, and Tabli 7.2-2 presents the results of the thermal control
 

design electronic compartments A and B for lunar night conditions.
 

A one inch layer of double aluminized nylar,'70 layers per inch,
 

isused to isolate the compartments from the surroundings. Thermal
 

switch properties [i] are given in Fig. 7.2-3 from which estimates
 

of the number of thermal switches per compartment are made. The
 

large number of switches for compartment A results from the large
 

dissipation of 155 watts required during the terminal descent phase.
 

Values of the thermal losses through the structure, wire harness,
 

and thermal tunnels during the lunar night are estimated from data
 

from [1]. To allow for uncertainties in estimating thermal losses
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TABLE 7.2-1 ELECTRONIC COMPARTMENTS A AND B THERMAL 

CONTROL DESIGN FOR LUNAR DAY CONDITIONS 

Compartment A Compartment B 

Dimensions 20 x 15 x 12 in 22 x 15 x 16 in 

Thermal Switch 
Closure 
Temperature 400F 400 F 

Maximum Power 152 Watts 20 Watts 

Minimum Power 15 Watts 20 Watts 

Insulation 
Heat Gain 2,Watts 3 Watts 

Other Heat 
Gains 
(Estimated) 1 Watt 1 Watt 

Total 
Dissipation 
Load 155/18 Watts 24 Watts 

Number of 
Thermal 
Switches 19 6 
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TABLE 7.2-2 ELECTRONIC COMPARTMENTS A AND B THERMAL
 

CONTROL DESIGN FOR-LUNAR NIGHT CONDITIONS
 

Compartment A Compartment B 

Heat Loss 
Summary 

insulation 1.13 Watts 1.45 Watts 

Structure 
(Estimated) 1.00 Watts 1.00 Watts 

Tunnel 
(Estimated) 2.00 Watts 1.00 Watts 

Thermal 
Switches 2.85 Watts .90 Watts 

Wire Harness 
(Estimated) 5.00 Watts 5.00 Watts 

Total Heat 
Loss 11.98 Watts 9.35 Watts 

Electronic 
Load 14.0 Watts 20.00 Watts 

Heater Set 
Point 
Temperature 400 F 400 F 

Recommendations:
 

Compartment A 	 Operate Electronics and Provide a Backup
 
Heater of 10 Watts
 

Compartment B 	 Do Not Operate Electronics and Provide Two
 
10 Watt Heaters (Use One As a Backup System)
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during the lunar night, the thermal loss through the insulation
 

is increased by a factor of ten and the overall loss is increased
 

by a factor of two.
 

7.2.2 Battery Compartment
 

The battery must provide power during the terminal descent
 

phase to satisfy peak power loads from other subsystems. After
 

the vehicle has landed, the battery is no longer needed so that
 

it does not need thermal protection during the lunar day and
 

night. Table 7;23 presents the thermal control design for the
 

battery compartment for the terminal descent and the coast
 

phases. Heaters are provided during the coast phase and thermal
 

switches during the terminal descent phase to keep the battery
 

at an operating temperature of near 801F. A battery heat gener

ation rate of fifteen per cent of the peak power requirements is
 

assumed during the terminal descent phase while the heaters are
 

sized for the assumption of no battery dissipation and deep space
 

operation at 00 R, which corresponds to worst case conditions
 

that would be experienced by the battery compartment. A one inch
 

layer of insulation is used to keep the battery compartment
 

isolated from the surrounding environment.
 

7.2.3 Landing Television Subsystem
 

The landing television subsystem must operate during the
 

terminal descent phase. From a scaleup of heater requirement of
 

the Surveyor television system [1], the LLV vidicon heater power
 

is approximately 3 watts and the television electronics is approx

imately 9 watts. The vidicon tube and electronic chasststemperatures
 

are sensed by thermocouples whose signals are telemetered to Earth,
 

and the heaters are turned on and off from Earth as needed to
 



256
 

TABLE 7.i -3 BATTERY COMPARTMENT THERMAL CONTROL DESIGN
 

Dimensions 


Battery Heat
 
Dissipation 


Number of
 
Thermal 

Switches 


Thermal Switch
 
Closure Point
 
Temperature 


Insulation
 
Heat Loss 


Other Heat
 
Losses
 
(Estimated) 


Total Heat Loss 


Heater Set Point
 
Temperature 


Recommendation: 


Transit Coast 


Phase 


9 x 6 x 40 in 


0 


27 (Open Position) 


600 F 


1.1Watts 


3.0.Watts 


4.1 Watts 


50*F 


Terminal Descent
 

Phase
 

9 x 6 x 40 in
 

216 Watts
 

27 (Closed
 
Position)
 

60°F
 

1.1 Watts
 

3.0 Watts
 

4.1 Watts
 

500F
 

Provide an 8 watt heater to keep battery warm
 
during transit coast phase and 27 thermal
 
switches to remove heat'during terminal descent
 
phase.
 



257
 

maintain the temperature above the minimum survival temperature
 

of -1801F during the coast phase and above the minimum'operational
 

temperature of -200 F priorto'tenmdnal phase operation.
 

7.2.4 Guidance Subsystem Compartment
 

The guidance subsystem compartment must operate during the
 

coast and terminal descent phase. The compartment has the
 

dimensions of 15 x 16 x 52 inches. The heat dissipation rates
 

of the IMU, flight computer, and other electronics located in
 

this compartment ranges from a minimum value of approximately
 

75 watts during the coast phase up to 500 watts during the term

inal descent phase. Because of the large differences between
 

peak power and minimum power, it is suggested that 61 thermal
 

switches (8.21 watts dissipation per switch at full closure) be
 

used on all surfaces of the compartment to maintain the equipt
 

ment at proper operating conditions. The closure point of the
 

switches should be set at about 400F, located between the switches
 

will blankets of double aluminized nylar supernsulation. The
 

outer surface of the compartment should be coated with white
 

inorganic paint to minimize solar radiation heat inflow.
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7.3 	Future Beve lopment
 

During the course of this investigation several ideas were 


considered that may be of- use in the development of the'LLV'
 

or ani other space vehicle. The requirement that the electronic
 

compartments be located near the bottom of the spacecraft ctea&
 

ted some difficuit problems in thermal control. As discussed in-

section 7.1.2;the operation of the electronics through-the
 

lunar noon-is marginal because of the high radiator surface
 

temperature of near 100' F fot level terrain. For this condition
 

an electronic compartment temperature of near 1500*F may be
 

expected. Unless the electronics are qualified to operate at
 

these higher temperatures, marginal operation is expected.
 

One solution to cool the electronic compartments is to use
 

a stored liquid. By venting thd liquid into -the-compartment, the
 

latent heat of vaporization keeps the electronic at nominal
 

temperatures. Water, with a latent heat of vapor&zationof near
 

1075 BTU per pound at very low pressures, has the advantage of
 

ease of storage with minimum thermal insulation requirements.
 

Liquid hydrogen has a combined latent and sensible heat of 

approximately 1900 BTU per pound. The main disadvantages are the 

severe thermal insulation problems at cryogenic temperatures 

and the large storage volume necessary. The main advantage is the 

possible onboard availibility from a fuel cell power system. 

A unique radiator design that may have good heat rejection
 

capability at high lunar surface temperatures is presented in
 

Fig. 7.3-1. A radiator surface oriented vertically with respect
 

to the lunar surface may'be expected to have a temperature of
 

1060 F at lunar noon (see Fig. 7.1-1. If a radiator could be
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designed that blocked a large percent of the lunar thermal
 

radiation from the main radiator surface but still allowed
 

a large emittance to free space, then a radiator surface tem
 

perature low enough to allow for adequate cooling of the compart'
 

ment may be expected.
 

The design of a directional emissivity wall, as depicted in
 

Fig 7.3-1, accomplishes this by using a parabolic reflecting mirror
 

to reflect up to ninety-five percent of the lunar thermal radiation
 

away from the main horizontal radiator surface. A three zone
 

radiosity network for lunar noon conditions yields the following
 

equations for the equilibrium temperatures of the mirror and
 

radiator, respectively:
 
F23 1/4
 

Tmirror 2F F Tmoon (7.3-1)
 

Tradiator (s2F1 2) 1/4 Tmirror (7.3-2)
 

where:
 

F1 2  The configuration factor between the
 

radiator and mirror equals 0.618.
 

F
.21 The configuration factor between the
 

mirror and radiator equals 0.269.
 

F2 3  The configuration factor between the
 

mirror and free space equals 0.352.
 
E2 The emissivity of the mirror is assumed
 

to equal 0.04.
 

A caibuation of the mirror and radiator surface temperature yeild
 

values of 590 F and -2530 F, respectively. The low radiator
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at 450 Angle
 

Radiator Composed of High Thermal
 
Conductivity Material
-

FIGURE 7.3-1 SUGGESTED.CONFIGURATION OF'DIRECTIONAL"
 

EMISSIVITY WALL ORIENTED VERTICALLY WITH RESPECT TO LUNAR SURFACE
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surface temperature is caused by the lack of direct "view" of the
 

radiator surface with the hot lunar terrain. Only emitted radia

tion from the mirror arrives at the radiator surface. Theoreti

cally, if the mirror were -atperfect reflector ( 2 eqtal to 0O0)
 

and the lunar terrain were completely flat, the radiat6r surface
 

would have an equilbrium temperature of 460 F at lunar noon.
 

Further investigation is needed to determine the heat rejection
 

capability of this type of radiator for other sblar elevation
 

angles, lunar terrain features, and heating loads from the compart

ment.
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CHAPTER VIII
 

VEHICLE STRUCTURES AND SUBSYSTEMS
 

8.1 J.E. Rozenberg
 
8.2 B. Koo
 
8.3 I. Eisenstein
 
8.4 J.H. Cole
 
8.5 G. Pincus
 

8.1 Thrust-and Retro-Structure
 

Most studies made assume the lander vehicle and landing gear
 

to be connected to the retro structure [1,2]. Since one of the
 

most important requirements is ease of deployment of the payload,
 

both retro and thrust structures are to be separated from the lander
 

vehicle.
 

One study made by Lockheed Missiles and Space Co. [3] assumes a
 

separate cryogenic vehicle, but consists of a proposal beyond the
 

state of the art for such structres.
 

The proposed configuration of the thrust-and retro-structure
 

is shown on Figure 2.6-1. It consists of a combination of tublar
 

columns and tension cables, connected to the Centaur interface at
 

the lower end, to the lander vehicle at the upper end, and to space
 

rings supporting the propellant tanks at intermediate stations.
 

The RL-10 engine is connected to the frame by four I-beams, rigid

ly connected to it and to the space ring supporting the four LOX
 

tanks. The total weight of the thrust structure is estimated to
 

be about 250 lbs.
 

This structure was designed on the basis of a vertical lift

off acceleration of 6 g. Its configuration is laterally stable

but horizontal loading was neglected in this preliminary design.
 

A summary of the design of the various members is given in Table
 

8.5-1. The material used is Al-7075-T6.
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Separation of the Centaur from its payload and separation of the
 

lander vehicle from the retro structure will be effected by pyrotechnic
 

devices at the Centaur interface and at the payload support plane
 

respectively.
 

8.2 Lander Structure
 

8.2.1 Objectives of Structure
 

The lander structure carries the payload, vernier engines,
 

propellant tanks, electric power, telecommunication, and thermal
 

propellant tanks, electric power, telecommunication, and thermal
 

control systems with a total approximate mass of 4400 pounds. It
 

is a space structure with top and bottom platforms connected to

gether by diagonal members from the peripheries of two platforms as
 

shown in Figure 2'.6-1. The structure is supported bn four landing
 

gears (which are described in Section 8.3). It can accommodate pay

jl ad volume of 9 feet diameter by 7.5 feet high, and payload mass
 

of up to 2500 pounds. Types of payload that may be accommodated
 

include a lunar surface roving vehicle; service stations for return

ing environmental data to earth; a large stationary geological/geo

physical package; an astronomical observatory; an expatdableshelter
 

to extend the astronautk' surface staytime; lunar flying units;
 

mobility supplies and propellants; life support equipment and various
 

tools and equipment to be- utilized by the crew. Various combinations
 

(within the mass and volume constraints) of the above payload units
 

may be delivered during any one lunar mission.
 

8.2.2 Structural Arrangement
 

The main load carrying structural system is the bottom frame
 

consisting of a square frame circumscribed by an octagonal frame as
 

shown in Figure 2.6-1. The square frame is divided into four equal
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parts by two intersecting interior members. The frame is supported
 

by four posts of the thrust structure in the boost stage and by
 

four landing gears in the landing stage. The top platform shown in
 

Figure 2.6-1 consists of two main compression members crossing
 

each other at the center. These two members serve as diagonals for
 

a square frame formed by four tension rods, and transmit the com

pression force from the mainlanding gear strut. The top and
 

bottom platforms are joined by four pairs of tubular members. Each
 

of these diagonals spans from the top of a main landing gear to
 

the end point of a tension strut. These members also serve to
 

resist twisting of the vehicle during lift-off and trans-lunar
 

flight.
 

8.2.3 Structural Material
 

In structural design, the selection of material is usually made
 

on the basis of weight, strength, stiffness, cost, and experience
 

in design and fabrication. The aluminumalloyAl-7075-T6 provides
 

a high strength to weight ratio, large stiffness to weight ratio,
 

well known mechanical and physical properties, and good behavior in
 

fabrication and manufacturing [4]. Based on these considerations, it
 

was chosen as the main structural material. In addition, the ef

fects oftspace environment on materials have been considered. These
 

effects include the magnetic field, vaccum, radiation and meteorites..
 

The proposed material is non-magnetic. It is found that in a very
 

low pressure environment, material loss through sputtering or
 

evaporation may be possible but the effect on the aluminum alloy
 

is insignificant. From the information available, the effect of
 

penetrating particle radiation in space on the metal is expected to be
 

negligible [5,6,7,8,]. The effects of erosion, spalling and per
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foration upon impact are difficult to evaluate because of many un

certainties in size, composition, weightf flux density and velocity
 

of meteorite particles. The effects of meteorites are omitted in
 

the structural analysis.
 

8.2.4 Design Conditions
 

The lander structure was designed for two critical loading
 

conditions. The first one, lift-off, is predicated on a vertical
 

acceleration of 6 g, resulting in an equivalent static load of six
 

times 4400 lbs. The second condition, landing on two of the four
 

gears, results in the loads described in Section 8.3, which are
 

determined by crukhing of the shock absorbing material within the
 

main landing gear struts. In addition to the landing gear, dis

cussed in the next section, the top frame elements and the diagonals
 

were'designed for this latter loading condition, while the payload
 

support frame, like the thrust structure discussed in the preced

ing section, was designed for the lift-off forces. The payload was
 

assumed applied at the third points of the perimeter beam of the
 

payload support frame. The vehicle support equipment was assumed
 

distributed over the platform frame, so that the design does not
 

depend on the exact arrangement shown in Figure 8.5-1.
 

Table 8.5-2 summarizes the design of the lander structure.
 

The results shown include a factor of safety of 1.1, applied to the
 

minimum guaranteed yield strenghts fbr Al-7075-T6 (shapes).
 

8.2.5 Design Detail
 

Since this report represents a preliminary design study, the
 

analysis is only intended to give engineeringestimates for dimen

sions and weights. Loads may be imparted to the space frame
 

through several paths. -Boost loads from the Centaur vehicle are
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transferred at four peripheral points of the load platform,
 

separated by 450 from the landing gear centerlines. During mid

course correction, vernier engine thrust loads are transmitted
 

through engine mounting brackets into the outer octagonal ring
 

girder in the lower platform. During landing, loads are trans

mitted from the landing gears into the upper and lower platforms of
 

the space frame. Each member is sized according to its maximum
 

axial force or bending moment., to obtain minimum structural weights.
 

The members selected are summarized in Table 8.5-2.
 

The selected shapes include channels, rods and tubes. In the
 

framed structure, channels provide simple connections between
 

members. Loads in the channel are assumed to act through the shear
 

center creating only bending but no twisting moments. For flexural
 

members, local buckling of flanges and webs is considered. The
 

limiting values are established such that the ratio of flange width
 

to its thickness is less than or equal to 10 and the ratio of depth
 

of web to its thickness, less than or equal to 30. The rod is a
 

convenient shape for a tension member. Tubular sections provide
 

a large radius of gyration and are therefore used extensively as
 

compression members. They also have large torsional rigidity. To
 

prevent local buckling of tubes, the wall thickness to diameter
 

ratio is kept within safe limits.
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8.3 Landing Gear
 

8.3.1 General Design Requirements
 

The landing gear configuration for the Lunar Logistics Vehicle
 

(LLV) is determined to major extent by the following general de

sign requirements or constraints:
 

1. 	The available space for stowability of the landing gear
 

system in the shroud of the Centaur.
 

2. 	Terrain characteristics: the lunar surfaca is assumed
 

to include slopes of up to 35 degrees, boulders of up to
 

one-foot diameter, low density of 1.2 to 1.5 gr/cm3 ,
 

and a bearing strength of 8 psi at 2 inches depth and
 

12 psi at 3 inches depth.
 

3. 	Landing velocities:
 

maximum vertical velocity 15 fps
 

maximum lateral velocity 5 fps
 

4. 	Landing deceleration (of payload):
 

maximum vertical deceleration 6g
 

maximum lateral deceleration 2g
 

To assure a successful lunar landing the landing gear system
 

must provide:
 

1. 	Shock attenuation for protection of the structure and
 

payload.
 

2. Stability against overturning after touchdown.
 

It is also desirable that the landing be accomplished with gear
 

loads as small as possible to minimize the loads acting on equip

ment, structure and payload.
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8.3.2 Alternatives and Selection
 

The following concepts and approaches for design of the land

ing gear for the LLV were considere4 and used;
 

1. 	Landing device configuration
 

a. 	Three-leg (tripod) type landing gear systeme.g.
 
Surveyor.
 

b. 	Four-leg (quadpod) type landing gear systeme.g.
 
Apollo LM.
 

c. 	Crushable pad with stabilizing arms.
 

d. 	Stub legs with stabilizing arms.
 

2. 	Shock absorption devices
 

a. 	Multi-stage crushable material
 

b. 	Hydraulic systems
 

c. 	Gaseous systems
 

d. 	Cantilever leaf springs
 

3. 	Self-leveling landing gear systems
 

a. 	Active hydraulic system
 

b. 	Passive hydraulic system
 

c. 	Gaseous (explosive).system
 

Examination of these various approaches led to the'selection
 

of a four-leg type landing gear system with telescoping main struts
 

and two stage crushable honeycomb material. Self leveling devices
 

were omitted because of the associated weight penalty and their
 

questionable value. The selected landing gear configuaration is
 

shown in Figures 8.3-1 and 2.6-1. The total weight of landing gear 

is- approximately-:280 pounds;. 

8.3.3 General Description of the Landing Gear
 

The landing gear system comprises four foldable leg assemblies,
 

each assembly consisting of three struts in an inverted tripod
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quipment and Payload
 
Support Structure
 

scoping
 
Main Strut
 

Footpad
 

Bottom Struts
 

FIGURE 8.3-1 LLV--GENERAL LANDING GEAR CONFIGURATIONe"
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arrangement, as illustrated in Figure 8.3-1. Each leg assembly con

sists of a telescoping main strut or shock strut, two bottom struts,
 

and a footpad.
 

The struts are connected individually to the equipment and pay

load support structure. The bottom struts are joined to the main
 

strut at its lower end. The lower end of the main strut carries
 

a landing footpad. The landing gear is stowed within the shroud
 

with the main strut in an elongated (telescoped) position. It re

mains retracted until the shroud of the centaur is opened. The
 

deployment from the retracted position is accomplished automatically
 

by a spring deployment device installed inside the ram of the main
 

strut. Once extended, each gear assembly is locked in place .by a
 

latch pin mechanism.
 

8.3.4 The Main Strut or Shock Strut
 

The telescoping main struts consist of a lower ram and an upper
 

cylinder. Both are made of Al-7075-T6 alloy. The ram is a tube
 

3.5 inches outside diameter and .146 inches wall thickness, the
 

cylinder attahes.totth i-,tamaeof.the payload support structure
 

and the lower ram has a ball joint support for the footpad. The
 

two bottom struts are connected to the lower ram through a hinged
 

pin joint.
 

Two stage crushable honeycomb material located inside the up

per cylinder and crushable material in the pad are used as the
 

shock absorbing medium. The crushable material is assumed to
 

absorb energy with essentially a constant-load-stroke relation

ship. At touchdown, a strut compresses until the load reaches
 

the level at which crushing of the hqneycomb begins. The main
 

struts are subjected to column loads at touchdown.
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,8.3.5 The Bottom Struts
 

The bottom strut attaches to the main strut and to the pay-.
 

load support structure. These struts are 2.0 inches outside
 

diameter tubes having 0.10 inch walls and made from 7075-T6
 

aluminum alloy-.
 

8.3.6 The Landing Footpad
 

The landing footpad has area and sufficient strength to pro

vide flotation and small penetration into the lunar surface. It
 

is attached to the lower end of the main strut by a ball joint that
 

permits the pad to align itself with the lunar surface. The footpad
 

has an'outside diameter of 20 inches and an outer shell made of 7075-


T6 aluminum-alloy. This shell is filled with crushable honeycomb
 

material 4 inches thick and 8 psi strength. The footpad honey

comb is assumed to crush under a uniform loading.
 

8.3.7 Shock Absorption
 

It is assumed that:
 

l.' The LLV lands on two adjacent legs.
 

2. 	Three inches of crushing thickness of honeycomb mat

erial cover the footpads.
 

3. 	Fourteen inches of crushing length of honeycomb material
 

is provided in the main strut of the leg assemblies. This
 

includes two stages of crushing-: eight inches for lower
 

crushing strength and six inches- for higher crushing
 

strength.
 

4. 	Both main struts of the contacting leg assemblies crush
 

equal amounts.
 

5. 	Total kinetic energy of the vehicle is absorbed by crush

ing the two leg assemblies.
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The kinetic energy of the vehicle is given by the equation: 

KE = 1/2 MV2 = 17,080 ft-lb where M is the total 

landed mass and V is the resultant velocity of 

landing.
 

This amount of -kinetic energy must be absorbed by two leg
 

assemblies at touchdown. Table 8.3-1 shows the contribution to
 

total energy absorptions6f each of the three deformation devices,
 

i.e.. footpad as well as first and second stage crushing in the
 

telescoping legs. It is seen that the total energy absorbed by one
 

landing gear assembly is 8545 ft-lb, so that two legs give a total
 

of .17,090 ft-lb, which is satisfactory.
 

Footpad 1st Stage 2nd Stage 

Strength (psi) 8 500 850 

Area (in) 314 10 10 

Force (lb) 2500 5500 8500 

Stroke (in) 3 8 6 

Energy (ft-lb) 625 3610 4250 

TABLE 8.3-1 ENERGY ABSORPTION IN ONE LANDING GEAR
 

Simultaneously it may be noted that the enrgy absorbed
 

by the footpad and first stage crushing total 4295 ft-lb, so that
 

four legs in concert are capable of absorbing the total energy
 

without second stage crushing.
 

Inspection of the forces in the struts under landing conditions
 

of various velocities and attitudes with respect to the tension
 

indicates decelerations well within the design limits.
 



274
 

8.3.8 Structural Proportioning
 

The material used is Al-7075-T6 i.e. with the following
 

propenties.-

Modulus of elasticity E = 10.5 x 103 Ksi
 

Yield strength (Compression) a = 71 Ksi
 

Yield strength (Tension) a = 64 Ksi
 

Mfl* STRUT: 

Both ends of the main strut have pin connections. The applied
 

column load is 9,000 lbs and the length is 150 inc The main
 

strut is analyzed for:
 

(1) Local buckling allowable stress.
 

(2) General buckling critical load.
 

For a thin cylindrical tube subject to uniformiai&1lomm

pression the local buckling stress is conservatively expressed as
 

acr = 0.12 Et
 

where acr - critical stress in psi
 

t - thickness of tube wall in inches
 

R - the mean radius of tube in inches
 

so that for acy the limit+=.059.
 

A tube with an outside diameter of 3.5 in and a wall thickness
 

of .146 in satisfies this requirement. Such a section has a
 

radius of gyration of about 1.25 in and thus a slenderness ratio
 

of 120. A check reveals buckling to take place in elastic range
 

and solution of Euler' equation yields a critical stress of 7.0
 

,
Ksi. The cross-sectional area being 1.53 in2 the buckling force
 

is 10.7 Kip. Since the actual maximum force is 8.5 Kip, a factor
 

of safety of 1.25 is achieved. Thus both local and general
 

stability are achieved.
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BOTTOM STRUTS;
 

Th4bottom struts normally act as tension members but may,
 

under severe and unusual landing conditions, be subjected to com

pressive forces of up to 5 Kip. This condition r it appears, goverms
 

their design. The length is 85 in.
 

A tubular cross-section with an outside diameter of 2 in and
 

a wall thickness of .100 in may be chosen. A radius of gyration of
 

about .71 in and thus a slenderness ratio of 120 result. Again,
 

Euler' equation-applies and yields a critical stress of 7.0 Ksi.
 

With a cross-sectional area of .76 in2 , each strut, acting as a
 

pinned column, can withstand 5.3 Kip. The safety factor for this
 

rare condition is 1.06.
 

The ultimate tensile load is 48.7 Kip, which clearly cannot
 

be approached under any conditions. -Also, it is easily shown that
 

the chosen section is not -subject to local buckling.
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8.4 Payload Deployment
 

Two-methods available to facilitate payload deployment are
 

shown in Figure 2.6-2.
 

- The method at the left permits unloading the rover and other
 

relatively narrow payloads. The two diagonals are disconneeted'
 

from-the top structure by pyrotechnic devices.- Diagonals'A are
 

then rotated about their lower hinge points until they contact
 

the lunar surface. If desired, cross members may be attached
 

to the diagon&ls to form an off-loading ramp. Lowering the
 

diagonals may be done manually,automatically, oi by remote control.'
 

.:For wide payloads, such as the lunar shelter, the method at
 

the right of Figure 2.6-2 may be needed. This technique requires
 

manned-assistance. First, auxiliary supports D are lowered and
 

secondary struts B are disconnected from the lower end of primary
 

strut C. The free ends of the struts are then lowered to the
 

lunar surface. Next a suitable device separated diagonals A and
 

main strut C from the upper cross structure. However, diagonals
 

A and strut C remain pinned together. The footpad end of strut
 

C is moved away from the vehicle., rotating the diagonals downward.
 

After lowering, members A, B, and C may be completely removed,
 

if desired.
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8.5 Vehicle Summary
 

A detailed summary of mmber sizes and weights for the thrust

and retro-structure is presented in Table 8.5 1 while the lander
 

structure (including landing gear) member summary is given in
 

Table 8.5-2. These tables include: the calculated design force
 

or bending moment for each typical member; the loading condition
 

for calculating the loads; the length, shape, size, area and
 

number of members and the total weight for all elements ufreach
 

type within the structure. All the structural elements were
 

designed of Al 7075-T6 alloy. The MIL-HDBK-5A specification,
 

"Metallic Materials and Elements for Aerospace Vehicle Structures",
 

was used for the vehicle's structural design. Member sizes are
 

also depicted in Figure 2.6i.
 

A breakdown of the subsystems weights by individual components 

is presented in Tables 8.5-3 through 8.5-9. These 2 y 

totals have been summarized in Table 2.61. 

The vehicle subsystems are attached primarily to the payload
 

support octagon frame. The components are arranged so as to minimize
 

thermal control problems and to equalize the weight distribution
 

about the center of the vehicle. A bottom view of the subsystem con

figuration is shown in Figure 8.5-1. The landing radar antenna is
 

shown in the deployed position to one side of the vehicle. The fuel
 

cells are placed between two sets of verniers and close to the
 

fuel cell tanks. The batteries are also placed in the general vicinity
 

of the other power components. The common vernier and RCS propellant
 

tanks are placed in a Central location. The navigation and control
 

'
subsystem is placed behind a vernier "mouseh6use" while electronic
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1. Gaseous helium tank
 
2. Vernier and RCS propellant tanks
 
3. Fuel cell tanks
 
4. Fuel cells
 
5. Batteries
 
6. Guidande and Navigation System
 
7. Electronics, Box A 
8. Electdrfics, *Box B. 
9. Land±ng radar-anenna (deployed)
 

SUBSYSTEMS CONFIGURATION
 

FIGURE 8.5-1 
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boxes A and B placed;,at two short.sided corners. All communications
 

.antennas and directional sensors are attached to the vehicle top frame,
 

while the TV camera is attached to one short side on the upper part
 

of the payload support framei
 



TABLE 8.5-1 THRUST-AND RETRO-STRUCTURE t MEMBER SUMMARY 

FORCE/MOMENT LENGTH SIZE 
 AREA WETGHT
 
, MEMBER DESCRIPTION Kips/Kip-in] [in] SHAPE 
 [in] [sq in] No. [ibs]
 

THRUST STRUCTURE (Centaur to Lower Ring);
 

Verticals 9.0 C,LOPI) 75 Tube 
 3.0 0D x.05 WT .0.463 A 14.1Diagonals 4.09 CLO Tube
81 3.0 OD x.04 WT 0.377 8 24.7
Connections and Contigencies 20.0
 

RETRO STRUCTURE (Lower Ring to Payload Support Frame);
 

Verticals, Lower 
 9.75 CLO 
 26 Tube 2.0 0D x.05 WT 0.306 4 3.2
Diagonals, Lower 8.67 T,LO 47 
 Cable 0.500 D. 0.196 8 7.5
Verticals, Upper 6.60 
 CLO 63 Tube 3.0 0D x.04 WT 0.377 4 9.6
Diagonals, Upper 
 4.03 T,LO 2)Cable 0.375 D. 0.110 8 6.9
Lower Space Ring 31.6 BMLO 367 Tube 4x4x.JQ WT 1.560 1 57.8
Retro Cross Beams 208.0 BMLO WF
120 4x4'3' 0.316 2 51.2(
Hangers
L02 2.6 TLO 26 Bar 1.0 :R.125 0.125 12 3.9
Ring
LH2 3.0 BMLO 367(2) Tube 2.Oxl.OxO5 WT 0.290 1 10.8
Connection and Contigencies 40.3
 

Total Weight Thrust-and Retro-Structure 
 250 .0
 

(1) C= Axial compression force
 
T= Axial tension force
 

BM= Maximum bending moment
 
LO= Lift-off loading, 6g vertical
 

(2) Circumferential length

(3) Wide-flange beam, 4 in deep, 4 in flange width, 0.290 in web thickness,


0.270 in. flange thickness, tapering to 2 in depth over outer 40 in
 
each side.
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TABLE 8.5..3
 

PROPULSION SYSTEM WEIGHT
 

HIs
ITEM 


RL-103 7 315
 
Lines, fittings, Valves, Instruments 35
 
LOX Evaporator
 
LH2 Tank 95
 
Circulator in LH2 Tank & Valving 15
 
LOX (4) Tanks 64
 
Circulators in LOX Tanks & Valving 50
 
Explosive Severence Devices 20
 
Contigencies 27.3
 
14.2" Diam Spherical He Tank 27.8
 
He Valve Assembly 2.8
 
Gaseous He 2.5
 
Lines & Fittings 5.0
 
Contigencies 3.0
 
Vernier Oxidizer & Fuel Tanks (11.5) 23
 
Valve Assemblies 5
 
Line & Fittings 20
 
16 Verniers (5.25 Each) B4
 
12 RCS, (3.46 Each) 41.6
 
4 Mouse Houses 58
 
Contigencies 10
 
12 Gold Gas Jets 12
 
Piping, Valving, Fittings 14
 
Contigencies 23
 

Total Propulsion System 933
 

TABLE 8.5.4
 

PROPELLANT WEIGHTS
 

ITEM WEIGHT
 
[lbs]
 

Reserve propellant 90.9
 
Inflight Losses 70.0
 
Thrust Decay propellant 46.0
 
Full Thrust propellant 5770.6
 
Vernie RCS, and ACS propellant 4M.0
 

6378
Total PfiOjilaft WdI§ht 
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TABLE 8.5-5-

GUIDANCE AND NAVIGATION SYSTEM WEIGHT 

ITEM WEIGHT
[ibs] 

IMU 42 
IMU Mounting Frame 3 
IMU Pulse Torque Ass. 15 
Coupling Data Unit 35 
Flight Computer 50 
Landing Radar Elect 25 
TV Camera 11.4 
TV Auxiliary 1.7 
TV Mtg ADW 2.0 
Celestial Sensors 5.0 
Box Structure & Mounts 20.0 
Wiring 25 

Total Guidance and Navigation 225 

TABLE 8.5-6 

POWER SYSTEM WEIGHT 

ITEM WEIGHT' 
[ibs] 

Fuel Cells (2) 60 
Gemini RSS H2 Tank 27.5 
Gemini RSS H2 Tank 20.5 
H2 Reactant 2.3 
02 Reactant 17.7 
Battery 19 KW-Hr 130 
Battery Support 9.0 
Fuel Cell Support 10 
Wiring 20 
Power Converter and Distributor 60 

Total Power 357 
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TABLE 8.5-7
 

OMMUNIIATON SYSTEMS-W,-ESHT
 

ITEM WEIGHT
 
[lbs]
 

Structure & Mtg. 9
 
S-Bank Transmitter & Modulator A 3
 
S-Bank Transmitter & Modulator B 3
 
S-Bank Receiver A 1
 
S-Bank Receiver B 1 
Diplexer A 2 
Diplexer B 2 
Antenna Switch 2 
TV & PCM Data Mixer .5 
Transponser 4 
Digital Uplink Assembly 5 
Pre Modulation Precessor 10.5 
S-Bank Omni Antenna A 3 
S-Bank Omni Antenna B 3 
S-Bank ateerable Antenna 32.4 
Wiring 30 

Total Communication .ill\ 

TABLE 8.5-8 

INSTRUMENTATION SYSTEM WEIGHT
 

ITEM WEIGHT
 
[lbs] 

Structure & Mtg 14 
Stored Program Data Processor 23 
Signal Conditioning Assembler 10 
Engineering Sensors 10 
Wiring 10 

Total Instrumentation 67
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TABLE 8.5%9
 

ENVIROMENTAL CONTROL SYSTEM WEIGHT
 

ITEMS 


Telecommunications 

Instrumentation 

Guidance 

Battery 

Propellant Lines 

Lh2 Tank 

LOX Tank 

2 Vernier Tanks 

Vernier Lines 

Thermal Control Heater 

Thermal Control Heater 


Total Enviromental Control 


WEIGHT
 
[ibs]
 

i1
 
17
 
4.35
 
3
 
5
 

71
 
50
 
5
 

5'
 
.5
 
:5
 

196
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CHAPTER IX
 

SOFT LANDING ANALYSIS
 

Charles Gilbert Richards 9.1,9.3
 
Thomas Perkins 9.2,9.4
 
Steve Dickerson 9.5
 
Sam Kozak 9.6
 

9.1 	 Introduction
 

The primary objective in the analysis of the landing
 

dynamics of the LLV was the determination of the conditions that
 

would produce a stable landing on the lunar surface. Three
 

types of analyses were carried out to determine landing stability
 

criteria for the LLV.
 

9.2 	 Static Stability
 

The static stability of the spacecraft was analyzed for
 

surface slopes which varied from.zero to 35 degrees. The vari

ation of the static stability angle a with center of gravity
 

height to landing-gear radius ration, H/R, is presented in Figure 

9.2-1 . It is evident that as the H/R ratio increases the 

static stability angle, , decreases. At-a surface slope of 

35 degrees the static stability angle becomes zero for a value 

of H/R = 1.42. Therefore, to prevent the spacecraft from 

statically tipping over on a surface slope of 35 degrees an H/R 

of less than 1.42 must be incorporated into the final design 

of the LLV. 

9.3 	Dynamic Stability -- Energy and Momentum Methods
 

The landing stability of the LLV can be improved by, (1)
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H/R , C.G. Height/Gear Radius 

VARIATION OF THE STATIC STABILITY ANGLE WITH C. G. HEIGHT 

TO LANDING GEAR RADIUS RATIO. 
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reducing the impact velocity, (2) use an energy absorbing
 

device, and (3) the use of a rocket motor to force the vehicle
 

downward upon impact. A simplified mathematical analysis
 

was carried out withhe.use of a digital computer to obtain
 

rough estimates 6f the values of energy absorption and thrust
 

required to prevent the vehicle from toppling over upon landing.
 

In order to make a realistic analysis, it was necessary
 

to consider the sequence of events during impact. The landing
 

gear legs were assumed to contact the lunar surface in pairs
 

(i.e., the study is restricted to two dimensions). There are
 

two cases which require study; case 1 in which the front legs hit
 

first, and case 2 in which the back legs hit first. These two
 

cases are illustrated in Figure 9.3-1. In case 1 it is desire

able to give the vehicle a downward thrust immediately upon
 

initial contact with the lunar surface so that a clockwise
 

restoring moment results. In case 2, a reverse reaction is
 

required in order to reduce the probability of tipping the vehicle
 

over. In either case a stability rocket should be fired when
 

the front legs contact the surface.
 

A single stability rocket may be mounted on the top of the
 

vehicle over the C.C. or four rockets, one on each footpad (or
 

side) of the vehicle may be used. The four rockets can be such
 

that they supply one fourth the thrust of this single rocket.
 

The total propellant required and torque supplied will be about
 

the same in the two cases. The four rocket motor casings,
 

controls, etc., will weigh slightly more than the sihgle casing,
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CASE 1
 

FRONT LEG CONTACTS
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" v 

SVH 

CASE 2
 

BACK LEG CONTACTS
 

INITIALLY
 

FIGURE 9.3-1
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WITH THE LUNAR SURFACE
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etc., of the centrally located rocket. The nition circuitry
 

for the single rocket will probably be less complex than that
 

for four rockets. A single rocket will require additional
 

supporting structure whereas four rockets can be mounted on*
 

existing structural members.
 

The dynamic stability analysis described below was intended
 

to give "ballpark" estimates from which trends could be seen
 

and trade-offs could be made. The dynamic model used was as
 

follows: the vehicle approached the lunar surface with a
 

horizontal velocity component, VH, a vertical velocity component,
 

Vv, an angular velocity component, o, about an axis through
 

the vehicle's C.G., and a pitch angle, 8. The surface slope
 

angle is a. The model is two dimensional and is shown in
 

Figure 9.3-2.
 

There are basically two steps in the analysis:
 

1. The vehicle impacts legs "B" (i.e., the rear legs in
 

Figure 9.3-2)first. The footpad is assumed to be pinned upon
 

impact at point B, and angular momentum about an axis through B
 

is conserved [i.
 

2. The total energy after impact at B is conserved as the
 

vehicle continues to rotate about B until legs "A" contact the
 

surface. (See Figure 9.3-3)At this time, an amount of energy,
 

AW, is assumed to be absorbed by some dissipation device in each
 

leg, e.g., crushable h6neycomb. A single stability rocket, with
 

thrust, T, mounted over the C.G%* is simultaneously ignited.
 

*This is dynamically equivalent to four rockets, each with one
 
fourth the thrust, mounted symmetrically about the c.g.
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The vehicle continues to rotate about an axis through A. The
 

work-energy relationships are used to determine the thrust, T,
 

which is required to just keep the vehicle from tipping over.
 

The equations used are given below;
 

For conservation of momentum at B, one has
 

IQB = ICG o + m[VHsin(9+e) + VvzCos(e+O) (9.3-1)
 

The energy after impact at B is given by
 

+ mgmoon[sin(8+8) + 2RsinaJ
EB = B/2I (9.3-2)
 

where the datum plane is shown in Figure 9.3-3.
 

The energy absorbed by a crushable device at A is denoted
 

by AW and is added to the energy "taken out" by the stability
 

rocket and crushable material.
 

Wout = TR( -a+$) + AW (9.3-3) 

If the assumption is made that the vehicle just reaches the
 

tipover line (shown in Figure 9.3-3) with a zero angular velocity,
 

the energy of the vehicle consists only of pftential energy and
 

is given by
 

EA = mgmoon£ 

the work-energy relationships then give 

EB = EA + Wou t (9.3-5) 

Substitution of EBr EA and Wout substituting into (9.3-5) and 

solving for T yields 
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1/j7LTIPOVERLINE (VERTICAL)
 

T IC.G, INITIAL CONTACT POINT
 

/// DATUM PLANE R INc(
 

A 

VEHICLE ATTITUDE DURING STABILITY 

ROCKET FIRING (ENERGY IS ABSORBED 

BY LEG A) 

FIGURE 9.3-3 
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ICG + m (VHsin(a+o)
 

tVvcos(+e)]2 + mgmoon [sin(b+±) -P
 

+ 2Rsin d -- AW (9.3-6)J 
In the case where the front legs hit first at A (see Figure
 

9.3-4), the analysis is similar. As a conservative estimate, it
 

is assumed that AW is zero in this latter case. The resulting
 

equation for the thrust, T, is
 

T =(- 1 {h[IcGnO + mnVHzsin(+8) 

- Vv COS(O-8) 12 + mgmoon [Sin(O-0)-i (9.3-7)
 

where O<o.
 

The symbols, as can be seen in the preceeding figures, are
 

defined to be
 

R = footpad radius
 

H = CG height
 

R2 
, = + H2
 

=
S arctan H/R
 

6 = pitch angle
 

ICG = mass moment of mertia about the .CG
 
I = CG + my,
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VEHICLE ATTITUDE AT INITIAL CONTACT
 

WITH THE LUNAR SURFACE
 

(FRONT LEG HITS FIRST)
 

FIGURE 9.3-4 
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Q0 = angular velocity at touchdown
 

VH = horizontal component of the touchdown velocity
 

Vv = vertical component of the touchdown velocity
 

m = total mass of the vehicle at touchdown
 
2
 

= 5.41 ft/sec
g 

moon
 

AW = energy absorbed by crushable devices
 

T = thrust required topxevent tipping
 

a = slope angle of the lunar surface at touchdown
 

Equations (9.3-6) and (9.3-7) were solved for realistic
 

values of the parameters, a, 8, o, AW, Vv , and vH on a digital
 

computer. It was found that the results from the solution of
 

Equation (9.3-7) were always below those from Equation (9.3-6).
 

The latter was used to predict the thrust because the values
 

were more conservative and because it seems more probable that
 

the rear legs will hit first when moving downhill. Moving
 

uphill is essentially the case given by Equation (9.3-7). The
 

results of these runs are presented graphically in Figures
 

9.3-5 through 9.3-10. The value of ICG used was 3700 slug-ft
2
 

and the weight used was 4440 lbs. These were estimated to be
 

the approximate values at touchdown.
 

The results show that the pitch angle, 0, and the angular
 

velocity, Po0, at touchdown, do not significantly alter the
 

thrust requirements to prevent tipover. However, the utilization
 

of energy absorption devices and the reduction of touchdown
 

velocities (by the vernier engines) can result in a sizeable
 

reduction in the required thrust, T. The reduction of the
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vertical velocity component appears to be the smplest parameter
 

variation to implement. The reason for this is that the vernier
 

rockets already present can be used to reduce the touchdown
 

velocity. For example, one can see from Figure 9.3-7 that
 

reducing the vertical component of the velocity from 15 fps
 

to 2.5 fps on a 350 slope (worst case) reduces the required
 

thrust from 5400 lbs to 1600 lbs.
 

Use of a crushable energy-absorption device which absorbs
 

12,000 ft-lbs will reduce the required thrust from 5400 lbs
 

to 1400 lbs, for a vertical velocity of 15 fps, and a 350 slope,
 

as can be seen from Figure 9.3-6.
 

If one were to combine these two features - reduction of 

the vertical velocity component and use of an energy absorber 

the above analysis indicates that nb stability rocket is needed
 

even on a 350 slope! (It should be re-emphasized that the
 

above analysis is based on very elementary considerations,
 

and the conclusions should-be interpreted in a qualitative sense
 

only.)
 

A computer run was made for landing at a reduced vertical
 

velocity (VH = 5 fps) and utilizing energy absorbers. The
 

results for lunar slopes of 350 and 250 are shown in Figure
 

9.3-11 and 9.3-12, respectively. A velocity reduction to 10 fps
 

coupled with an energy absorption of 10,000 ft-lbs allows a
 

stable landing without the use of the stability rocket 
on a 350
 

lunar surface slope. For lower values of the slope, a higher
 

vertical velocity component for the same energy absorption
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will still give stability, e.g. on a 250 slope, an absorption
 

of 10,000 ft-lbs will allow an 11.4 fps-vertical component
 

of velocity. These values are for the case of m thrust from
 

the stability rocket.
 

Figure 9.3-6 indicates that an energy absorption of 13,400
 

ft-lbs will allow the vehicle to land on a 210 surface slope
 

without the use of a stablity rocket.
 

Figures 9.3-13 and 9.3-14 show values f the stability
 

rocket thrust required for a stable landing oi a 350 slope
 

for two other values of ICG and'H/R ratios.
 

If a stability rocket were to be used, te figures show
 

that the thrust should be of the ordercf 500 lbs. or greater
 

in order to significantly reduce the crushable energy - absorption
 

capacity and/or allow higher impact velocities.
 

If a stability rocket is used, it is necessary to know
 

the length of time for which the rocket must be operated. An
 

order-of-magnitude time estimate is obtained by finding an estimate
 

of the elapsed time between the initial contact of a footpad
 

with the lunar surface (see Figure 9.3-2) and the time at which
 

the vehicle CG reaches the "tipover" line; see Figure 9.3-3). 

This time is estimated by finding the total angle, y, through 

which the vehicle must rotate to reach the "tipover" line, where 

y= - + e - (9.3-8) 

At the beginning of the motiontthe angular velocity is aB and
 

is found from Equation (9.3-1). Assuming a constant angular
 

deceleration, the average angular velocity is 0/2. Dividing y
 

by n/2 yields the estimate of the total time from touchdown to
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tipover. Thus
 

- [7 + 2(e - )]T - 2y I 
(,4-9-'B IC 9c + [VH sin(8 + 0) + V cost( + e)]mz 

Values of this time are of the order of 5 secs or less. Since
 

the stability rocket should fire for only that portion of the
 

rotation which takes place about legs A(see Figure 3.9.3-3),
 

the time of firing has been assumed to be one half the total
 

rotation time or approximately 2 1/2 secs. A calculation using
 

a specific impulse of 290 lbf-sec/lbm , shows that 4.3 lbs of
 

propellant are required for 500 lbs of thrust for 2 1/2 secs.
 

Solid rocket motors will provide thrusts from 500 lbs to 1000
 

lbs for 4 secs and nominally have a total weight of 2-5 lbs
 

including the safety and arming devices. So, for a weight
 

penalty of about 25 lbs, the probability of astable (i.e., up

right) landing could be increased'by the inclusion of a centrally
 

mounted stability rocket with a thrust of up to 1000 lbs or four
 

stability rockets mounted symmetrically about the vertical C.G.
 

axis with a total thrust of 1000 lbs.
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9.4 Solutions of Landing Equations of Motion
 

A mathematical procedure for computing the touchdown dyna

mics of a soft-landing on the lunar surface has been derived by
 

NASA-MSC [2A. This computer program was used to calculate the
 

dynamic stability boundaries incurred for the Lunar Logistics
 

Vehicle for a symmectric 2-2 landing on surface slopes which
 

,ranged from zero to 35 degrees and touchdown velocities which
 

varied from 0 to 15 fps vertically and ±5 fps horizontally. The
 

spacecraft must be statically and dynamically stable for these
 

landings, and the landing forces must not exceed 6 g. (g = earth
 

gravitational acceleration).
 

The LLV is approximated by a rigid body of constant mass
 

that has four identical landing gear assemblies attached to it.
 

The mass of each landing gear assembly is assumed to be a point
 

mass concentrated at its respective footpad. The landing gear
 

system is composed of telescoping struts that house crushable
 

honeycomb material as shown in Figure 9.4-1. The forces that
 

act on the idealized vehicle during landing result from the vehi

cle's landing gear system, reaction control system, and gravity.
 

The elastic properties of the vehicle structure and landing gear
 

system are approximated by assuming a linear structure.
 

Touchdown analyses were restricted to landings on a rigid
 

uniform surface and do not include effects due to soil properties
 

and crater dispersions. The surface slope angles were varied
 

from 0 to 35 degrees with a two foot barrier inserted ahead of
 

the front legs as they touched the lunar surface. This prevented
 

the spacecraft from sliding down the slope. All solutions
 



311
 

._.Primary 
 Strut
 
Honeycomb Cartridges
 

Secondary Strut
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FIGURE 9.4-1 PRIMARY AND SECONDARY STRUT CONFIGURATION
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presented were for a 2-2 landing which allows the rear footpads
 

to strike the surface first and absorb energy as rotation occur

red about the rear footpads. After the front footpads struck the
 

surface, energy absorption occurred simultaneously in both front
 

legs as rotation occurred about the front footpads, which are
 

not allowed to slide. The footpads are free to translate verti

cally above the surface. However, if the front footpads translate
 

above the 2 foot barrier the run is declared unstable.
 

Figure -9.4-2 presents a drawing of the model geometry as
 

represented on the NASA-MSC-1108 computer, and Figure 9.4-3
 

presents a sequence illustration of the 2-2 landing made and the
 

corresponding location of the stability walls.
 

-2,
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Stability Criteria. A performance evaluation of a soft
 

landing system required the simulation of many touchdown condi

tions. When a large number of touchdown simulations are required,
 

the speed at which the computer can execute these simulations be

came a factor in the problem. In the evaluation of this soft

landing system for stability (tip-over) performance, the computer
 

running time was reduced by defining a stability criteria such
 

that the computer could make the decision as to whether the land

ing simulated was stable or unstable. After making this decision
 

the computer simulation was terminated.
 

A parameter representative of the state of stability of a
 

landing is the magnitude of the "stability distance." The stabi

lity distance is the shortest distance between the vehicle center
 

of mass and a plane parallel to the gravity vector, passing
 

through two adjacent landing gear footpads. This plane is de

fined as the "stability wall." The vector definition of the
 

stability distance is presented in Figure 9.4-3. The length of
 

vector (S) is the stability distance.
 

If the vehicle center-of-mass is within an enclosure defined
 

by stability walls and lunar upslope, then the gravitational action
 

on the vehicle will stabilize it. If the vehicle's center-of-mass
 

is outside this enclosure, the gravitational action on the vehicle
 

will cause it to be unstable. When the vehicle's center-of-mass
 

is outside'the stability walls, the landing is declared unstable.
 

If the vehicle is unstable, the degree of instability can be esti

mated by the magnitude of the "overturning velocity" at the instant
 

the vehicle's center-of-mass passes through the stability wall.
 

-3
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A stable landing may also be determined by the vehicle's
 

kinetic energy. At the instant a landing gear footpad makes con

tact with the landing surface, the vehicle has a given kinetic
 

energy. The subsequent motion will increase or decrease the
 

initial vehicle kinetic energy depending on the amount of energy
 

dissipated by the landing gear system or the energy gain due to
 

the lowering of the vehicle's center-of-mass. When the vehicle's
 

kinetic energy has been dissipated to the point that is is less
 

than approximately 10 percent of the initial vehicle's touchdown
 

kinetic energy, the landing gear struts have generally under

gone maximum stroking. The resulting vehicle motion, after maxi

mum stroking occurs, will generally be rigid body rotation about
 

two adjacent landing gear footpads on the landing surface. A
 

landing is declared stable when the following conditions are
 

satisfied:
 

1. The vehicle's center-of-mass is inside the stability
 

walls.
 

2. The vehicle's landing-gear footpads are on the landing
 

surface (Figure 9.4-3).
 

3. The vehicle's center-of-mass is moving away from the
 

stability wall.
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Dynamical EqUations of Motion.. The instantaneous position
 

coordinates of the rigid vehicle's center-of-mass (X, Y, Z) to

gether with the instantaneous values of the Euler angles (8
 

ey, 8z) specified the orientation of the rigid vehicle. The
 

instantaneous position coordinates of the nth landing gear foot

pad in the inertial coordinate system (XPn, YPn' ZPn) allowed
 

the determination of the instantaneous geometry of the nth land

ing gear assembly. The equations of motion which were solved in
 

this simulation of the landing impact dynamics were the three
 

translational equations of motion of the rigid vehicle's center

of-mass, three rotational equations of motion of the idealized
 

rigid vehicle, and three translational equations of motion for
 

each of the four landing.gear footpads.
 

The three-translational equations of motion of the -rigid
 

vehicle were obtained by summation of all forces acting on the
 

rigid vehicle and the application of Newton's Laws of Motion:
 

FX
X = M- 9.F 

FY
Y = (9.4-2) 

= (9.4-3) 

where,
 

FX, FY, FZ summation of forces on the idealized
 

rigid vehicle resolved along the X, Y,
 

Z inertial coordinate axes.
 

M mass of the idealized rigid vehicle.
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X, Y, Z 	 inertial accelerations of the rigid
 

vehicle's center-of-mass.
 

The three rotational equations of motion express the time
 

rate of change of the angfilar momentum vector of the rigid
 

spacecraft in terms of Euler angles and Euler angular rates.
 

These equations of motion are developed in Reference L23
 

ex = ( xC°S z -y sinez - 2exy +6z )cosey (9.4-4) 

By = xsinez + ycosO z + 6z6xcosy (9.4-5) 

8z= -xsine y -Sxycosay +z 9.4-6) 

where tx' wy'fz are the components of the angular acceleration
 

vector expressed in the body coordinate system and are determined
 

by solving the familiar Euler moment equations for rigid bodies:
 

Tx = Ixx x - Ixy y - Ixz z + (-Ixy x+Izz z) y (9.4-7) 

- (-Ixy x + Iyytoy - Iyzz)z 

Ty = - Ixy x + Iyy y yz z+ (Ixxx-Ixyy-Iyzz z(9.4-8)
 

+ (IxzWx + Iyzy -I 	zz z )y
 

T = -Ixz x- yz y +Izz z +(-Ixyx +Iyy Y-Iyzwz)Wx (9.4-9)
z 


(-Ixx x xyWy+xzz )Wy
 

where,
 

WXF Wy'F W z 	 angular rate vector components of the
 

rigid vehicle expressed in the body
 

coordinate system.
 

Ixx , Iyy, Izz 	 mass moments of inertia about the
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X, Y, Z body coordinate axes
 

Ixy 	 cross product of inertia with respect
 

to the X-Y plane in the body coordinate
 

system
 

Ixz cross product of inertia with respect
 

to the X-Z plane in the body coordinate
 

system
 

Iyz cross product of inertia with respect
 

to the Y-Z plane in the body coordinate
 

system
 

Tx, Ty, Tz sum of the torques about the X, Y, Z
 

body coordinate axes.
 

The footpad equations of motion were obtained by summing all
 

forces acting on the effective footpad masses. These equations
 

have the general form given below although the actual equations
 

solved may vary depending on the specific type of landing surface
 

assumed. 

1 FGRNDn k n 
n - (FXP - . .. n ) +gx (9.4-10)PMASS p +(p) 2
 

(ICPn)2 + in
 

" FGRNDn YPn 
YPn (FYP - i +g (9.4-li)PMASS 	 (Apn ) 2 + (pn) 2 

1 
ZPn (FZPn) + 	gz (9-4-12)
 

PMASS 

where, 

XPnr YPn' ZPn inertial coordinates of the nth footpad 
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PMASS effective mass of each footpad 

FGRNDn magnitude of a drag force on the nth 

footpad with direction opposite to the 

instantaneous sliding direction of the 

footpad in the inertial X-Y plane.. 

FXPn, FYPn, FZPn forces on the nth footpad in the X, Y, 

Z inertial directions which were inde

pendent of the instantaneous sliding 

direction of the footpad. 

gx' gy'Fgz components of the gravitational 

acceleration vector expressed in the 

inertial coordinate system. 

The equations of motion (9.4-1) - (9.4-12) were solved by
 

a numerical integration procedure. The initial conditions for
 

these equations were specified in the following manner. The
 

spacecraft attitude at the instant of impact was specified by the
 

three Euler angles ox, 8y, and 0z These angles determined which
 

footpad was initially in contact with the landing surface. This
 

initial point of contact was taken to be the origin of the inertial
 

coordinate system. The position of -each footpad in the body
 

coordinate system prior to impact was specified by known vehicle
 

geometry. The vector expressed in body coordinates directed from
 

the origin of the body coordinate system (located-at the rigid
 

vehicle center of mass) to the footpad in the surface contact was
 

denoted by BNn Then the vector joining the origin of the in

ertial coordinate system and.the origin of the body coordinate
 

system was given by the vector transformation
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FLI)jT.I B n (9.4-13)
 

since the tip of the BPn was located at inertial coordinates (o,
 

o, o). The three velocity components of the rigid vehicle center

of-mass were specified in the gravity coordinate system and then
 

transformed into inertial components. Thus the three initial
 

inertial coordinates of the rigid vehicle center of mass given by
 

equation (9.4-13) together with the three velocity components at
 

impact comprised the initial conditions for the numerical inte

gration of equations (9.4-1) through (9.4-3).
 

The angular rate vector components of the spacecraft at im

pact were initially specified in the body coordinate system and
 

then transformed to Euler rates. These Euler rates together with
 

the initially specified Euler angles provide initial conditions
 

for the integration of equations (9.4-4) through (9.4-6).
 

Equations (9.4-7) through (9.4-9) were solved as a set of simul

taneous algebraic equations for the quantities w toyrI and wz at
 

each integration step prior to the numerical integration of
 

equations (9.4-4) through (9.4-6). After equations (9.4-4)
 

through (9.4-6) were integrated, new values of wx toy' and z
 

were computed by transforming the new Euler rates.
 

The positions and velocities of the landing gear footpads
 

were determined by integration of equations (9.4-10) through
 

(9.4-12) only if the nth footpad was in contact with the surface.
 

The initial conditions for these equations were taken to be the
 

inertial position and velocities of each footpad at the moment
 

the inertial Z coordinate of the respective footpad was computed
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to be less than or equal to zero with the assumption that the
 

footpad was rigidly connected to the rigid vehicle's center of
 

mass. If a footpad broke contact with the surface, the landing
 

gear geometry was assumed to remain unchanged from the moment the
 

pad left the surface until it reestablished contact. During the
 

period of no contact with the surface, the position and velocity
 

of the pad was computed as though the pad were rigidly connected
 

to the vehicle. At the moment of recontact with the surface, the
 

footpad equations of motion were again initialized as before.
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Results -ofConmiuter'tBfh*. The results of fifteen runs
 

which comprised three landing configurations on NASA-MSC's 1108
 

computer are presented in Figures 9.4-4, 9.4-5, and 9.4w6.
 

The object of this study was to soft land a vehicle of 138 slugs
 

on the lunar surface without tipping over or damaging the payload.
 

In Figure 9.4-4, the dynamic stability boundary is shown for a
 

surface slope of only 15 degrees. This is due to the original
 

landing gear design which had no crushable material included in
 

the secondary strut and not enough stroke length in the primary
 

strut. The entire landing gear system was too rigid, thereby tip

ping the spacecraft over when impacted on a slope of only 15
 

degrees with a vertical velocity of 10.8 fps and zero horizontal
 

velocity.
 

Figure 9.4-5 was the first attempt at reducing the rigidity
 

of the primary strut and including crushable material in the
 

secondary strut. As can be seen, considerable improvement was
 

achieved since a surface slope of twenty-five degrees could now
 

be negotiated for identical touchdown velocities, as shown in
 

Figure 9.4-4. The primary and the secondary struts were again
 

too stiff and higher stroking of the primary strut was deemed 

necessary for a stable landing at velocities of 15 fps vertically 

and 5 fps horizontally. 

Therefore, the crushable material was again redesigned in
 

order to provide a longer initial stroke to the primary strut.
 

The results of this redesign of the energy absorption capability
 

of the landing gear is presented in Figure 9.4-6. These results
 

clearly indicate that a stable landing could be made on a 35 degree
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slope if the vertical and horizontal velocities were re

duced to more reasonable levels such as 8 fps vertically and ±3
 

fps horizontally. However, even for the 15 fps and ±5 fps case,
 

the system would probably be stable on a 20 degree slope when the
 

coefficients of friction and restitution were included in the
 

analysis. It is recommended that an energy absorption versus
 

increased landing gear weight trade-off study be conducted as the
 

final step in the design of the landing gear system. Figure 9.4-7
 

presents the variation in energy absorbed for the various landing
 

configurations and surface slopes that were shown in figure 9.3-7.
 

It appears that approximately 26,000 ft-lbs of energy-must be
 

dissipated by the primary and secondary struts for a stable land

ing on a 35 degree slope. If the unrealistic requirements of 15 fps
 

vertical and ±5 fps horizontal are reduced, a much lower level of
 

absorbed energy would be required for a stable landing. This re

duction would also result in a reduced stroke length and therefore
 

lower landing gear structural weight.
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9.5 Dynamic Landing Model Tests
 

9.5.1 Experiment Description
 

To obtain an approximate correlation with theoretical
 

landing stability results, a model of the LLV was constructed and
 

landings simulated. The model (Figures 9.4-1 and 9.4-2) had only
 

one degree of freedom in each leg and tests with it attempted to
 

achieve dynamic similitude with regard to the acceleration due to
 

gravity, g; vertical and horizontal components of the impact veloci

ty, v and VH; mass, m; mass moment of inertia, I; radius of foot

pad from vehicle centerline, R; C.G. height, H, above undeflected
 

footpad plane; and vertical component of the crushing force in
 

each of the four legs, F.
 

TABLE 9.5-1 SIMILITUDE PARAMETERS
 

Parameter Units LLV Simulator Est. Expr. Error
 

g ft/sec2 5.31 32.2
 

Vv ft/sec <15 <7.68 10%
 

VH ft/sec <5 <2.56 50%
 

m lb sec2/ft 138. 0.0329 2%
 
(slugs)
 

I lb sec 2/ft 3640. 30%
 

R ft 11.1 0.48 4%
 

H ft 7.26 0.314 5%
 

F lb 6700 9.6 +O,-100%
 

gR/V2 0.262
 v
 

H/R 0.655
 

mg/F 0.1093
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mR2/I 4.67 (R = 2.16)
 
r.
 

While the listed parameters are among the more important, it
 

is apparent that others should be included for an accurate
 

simulation. Foremost among these are lunar suit characteristics,
 

spring rate of the legs, footpad size and shapes, and increased
 

degrees of freedom of the legs.
 

The test apparatus is shown in Figure 9.5-3 and 9.5-4.
 

Vertical velocities were achieved by dropping the model from a
 

calculated height, d , and horizontal velocities by adjusting
 

the walking speed of the experimenter. Release of the model at
 

the proper point was facilitated by a markerwhich consisted of
 

a horizontal string with a flag attached both of.which were
 

properly located relative to the impact point. The impact point
 

was chosen so that the model's landing legs struck the obstacle
 

immediately after touchdown. It was found experimentally, as
 

would be expected intuitively, that this condition was more severe
 

than allowing the leading leg to slide. A greatly improved
 

experiment would result from replacement of the manned drop with
 

an automatic mechanism since the present results were very
 

dependent upon the manual dexterity of the test engineer.
 

In all tests an attempt was made to have impact occur with
 

the vehicle horizontal and with no pitch, yaw, or roll rates.
 

Tests were conducted with several yaw orientations, two different
 

footpad designs, three different types of landing surfaces,
 

and four velocity combinations. All horizontal velocities
 

were ditected downhill.
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FIGURE 9.5-2 Dynamic Model Photograph
 

FIGURE 9.5-4 Dynamic Test Apparatus Photograph
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TABLE 9.5-2 PARAMETER VARIATIONS
 

Parameter 
 Variations
 

Yaw Orientation
 
(Figure 9.5-3) 1 leg directed downhill
 

1 leg at an angle of 450 with the
 
downhill direction
 

1 leg at an angle of 22.5? with the
 
downhill direction
 

Foqtpad Design Eliptical
 
(Figure-. 3'4) Sawtooth
 

Landing Surface 	 Smooth pine drafting table top
 
Rough side of 3/16" Masonite hardboard
 
Asphalted side of l/2"-celotex fiberboard
 

Input Velocity 	 V = 15 fps , VH = 5 fps
v
(,LV equivalent) 


Vv = 15 fps, VH = 0 fps

V = 10 fps , VH = 3 1/3 fps
 

=ofps*V i V, 0 fps 

9,5.2 Experimental Results
 

The results are summarized in Figure 9.5-5 which indicate 

thatthe prbtaaedehielle- cazs&fely land on a slope of 200 

if Vv <15 , tVH1 <5; If VV <I0. and jVHI , < u3 then safe landings 

may be made on slopes up to 28P.
 

A landing mode was considered unstable if any, ya attjtj
 

was unstable. An interesting anomaly in the data was the verxy
 

unstable results given by the fiberboard surface r particularly When
 

the sawtooth footpads were used. This was unexpected, but may, be
 

the result of (1) a greater coefficient of restitution on
 

impact due to the low spring constant of the fiberboard and
 

(2) the low damping of horizontal motions because of the sIngles
 

degree~of-freedom landing legs and/or the effect of the sawtoot4
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footpadsibitingt into; the surface.
 

These experimentally determined stability margins are
 

crude estimates based on sparse data and a simplified experimental
 

approach. However, taken together with the analytic results presented
 

they give increased confidence in the capabilities of the LLV.
 

Referring to Figures a,46.and a.5-5 the close agreement between
 

simulated and experimental results-can be verified.
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9.6 Probability of Safe Landing Analysis
 

The potential for a safe LLV landing is dependant
 

upon the interaction between vehicle configuration and lunar
 

surface characteristics. Lunar surface characteristics which
 

influence the probability of a safe landing are considered
 

to include the areal distribution of slopes and the size

frequency distribution of craters and boulders. Probability
 

values for the lunar surface features considered in this
 

section were derived from curves presented in a review of
 

lunar surface models by Hutton [3].
 

9 .10pj1. Li dibp. Eazards 

The probability ,P, of a landing in a hazard-free
 

is equal to the area unoccupied by hazards divided by the
 

total area. Craters ranging in diameter between 2 and 34
 

meters are considered to be large enough and abundant enough
 

to constitute landing hazards to the LLV. In order to insure
 

that the area considered unhazarded by the craters is free
 

of craters, the diameter of each crater was increased by the
 

diameter of a circle circumscribing the LLV landing gear,
 

25 feet. Thus, any point excluded from the area considered
 

hazardous represents a point at which the center of the LLV
 

footprint can be placed without impinging on a crater. The
 

range of diameters for craters.considered hazardous was sub

divided into classes at two meter intervals. The hazardous
 

area occupied by each class was calculated by multiplying
 

the number of craters per square kilometer times the area
 

occupied by a crater with the midclass diameter increased by
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the landing footprint diameter. A uniform -crater distribution
 

was assumed, and the total hazarded area was caldulated by
 

adding to the sum of hazarded area that area of each succeed

ingly smaller class which under assumed uniform distribution
 

lay in previously unhazarded area. These calculations in

dicate that approximately 25 percent area is unoccupied by
 

craters ranging from 2 to 34 meters. This percent unhazarded
 

area is the same for both mare and highland areas [1-Figure 6]
 

Boulders constitute an additional hazard to landing.
 

Unlike craters, the relative abundance of boulders varies
 

between area characterized by different topographies. Three
 

general topographic areas were distinguished by Hutton [3];
 

minimum, nominal, and maximum. These correspond to smooth
 

mare, rough mare and hummockly upland, and rough upland.
 

The number of boulders per square kilometer was determited
 

for boulders larger than 1, 2, 3, 4, 5, and 6 feet in
 

diameter for each of the three types of topographic areas.
 

A uniform distribution of the boulders were considered to
 

consitute additional hazards to landing. Each of these became
 

the center of a hazard circle equal in size to the landing
 

gear footprint. The new hazard area thus developed was
 

subtracted from the 25 percent of the original one square
 

kilometer remaining unhazarded by craters and boulders. The
 

results of these calculations are presented in Table 9.6-1.
 

These values represent the probability for an unmanned LLV,
 

without an approach televison camera of landing on an
 

unhazarded area. The range of probabilities is sufficiently
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low to demand a televison approach system.
 

TABLE 9.6-1
 

PROBABILITY OF UNHAZARDDtflRMA
 

Boulder Size = > Minimum Nominal Maximum 

1' 

2' 
3' 

4' 

.000 

.154 

.211 

.227 

.000 

.000 

.000 

.136 

.000 

".000 

.000 

.045 

5' .234 .193 .141 

6' .238 .212 .189. 

9.62 ,Probability of finding one hazard fire site
 

In a consideration of safe landing probabilities using
 

TV control to avoid ground hazards, account should-be taken
 

of the TV display screen measurements. An analysis of this
 

problem was carried out by Swaney [Z] for the LM system
 

equipped with an approach TV. It was determined that for
 

such a combination, the contour on the lunar surface containing
 

99.7 percent of all touchdown points is an ellipse centered
 

at the nominal touchdown point, with a semi-major axis of
 

15.8 feet along track and a semi-minor axis of 12.8 feet
 

crosstrack. This elliptical touchdown error footprint is
 

approximated by a circular footprint of diameter 30 feet.
 

When the 25 foot landing gear footprint is added tp this
 

a circular total landing uncertainly footprint 55 feet in
 

diameter is obtained. The crater and boulder hazarded area
 

can now be recalculated by enlarging each crater diameter
 

by the new landing uncertainty circle. Calculations based
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on the 55 foot uncertainty circle resulted in zero percent
 

crater unhazarded area. Figure 9.6-1 summarizes the per

cent area left unhazarded by craters with various un- 

certainty-footprints. The minimum uncertainty footprint 

possible is 25 feet, the landing gear footprint. The
 

maximum is on the order of 35 feet. Thus, a guidance
 

uncertainty footprint-circle with a radius of five feet, is
 

the maximum allowable to maintain a point on the lunar
 

surface as hazard free. This circle should include the
 

uncertainty of altitude determination and dispersion of
 

thrust in the vernier system during descent. It is obvious
 

from the preceeding discussion that the percent of area
 

unhaz&rded by craters alone will approach zero, even without
 

considering the effect of boulders. The propability of
 

unhazarded areas is likely to be extremely small.
 

The view area required to find at least one hazard free
 

landing site can be expressed as a function of the probability
 

of at least one haz&rd free site and the probability of
 

hazard free area as indicated by Equation 9.6-1.
 

D2 Log 1 0 (PI) (9.6-1) 
A=
 

Logl 0 (l-P 2 ) 

where A area required 

D = landing uncertainty footprint 

P1 = probability of finding at least one hazard 

free site
 

P = probability of unhazarded area
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Fiore9 _&c21presents the results of calculations based 

on a required probability of .99 of finding at least one
 

unhazarded landing site. Area has been expressed in terms
 

of the radius of a circle necessary to supply the required
 

area. The radius of the scan area circle can be determined
 

for a-range of probabilities of unhazarded lunar surface.
 

Figure 9.6-3 presents various effective scan radii as a
 

function of TV lens view angle at various altitudes.
 

Slope Probabilities : Figure 9.6-4 presents the
 

relationship of probability of occurrance of effective
 

slope angles. Effective slopes were considered to be
 

generated by a combination of general slopes and craters.
 

This combination was chosen as a worst case since the
 

probability of boulders is less than that of craters. Com

binations of boulders and craters on general slopes were
 

not considered because the probability of such a combination
 

is extremely low. Comparison of 9.6-2 with data presented
 

in the sections on vehicle stability will allow determination
 

of the approximate probability of finding slopes within
 

the values required for LLV landing stability.
 

9.6-3- Summary
 

1. On the basis of assumed uniform distribution of
 

craters and boulders, the.probability of an LLV landing
 

in a hazard-free area without TV guidance is less than .25.
 

2. Presence of a TV guidance system requires the addition
 

of a landing uncertainty circle due to limitations on
 

the measurement of altitude and velocity, and upon thrust
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dispersion in the vernier system. This component of the
 

total landing uncertainty circle diameter must be less
 

than ten feet in order that the area not be completely
 

hazarded by craters alone. This appears to be an im

possible with the present design to insure at any probability
 

level the presence of even one unhazarded area large enough
 

to land the LLV.
 

3. The above conclusions are based on a uniform
 

hazard distribution and serve to indicate that under the
 

assumptions made it is unlikely that an unhazard6d landing.
 

area can be found. It should be emphasized, however;-that
 

under the conservative assumptions made, safe landings
 

are possible even in hazarded areas. Furthermore, detailed
 

terrain analysis preceeding actual LLV missions shoild
 

define unhazarded areas as was done for Apollo landing
 

mission.
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CHAPTER X
 

SYSTEM COST, SCHEDULE, AND RELIABILITY
 

Jesse Wampler 10.1-10.2
 
Alvin Strauss 10.3
 

10.1 Cost Summary
 

The basic level for cost estimation in this report is
 

the subsystem level (NASA Standard Level 5). In some cases we
 

have been able to collect cost data at the component level, but
 

these data are generally not sufficiently complete to serve as
 

the basis for cost estimation. -Theestimates of the subsystem
 

level costs are presented in Table 10.1-1
 

TABLE 10.1-1 ESTIMATED SUBSYSTEM COSTS (MILLIONS)
 

SUBSYSTEM FIRST ITEM COST NON-RECURRING COSTS
 

Structure 0.3 3
 

Guidance and Navigation 1.5 6
 

Electrical Power 0.3 3
 

Communications 1.9 4.3
 

Instrumentation 0.7 3.3
 

Retro Propulsion 0.5 6
 

Vernier Propulsion 0.2 4
 

ReWtion Control and Attitude
 
Control 0.1 1
 

5.5 30.6
 

There is considerable uncertainty in the choice of appropriate
 

relationships for estimating module level costs from the subsystem
 

level costs, for this spacecraft. The module level first-item
 

costs have been estimated from the sum of the subsystem costs,
 

using a factor of 1.6, based on historical data from manned
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spacecraft programs [i]. The appropriateness of this factor
 

is open to question in light of the range of ratios for manned
 

spacecraft (from 1.3 for Gemini to 2.0 for the Apollo CSM , and
 

because the LLV is not to be a manned spacecraft.
 

The greatest uncertainty in estimating module level costs is
 

in the non-recurring cost category. The extensive use of qualified
 

components has reduced the subsystems non-recurring costs relative
 

to historical programs, so the well-defined relationship between
 

subsystems and module non-reourring costs for manned spacecraft
 

[1] is not applicable in this case. An alternative approach is
 

to use the historical relationship between modul6-level first

item costs and module-level non-recurring costs [1]. Unfortunately,
 

this relationship is very poorly defined, ranging from a factor
 

of 8 for Gemini to as much as 43 for Apollo. Since the LLV
 

is unmanned, it is reasonable that the appropriate factor should
 

be toward the low end of this range. For illustrative purposes
 

we have chosen a factor of 10, recognizing a great deal of
 

uncertainty. An earlier proposal involving a spacecraft in many
 

ways similar to the LUV[2] estimated module-level non-recurring
 

costs 10 times greater than module-level first-item costs.
 

Table 10.1-2 presents a summary of the cost buildup estimates
 

For reference, we have also included an estimate of the cost of
 

the launch vehicle, to provide a rough picture of the total cost
 

of the LLV program, exclusive of payload.
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TABLE 10.1-2 COST BUILDUP SUMMARY (IN MILLIONS) 

FIRST ITEM NON-RECURRING TOTAL TOTAL
 
COSTS COSTS 8 MISSIONS PER
 

ITEM
 

1. 	Sum of Subsystem
 
Level Costs 5.5 30.6 71.6 9.0
 

4 
(xl.6 )
 

2. 	Estimated Module '10)
 
Level Costs 8.8 	 158 20
 

3. 	Cost of Launch
 
Vehicle 30-40 (Not applicable) 240-320 30-40
 

Total, 2 & 3 39-49 	 400-480 50-60
 

10.2 	 Development'Schedule
 

A proposed development schedule for this program is given
 

in Figure 10.2-1.
 



1969 1970 1971 1972 1973 1974 1975 197
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PHASE C: FINAL DEFINITION -

PHASE D: DEVELOPMENT AND OPERATION -- "'" 

ENGINEERING 

SUBSYSTEM DEVELOPMENT 

Throttleable RL-10 EngineQ 
VQualification 

LH 2 , LOX Tanks, Circulators 

Attitude Control Jets 

Electrical/Electronic Subsystems 

"-LJ 
C 

Environmental Tests 

MODULE DEVELOPMENT 

Fabrication/Assembly of Test Articles -

Testing 

Fabrication/Assembly of Flight Articles - - -

Missions _ -

FIGURE 10.2-1 DEVELOPMENT SCHEDULE
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On the whole,'therefore, a critical evaluation of the LLV
 

will reveal an exceptionally reliable spacecraft on the subsystem
 

level. The less reliable items on the LLV appear to be the
 

interfacing, connections (electronic, mechanical, plumbing), and
 

the deployment of the various subsystems.
 

Aside from the equipment there is another area where it ap

pears that the reliability of the LLV can be maximized. This area
 

is in the sequencing of events an& the mode of operation of the
 

LLV subsystems. For example, it is possible to eliminate certain
 

single point failures by resequencing certain events, Thus one
 

could significantly increase the reliability of the LLV by de\
 

termining the optimum sequence of events, and mode of operation.
 

It is recommended that this type of study be undertaken.
 

Also, since the study of single point failures undertaken
 

here is necessarily incomplete, it is recommended that an exten

sive failure mode and effects analysis be undertaken when all the
 

LLV components have been specified.
 

As a final recommendation, it is suggested that a criticality
 

analysis be. performed in conjunction with the failure mode analy

sis. In other words, it should be determined just how many failures
 

can be tolerated.
 

10_32 Basic Principles and Definitions
 

The object of this section is to present the basic principles
 

in the analysis and standardize all terms in order to eliminate
 

any confusion which may arise as to terminology or method of at,
 

tack.
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10.33 	Reliability
 

10;3.11 Introduction
 

The reliability of the LLV is of ultimate significance to the,
 

systems design engineer. The object of.his labors is to design a
 

reliable system capable of attaining a desired goal. A number of
 

other considerations enter into the design,and the reliability of
 

the system must be compromised with respect to these considera-.
 

tions. The factors which compromise, or detract,' from the re

liability of the LLV are cost, weight and a variety of specific
 

secondary considerations. In this investigation into the reliS
 

ability of the LLV, reliability is considered a synonym for op'
 

erating efficiency and is used as primitive measure of the effectr ,
 

iveness of the system.
 

As is well known, the system effectiveness is defined as the
 

product of system capability and system reliability. Thus an
 

attempt was made to increase the reliability of the LV..
 

design (or component, or subsystem) without lowering the system
 

capability.
 

Taking into account the fact that the LLV contains as much
 

qualified hardware as is consistent with the work statement, most
 

of the components in the LLV are extremely reliable. In many
 

cases, . man-rated subsystems and components were specified for
 

the LLV. The reliability of some of these man-rated items has
 

been somewhat reduced, however, by removing certain redundancies.
 

The removal of redundancies tends to increase the system
 

capability in a number of ways, of which the increase in landed
 

payload weight is the most important.
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First, because of time and manpower considerations, it was
 

not considered practical to obtain actual values for the reliabil

ity of the LLV subsystems or components. For this study, a failure
 

mode and effects analysis yields immediate information concerhing,
 

the single point failures in the system and also provides one with
 

a platform from which an upgraded study of the LLV can be launched.
 

Since a failure free system of this complexity cannot be
 

built, an attempt must be made to desigt a system where is any of;
 

the components fail the system will go on functioning, or if
 

a component failure would cause system failure to provide a
 

very reliable component. This can be accomplished best by a
 

combination of two considerations. First, to pr6vide redundancy
 

and second to grossly overdesign the system for its intended.
 

use. The failure mode analysis will live a clear indication
 

as t6 where the LLV needs redundancy and where it needs to be
 

overdesigned. It is felt that overdesigning is equivalent to
 

redundancy, in its overall effect on system reliability in aost
 

cases, and in the LLV one finds that overdesigning yields sig

nificant weight savings over redundant design. This point will be
 

discussed below, but first the terminology used here needs clari-.
 

fication.
 

-In general, one classifies failures into two categories.,
 

First, one -has the category comprised of tolerance failures. In
 

this case the functional characteristics of the system~change
 

gradually in time to the point where failure occurs. The second
 

category is comprised of those failures where the system function-,
 

al characteristics change abruptly and drastically. One calls
 

this type of failure catastrophic. In this study the primary
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concern centers about catastrophic failures. Tolerance failures
 

are considered only when the effect of a tolerance failure is felt
 

by systems in a catastrophic manner. Thus one considers tolerance
 

failures, but in a manner which removes the time dependence from
 

consideration.
 

In order to dispel any subsequent confusion over terminology
 

it is appropriate that two terms which have, to this point, been
 

used somewhat loosely and imprecisely be fixed: failure and
 

system.
 

A system is defined to mean that particular collection of.
 

items (hardware and/or software) to which a prediction pertains-.
 

A subsystem will be considered to be a system when the failures
 

inherent in that collection of items are under consideration. Xn.
 

deed, if a piece of equipment performs many functions Csuch as the
 

IMU) and a failure prediction can be made for each function, then
 

that piece of equipment will be considered to be comprised of
 

several systems. Hence defining a system consists of describing
 

the functions of the items which comprise the "lsystem.k
 

Failure is defined as the occurance of any condition which
 

tends to affect the system in a manner which renders the system
 

incapable of performing the operations for which it was designed.
 

The system-failures which can possibly occur in the LLV are
 

generally time-dependent. The longer the system operates the
 

greater the probability of that system failing. In this study,
 

however, one does not consider the operating times of the various
 

items in the system. This emphasizes the fact that one just looks
 

into the possibility of system failure and not the probability of
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the system failing. In a manner of speaking, time-dependence is
 

taken into consideration. This occurs in dividing each system
 

function into three basic operational modes. For most systems
 

the three are: start, operation, and shutdown. In general, dif

ferent mechanisms, or different equipment are used for each phase,
 

or there exist different modes of operation for each phase.
 

In applying these three basic operational modes in analyzing
 

the failures of the system one looks for the following occurances
 

possible in each of the operational modes. First, for the start
 

mode, one looks at the possibility of (a) failure to start, Cb)
 

premature start, -(c) catastrophic start. For the operational mode
 

one looks for the possibility of (a) inability to operate, (b)sub

standard operation, (c) catastrophic operation. Third, or the
 

shutdown case, one looks for (a) failure to shutdown, (b) premature
 

shutdown, (c) catastrophic shutdown. In many systems all nine of
 

these failure modes may lead to single point failures. However,
 

there are significant exceptions to this classification of system
 

failures. For instance, all one shot devices, a category into
 

which the pyrotechnics fall, form a special classification for
 

which different ground rules must be set down.
 

The analysis which will be performed will consist in estab-'
 

lishing the failure modes of the system functions and at the same
 

time identifying the specific failures of the functional hardware
 

set which are capable of causing failures of the system functions.
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In accordance with the work statement directive the main
 

object is to locate and describe all possible single point fail

ures. This consists in performing a failure mode analysis and
 

pointing out all possible Criticality I failures.
 

The criticality of the failure modes is subsumed into three
 

classifications. The first class comprises Criticality I failures.
 

Criticality I failures are defined as those single point failures
 

which cause the mission (or LLV) to be classified a failure.
 

The second class is called the class of Criticality II fail
 

ures. Criticality II type failures are defined as those single
 

point failures which, if they occur, would cause the system to
 

be in a new failure mode and effect state such that another asso

ciated failure would cause the mission to fail.
 

The last class, or the class of Criticality III failures,
 

encompasses all situations which cannot be classified as either
 

Criticality I or Criticality II failures.
 

The purpose of this study is to point out all criticality I
 

single point failures. Some Criticality II type failures are oc
 

casionally described and Criticality III type failures are ignored
 

in the analysis.
 

In reality, however, one cannot delineate all single point
 

failures in this manner for the LLV: In the case of the LLV the
 

criticality of the failure may be dependent on the payload. Thus
 

far in the space program the mission objectives have been man

associated (Apollo) or man-independent (Surveyor). In this
 

situation, the LLV has both man-associated and man-independent
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objectives. For example, the man-associated case may be a pay

load of a lunar roving vehicle to be used for transportation by
 

an astronaut, and the man-independent case may be a payload of
 

an unmanned lunar roving vehicle to be controlled from Earth.
 

In these two cases the failure of a certain item can attain
 

different criticalities dependent upon the mission objectives.
 

An example of payload dependent criticality is the beacon which
 

will be used by an astronaut to locate the exact position of the
 

LLV after it has landed and to beam in on the signal to land in
 

the near proximity of the LLV in order to obtain use of the rover.
 

If the beacon fails and the astronaut cannot land close enough to
 

the LLV the payload becomes useless and the mission Cman-associat

ed) must be declared a failure.
 

In the man-independent case the beacon can fail resulting in
 

an uncertainty in the location of the LLV, but the unmanned lunar
 

rover can-be deployed nonetheless and the mission will be a com7
 

plete success. Thus it is evident that in the former case the
 

failure of the beacon is of Criticality I while it is of CriticalV
 

ity III in the latter situation.
 

The man-associated mission is the more severe case and hence.
 

all criticalities will be based on this type of mission. In most
 

cases the criticalities will be the same. The major exceptions
 

will be in the equipment which insures the accuracy of the land

ing and communications.
 

10.3.D3 Assumptions and Method of Attack
 

An assumption which is necessary to restrict the problem to
 

one which is tenable is that all human operational procedures in
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assembly, prelaunch activity, checkout, loading, fueling up, etc.
 

are correct and that no equipment has been left out or misconnect
 

ed. It is further assumed that all instructions from Earth to
 

the LLV will be correct and in the right sequence.
 

Insofar as the structure is concerned, it is assumed that
 

passive structural failures of the LLV basic structure will not
 

occur when the LLV is functioning within normal mode of design,
 

This assumption is made because it is assumed that the properties
 

of the structure and the structural materials have been experi

mentally determined and exhaustively tested under conditions
 

simulating those the vehicle will see in Cislunar space and the
 

Lunar surface. Supplementing these tests it is further assumed
 

that a sufficiently large factor of safety has been used to com

pensate for any unforseen events or stresses.
 

It is further assumed that all LLV Oomponents are adequately
 

designed. All equipment is assumed to be, at the least, adequate
 

to perform the function for which it was designed. The pumps
 

will produce the required flow, the electronic components will
 

produce the desired signa!,and the engines will provide the de

sired thrust.
 

The type and quantity of information which should be taken
 

into account in order to perform an' adequate failure mode and
 

effects analysis of the LLV is now discussed. First, all require

ments for the performance of the LLV subsystems must be established
 

and the failure modes of each component determined.- Second, the
 

margin of safety (or safety factor) for each component and system
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should be determined. This must be done if one is to evaluate
 

the seriousness of the failure and also get an indication as to
 

the probability of the failure occurring.
 

Also concerning the probability of failure one should de

termine whether or not a particular system is qualified, man

rated, flight proven, or has even been built. In this manner
 

an immediate indication as to the potentially unreliable systems
 

and components can be obtained.
 

A related study which could improve system effectiveness and
 

reliability would be to determine where below-state-of-the-art
 

components or procedures were being used on the LLV. A study of
 

this type is not only important from a reliability point of view,
 

but is extremely valuable to the engineer who seeks to determine
 

the upgrading potential of the LLV, or to update the design, or
 

to extend the capability of the lunar landing vehicle. It is
 

therefore recommended that a below-state~of-the-art study be made
 

on the LLV design.
 

in somewhat the same vein as the structural assumptions,
 

one assumes that all heat transfer devices, thermal insulation,
 

and reflective coatings are adequately designed and will not fail
 

to provide the necessary heating and cooling to the LLV systems
 

which require it.
 

Finally, the last consideration will be to determine whether
 

or not the existing safety factors are sufficient to offset the
 

threat of any possible single point Criticality I failure.
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III.43 . LLV Environment
 

In order to better evaluate the single-point failures and
 

overall reliability of the LLV, cognizance should be taken of the
 

environment the LLV will experience. Included here are consid

erations of the lunar surface environment since a study of that
 

environment and its effects on the LLV falls within the realm of
 

two of the system design groups who were evaluating the effects
 

of a ninety day lunar survival capability on the LLV, Another
 

reason for not considering the lunar surface environment is that
 

only a nominal amount of equipment will be required to operate
 

and that their failure will normally fall within the category of'
 

Criticality III. Hence the discussion is restricted to the cis

lunar environment where all systems'must function. This environment
 

must be considered to see what possible effect it can have on the
 

LLV systems and their failure modes.
 

The first consideration is the almost perfect vacuum exper,
 

ienced by the LLV. In this vacuum materials with high vapor
 

pressures will sublimate or evaporate rapidly, with the magnitude
 

of the effect increasing with increasing temperature. In plastics,
 

the loss of plasticizers by evaporation causes cracking, shrink
 

ing, and a significant increase in brittleness.
 

In the dislunar vacuum, adjoining solid surfaces can become
 

cold-welded after'losing their absorbed gases. Thin films of
 

soft metal must be used to prevent this from occurring. Also, in,
 

organic coatings with low vapor pressure should be applied to
 

materials particularly susceptible to evaporation. One can con

clude that the dislunar vacuum condition.does not appreciably
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affect either the LLV or its reliability.
 

The second consideration is the problem of solar electro;
 

magnetic radiation. The solar constant has the value Q,14w/cm2 .
 

Most of this energy in the solar spectrum is generated by par-,
 

ticles having associated wavelengths of 0.3 to -4.0 microns with
 

only one per cent of the solar energy falling outside of those
 

bouhds. 

The ultraviolet and soft X-ray-components of the solar specZ
 

trum do not fall within the category of what one classifies as
 

penetrating radiation. The properties of metals are not signifi
 

cantly changed by these radiations. However, this radiation is
 

intense enough to cause damage (failure) to organic polymers and
 

certain unprotected glasses. Since there is no susceptible mater,
 

ial on the unprotected surfaces of the LLV one concludei that
 

solar electromagnetic radiation will not be responsible for any
 

single point failures.
 

The third environmental consideration is that of penetrating
 

radiation. Penetrating radiation is comprised of cosmic rays, and
 

solar flare radiation. One differentiates penetrating radiation
 

from the above-mentioned solar electromagnetic radiation, because
 

the penetrating radiation is capable of passing through the ex

terior of the LLV and damaging the electronics and other sensitive
 

internal systems. Semiconductors and organic materials are par

ticularly susceptible to failure due to the effect of the pene

trating radiation. The effect of the penetrating radiation on
 

the LLV semiconductor devices results in an increase in the current
 

leakage (Gamma ray effect). The lattice structure of the
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semiconductors can also be damaged by the remaining components of
 

the penetrating radiation. High energy protons, electrons, and
 

fast neutrons are capable of penetrating the LLV to cause atomic
 

displacement and damage to the lattice structure of the semi
 

conductor devices. In organic materials drastic physical changes
 

in the cross-linking and scission molecular bonds occur. The
 

electronic circuits are affected by a lowering of input and output
 

inpedances.
 

Thus it is recommended that all non-redundant semiconductor
 

electronics be given some degree of shielding from the effects of
 

the penetrating radiations. The energy of these penetrating par
10
 

ticles can attain energies of 10 Bey and travel with velocities
 

approaching the speed of light. Fortunately most of the pene

trating particles-mainly protons-:-have somewhat lower energies.
 

It should be noted that after a solar flare intense fluxes of
 

these particles appear in dislunar space.
 

The final consideration is that of the meteorite problem.
 

Micrometeorites are of the order of a micron in diameter and
 

travel .with velocities up to 70 km/sec. A micrometeorite collision
 

with the LLV will result in the explosion of the micrometeorite
 

on contact. This will lead to pitting of the LLV surface, Dut no
 

system failure. The probability of a single point failure due to
 

a micrometeoric impact is virtually nonexistent.
 

A single point failure due to a collision with a larger
 

particle, or meteorite, is also an event of extremely low probabil

ity even though meteor showers capable of causing such damage have
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been detected by earth orbiting satellites, Thus a statistically
 

calculated risk is involved. It is recommended that sensitive
 

equipment be placed in a protective configuration in order to
 

protect the equipment from possible failure due to meteoric col

lision without having to increase the weight of the LLV,
 

lO-3 5 Single Point Failure Significance
 

The most important objective a study of this type can
 

achieve is the elimination of certain single point failures
 

which can be achieved without significantly affecting the landed
 

weight or capability of the LLV. Usually this would consist in
 

removing poorly designed, for a specified mode of operation, com
 

ponents from the LLV and replacing them with better designed
 

items. On the whole, this has been accomplished in the design
 

of the LLV as a consequence of the utilization of a large quan
 

tity of off-the-shelf qualified hardware designed for similar
 

purposes. The hardware in these components are extremely reli
 

able. The systems on the LLV, where correctible single point
 

failures appear more frequently, are associated with the new
 

portions of the design such as the landing gear deployment me,
 

chanism. These single point failures are not due in any way to
 

some inefficiency on the part of the designer, but to a lack of
 

qualification testing. The qualification testing would point out
 

the weak points in the design and give the designer an indication
 

as to what subsystem should be redesigned, or where to add redun

dancy.
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On the LLV most single point failures are associated with
 

grossly overdesigned systems. For instance, there are a number
 

of single point failures associated with the helium supply sys

tem. Most of these failures are caused by bursting or leakage.
 

However, the maximum operating pressure of one of the vernier
 

system helium tanks is 4500 psig while the burst pressure is
 

8900 psig and the tank has been proofed at 6670 psig. Thus this
 

single point failure associated with the helium tank constitutes
 

a single point failure for which no redundancy need be provided.
 

It would be a case of poor engineering design to provide a re,
 

dundant helium tank to eliminate this single point failure,
 

There are also single point failures associated with what
 

is probably the safest and most reliable piece of equipment on
 

the LLV; the high pressure tubing. The situation in this case
 

is just an exaggerated example of the single point failure con

ditions associated with the vernier helium tank. The maximum
 

operating pressure of these high pressure lines is 4150 psig,
 

the proof pressure is 9000 psig, and the demonstrated burst presT
 

sure is 36,200 psig. Thus in this case one deals with a system
 

in which the force, required to bring about a single point fail

ure by rupture, is more than eight times the maximum force the
 

system sees when it is operating. Here again it would be ridicu7
 

lous to include redundancy in order to eliminate the single point
 

failure mode.
 

To further illustrate the point of view adopted here, it will
 

serve to present the example of the vernier engine system. It is
 

assumed that the loss of any one of the four vernier engine Qlus7
 

ters would result in the loss of the spacecraft. A study of the
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dynamics of the spacecraft yields the result that in certain
 

situations it will be -possibleto complete the mission (primarily
 

the landing) with one vernier cluster inoperable. In doing so,
 

however, one puts an excessive burden on the RCS system for sta

bilizing the LLV, puts an'excessive burden on the fuel reserves,
 

due to the LLV now having to overcome large gravity losses, and
 

precludes a program of sufficient complexity to control the LLV
 

under these conditions. Other problems also appear such as, the
 

LLV will not be able to land as accurately as with all four clus7
 

ters operating, will not be able to perform the hover operation,
 

or have adequate site redesignation capability, Thus one must
 

assume that the failure of a single vernier engine cluster in
 

duces a spacecraft failure of Criticality I.
 

Some other worst case assumptions that are made here are
 

that fuel or oxidizer leakage tin the RL-'0, vernier, or RCS
 

engine systems) is a single point Criticality I failure. Also,
 

the explosion of any engine (Vernier, RCS, RL-10) is a Criticality
 

I single point failure.
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10.3.6 Discussion of the LLV Single Point Failures
 

The problem of bursting occurring in the helium high pressure
 

system has already been considered from a failure standpoint.
 

The problem to be considered here is that of leaking in any of
 

the helium common manifolds of the regulator bellows, valves,
 

pressure transducers, or high pressure lines associated with the
 

vernier or RCS engine systems. A failure in any of the above
 

mentioned items could cause propellant backflow leakage from the
 

propellant tank bladders through the check valves. This leaked
 

propellant will eventually enter the common manifold. If, on the
 

other hand, the helium isolation solenoid valve is opened subse

quent to the above leakage, some of the propellant which has ac

cumulated in the common manifold will be injected into the wrong
 

tank causing a hypergolic explosion and loss of the LLV,
 

Even if no failure of the common manifold occurs, a com

parable explosion may occur. In this situation either the tank
 

bladder, or the check poppet valve may fail. This induces a
 

pressure differential, due to the thermal expansion, between the
 

fuel and oxidizer. This induces a transfer of fuel or oxidizer
 

through the common manifold to the complementary tanks, initiating
 

the hypergolic explosion.
 

These single point failures can, for the most part, be elim

inated. The removal of this type of Criticality I single point
 

failure can be accomplished in a number of ways such as positive
 

separation of fuel and oxidizer. This results in increased
 

mission reliability with no significant increase in weight or
 

complexity.
 



TABLE 10.3-1 FAILURE MODE AND EFFECT ANALYSIS (page 1 of 8)
 

Name Failure Mode. Failure-Effect \Failuxe\xCuse 

This column iden- This column is re- This column lists This column lists the 

tifies the hard- lated to the sys- the effect of the possible means of in

ware set to -tem function. function failure ducing the failure, or 

accomplish the Generally, the on the LLV and/or what hardware must fail 

function, failure modes can its subsystems, to produce loss of 

be classified into and indicates the function. 

three classes: criticality. 

a)Function failure 

b)Premature func
tion shutdown 

c)Inadvertant func
tion operation 



Name 


RL-10, Vernier, RCS 

Thrust Chamber 


Vernier, RCS, heli-

um tanks fill and 

drain coupling 

(used for filling 

and draining the
 
helium tanks)
 

Helium Solenoid 

isolation valve 

(Vernier-RCS) 


Helium Pressure
 
Regulation 


Expulsion Tanks 

Oxidizer and fuel 


Failure Mode 


Rough combustion: 

Injector failure: 

Burn through:
 

Rupture 


Rupture 


Rupture 


a)Rupture of oxi-

dizer tank wall 

b)Rupture of fuel 

tank wall 

c)Leakage or rup-

ture of propellant 

outlet or propel-

lant vent connec-

tion 

d)Bladder leakage 


Failure Effect 


Loss of thrust (I) 


Depletion of heli-

um in tank, loss of 

propellant supplies
 
(I)
 

Depletion of heli-

um supply; loss of 

propellant (I)
 

Depletion of heli-

um and loss of pro-

pellant (I)
 

a)Loss of propel-

iant system 

Probable rupture of 

adjacent tank (I) 

b)Same as a) (I) 


Failure Cause
 

Various subsystem in
adequacis
 

Understrength materials
 
and processes
 

Substandard processes
 
and materials
 

Substandard materials
 
and processes(
 

a)Stress Corrosion
 
Temperature changes
 
Overpressure
 
Understrength materials
 
and processes
 

c)Loss of propellant b)Same as a)
 
system, explosion c)Manufacturing, instal
of propellant lation, or handling
 
d)Excessive helium error.
 
in the propellant d)Flexing, sharp edges,
 
supply lines (Crit- Metalchips, Pressure
 
ical engine condir differential, Sloshing
 
tion Stress.
 
Filling of propellant
 
manifold with helium
 
(loss of system) (I)
 



Name 


RL-10,Vernier, 

RCS Engine 

assembly 


Vernier-RCS-

RL-10 Switches 


RL-10 Gimbal 


RL-10 Separation 

Pyrotechnics 


Failure Mode 


a)Explosion 

b)Engine valve rup-

ture or external 

leakage 


One of the engines 

is not inhibited 

during the power 

phase up. 


Gimbal actuator 

clutches are not 

energized 


a)Premature firing 

b)Failure to sep-

arate or late sep-

aration. 


Failure Effect 


a)Loss of Engine or 

Cluster, Shrapnel 

damage (1) 

b)Loss of Engine or 

Cluster, Possible 

explosion (I) 


Engine coils have 

power supplied and 

are capable of pre-

mature operation if 

a second failure or 

transient occurs
 
during warmup (II)
 

Loss of Redundancy 

in Pitch and Yaw 

control during the
 
main retro phase (ex
cessive burden on
 
RCS system) (II)
 

a)Failure to com-

plete main retro 

phase (I) 

b)Inability to land 


(I) 


Failure Cause
 

a)Substandard material
 
and processes: Rough
 
combustion: loss of
 
fuel lead
 
b)Substandard material
 
and processes
 

Failure of an engine
 
on switch in the
 
closed circuit posi"
 
tion, or premature
 
computer command.
 

Defective electronics
 
or lack of commands.
 

a)High temperature,
 
auto ignition;elec
trostatic discharge,
 
b)Degradation of
 
charge during boost
 
heating, no firing
 
current, structural
 
failure (stress corro
sion)
 

Helium Tanks Rupture/Gross Loss of system due to Overpressure, under
Uernier-RCS) external leakage Shrapnel damage--

structural damage to 
strength due to solar 
heating, defective 

payload (1) materials and process
es 



Name 


Helium high pres-

sure tubing and 

components 


Helium low pres 

sure lines and 

compartments
 

Propellant supply 

tubing and compo-

nents (RL-10-

Vernier-RCS) 


Propellant iso-

lation 

Diaphran valve 


Positive expul- 

sion system 


Positive expul-

sion tank 


RL-10 Propellant 

valves and lines 


Failure Mode 


Rupture/Gross 

external leakage 


Rupture 


Rupture/Gross 

external leakage 


Fails closed 


Rupture/Gross 

external leakage 


Bladder rupture or 

gross external 

leakage 


Rupture 


Failure Effect 


Loss of system due 

to Shrapnel damage 

of LLV (I) 


Shrapnel damage to 

LLV CI)
 

Damage to LLV sys-

tems and payload, 

Danger due to ext 

posure and/or fire 

and explosion. Loss
 
of function (I)
 

Discharge of pro-

pellant through 

engine (II) 


Fire, explosion 

(I) 


Discharge of pro-

pellant through 

engine (II) 


Explosion, shrapnel 

damage 


Failure Cause
 

Overpressure r under
strength, substandard
 
materials and process
 
es
 

Overpressure
 

High pressure, solar
 
heating, substandard
 
materials and
 
processes
 

Electronic failure,
 
substandard materials
 
and processes
 

Overpressure, under
strength materials,
 
stress corrosion,
 
solar heating
 

Pressure differential,
 
materials and pro
cesses
 

High pressure, vent
 
failure, solar heating
 
Stress concentrations
 



Name 


RL-10 Gimbal 

actuator, gear-

train and asso. 

Gimbal components 


RL-10 Gimbal 

actuator rod 


Helium Pressuri-

zation system 

valves and pres-

sure regulators
 

RL-10 turbopump 

assembly 


RL-10,Vernier,RCS 

shutoff valves 

and pumpvalves 


Engine pressure 

relief valves 


Automatic 

sequencer 


Failure Mode 


Jamming 


Frozen 


Clogging, freezing 


Mechanical failure 

(explosion) 


a)fail open: valve 

rupture, jamming 

b)fail closed: jam-

ming, gate deforma-

tion 


a)fail closed: me-

chanical jamming 

b)fail open: me-

chanical jamming 


Relay open, closed 

or shorted. Diode 

open or shorted. 


Failure Effect Failure Cause
 

Loss of ability to Foreign matter, sub
gimbal the RL-10 en- standard materials and
 
gine (no pitch or yaw processes, solar heat
control) (II) 


Loss of RL-10 pitch 

and Yaw control (II). 


No Pressure (I) 


Loss of propellant 

pressure (explosion)
 
leakage (I)
 

a)Engine flames out 

(I) 


b)Fuel loss, thrust 

chamber cool down 

prior to spark (II)
 

a)Excessive pressure 

Possible bursting 

(II) 

b)Loss of pressure 


Sequencing function 

failure(i.e. failure 


ing
 

Metal chips,inadequate
 
materials and process
es, high or low temp
eratures
 

Foreign material,
 
temperature effects,
 
electronics failure
 

Impeller sear failure
 

Electronics failure,
 
computer signal fail

ure,substandard mater
ials and processes
 

a)Freezing or contami
nation
 
b)Freezing or contami
nation
 

Substandard materials
 
and processes, vibra

to pressurize open or tion and shock
 
close propellant iso
lation solenoid valves;
 
backflow of propellant
 



Name 


Automatic
 
sequencer (contd) 


LLV Shroud 


RL-10 Umbilical 

Guillotine 

(Disconnect) 


Landing gear 


Failure Mode 


Fail to separate 

from LLV 


a)Shattering of 

backplate or head 

assembly by explo-

sive charges 

b)Rupture;deforma-

tion of housing 

c)failure to fire 

d)Premature firing 


Fails to deploy in 

landing configura
tion
 

Failure Effect Failure Cause
 

into empty tank, loss
 
of pressure and engine
 
shutdown, premature
 
sequencing. (I)
 

Inability of LLV to Explosive bolt failure
 
function (1)
 

a)failure to separate Temperature effects,
 
(I) vibration, electro
b)Blast or shock dam' static charger sub
age to LLV (I) standard materials and
 
c)Failure to separate processes, etc.
 
(I)
 
d)Loss of RL-10
 
function (I)
 

Inability to land
 

The failure of any unit of the LLV structure at any time jeopardizes the mission suc
cess of the LLV and may lead to a failure of more critical structural components. Thus
 
any structural failure is Criticality (I).
 



Name 


Oxygen and hydrogen 

tanks, high pressure 

lines, fittings for 

fuel cells. 


Circuit Breakers 


Diode 


General Electronics 


Antenna 


IMU 


Failure Mode 


Rupture/excessive 

external leakage 


Fail shorted to 

ground 


Fail shorted to 

ground 


Inability to 

turn switches off 


Structural or ma-

terial failure, 

bad breakage 


a)Loss of power 

failure to powerup 

b)Failure to com-

mand IMU to action 

c)IMU fail to pro-

vide total atti-

tude and AV info 

d)IMU program loss 

of function or im-

proper function 


Failure Effect 


Structural damage due 

due to fire and ex-

plosion (I) 


A sustained short
 
drops voltage on AC
 
busses to a value
 
where AC loads cannot
 
continue to operate
 
(i) 

A sustained short
 
would result in loss
 
of DC main bus or loss
 
of battery relay bus
 
with loss of fuel cell
 

Excessive power drain 

(I or II depending on
 
the specific.occur
ance)'
 

Loss of Earth commu-

nication (I man-asso. 

II man-independent) 


a)Does not provide AV 

parametersretros 

burn time, Gimbal pos-

itioning, etc. 

b)Loss of function 


Failure Cause
 

Substandard materials
 
and processes, high
 
temperature, sloshing
 
stress
 

Faulty switch(es)
 

Substandard materials
 
and processes, stress
 
corrosion
 

a)Powpr supply fail
urebroken wire(s),
 
over heating
 
b)Power supply fail
ureswitch/relay fail
 

c)Loss of altitude in- in open position,
 
formation,loss of broken wire(s)
 
thrust information, c)Temperature control
 
loss of steering con- failure, electronic
 
trol mechanical failure of
 



Name 


IMU (Contd) 


Celestial Sensor 


Flight Computer 


Fuel Cell 


Battery 


Failure Mode 


a)Failure of dust 

cover to eject 

b)Shaft and trun- 

ion drive fails 


Failure to provide 

AV, altitude and 

engine commands 


Loss of power 


Loss of power 


Failure Effect 


d)IMU could be 

torqued or will not 

yield correct para-

meters 


(I) 


a)Loss of function 

b)Loss of function 


(ii) 


Inability to con-

trol LLV (I) 


Loss of redundant 

-power (II) 


Insufficient power 

for peak demand 

period (I)
 

Failure Cause
 

platform stabilizing
 
circuitsfailure of
 
800 cps power which
 
excites resolvers,
 
failure of IRIG
 
torque circuit, 52
 
fail open
 
d)Defective-power sup
ply; logic, switch, or
 
wiring defective
 

a)Dust cover mechanism
 
mechanical failure
 
b)Mechanical gear box
 
failure, electronic
 
failure of motor drive
 
system
 

IMU failure, associa
ted subsystem failure,
 
power failure
 

Value failure, sub
standard materials and
 
processes
 

Temperature control
 
failure, Diode failure
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The major items on the LLV have now been covered in the
 

failure mode analysis, / It was not possible to cover all the com

ponents involved in the LLV design. The systems which remain to
 

be looked into in detail are the interface, landing equipment,
 

telecommunications, power, sequence and timing, guidance and cons
 

trol, radar, thermal control, retropropulsion, reaction control
 

system; gas jet system, packaging and cabling, and the data
 

coupling unit.
 

In order for the failure mode analysis to be used for mini
 

mizing mission failures, the failure mode analysis should be car

ried to the detail level. The failure causes should be traced
 

down to the components responsible, and the single point failure
 

should be corrected there, if possible.
 

This is not possible in our -study. Making a.conservative
 

estimate, there will be approximately 100,000 parts on the LLV
 

and 35,000 of these will be electronics parts. Thus it is obvious
 

that not only is it impossible to do a failure mode analysis on
 

all these items, but it is doubtful whether or not they could even
 

be itemized.
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