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SUMMARY

Within the past decade considerable changes have occurred in the theoretical
framework underlying modern control theory synthesis and analysis. Until re-
cently, the traditional approach to formal theory in guldance and control has
assumed as a tool linear differential equations in the Servomechanism concept.
Based on certain mathematlcal developments, there has been a shift in theoretical
interest from classical stability analysis to precise statements of system per-
formance requirements and particularly specifications of optimal control systems.
Modern control system theory, based primarily although not exclusively on the
calculus of variations, provides formal, rigorous, and exact statements of system
performance optimization.

Within the framework of current modern optimal control theory, the approaches
of Pontryagin, Bellman, and Kalman are presented. Expansions to cover the case
of adaptive control are examined. | These developments are simply recorded, no
attempt is made to extend, or expand, or present original theoretical developments.
It is noted that there are a number of problems in the applications of these for-
mal mathematical models ineluding difficulties in defining the physical problen,
computational requirements, introduction of feedback control, and proper selection
of the performance index.

The major problem of interest in;this report is the application of modern
control theory “to the case of manual control systéﬁs.v First, and foremost, is
the analytic and design problem of the allocation of control function either to
man or to machine. In the past (and present) man's function in guidance and
control has been allocated largely in haphazard and non-formal ways. Modern
control theory may provide a formal structure from which rational allocations

may be made.

It is also interesting that beginning with the framework of modern control
theory certain direct implications can be drawn to the nature of the human's
control task and crew station design. In some cases, for example, crew station
displays are required that do not differ from previous display technology, but
in other cases rather different tasks and hence display forms are suggested.
Three specific cases are noted: (1) display of the state vector, (2) "quickened"
displays, and (3) display of switching curves.

A difficult methodological problem in manual control system studies has
been the selection of the appropriate performance index or indices. In the
past, the experimenter has chosen his measure set primarily based on his
personal criteria. Moderm control theory provides a rather rigid set of
requirements for the specification of the performance index which may influ-
ence considerably future performance measurement techniques.

In the general area of manual control system research, the most active
single topic is the development of formal theoretical models for the des-
cription of human performance per se. Modern control theory has implications



here, and the distinction between the transfer function and state vector re-
presentations are discussed. One particularly interesting problem is that
of the inverse optimal control problem.

DESIGN OF MANUAL CONTROL SYSTEMS

Modern Control Theory

Until recently, the traditional approach to formal theory in guidance
and control has assumed as & tool linear differential equations within a
framework of the servomechanism concept. However, stringent system per-
formance requirements and ' radically increased hardware camplexity have led
theorists to attempt mathematical representations of control systems that
cannot be reasonably and usefully approximated by linear techniques. Thus,
modern control system theorists are becoming much more concerned with the
formal theory of nonlinear systems, Further, modern control system theor-
ists have begun to evaluate the conceptualization and construction of
adaptive control systems.

Most important of all has been a shift in theoretical interest from
stability analysis to precise statements of system performance requirements.
All current major theoretical efforts are directed toward the definition of
optimal control systems. Modern control system theory, based primarily
although not exclusively on the calculus of variations, provides, formal,
rigorous, and exact statements of system performance optimization.

Manual Control Modes

As a primary element in most past guldance and control systems, the
human operator remains an important potential design component in future
control systems. While over the past decade many guidance and control
systems have been predominantly automatic, there is an increasing tendency
to re-introduce man into control systems where automatic control techniques
have been paramount.19’2° Whatever course future design may take, it seems
reasonable to assume that manmual modes of control will continue to be of
interest. Accepting this assumption, it is of value to trace any relation-
ships between modern control system theory .and the more particular problem
of manual control. Among several, three areas may be noted:

1. While modern control theory establishes an exact framework for
system optimization, none of the current theoretical variations specify the
mechanisms by which system requirements are to be achieved. That is, the
form of the "control function" may be theoretically defined, but the hard-
ware mechanization of that function is not. In some cases, indeed, the
rhysical control function may be quite difficult even to conceptualize. At
any rate, in preliminary design one is free to consider a wide spectrum of
control techniques ranging from automatic, semi-automatic to manual control
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modes. Thus, one is led directly to the basic human factors problem of the
allocation of human control function.

2. If modern control theory requires a given control function to be per-
formed, it will follow that certain specific types of control tasks will be
required. Given a manmial or semi-automatic control mode, specific tasks will
be generated for the human controller. As will be shown, the nature of these
tasks are often quite unmusual when compared with conventional human controller
tasks in past systems. Further, as should be expected, particular display-
control configurations needed to perform these tasks will differ from past
basic display and control designs.

3. Apart from the systems context, quantitative theory of the human
per se is of interest. To date, the major theoretical advances in the for-
mal specification of human controller performance has come from the desigib-
ing function variation of conventional servomechanism analytic methods.

In the sense that modern control theory attempts to provide a theoretical
framework for optimal, adaptive, and nonlinear systems, the question is how
such techniques might apply to that most adaptive nonlinear, and sometimes
optimal system - the human controller. 1In short, how adequately and use-
fully do these models serve to represent human control performance? Thomas
has explored this question at some length with respect to two techniques:
Bellman's Dynamic Programming and Pontryagin's Maximum Principle. As will be
noted, the general theoretical problem is the comparative evaluation of the
state vector representation with the conventional transfer function approach.

Ultimately, the objective of modern control system theory is improved
analysis and design of future control systems. Insofar as the human control-
ler may play a role in the mechanization of these systems, it is important to
explore the possible conceptual and formal bridges between modern control
system theory and the allocation of control function whether it be autamatic,
manual, or - more probably - some combination of both,

MODERN OPTIMAL CONTROL THEORY

It will become quite apparent that modern control theory is not a clear,
cohesive, and unified domain of structured knowledge. It is, rather, an
evolving set of concepts and techniques with limited to very broad scope and
application. One attribute found throughout, however, is that the mathe-
matics is depressingly formidable to the uninitiated. | Since the essence of
modern control theory lies in the mathematical superstructure, at least some
elementary notions and operations must be stated. It should be noted that
these are indeed elementary with respect to the full complexity of this
theoretical work. But it is only fair to add that the phenomena to be mod-
elled - as we understand them - are in themselves complex.



A Conceptual Framework

The State Concept. The concept of state is fundamental to the modern
description of dynamical systems; it is, however, essentially a primitive
concept not susceptible to exact definition. Nevertheless, one can attempt
to give a definition to help establish the role of the concept. Kalman,
for example, gives the following definition: '"The state of a dynamical
system is a minimal set of numbers which, specified at any given time, suf-
fice to determine completely the future evolution of the system, provided the
future forces acting on the system are known." In short, if one separates
the object and its environment, the state of the object is a full set of des-
criptors pertaining to the object and when combined with knowledge about the
environment determines the future behavior of the object.

The concept of state is essentially the same as employed in the class-
ical Turing machine and in Shannon's information theory. The Turing machine
is a discrete process where the output at time t and the state at time t+1
are determined by the state and input at time t. The state equations for
such a machine are given by:

St+1 £ (St , ut)

t=0,1,2...

vt g(sy , ug)

where 5¢ , u , and y gre the state, the input, and the output respective-
ly. Since continuous-time differential systems are of principal interest,
the discrete equations may be géneralized to.

%SS = s = ¢ [s(8), ut)]

y(t) = & [s(t), u(t)]

For a first-order ordinary differential equation, x = Kx, it may be seen
that x is the state variable. For a second-order differential equation,

X + Ax + Bx = f(t) , this can be rewritten in the following form letting
X) =X Xy = X3

xl = x2
X5

- Ax, - Bx; + £(t)




or, putting it into matrix notation:

xl 0 1 X 10}
= X +

x, -B -A x, £(t)

x x

1 .
x= x' = l:xl X, ] x=1 .1
. 0 1 0
x = Kx + F(t) K = F(t) =

-B  -A f£(t)

where xI is the transpose of x , i.e., has rows and columns interchanged.
Here the state of the dynamical system is given by a two-element column
matrix, or vector, x , composed of x; and x, - the position and velocity

of the object. Thus, x is called the state vector. For an ordinary differ-
ential equation with constant coefficients, the state is, as one might expect,
described by the same specifications that are needed as initial conditions to
solve the differential equations. Here x will normally be taken as the
state variable, and differential equations will be written as: x = f(x,u).

It should be understood that x is generally a vector of many components,
and the differential equation is actually a set of simultaneous differential
equations.

A dynamic system will ordinarily change state with time, and therefore
one will be interested in specifying a particular state at a particular time.
To simplify communication, the combination of state and time (x,t) is called
a phase. Also, the total range that the state variable x may take is
referred to as the state space or phase space. The mathematical methods
using the state vector representation are commonly called state-space or
state-variable techniques.

Policy Space and Performance Index. In control theory one is for the
most part interested in finding a particular input (control, or control
input ) which will cause the state of the system to change in some desired
manner. It is frequently a requirement to assign an appropriate control
input to each possible state. The functional relation of input to state is
called a policy; /in control engineering, this relation is often called the
the control law..




Much of modern control theory assumes in advance that the system engi-
neer can specify completely and quantitatively all system performance
tradeoffs. Thus, he must be able to give an equation from which can be com-
puted a single number, or performance index, rating the system. In flight
control, for example, this may mean combining into one number the effect of
error in maintaining a desirable trajectory, the amount of fuel used, con-
trol action, the time to reach terminal conditions, the error at the termin-
al state, etc, While the problem of specifying a performance index will be
discussed in detail later, it is evident that one would normally have
trouble defining such an index. However, it may seem reasonable for the
theorist, developing a quantitative theory for optimal system performance,
to expect the system designer to specify what optimal performance is.

The Fundamental Optimal Control Problem. Therefore, it is assumed
that the object to be controlled (sometimes called the "plant") is (1) des-
cribable by a system of differential equations, (2) the initial state is
given, (3) the control variables (u) are identified and any control limit-
ations or constraints are specified, and (4) the performance index (J) is
defined. For example:

¥ = f(x, a, t)

xT(0) = xty = I:xl (0)s x5 (0) 5 ovuy x (0)]

[?l s Uy 5 wes ué]

tf
J=f f (x,u, t)adt
10

u'(t)

is the minimum set of equations satisfying these four conditions.

The optimal control problem can then be stated: Given any initial
phase, find a corresponding allowable control that transfers the con-
trolled object to the desired region of the state space and for which the
performance index is minimized. In short, find the optimal policy, the
policy yielding the minimum performance index.

A number of variations of the fundamental control problem have been
treated in the literature differing primarily in the nature of the desired
state change and the specific performance index. A number of classical
problems are shown in Table 1. Each of these problems can be formulated
in terms of the fundamental control problem, and the specific techniques
discussed below are generally applicable. (See Table 1, page T).




Optimization Techniques

The problem of achieving a desired goal in an optimal fashion is obvi-
ously not a new one, and a large number of specific techniques have beea
developed: The techniques for finding maxima and minima taught with the
differential calculus are perhaps the most familiar. Lagrange multipliers
and the calculus of variations are classical approaches. TIterative search
techniques exist for iee]d.ng the optimm using fast computers. There are
many other techniques Y 3 the entire topic of optimization techniques there-
fore is a broad one, and complete treatment is far beyond the scope of this
paper. While the subject has long been popular, in the past decade remark-
able advances have occurred in the mathematical treatment of system ggtim-
ization problems. Russian interest, based on the work of Pontryagin<' and
others, initially far exceeded that in this country and probably still does.16
Of a host of techniques, three will be presented in brief: Pontryagin's Max-
imum Principle, Bellman's Dynamic Programming and Kalman's solution for
linear systems. These appear to represent the most powerful of existing
techniques.

Table 1

Typical Control Problems

TERMINAL CONTROL
Bring the state of the system as close as possible to a given
terminal state at a given terminal time.

MINIMAL-TIME CONTROL
Reach a terminal state in the shortest possible time.

REGULATOR PROBLEM
With the system in some initial phase, return the system to an
equilibrium state so that some integral of the motion is min-
imized.

PURSUIT PROBLEM
Given a moving target, cause the controlled system to have the
same phase trajectory in a finite time,

SERVOMECHANISM PROBLEM
Cause the phase of the controlled motion to be as close as
possible to a desired state time history (a generalization of
the regulator problem).

MINIMUM ENERGY CONTROL
Transfer the system from an initial phase to a final phase with
a minimal expenditure of control energy.




Pontryagin Meximum Prineiple

General Form. Given a system of differential equations with a specified
initial state, constraints that a control must satisfy, and a performance
index (J) with the following matrix form:

“.
~
ct+
~
1

£ (x, u, t); x (0) =xg

te
J =/ O  (x, u, t) at
J 1

Pontryagin's Maximum Principle provides as a necessary condition that a
specific control, u*(t) , is optimum. The Maximum Principle only gives
necessary conditions, not sufficient conditions; the optimal control, there-
fore, satisfies the Maximum Principle, but not all controls satisfying the
Maximum Principle are optimum.

The Maximum Principle requires that a system of auxiliary variables be
formed, sometimes called Lagrange multipliers, that are defined in terms of
the following:

VT

i

(‘I’o s Wq s ¢oe s ‘I’n)
i df '
ax] ¥

With the state variables and the auxiliary variables, a new function, H ,
is formed:

€
"
1

T T

H(\P,x,u):\l’:]::\llf

The state variables and the auxiliary variables form a Hamiltonian system,

lx_j_: = aH ; d‘pi = - aH i = 0, l, coey n.
dt QW i dt dxi

the function, H , is sometimes referred to as the Hamiltonian.

The function H involves the control variable, u(t). The Maximum
Principle states that in order that the specific control, u*(t) , be an



optimal control, it is necessary that the function H corresponding to u(t)
attains its maximm for this control for agll time:

The Maximm Principle is shown in the Appendix with matrix forms expanded.

Rather than giving a direct solution to the optimal control problem
the Maximum Principle produces the result in terms of the solution of
another set of differential equations. Whether or not this system of equa-
tions can be solved depends upon the existence of initial conditions for the
differential equations and the extent to which the equations in the state
variable and auxiliary variable are uncoupled. Often, only initial and
final values for the state variable equations, yielding a two-point boundary
value problem that may be complex. It is possible that no solution exists, or
equally perplexing, that an infinite number of solutions exist. However, the
basic utility of the Maximm Principle approach should not be overlooked:
Even though a complex system of equations may be encountered, the explicit
maximization of the function H is a positive step forward from the implicit
minimization of the performance index. Further, cften the form of the control
law may be derived without actually solving the differential equations.

Bang-bang Control. A class of problems of some practical importance
occurs when the control variable, u(t) , enters the system equations in a
linear manner. The principal matrix equations are:

x = £ (x,t) + g(x,t) u(t) x(0) = x°
te
J = ft 2 (x,t) at

o

The control, u(t), is taken to be bounded, and, when normalized, the con-
straint may be expressed as:
| we) | £ 2

Forming the function H as defined in the Maximum Principle:

n
H= 120 Vi [fi (x, t)"'gi (xyt)u]=A(‘l’:X’ t)"'B(‘I'sx’ t)u

it will be seen that H is maximized when maximum control effort is



expended; that is, when u*(t) = +1 or u*(t) = -1:
u*(t) = Sign B (¥, x, t)

This type of control has been popularly termed "bang-bang control."

It was just noted that the Maximum Principle may specify the form of
control law sufficiently for complete problem solution without solving the
auxiliary set of equations., This is, in fact, the case with bang-bang con-
trol wnen the performance criteria is to achleve a new state in minimal

For a dynamical system such as an inertial space vehicle, the
trajectory of the vehicle for the case of full constant control thrust can
be easily specified. On the phase plane (position plotted against
velocity), the paths for bang-bang control will be segments of parabolas.
If the control objective is to move to the origin of the phase plane (i.e.,
bringing the system to rest at some fixed position), there is only one
parabolic path that will intersect the origin - as shown in Figure 1. The
control task then becomes one of exerting full control force in one direc-
tion until a point on the path intersecting the origin is achieved. The
reverse control force is then used until the vehicle comes to rest.

The solution to this type of problem is given in terms of the switch-
ing curve; in this case, as shown in Figure 1, it is the parabolic curve
intersecting the origin of the phase plane. One only needs to know when
to change the direction of control. For systems described by higher order
differential equations where a higher dimensional space and not just a plane
is necessary to specify system phase, the result is more complicated. For
example, with a third order system, one must change control direction when
a switching surface is intersected, stay in this surface until another
switching curve is intersected, and then follow the final switching curve
to the origin.

Singular Control. Unfortunately, there are cases of linear optimiza-
tion problems where bang-bang control does not apply. Sometimes, the
switching function, B , becomes zero over some finite time interval.
During the interval when B is identically zero, the Hamiltonian function
ceases to be an explicit function of the control variable, u(t) , and the
usual procedure of selecting u*(t) so as to maximize H seems to break
down.

Control during intervals when B = O is termed singular control.
Singular control does not have to be bang-bang; it may be variable cen-
trol such as a linear feedback of the state variables. Thus, the optimal
solution of linear optimization problems may be bang-bang, or scme combi-
nation of bang-bang control mixed with variable control. Instead of a
unique solution, bang-bang control becomes, then, a candidate for the
optimum. EFEach practical problem must be closely examined for possibly
superior combinations of control techniques.
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Case 1: Start
here with u(t) = -1

Case 2: Start
here with u(t) = +1

Figure 1. Phase-plane presentation of bang-bang control
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Bellman's Dynamic Programming

Principle of Optimality. Dynamic programming is a discrete process
designed especially for use on digital computers. In order to derive Bellman's
computational algorithm, the continuous time problem must be converted to
discrete event form. In discrete form, the problem of finding the control
u(t) becomes that of finding the values of u(to), w(tg +8), ..., u(to +na),

and so forth. Rather than attempting to find all the values of control
simultaneously, dynamic programming formulates a sequential decision process,
finding in order one control value at a time until the entire control function
is known.

Bellman bases his technique primarily on the Principle of Optimality
(Bellman and Dreyfus, 1962): "An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first
decision.”" The Principle of Optimality holds whether one proceeds forward or
backward in time. Therefore, it is permissible to attempt to find the last
control decision first and move backward to the first control decision. This
procedure, in fact, is perhaps more common than computing from the first
control decision to the last.

An Example. The fundamentals of dynamic programming are perhaps most
easily understood in terms of a concrete example. Figure 2 shows a simple
trajectory problem where we wish to find one path, moving from right to left,
that minimizes the sum of numbers (the "cost") encountered while going from
A to B. The numbers next to the lines are the costs incurred in taking any
given path. For convenience, a coordinate system is used specifying the
Jjunctions with (0, 0) and (6,0) the coordinates of A and B, respectively.

At each junction there are at most two alternatives. Moving backwards
from the end of the trajectory (B) to the beginning (A), each junction is
labelled with the minimal cost of achieving the terminal point. The optimsal
direction is marked with an arrow. For example, at junctions (5,+1) and
(5,-1) movement to B the choice is necessarily the costs of 3 and 4. Moving
back to junctions (4,+1), (4,0), and (L4,-1), the direction of least cost is
again selected. At (4,0) a choice exists between a cost of 5+4 and 2+3;
obviously one selects the downward direction with a sum cost of 5 (marking
the direction with an arrow). At junctions (k4,+1) and (4,-1) there is only
one possibility with costs of 1+4 and 6+3. Still moving backward toward
the initial point A, at junction (3,-1) the choice is between a cost of
4+5 and 3+9; obviously, one would therefore select the upward direction,
again marking the choice with an arrow. Thus, at every junction, the decision
of optimum path is made simply by comparing two sums and selecting the smaller.

12
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Figure 2. An example of dynamic programming3
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When the entire matrix has been completed, and all arrows have been
drawn for the minimum cost path from A to B, it is, of course, possible to
now start at the beginning (A) and follow the arrows to the terminal state
(B). Further, if some disturbance were to suddenly displace the system
into any unplanned state, the information is still available to decide on
a new optimal path regardless of the state the system assumed.

Computational Requirements. Dynamic programming requires the sequential
comparison of many alternatives, and in fact requires the solution of the
optimization process for every possible initial state. While it may not be
readily apparent, there is a considerable saving over computing and comparing
the cost of all possible trajectories. The process of direct enumeration
expands as the power of the number of alternatives to be compared, but the
complexity of dynamic programming is approximately proportional to the number
of alternatives. As Bellman and Dreyfus3 state: "It is the principle of
optimality that furnishes the key. This principle tells us that having
chosen some initial Xy, We do not then examine all policies involving that

particular choice of Xy but rather only those policies which are optimal
for an N-1 state process with resources x - Xy In this way, we keep
operations essentially additive rather than multiplicative. The time required

for a twenty-stage process is now almost precisely twice the time required
for a ten-stage process.”

Dynamic programming is a computer algorithm that does not depend on the
linearity of the system equations, the stochastic nature of the variables,
or the nature of the performance index. The algorithm can be carried out
given only appropriate tables of numbers. It is, therefore, a very general
technique. The main problem is that very large computer storage capacities
may be required for even relatively simple problems. The storage requirement
is particularly aggravated with high dimensional problems (when the numerical
tables become high dimensional volumes of numbers). On the other hand,
whenever constraints on the control problem are known and given, the storage
problem is simplified. Whenever functional relationships may be given,
mathematical techniques may be used rather than the primitive computer search

technique, relieving some of the requirement for storing some tables of
numbers.

Kalman's Solution for Linear Systems

Khlman'sll result applies to linear systems of any order, with possibly
time-variable coefficients, and a quadratic performance index of the form:

X

A(t) x + 6(t) u

%—xTSx+%ftf E{TQx+ uTRa at
tO

J
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The matrices S, Q, and R must be symmetric, and the inverse of R must exist.
For any system of this quite general form, Kalman asserts that the optimal
control function is a linear feedback of the state vector.ll

w=-Rtelpx
Here the matrix P(t) satisfies a matrix Riccati differential equation:

P=PGRLGTP-PA-ATP-Q B(t;) =5

The Automstic Synthesis Program (ASP). Solution of this type of problem
is facilitated by the existence of a computer program (ASP) that is capable
of giving optimal feedback for high order control systems (15-30). The
designer must provide the numerical inputs for matrices R, S, Q, A(t), and
G(t), but the computer will automstically print out the linear time-varying
feedback gains J2

The ASP is a valusble tool that has achieved success in a number of
applications.29s 25, 13 1In addition to solving problems in optimal control
design, the program can perform stability analysis of linear systems and
synthesis of optimal filters in statistical design. Therefore, it is
possible to incorporate linear feedback in a noisy system with incomplete
feedback of the state vector.

Re-entry Trajectory Control. Use of Kalman's technique might be better
understood through a typical a.p]_)lzi.ca.‘cion.13 Kovatch designed a controller
for a lifting body re-entry vehicle. With an on-board computer storing a
precomputed nominal trajectory and a set of precomputed optimal feedback
gains, the controller operated on the difference between the state variables
and the nominal values. The nonlinear equations of motion of the space
vehicle were linearized about the nominal trajectory to produce a set of
linear differential equations with time-varying coefficients. A quadratic
performance index was used, weighting the terminal error, the deviation
from the nominal, and the amount of control used. Kalman's optimization
procedure, programmed in the ASP, derived the optimal control law as a
linear combination of the deviations in the state variables. Kovatch
concluded that "...using Kalman's optimal control procedure and the Automatic
Synthesis Program one can obtain optimal linear feedback gains for a
complex control problem.” He further pointed out it would be possible,
and desirable, to investigate, with modifications of the ASP, the effect of
random perturbations, atmospheric noise, and measurement of noises on the
operation of the control system.

15



Adaptive Control

Defining Adaptive Control. One of the problems that has perplexed
workers in adaptive control theory is finding a suitable definition to guide
and to constrain their activities. Truxal30 describes an adaptive control
system. as, "A control system which is designed with an adaptive view."

That is, an adaptive system cannot be identified by appearance or performance,
but one must know something about the way it was designed. A feedback
control system is adaptive in the sense that it may operate well in a
changing environment, but KalmenlO objects and states that, "Such a system
may be more properly called insensitive or invariant, rather than adaptive.”

Kalmanl© has given the following definition of an adaptive control
system: "A control system is adaptive if it is capable of changing its
control law as a result of measured changes of the control object and its
environment and in such a way as to operate at all times in an optimal or
nearly optimal fashion." Under this definition, the operation of any
adaptive control system will depend upon two types of data: (1) measurements
of the state variables of the control object which are used to determine
the instantaneous values of control and (2) measurements defining the equations
of motion of the control object and its environment, data which areused to
determine an appropriate optimum control law. Kalman defines the first type
of data as the "dynamic state" and the second type as the "learning state".

Adsptive Linear Systems. Assuming a control object describsble by
linear dynamical equations - which is ordinarily necessary in order to
assure an explicit mathematical solution - the following matrix differential
equations generally result:

(%)

Fx(t) + cu(t) + Jw(t)

il

y(t) = Hx(t)

z(t)

where x is a column matrix of state variables, u is a matrix of control inputs,
w is a matrix of system disturbances, y is a matrix of system outputs, v is
noise or errors in determining measurements of the state indicated as z. This
type of system is shown schematically in Figure 3.

]

y(t) + v(t)

In order that control of this linear system be adaptive, two dynamical
processes must take place simultaneously: (1) based on the control law
existing at a given moment, a control action is derived from estimates of
the state variables of the control object, and (2) the control law is changed
as needed to maintain optimum control based on estimates of the structural
characteristics of the control object and its environment. If the measurement
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processes may be taken as ideal, then all information in regard to state
variables, control inputs, disturbances, transfer characteristics, etc.,

is known, and the problem is reduced to finding a solution to the general
time-varying control problem. That is, 1f all information is available
obviating further measurement and all time-dependent characteristics are
completely known for all time, the optimal solution can be determined
exectly. KelmanlO calls this an ideal adaptive control system. While the
concept of an ideal adaptive system may have importance, most practical
problems requiring the adaptive approach will not permit perfect measurement.

Varieties of Adaptive C'ntrol. The primary differences between adaptive
control systems 1s in the way they acqulire information about the control
object and its environment. Given the required information the remaining
design decisions are more or less determined by conventional servo theory
modern control theory, and good control system design practice. Aseltinei,
in a survey of adaptive control systems, identifies five types based on the
kinds of measurements taken:

l. Passive adaptation: adaptation without system parameter changes,
but through design for wide variations in environment.

2. Input signal adaptation: adjustment of system parameters in
accordance with input signal characteristics.

3. Extremum adaptation: self-adjustment for maximum or minimum values
of some systems variable(s).

L, Svstem-characteristic adaptation: self-adjustments based on
measurement of transfer characteristics.

5. System-variable asdaptation: self-adjustment based on measurements
of system variables.

Assuming Kalmen'slO representation of an adaptive control system, as
shown in Figure 4, passive adaptation should not be classed as an adaptive
process eince there is no learning state and a fixed control law, u(t) = K x(t),
is used which is designed to give good average performance. Input adaptation
is keyed to input signal characteristics such as in automatic gain control
systems. Extremum and system-varisble adaptation are very similar, but were
separated due to the heavy emphasis given in practice to extremum adaptive
systems. In extremum systems, system variables are varied to hunt system
performance pesks. With system-variable adaptation, the same goal is .
sought but performed indirectly by controlling system variables on the basis
of some secondary criteria. In system-characteristic adaptation, the transfer
characteristics are measured by means of a test signal and the control law
varied accordingly.
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Figure 4. Kalman's representation of an adaptive control systemlo
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Examining Figures 3 and 4, it may be seen that the following measurements
may be taken: the input, the disturbance w(t), errors in measurement v(t),
the state variables x(t), and the matrices G(ts, J(t), F(t), and H(t). All of
these must be known or estimated to achieve optimal control, u(t). On the
other hand, each of the matrices or influencing signals may also be the object
of control in order to effect a system with better performance. With this
kind of complexity, a great variety of approaches to the adaptive control
system problem is possible.

Summary. The adaptive control problem may be considered as a step or two
up the hierarchy of control system problems as compared with these problems
cited under optimal control theory. Given a full mathematical description of
a controlled object and the associated environment, one may theoretically hope
to find an optimal control solution. Given full and perfect measurement, but
with an initially unknown system, a completely general technique must be
available to fit any specific unknown system. Further, one must be able to
find the solution quickly in order that the derived control is appropriate to
a particular instant of time. If measurements are imperfect, then the situation
is much more complex; how successful one will be depends entirely on how well
the true situation can be estimated. This is a familiar, but still difficult,
statistical problem.

Current Problems in Application

As may be apparent at this point, modern control theory is not a refined
and mature theory, but is rather an embryo set of principles, theorems, and
rules for special cases. The practicing system engineer cannot, of course,
wait for a refined set of techniques, but must attempt to work with what is
available. The problems of application serve, in fact, to define the current
status of modern control theory.

Chang and Alexandrod point out that there are two principal difficulties
in applying optimal control theories:

1. Physical difficulties: e.g., the existence of random noise and
disturbances, and lack of knowledge and/or change in the plant.

2. Computational difficulties: e.g., the two-point boundary value
problem with the Meximum Principle, and the requirement of large storage
capacity with the dynamic programming approach.

Further, assuming the problems of demonstrating a satisfactory mathematical
solution are solved, the literature indicates that there remains:
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3. Problems of selecting a basis for optimization: e.g., in precisely
defining the performance index.

4. Problems in finding practical and economical ways to mechanize the
theory.

Difficulties in Defining the Physical Problem

Chang and Alexandro include a host of complications under the rubriec of
physical difficulties, but one eritical aspect, which probably affects the
applicability of optimal control theory more than any other, is the problem
of delimiting the physical control. The theories of optimal control assume
that the control problem can be completely defined in mathematical terms;
that is, at least the dynamical equations describing the controlled system
or plant, all system constraints, and all disturbances acting on the system
must be completely kmown.

While this is a serious situation, it is one that the control engineer
faces most of the time in designing complex physical systems. Physical
descriptions of real systems are seldom simple, and the engineer is trained
to avoid unnecessary complications in a sufficient understanding of the
physical process. Therefore, he linearizes and approximates. Further, the
control engineer seldom has full knowledge of the disturbances and inputs
to which his system must react. At the start, then, in using optimal control
theory the control engineer faces considerable equivocation in defining what
it is he wishes to optimize. Rather than one precise physical description,
he usually must work with several imprecise part-descriptions.

Unfortunately, there is a danger that the specific choices the engineer
makes in defining his system may make major differences in the "optimal"
solution. To take a case where the difficulty is clear, consider a given
linear plant where the system equations involve the control linearly. If,
as in virtually all hardware problems, the amount of control is limited
(u< 1, the "hard" constraint), the Meximum Principle is applied, and as
has been shown bang-bang control is a candidate for the optimum control.

If, however, one re-defines the problem, eliminating the constraint on the
control, but weighting the use of control heavily in the performance index
(the "soft" constraint), then it can be reasonably expected that the solution
will require a relatively small amount of control such that existing limited
control will in fact suffice. In the latter case, applying Kalman's result,
the optimal control is a linear feedback of the state variables. Clearly,

a significant difference occurs depending upon whether the "soft" or the
"hard" constraint is assumed. Depending on the constraints chosen, the
optimal control law may be linear or nonlinear. The "hard" constraint may
result in performing the control task in less time, and, therefore, be
preferable. However, the "soft" constraint does not commit the design to
meximum use of control, permitting a reserve for unexpected disturbances.
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In short, optimal control theory does not aid the designer in defining
the control problem, and the best design is probably not derived as an
explicit mathematical solution given by optimal control theory. More
likely the best design still results from an iterative, comparative, and
Judgmental process.

Computational Difficulties

The Maximum Principle. As noted, the solution for an optimal control
in terms of the Maximum Principle gives the optimal control as a function
of the Language multipliers, w . At times, the form of the optimal control
is evident, as in the case of bang-bang control, end the remaining details
can be easily completed. However, 1n the general case, the auxiliary
equations in ¥ must be solved before an explicit form for the optimal control
is available. This is by no means an easy task.

Dynamic Programming. In dynemic programming, a solution is given in
the form of a mapping from state space into a control space, so that each
possible physical state has associated with it an optimal control action.
Mechanizstion invariably involves a digital computer storing the appropriate
control action for any feasible state the controlled object might assume as
a result of control action and/or disturbances. For high dimensional systems,
the total possible states for which one might wish to know the appropriate
optimal control may be extremely large. Even for relatively simple physical
systems, the storage capacity required may be more than that available in
any digital computer. Bellman calls this 'the curse of dimensionality";
however, i1t 1s conceivable that advances in digital computer technology may
alleviate this problem somewhat.

Since the computational problems of dynamic programming and the Maximum
Principle are quite different, it is possible the two techniques could be
combined in a complementary fashion. In just such an attempt, Cheng and
Alexandro? joined the two techniques. The least-cost trajectories in a
small neighborhood of the terminel state can be computed by dynamic
programming without large computer storage capacity requirements. By making
a8 guess and iterating, a few trajectories can be computed from the
auxiliary equations in the Maximum Principle to go from the initial state
to some point within the neighborhood of the terminal state. With a fast
computer, a number of trajectories can be computed before a decision needs
be made, and then the least-cost trajectory from these can be selected.
Because the final point of the Pontryagin trajectory is a finite neighbor-
hood rather then a single point, the trial process mey not be very difficult.
However, this method of combining techniques is not general, and usually
will yield approximate, suboptimal, performance. When the order of the
dynamicel systems is high, when the dynamics are badly nonlinear, and when
the performence index is other than minimum time or a quadratic, the
computational difficulties involved in optimal control theory are severe.
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Requirement for Feedback Control

The simplest mechanization implied by the Maximum Principle is to
build a system which follows an optimum or nominal trajectory. However,
this is an open loop solution in the sense that the trajectory is followed
in a pre-programmed manner - even if closed-loop control devices are
included to drive the system back to the nominal trajectory whenever
disturbances cause a trajectory deviation. A problem with this approach is
that once the system has strayed from the nominal trajectory, the future
optimal path is no longer the pre-calculated one. Further, attempts to
return to the original trajectory may lead to stability problems. A more
desirable system results when the control system is mechanized with the
optimal control as a function of the state variables. Then, if the system
is disturbed from the nominal path, a new optimal trajectory is pursued
rather than returning to the old trajectory.

As Bellman and Dreyfus3 point out, "It is precisely the information
needed to accomplish this - the optimal decision as a function of all
possible reasonable states - that is produced in e dynamic programming
calculation.” This is distinctly an advantage for the technique of
dynamic programming, although the solution as given by the Maximum Principle
may frequently be transformed into the desired form. For linear systems
and a quadratic performance index, Kalman's result gives the control law as
g function of the state wvariables.

Even if the computational difficulties associated with the Maximum
Principle and dynamic programming are solved, a problem still exists in
implementing the closed-loop control law with existing hardware. As
Truxal and Dorato”® state: "In this comnection it should be noted that
the control law is generally a nonlinear function of the state of the plant.
Here two separate problem arise: One is the problem of measuring the state
of the plant, which often requires the measurement of high order derivatives,
and the other is the problem of generating the required nonlinear function
to the plant state."” For a launch vehicle, for example, the state vector
may consist of 14 or more terms, which results in a requirement for sensing
and transmitting 14 channels of information. It is possible that this
complexity is more trouble than it is worth, as Reynolds and Rynask125 note
in regard to re-entry vehicle design, "Adding a differentiating network for
the sideslip signal brings the total number of channels to eight. This is
a lot of complexity. Also, the feedback gains must be programmed as a
function of time or changed in some other manner during the re-entry. This
also adds complexity. The advantages of designing a control system of this
complexity are not apparent in the results.” Since the measurement task
may be severe, the system engineer may seek a suboptimal method that does
rot require feedback of the entire state vector of the system (e.g., Kalman's
ASP may be used to find the optimal linear feedback based on incomplete.
measurement of the state vector).
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Selecting the Performance Index

All present approaches to optimal control theory assume as a beginning
that some performance index is specified. That is, there is some overall
"goodness" scale specified, and the task is to find a control input which
will give a minimum or maximum on this scale. Implied in this assumption
is en ordering of all systems which is complete and specifiable on a single
dimension scale.

The technique of Kalman assumes a quadratic performance index given in
terms of the matrices R, S, and Q. Given these matrices, and the linear
system equations, the Automatic Synthesis Program (ASP) will yield a digital
computer solution for the optimal control law. However, the engineer does
not usually know how to specify the performence weighting matrices Q, R, and
S. He knows that these weightings determine the relative emphasis in the
definition of the optimum for terminal conditions, trajectory factors, and
control usage, but he does not know how to translate qualitative definitions
of "good control" into a quantitative definition in terms of Q, R, and S.
Given the means for finding fast digital computer solutions, he is allowed
the possibility of examining the control system response for a range of
values for each matrix. As Kovatchl3 states: "There is some arbitrariness
in the procedure since one has to specify the performance weighting matrices
S, Q, and R, but this arbitrariness is expected on physical grounds since
vhat msy be considered as good performance for one application may not be
good performence for another. However, with several runs of the ASP program
one soon can see what gives the best performance for a desired mission."

When a performance index is used as a device for picking a system which
is desirable on other, subjective, grounds, the meaning of the term
"optimal control" becomes unclear. However, as a device for finding system
alternates to be subjected to discriminating control engineering judgment,
the technique of using a variable performance index may be very valuable.
Reynolds and Rynask12 used this approach successfully, but were also
somevhat concerned with the nature of the real or ultimate performance index.
They say, "Some of the responses are 'more optimum' than others on the
basis of what we know to be a desirable transient response, although all the
closed-loop responses optimize their specified performance index. The choice
of relative weighting between output error and input gives a wide range of
closed-loop dynamics and there is not a priori basis at present for choosing
the weighting factor." Further: '"Thus the performance index is used as a
performance index - that is, we choose elements of the H and Q matrices to
minimize what we would like to minimize from physical considerations - and
it is used as a 'cut-and-try' parameter. The real criterion of performance
is judgment applied during the 'cut-and-try' procedure."
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Advantages of Optimal Control Theory

It is evident that there remains much to be accomplished in the field of
optimal control theory. However, it should also be apparent that much has
already been accomplished. The comment of Truxal and Dorato®S is appropriate:
"In spite of the difficulties cited...optimal control theory does provide an
organized approach to the design of complex feedback systems. The compu-
tational difficulties encountered should, in fairness, be weighted against the
rather sophisticated nature of the problem considered. Indeed, in many
applications, especially nonlinear stochastic systems, the alternative to
optimal control theory is no theory at all."

A number of specific advantages are pointed out by Tou and Joseph:27

1. It is not necessary to assume a configuration for the overall control
system, but an optimal configuration can be derived. Modern control theory
addresses itself to the synthesis problem directly, whereas past techniques
have been analytical approaches based on an assumed initial form.

2. Extreme difficulties are encountered with conventional techniques
in multi-variable control problems, but the modern approach allows relatively
easy solution.

3. Design of time-varying control systems is facilitated.

4., Contrary to conventional procedures, no assumption is made that
the system operates in a steady state.

5. The necessary calculations are appropriate to a digital computer.
The present status of optimal control theory is such that one must be
dubious about the value of application for the design of high order non-
linear practical control systems. On the other hand, one must be encouraged
by the promise of optimal control theory for future theoretical developments.

APPLICATIONS TO MANUAL CONTROL SYSTEMS

Allocation of Function to Man and Machine

Allocation of Human Control Function. In the synthesis of past hardware
guidance and control systems, man's control function has been largely
unspecified in a formal sense. For that matter, there has been no systematic
vay of assigning control function either automatic, semi-automatic, or
manual. Part of the basic problem lies in the limits of control system
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synthesis techniques. Despite ambitious titles to the contrary, most of
control theory lies in the domain of analysis and not synthesis. That is,
given a fixed and known system configuration, a host of methods exist for
the formsl analysis of system response. However, in the area of synthesis
(that is, starting with system goals and then rationally ordering hardware
configurations to fit those goals), the state of the art is far more fluid
and ambiguous. Synthesis in practice is accomplished by intuition, guess,
and past experience without formal guidelines. Perhaps one of the problems
is that there has been no way of specifying theoretically system goals.

Accordingly, man's function in guidance and control has been generated
largely in haphazard and nonformal ways. At least five informal allocation
techniques can be distinguished in past and present practice based on
(1) what the automatic functions do not do, (2) traditional roles and
preferences, (3) assumptions on the nature of human capasbilities and
limitations, (4) assumed formal descriptions of man's response characteristics,
and (5) direct empirical assaults on the particular system.

1. In many cases, if a subsystem function description was possible,
the control function was routinely automated. That the human controller
might (or might not) perform the same function more efficiently was seldom
considered. The more esoteric functions are given, usually without thorough
analysis, to the human operator. The human operator was (and still is)
relegated to the task of being adaptive, optimalizing, and nonlinear; that
is, in trenslation, he is expected to do what the system designer does not
know how to specify. Frequently, this is a post hoc decision where the
human performs tasks discovered during test and operation that hed not been
anticipated during design. Also, he is expected to perform any control
functions that might be necessary to save the system.

2. The major technique of assigning man's function is that of tradition
and preference. In vehicle control, man traditionally has served as a
prime control element directly controlling vehicle attitude and power., 1In
subsonic aircraft, he also supplied, implicitly in design and explicitly
in flight, the primary guidance function. Excessive attention was placed
on vehicle stabilization and control with far less concern given to the
guidance task; displays for the guidance task, such as position information
and command data, have been accepted only with great difficulty. In the
past fifteen years, flight vehicles and their missions have undergone such
radical change that it is surprising to see the traditional assignment of
human control function still pressed. In some cases, there is serious
doubt as to whether the traditional manual control functions are either
desireable or even feasible.20 Much useless argument has been expended on
this point in the design of space vehicle guidance and control systems;
this effort might have been much better spent considering man for other
more promising and more important guidance and control subsystem tasks.
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3. A third technique is to assume some basic properties of the human
controller and design with respect to optimization of the human function
alone. 'n;ﬂ.s technique is best characterized by the approach of Birmingham
and Taylor', a design philosophy that has had a greater impact on manual
control system synthesis than any other set of concepts. In brief, it
dictates: "Design the man-machine system so that (1) the bandpass required
of the man never exceeds three radians per second, and (2) the transfer
function required of the man is, methematically, always as simple as
possible, a‘ﬁd , whenever practicable, no more complex than that of a simple
amplifier."#(page 8) The problem is to find a design with suitable
performance in which the human operator, acting as an amplifier, can be
imbedded.

Birmingham and Taylor offer a demonstration by choosing a design of a
tracking system designed to follow a constant velocity input. Since an
amplifier simply transmits a signal, possibly modified in amplitude, there
are a number of places in the system where the human controller, acting as
an amplifier, could be placed without changing overall system function.
Further, by block diagram manipulations, a number of equiga.lent systems can
be created that suggest other system roles for the human. If the initial
design is a good one, it is then possible for the human to perform well at
a simple task with resultant excellent system performance. If circumstances
dictate that the operator must assume more extensive participation in system
control, it is also clear what other functions (e.g., differentiation,
integration) he must assume.

A debate that ensued at the time of the introduction of the Birmingham-
Taylor concept arose on the question: If the operator's function is that of
a simple amplifier, or if the function is precisely known, why not replace
him with an amplifier or appropriate required mechanisms? The answer
frequently given is correct: If the human operator can be replaced by a
simple emplifier, one should do just that. This leads to a curious line of
argument. Man's best role is as an amplifier. However, if the system
requires an amplifier, man should not be used.

In practice, the situation is somewhat more complex. In most hardware
systems, there is often a need to satisfy obvious system functions for
which man appears to be the only possible candidate. If, for example, the
human operator is, in addition to simple tracking, serving as a sensor in
gathering information, or serving as a primary source of control power,
or serving as a backup controller in case of automatic system failure, or
is needed for many other virtues accompanying the human controller, then
replacing him requires much more than placing an amplifier in the system
block diagram.
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In design, the qualitative objective in the Birmingham-Taylor approach
is reasonable: Wherever possible, simplify the human operator's task.
This approach has many potential advantages; increased accuracy can be
expected, variability of human performance is reduced, his task load over
several simultaneous tasks is simplified, and so forth. But the quantitative
objective seems curiously impractical. If a function can be clearly
specified to require only amplification, it is doubtful that msn should
perform that function even if he does it well. Further, in the full
complexity of most present day systems, the most common problem is the
question of possibly adapting man to perform essential and difficult
tasks that cannot be automated (if, indeed, they can be precisely described).
The human operator offers many potential advantages for complex system
operation; to stress as his exclusive role simple amplification does not
face the design problem. And that problem is the rational allocation of
control function - automatic, semi-automatic, or manual - to perform the
host of subsystem functions that are characteristic of every practical
system. If the human factors specialist has only a simple amplifier to
offer for the solution of this allocation problem, he does little service
to the design process. In fact, he fails to offer what he really has - a
flexible and effective system element capable of performing well beyond
amplification. Because we cannot, at this time, formally specify his
adaptive, nonlinear, and at least partially optimalizing characteristics,
does not mean we can ignore them. Had we done so prior to 1906 and since
there would still be no manned flight at all.

L. From the theoretical standpoint, it would be ideal if there were
available a formal representation of the input-output characteristics of
the human operator in a mathematical language consistent with the descrip-
tion of the machine elements. In man-machine servo systems, total
closed-loop system analysis would then be possible with good predictions
of man-machine system performance responses. The objective of the work
on the human transfer functionZ, 16 has been to approach that ideal.
Putting aside the problem of the adequacy of any known linear or quasi-
linear transfer function to describe human behavior, it should be noted
that any reasonable representation can serve a useful design purpose on
the allocation problem.

For example, a common design necessity is to make preliminary feasi-
bility Jjudgments as to possible guidance and control concepts early in the
design of a vehicle. Configurations are assumed, and close-loop analyses
performed. If a configuration has manual or semi-automatic modes, a
transfer function of the human controller is essential for analysis. 1In
one exceedingly complex hardware casel9, it was found that the McRuer-
Krendell8 generalized human transfer function could be used to predict
feasible manual and semi-automatic control modes (with verification,
based on subsequent empirical simulation). While the level of prediction
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was weak and essentially qualitative in that only acceptable, marginal, and
unacceptable modes could be classified, this information is itself of
considerable value during initial study and design where the guidance and
control problem is very broad and vague.

5. When all else fails, empirical simulation remains as a major design
tool. For some, full mission simulation is, indeed, the method of choice.
Insofar as prediction from ground-based simulation data to inflight operations
is valid, there is warm comfort in the ability to check human control
functions in a mission-simulated environment. In practice, however, certain
complications arise. First, simulation is extremely expensive and time-
consuming. Unless extensive simulation facilities are immediately available,
construction and programming delays can result in data produced after the
design fact. Second, in full mission simulation, there is seldom the
flexibility one desires in trying, and accepting or rejecting, a variety of
control modes. As a preliminary design tool for the allocation of control
function, the flight simulator is an unwieldly and costly device. For
verification and modification of design and operator training on a proto-
type or operational design, it is an essential part of the development process
for manned flight vehicles.

These methods, then, comprise the bag of tools - mixed with guess,
intuition, and experience - that the control system engineer and the human
factors specialist has available in the design of the total guidance and
control system for a manned flight vehicle. It seems not unreasonable that
we might desire a somewhat more structured approach to control system
synthesis.

Modern Control Theory. And it is precisely a structured approach that
modern optimal control theory attempts to provide. As should be apparent,
modern control theory concentrates on the description of system objectives
end the formal statement of how these objectives can be optimally achieved.
If the current difficulties described in a previous section cannot be over-
come, modern control theory may become an unsuccessful approach to the
design of practical control systems. There is, however, some hope and some
optimism that optimal control theory will be a valid and useful approach
to the synthesis of satisfactory control systems.

1. At best, modern control theory provides & formal statement of the
optimal control process. In practice, it may be that the final synthesis
is suboptimal, or even a combination of techniques with heuristic, iterative,
methods may result. In either case, a precise standard is provided against
which designs can be evaluated.
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2. It has been pointed out that optimal control theory yields a system
description in functional terms without any specification as to the nature
of the system elements that will be required to perform the function. In
this sense, the theory does not infer an allocation of function. However,
the functions to be performed are made quite explicit, and the mechanization
decisions can at least be performed against a precise standard.

3. System design will, in practice, go through a number of iterations
in utilizing and compensating for the characteristics of specific system
elements. In mechanizing a bang-bang control, delays in switching may
cause a limit-cycle behavior so that a saturating amplifier might be used
instead of a pure on-off device, providing bang-bang control in the large
but linear and stable control near the phase-plane origin. If this were
the case, the initial allocation of functions may have dictated a relay for
switching that, under later inspection, would have to be replaced by a
saturating amplifier.

L, 1In every case, the basic allocation of function problem will arise:
Given an optimal control process with specified control functions, what
control mechanization - automatic, semi-automatic, or manual - will be
required to perform these control functions? Again, the control task is
specified in terms of the input (the state vector) and the relation of the
controller output to the input (the control law), but the exact mechanization
may be purely manual, purely automatic, or some intermediate combination.
Through optimal control theory, a functional system synthesis is achieved
which allows allocation of function to man or machine based on capebility to
perform that function.

There are, at the present time, no empirical studies available
establishing optimal control processes and comparing mechanization alter-
natives. Such studies, set in a variety of vehicle and mission contexts,
would be of considersble value not only for the mechanization problem but
also for further practice in the use of optimal control theory. For manual
control, such studies would provide an interesting context for the investi-
gation of manual contributions in & variety of task forms.

Manual Control and Crew Station Design

Manual Control Allocation. There is no universal optimal control, and,
therefore, unique manual control task implied by modern optimal control theory.
A wide range of potential manusl control tasks are possible. For some systems,
the optimal control will be proportional to some weighting (possibly nonlinear
and time-variable) of the state variables. Depending on the nature of control
provided, the constraints imposed, and the performance index, bang-bang
control is another very likely candidate for the optimel control. In short,
the specific control function may renge from discrete to continuous or some
combination (e.g., the singular control problem).

30




At the present time, no thorough classification of the potential range
of manual control tasks has been compiled. The number of application studies
published to date has been small. Some of the control functions studied
would appear to be within the range of human control. For example, one might |
infer strongly that bang-bang control functions such as suggested by the |
Maximum Principle can be performed by the human provided the display of
switching curves is possible (Figure 1). Proportional control is a task
which the human has performed in a variety of vehicle settings. Combinations
of control functions (e.g., the singular control problem) are alsoc well
within the realm of consideration. In some cases, it is difficult to decide
Just what the manual control task would be. The computer algorithm for
Bellman's Principle of Optimality diagrammed in Figure 2 pertains only to
the computational requirements, and does not directly imply the specific
menual control function.

Across this wide potential range of control tasks, it is interesting
to examine the direct implications for crew station design and display-
control techniques that might be required. In some cases, displays are
required that do not differ from previous display technology, but in other
cases rather different display forms are suggested. Three cases may be
noted: (1) display of the state vector, (2) "quickened" display, and (3)
display of switching curves.

Display of the State Vector. As noted several times, optimal control
theory provides control as some function of the state variables. It follows
directly that information with respect to the state vector must be displayed
to the human controller in order that his control function be optimal. The
form of display may vary considerably: (1) A one-dimensional display per
control dimension indicating weighted state variable information, (2) a
multi-dimensional display of state variables with switching surfaces, or
(3) simply individusl display of each state variable.

The latter display configuration would be necessary for full status
display to the human operator. It would be consistent with the custom
originated in aircraft display systems in presenting position, velocity,
and acceleration information in the form of altitude, rate of climb, and
acceleration, and so forth. Perhaps the main advantage of optimal control
theory in this case would be the precise specification of the state vector
and the complete set of information categories that must be displayed. It
would not, however, alleviate the problem of the proper techniques of
displaying this information either in individual displays or in terms of
integrated display systems.

In discussing the problem of the requirement for feedback control, it

was noted that practical control problems may require the feedback of large
numbers of state variables.2” It may not be necessary in practice to include
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all elements of the state vector, and it was specifically noted that Kalman's
ASP could be used to find optimal linear feedback even with incomplete
measurement of the state vector. In the allocation of tasks, it is feasible
to consider distributing the specific state variables between man and machine.
Further, man could provide a multi-mode combination with monitoring of
automatic feedback and possible direct intervention in case of feedback
failure.

"Quickened'" Display. If the optimal control is a linear combination of,
or even a nonlinear function of, the state vector, the designer has the
option of displaying a signal proportional to the desired control. This
type of display would be directly analogous to that term "quickened" by
Birmingham and Taylor*. If the signal did not exceed the bandpass capability
of the human operator, one could be relatively confident that the resultant
manual control system would be optimal. With current theoretical methods,
such a display would demand relatively fixed system response, although con-
ceivably some adaptation might be provided with, for example, changing
performance criteria. There is some danger-in this particular display
technique in that the human controller participates in a rather blind
fashion. Performance may be appropriate for a particular system mode, but,
to provide flexibility and to allow emergency backup modes, display of the
individual state variables may also be necessary.

Display of Switching Curves. A third type of display - switching curves -
is specifically spplicable to bang-bang control. Where bang-bang control is
indicated as optimal or even as a good sub-optimal control, switching curve
display is indicated, and represents a new type of display configuration.
Figure 1 illustrates this type of display.

For second order systems, the display of switching curves to a human
operator is quite feasible since only a plane is required for display.
Happily, Platzere2, 23 has provided direct experimental evidence indicating
that the human operator performs excellently with a phase-plane display.
Since the primary information with a phase-plane display is whether the
system is on the switching curves (or, if not, on which side), it is reasonable
to attempt the control task with a one-dimensional display showing on which
side of, and how far from, the switching curve the system is. Platze
directly investigated this display - called the g-display -, and reported
quite satisfactory human performance.

Unfortunately, higher order dynamical systems require representation
in a multidimensional state space and complex switching characteristics.
A third order system, for example, would require switching in a three-
dimensional volume. A three-dimensional display is feasible, and dimension
reducing techniques should be investigated. However, the situation is
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complex, and higher order systems appear quite intractaeble. With respect to
display mechanization, Doll and Stout! note: "Practical difficulties arise
from the fact that a programmed controller for an nth order system requires
at least an (n-1)-variable function generator. ILack of suitable two-
varisble function generators has hampered even laboratory investigations of
third-order systems."

Controller Design. In addition to influencing information display
requirements, a specific optimal control function is likely to restrict the
class of desirable human operator outputs. Even then, a wide range of
control types might be indicated: (1) pure bang-bang control, (2) linear
control that saturates at some specified control level, or (35 bang-bang
control with a provision for an emergency, reserve, control level. In any
case, given a specific optimal control task, it is reasonable to expect that
the controller characteristics will be carefully tailored to the specific
task. This suggests the possibility both of a variety of controller devices
and precise care in the nature of the allowable control output generated by
the human controller. Traditional practice in the design of control devices
will be of limited aid.

Performance Measurement

The Performance Index. As has been noted, optimal control theory
requires that the designer can specify a single performance index with which
it is possible to order all system designs from best to worst. The performance
index yields a single rating number, but it is possible (and probably
necessary) that it represent a combined weighting of a number of different
performance factors. An example would be generating a single performance
index from a combined weighting of deviation from a nominal trajectory,
control efficiency, and terminal error.

If a fully satisfactory performance index is available, critical
information would be available which is normally unknown in detailed
system design. In the ideal case, the designer allocating control functions
has a precise definition of system goals. If a necessary and sufficient
collection of performsnce factors have been weighted into the performance
index, the designer has in fact generated formal criteria for the particular
tradeoffs to be achieved. This information would be invaluable for
objectively comparing alternative mechanizations.

Current Problems. Unfortunately, the choice of a specific performance
index would appear to be somewhat artificial and arbitrary. Whereas the
technique demands that a precise performance index be specified, the theory
does not aid the designer in selecting one, and he is no more capable of
defining system goals than before the advent of optimal control theory.
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It is true, however, that optimal control theory does provide rather precise
specifications of the functions of particular system elements. The
delimitation of individual system element goals aids in the selection of
performance measures of these particular functions. Given a mathematical
description of the function of a given element - that is, what it should

do - it is usually quite easy to invent measures of whether an element
performs the assigned task and how well. Combining these measures into a
single valid and reliable performance index is a matter that could stand a
great deal more methodological study.

There are some aspects of system performance measurement where modern
optimal control theory does not appear to be of help. As has been suggested
elsewheregl, the system designer is normally interested in general
evaluation criteria for system stability, performence, adaptability,
reliability, and acceptability. Conventional servo analytic techniques
have stressed system stability. Modern control theory obviously centers on
performance although it should be of assistance in defining the requirements
for stability, performaence, and adaptability. In the discussion of
adaptive control, attention was called to measurement of adaptive control
system response (Figures 3 and 4).

However, there are no immediately apparent implications in modern
control theory for the measurement of reliability and acceptance. It is
possible that these criteria may not enter directly into the performance
index. Given a set of alternative mechanisms evaluated by the performance
index, a second evaluation can be made with respect to the relative
reliabilities of the alternates. The cost of the alternates also represents
a significent scale for evaluation. Rather than attempting to incorporate
cost and reliability into the performance index, it is perhaps more
reasonable to add these two as separate and subsequent criteria.

The measurement of acceptability is pertinent only with respect to
manual or semi~automatic control modes, and essentially asks the question as
to whether or not these modes have acceptable handling qualities. This is,
in effect, a judgment of performance, and it seems reasonable to explore the
Possibility of incorporating the handling qualities performance scale in
some way. Past practice in generating handling qualities judgments has been
to find experimentally the direct relation between pilot judgments and
specific aerodynamic parameters. Since these same parameters may be directly
related to the elements of the state vectors in optimal control theory, it
is at least theoretically possible to correlate handling qualities measures
to the state vector. Insofar as applicable literature exists, handling
qQualities data may suggest constraints on both the elements of the state
vector and the control assigned to each state. One advantage of optimal
control theory is that it must deal with the entire policy space. If formal
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correlations are possible between either the state vector and/or the control
space, handling qualities measurement could be applied for the first time

to the performance of the total system rather than to an isolated collection
of opinions on individual aerodynamic parameters.

Somewhat simpler conceptually is to see if the performance index dictated
by modern control theory could be formally related to the existing scales of
handling qualities. If so, the performance index could be directly evaluated
on the basis of handling qualities for every configuration where manual or
semi-automatic control modes were involved. Under this approach, acceptability,
reliability, and cost would be additional evaluation criteria after the per-
formance index had been generated.

Conceptual Frameworks for Manual Control Theory

Transfer Function and State Vector Representation. Apart from the system
context, a matter of no little technical importence is the quantitative theory
applied directly to the description of human controller behavior. To date,
the major theoretical advances have been made within the framework of
conventional servo analysis techniques and particularly in the quasi-linear
describing function approach of McRuer and Krendell©. They have provided
perhaps the most common and certainly the most tested form of transfer
function for the human operator in a tracking task:

c(s Kp 87 (1 + T;8)
sy -~ T+ me) (T + 48)

with the five critical parameters usually labelled: Ki = static gain;
eST = reaction time delay; T;, = anticipation lead time constant; Ty = neuro-

muscular lag time constant; Ty = error smoothing lag time constant. This

transfer function has met with success in closed-loop tracking tasks. It has
been most extensively investigated with only error display and with a single
input and output dimension. The transfer function is expressed in terms of
deviation on the compensatory display.

It has been pointed out that it is possible to represent a dynamical
system as either a high order differential or as a simultaneous system of
first order differential equations. The two forms are equivalent in terms
of predicting the resultant system motion. However, the advantage of using
the simultaneous system of equations is that they clearly indicate the
transition of system states. In the transfer function just given, if the
controlled element is of high order, the state variables are suppressed. In
the state vector representation, the optimal control for a multi-dimensional
system would be expressed as:
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and if the optimal control were a linear feedback, the control would be of the
following form:

_ul (t) | F—kll(t), Kjo(t), «eee, kln(t)1 L]
w (t) kp1(t), kpp(t), «eve, kon(t) x2
| ur (t)_ Lkrl(t)’ Kpo(t), «eees km(t)— _xn—

Such a form gives a direct transfer function representation of multi-dimensional
systems.

It is characteristic of the human controller that he is most commonly used
in multi-dimensional high order systems. At the outset it would seem
potentially desirable to measure the transfer function of the human operator
in the state vector form. The McRuer-Krendel transfer function was developed
for a simple display, a simple tracking situation where information with
respect to the state vector could be obtained only by differentiation of
the input error signal by the human. However, in the complex vehicle case,
the human operator is usually given separate display of the state vector
(e.g. » altitude, rate of climb, acceleration, etc.). Optimal control theory
would indicate that the control should depend upon this information, and it
is certainly reasonable to assume that the human operator uses this information
in the multi-dimensional control case.
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It can therefore be contended that an expression of human operator
control would most naturally be given as a function of the state vector.
This in effect would be a direct mapping of a manual policy space, and
would be desirable for the measurement of human operator control behavior.
It would be particularly useful in dealing with multi-dimensional systems
in which the operator is imbedded. If modern control theory is successful,
it would further establish a form for the human operator, as a control
mechanization mode, that would be analytically consistent with that
theoretical approach. To date, there has been no attempt to re-define
human control tasks in this manner. It is probable that one difficulty
will be that detailed available knowledge is not sufficient to specify
the behavior involved, let alone map this control behavior into the
appropriate state vector.

The Inverse Optimal Control Problem. While not directly related to
the mainstream of modern control theory, the following question might be
asked: Given a particular control for a dynamicael system, under what
performance criteria is this control optimal? In the case of the human
controller, the question becomes: Under what performance criteria is his
performance optimal or nearly so? What criteria is he trying to optimize?

If an answer exists for this inverse optimal control problem, it is
probably not unique. In a particular case, some performance index may be
optimized, but very likely other performance indices will be optimized as
well. In fact, it may be possible to generate performance indices that are
optimized by any control chosen. What mekes the problem of direct interest
to manual control is the often observed fact that the human controller,
instructions not withstanding, brings with him a set of strategies which he
imposes on the manual control problem. He can be expected to assume some
performance criteria, which may or may not be the one requested by
instructions.

One particular type of performance criteria is that of the handling
qualities requirements already mentioned. It is usually necessary that a
manusl control system design meet with pilot acceptance. For flight vehicles,
the requirements specified on the control system to elicit pilot acceptance
are referred to as handling qualities requirements. These dictate a match
between the static and dynamic characteristics of the pilot and vehicle.
Reynolds and Rynaski25 comment: "An optimal control system, in order to
provide good handling qualities, must ... satisfy two criteria:

1. The minimum of the quadratic performance index must be obtained.

2. The dynamic characteristics of the resulting system must be
within the area defined by the pilot as desirable.”
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As noted in the preceding section, the problem then becomes one of achieving

a trade-off, in some fashion, between the two criteria. Reynolds and Rynask125
offer three techniques for approaching the problem, but all rest on knowing
the relationship between control and the performance index. In their case,
using Kalman's linear technique, it seemed feasible to select a quadratic
performance index such that the optimal control was one yielding pilot
acceptance.

Standards for Evaluating Tracking Performance. In the conventional
tracking task, there exists frequently the problem of defining goodness of
performance. Inconsistencies between conventional performance measures and
questions concerning the validity of these measures have not clarified this
problem.21 From the point of view of optimal control theory, a number of
interesting questions can be asked. How well can the tracking task be
performed? In what ways are the operator's control functions optimal? Can
the human operator learn to be optimal with different performance criteria?
Objective answers to these questions would be considerably helped if
objective criteria for optimal control performance were available coupled
with a performance index.

The work of Thomas26 was directly addressed to this problem based on
the Maximum Principle and Dynamic Programming. He concluded that these
techniques provided absolute standards "...against which the performance of
a human controller can be quantitatively compared." He created a scale of
manual control efficiency by scaling operator performance resulting in no
control as 0% and performance resulting in optimal control as 100%; thereby
the operator's score could be given on this scale as percent effectiveness.
Obviously, this requires a quantitative performance index defining optimal
control. Measurement techniques of this kind would be necessary to evaluate
quantitatively alternate mechanizations of automatic, semi-automatic, and
manual control functions.

An Evaluation

The development of modern optimal control theory in the past decade
represents a radically new theoretical approach to the description of
complex, multi-dimensional, control systems. It provides a framework for
the direct attack on nonlinear, higher order, and adaptive control processes,

and most important it has as its prime objective the precise statement of
optimal control processes.

Within the context of modern optimal control theory, manual control is
subsumed as a problem in the mechanization of the control. That is,
given the control defined as the optimal, a decision is required as to
whether that control will be mechanized by automatic, semi-automatic, or
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menual control modes. No formal rules have been established on which that
decision can be made. Further, only broad hints of possible applications

of modern control theory to manual control can be given at this time. It is
apparent that much theoretical and empirical work remains to be performed.
A very large investment of effort will be required to evaluate whether or
not optimal control theory is in detail applicable to the problems of manual
control. At this time, it will be a matter for the individual investigator
to decide whether or not such an investment is warranted.
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APPENDIX

Pontryagin Maximum Principle: Matrix Form Expanded

The mathematical expressions used in this paper are predominantly in
matrix notation. It is important that this fact be recognized for a satis-
factory understanding of the optimization techniques discussed here. To

illustrate, the major computational steps for the Pontryagin Maximum
Principle are shown in generalized matrix notation form.

The state vector (x) and the control vector (u) are shown as
arbitrary n and r element column matrices. In practice, each matrix will
contain a finite number of elements corresponding to the significant states
and control dimensions of the system problem. As an example, analysis of
a re-entry vehicle might be noted.

State vector (x). The state vector will consist of important plant
characteristics. For a re-entry vehicle these might be:

x: angle of sttack
x2: side-slip angle
x3: pitch
o pitch rate
x9: temperature
x~: velocity
and so forth as the problem requires.

Control vector (u). For the same re-entry vehicle, the control vector
might consist of:

Uy elevator deflection
Uyt thrust
u3: speed brake deflection

and so forth.
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Performance index (J). The performance index (J) must be a monotonic-
increasing function. Therefore, fO always must be positive. There are,
of course, many performance criteria from which we may select. If performing
the control task in minimal time is selected, this corresponds to f© = 1;

i.e.,
t
J=ffdt=tf-to
t

0

As described in the text, the auxiliary equations must then be formed.
Step (2), below, shows this matrix equation with general elements. When the
indicated multiplication is performed, each row of the matrix takes the form
shown.

The function H 1is next formed (Step 3) by combining the auxiliary
equations with the original set of equations in Step 1. Upon multiplication,
H becomes a scalar, the summation of the product of corresponding Lagrange
multipliers, ¥ , and functions £¢ .

The Maximum Principle (Step 4) states that an optimal control, u*, from
all admissible controls, u, maximizes H .

1. Given (x), (w), (J):

rxo uy fo(x,u,t)
xt Us f1(x,u,t)
x=1 . u=|. f(x,u,t) = | .
= (£1(x,u,t)

) J =f O(x,u,t) at yields X° = £2(x,u,t)
t
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2. Form the auxiliary equatioms:

B . - 7]
= " 3r° el ....3f0
vo ¥0 33 il 3T ¥O0
. . 9% £l . I x1.
v- -| 32 32
. . . o
_ Jln_ _i-n_ .
9f0 rfl ¥
o xh oxn oxt
n hona ——
vi=- of Ve 1=0,1, eeun
a=0 O
3. Combine 1 and 2 to form function H:
9(x,u,t)
1 n
H (%,x,u) =1Tf = E’O, ....,iIJ £ (x,u,t) = 2&‘ £% (x,u,t)
. a=0
fn(x,u,t)

L, If u* is an optimal control, then

H(J!,JL,U.*):M

vhere M is the maximum of H evaluated over all controls, u .
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