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 Abstract—Plug-in hybrid electric vehicles (PHEVs) offer an 

immediate solution for emissions reduction and fuel displacement 

within the current infrastructure. Targeting PHEV powertrains 

optimization, a plethora of energy management strategies (EMSs) 

have been proposed. Albeit these algorithms present various levels 

of complexity and accuracy, they find a limitation in terms of 

availability of future trip information, which generally prevents 

from exploiting the full PHEV potential in real-life cycles. This 

paper presents a comprehensive analysis of EMSs evolution 

towards blended mode and optimal control, providing a thorough 

survey of the latest progress in optimization-based algorithms. 

This is performed in the context of connected vehicles, and 

highlights certain contributions that intelligent transportation 

systems (ITS), traffic information, and cloud computing can 

provide to enhance PHEV energy management. The study is 

culminated with an analysis of future trends in terms of: 

optimization algorithm development, optimization criteria, PHEV 

integration in the smart grid, and vehicles as part of the fleet.   

 

Index Terms—Energy Management Strategy (EMS), Plug-in 

Hybrid Electric Vehicle (PHEV), Optimal Control, Intelligent 

Transportation Systems (ITS), Connected Vehicles. 

I. INTRODUCTION 

Air quality has become a serious concern in cities and urban 

areas in the recent years. This has promoted new legislation, 

affecting the European automotive sector through Euro I-VI, 

which limits emissions of: CO, HC, NOx, and particulate matter 

[1]. As Euro VI became into force, the spotlight is nowadays on 

CO2 emissions. The European commission has established 130 

g CO2/km target for 2015, which will be reduced to 95g 

CO2/km in 2021 [2]. Similar policies have been imposed in 

other automotive markets, such as USA, China, and Japan. This 

legislation has encouraged the introduction of hybrid electric 

vehicles (HEVs), which have been considered as the most 

liable and immediate choice by car manufacturers. HEVs refer 

to vehicles powered by at least two power sources, usually 

concerning an internal combustion engine (ICE) and an electric 

motor (EM) [3]. Battery capacity, EM power limits, and grid 

 
 

charge capabilities define different levels of electrification. The 

ultimate case is the technology of plug-in hybrid electric 

vehicles (PHEVs), which can be recharged directly from the 

grid. The network support allows the integration of a high 

capacity battery and powerful EM, which becomes co-leader in 

the PHEV propulsion along with the engine. Consequently, 

PHEVs have larger margin of efficiency improvement than 

HEVs, which results in further fuel displacement [4].  

As a result of multiple power sources, (P)HEVs have more 

degrees of freedom to supply the power demand, compared to 

conventional vehicles. Therefore, their energy management is 

framed as power/torque split selection, namely, determining the 

amount of power/torque that each of the sources provides to 

satisfy the driver demand. Energy management usually targets 

to maximize the overall powertrain efficiency and minimize 

fuel consumption [3], while the associated algorithm 

implemented for this purpose is referred to as energy 

management strategy (EMS). 

Raghavan et al. [5] measured PHEV impacts with an 

energy-based analysis, obtaining valuable insights into fuel 

consumption reduction through the electrification potential 

factor (EPF). This factor is leveraged to rate the electrification 

level and payback time with respect to the vehicle additional 

price and lower running cost. However, the actual amount of 

fuel displaced is tightly coupled with the EMS capacity to 

maximize electricity use and optimize the overall system 

efficiency. In practice, the fulfilment of optimal control of 

PHEVs hinges on key information about drive cycle, which is 

necessary to schedule conveniently the battery depletion. Such 

desirable strategy depends on the selected route, congestion 

level, road profile, weather condition, as well as other 

information available through global position system (GPS), 

Intelligent Transportation Systems (ITS), Geographical 

Information Systems (GIS), and traffic modelling [6], [7]. In 

this respect, emerging connected vehicles and wireless 

technology could undoubtedly mark a watershed. 

This paper provides a comprehensive collection and survey 

on the recent PHEV EMS literature, with the overarching goal 

to systematically summarize the state-of-the-art of PHEV 

EMSs and explore research trends in the context of synergies of 

ITS, smart grid, and smart city. In contrast to previous papers, it 

avoids the classification into groups, (on/off)line global/local 

optimization, which can be sometimes misleading due to 

possible algorithms modifications and assumptions taken for 

implementation. Instead, each algorithm is individually 

introduced and evaluated, highlighting its strengths, 
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weaknesses, including alternative methods to compensate for 

them. Three prominent contributions differentiate our articles 

from the previous ones [8], [9]. First, we review nearly all the 

optimization-based PHEV EMSs to date, especially covering 

the most recently proposed methods, e.g., convex programming 

(CP), game theory (GT), and numerous metaheuristic 

algorithms. It also includes plentiful examples of their 

applications in simulation environment, which evidences the 

importance of theses novel algorithms in research trend 

nowadays. Second, we survey the interactions of PHEV EMSs 

with ITS and highlight the great significance of predictive 

EMSs cognizant of environmental conditions outside the 

vehicle. Finally, we preview potential research prospects from a 

multitude of perspectives, which, along with ITS interaction 

analysis, are main contributions, not included in such depth in 

prior review papers. Although significant progress has been 

made, the current state-of-the-art has reached a level where 

novel transformative approaches are much desired to advance 

this field. This survey seeks to stimulate such innovative 

thoughts. 

The remainder of the paper is arranged as follows. Section 

II gives an overview of PHEV EMSs. Section III focuses on 

optimization-based EMSs. The interactions of EMSs with ITS 

are discussed in Section IV, followed by an outlook for further 

research opportunities presented in section V. Conclusions are 

summarized in Section VI.  

II. OVERVIEW OF PHEV EMSS 

HEVs EMS is currently a well-proved technology. These 

vehicles have limited charging capability, reduced-size 

batteries, and consequently operate within a small state of 

charge (SoC) window. With a core task of assisting in ICE load 

shifting, EMSs in HEVs target equal initial and final SoC 

values, known as charge sustaining (CS) operation.  HEVs 

EMS can be readily extended to PHEVs via charge depleting – 

charge sustaining (CD – CS) mode [10], [11]. This strategy is 

featured by its simplicity and ease of implementation, however, 

once the vehicle switches into CS, PHEV margin for 

improvement disappears [11]. Several publications have 

claimed the limited efficiency of CD – CS [12]. Its lack of 

optimality is addressed in simulation environment by Sun et al. 

[13], where the fuel efficiency is improved by 22.17% through 

deterministic dynamic programming, provided that the vehicle 

speed profile is available. Some detractors of CD – CS also 

alluded to the electric efficiency reduction under high power 

during the intensive CD mode. Zhang et al. [14] claimed an 

improvement of 9% in the fuel efficiency using reduced power 

strategies in a power-split configuration. In addition, CD – CS 

may require a relatively large battery so as to generate 

satisfying fuel economy, incurring augmented vehicle cost.  

The alternative approach is gradual battery depletion along 

the drive cycle using Blended Mode (BM). This consists of the 

cooperation of ICE and EM during the whole trip, not reaching 

full battery depletion until the end. Analysis of BM strategies 

can be found in [15]–[18]. A comparison between CD-CS and 

BM in terms of the battery SoC evolution is depicted in Fig. 1. 

Nevertheless, it is worth mentioning that BM strategies have to 

be tuned for the trip length; longer trips result in premature 

battery drain, whereas shorter ones leave unused charge in the 

battery. In absence of trip information, BM could even develop 

worse results compared with a well-tuned CD – CS strategy 

[14], [19], [20], one of the main issues that prevents from BM 

implementation onboard. However, in contrast to CD – CS, it 

provides considerable improvement in fuel economy and fully 

exploits PHEVs beneficial properties, assuming availability of 

the required information [8], [21]. 

With independence from BM or CD – CS, EMSs are usually 

divided into two principle groups, rule-based (RB) and 

optimization-based strategies [8], [22]. The former includes 

deterministic strategies and fuzzy logic (FL), which are 

described as a set of rules that compute the control signals 

based on pre-established thresholds over the controlled 

variables. These thresholds are often calculated based on the 

analysis of optimal control policies obtained from selected 

drive cycles [10], [17]. The rules define the vehicle operating 

modes [11], [23], are easy to implement and understand, and 

their performance for low levels of hybridization is often 

acceptable. The previous are the main reasons for RB 

popularity in HEVs in industry [24]. Such advantages have 

encouraged their adaptation from HEVs to PHEVs [25]. 

However, they generally yield non-optimal control in real-life 

driving conditions, as they are devised for a particular set of 

drive cycles. Their drawbacks have been evidenced through 

simulation in [15] and [26] by comparing them with 

optimization-based EMSs. Fair comparisons, however, are only 

applicable, if a certain level of drive cycle information is 

available, which is generally not the case in real-life.  

A higher level of abstraction is provided by FL. This strategy 

is still based on pre-defined rules which are implemented in a 

map-based format allowing for a wider margin of 

improvement. FL has been extended from HEVs to PHEVs, in 

terms of EMS and battery management in [27]. Several 

strategies have attempted a combination between FL and 

optimal solutions so as to improve the FL performance and 

maintain low computation burden. Some examples are 

 
Fig. 1. Comparison between CD-CS strategy and optimal solution. 
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neuro-FL [28] and FL, combined with genetic algorithm [29] 

and evolutionary algorithm [30].  

Albeit some of the former approaches are suitable for low 

levels of electrification, optimization-based strategies are 

proved to be superior to RB approaches. Nevertheless, they are 

also associated with additional implementation issues, e.g., 

algorithm complexity, high computation effort, robustness, and 

sensitivity to drive cycle information and characteristics, main 

reasons of their slow integration in industry. Nonetheless, a 

plethora of optimization-based algorithms has been applied to 

EMSs in PHEVs, mainly in simulation environment in 

research. These are classified into global (non-causal) 

optimization and real-time (causal) optimization [31]. Their 

distinction is not always clear, as they are conditioned not only 

by the algorithm itself, but also by sample time, model accuracy, 

and parameters definition, among other factors. The main 

optimization algorithms encompass Dynamic Programming 

(DP) [32], equivalent consumption minimization (ECMS) [33], 

simulated annealing (SA), genetic algorithm (GA), particle 

swarm optimization (PSO), DIRECT method [34], neural 

networks (NN) [35], game theory (GT) [36], sliding mode 

control (SMC), convex programming (CP) [37], analytical 

simplifications of the previous algorithms, and model 

predictive control framework. Their main characteristics and 

examples applied to PHEV EMS are elaborated in the next 

section. 

III. OPTIMIZATION-BASED EMSS FOR PHEVS 

This section provides a comprehensive survey of the 

state-of-the-art of optimal PHEV EMSs, including the main 

approaches considered in the literature to date. 

A. Dynamic Programming (DP) 

DP is an algorithm able to compute global optimal solutions 

in general control problems. The optimal solution is achieved 

by minimizing an unwanted outcome considering present and 

future cost of control decisions. This cost function, J , for DP 

deterministic implementation (DDP) can be expressed as [3], 

[32]: 

 
1
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                                              (1) 

 

where
Ng  represents terminal cost, 

kg  is additive cost incurred 

at time k, and X , U  and W  denote system states, control 

decision and disturbances, respectively [32], [38]. The optimal 

cost to go of the initial step, 
0

0( )J x , is calculated backwards 

from 1N   to 0, starting with end cost ( )N Ng x  and iterating: 
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In contrast to enumeration methods, DP computational 

advantage lies in the decomposition of the problem into 

sub-problems, which are easier to solve and require less 

computational cost. Sub-problems optimality is guaranteed 

through the principle of optimality (PO): “optimal policies have 

optimal subpolicies” [39]. These are solved using multiple-state 

decision making processes, and possible solutions are studied 

via selecting only optimal combinations, which reduces 

searching space and thus calculation time [39]. It is applicable 

to varied domains, including non-linear constraint dynamic 

processes and integer problems, and it can manage several 

complex constraints applied to states and inputs [3], [40] – [42]. 

Nonetheless, the algorithm itself is not easily tractable, as it 

usually engenders numerical hazards, and its computational 

burden increases exponentially with the number of states and 

control variables. This syndrome is called as “curse of 

dimensionality”, which is an entrenched property of the 

Bellman’s principle [42]. Furthermore, assuming that the full 

information of the problem uncertainties is available prior to 

the solution calculation, DDP computes the optimization 

backwards, from the end to initial conditions. This mechanism 

seriously prohibits DDP from real-time automotive control, 

since drive cycle information is often only partly known, highly 

changeable, and vulnerable to strong disturbances [3], [43]. As 

a result, DDP is widely utilized in offline analysis to benchmark 

alternative EMSs, inspire RB strategies design, tune control 

parameters, and serve as training data for machine learning 

algorithms [3], [44], as well as gear shifting optimization, trip 

time reduction, etc.[44], [45].  

Examples of DDP optimal results used as training material 

for NN-based EMSs can be found in [16] and [46]. Likewise, 

DDP was used by Lin et al. to obtain implementable rules for 

EMS and gearshift optimization in a hybrid truck [40] and [47]. 

An investigation of the optimal EMS for a fuel-cell hybrid is 

provided in [42], and gearshift control optimization is assessed 

in [7], [40], [48]. Alternatively, its online application could be 

achieved with simplified models, integrated with cycle preview 

capability [44]. Li et al. [7] proposed a future speed prediction 

algorithm based on NN and certain cycle information, which 

enables DP-based optimization of a transit plug-in hybrid 

electric bus. A DDP online application for commonly driven 

drive cycles was detailed by Larsson et al. [41], where the 

cost-to-go is calculated offline and feedforward to the online 

controller using a local polynomial approximation. Primary 

implementation issue of DDP can be tackled using stochastic 

dynamic programming (SDP), which replaces the disturbance 

vector by a random Markov process, thus independent from 

previous k values, not requiring future trip information. The 

cost function in SDP is hereby reformulated as expected cost in 

statistical terms [3]: 

 
1

0

( , , ) ( )
k

N

w k k k k N N

k

J E g X U w g X




 
  

 
 .                                 (3) 

 

SDP follows the same algorithm as DDP with expected cost 

[3]. This approach was suggested to reduce drive cycle 

dependency in [49] and [50] for PHEV EMSs. Shortest path 

stochastic dynamic programming (SP-SDP) was used by Opila 
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et al. in [51] and later in [52], with real-time implementation 

eased by extensive offline computations, stored in tables. 

B. Equivalent Consumption Minimization Strategy(ECMS) 

ECMS was first introduced by Paganelli et al. in [53], [33] 

with the purpose of reducing fuel consumption in a hybrid 

parallel powertrain. It consists of the calculation of an 

equivalence fuel factor, which accounts for actual fuel 

consumed, fuel consumed to recharge batteries, and fuel saved 

by using energy recovered through regenerative braking. This 

represents the fact that electricity accumulated in the battery is 

not “free” when proceeding from the engine recharging mode, 

and allows for unifying fuel and electricity consumption in a 

single objective [43],[53].  

 

1
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where N, 
feqm  ,

fm ,
femm , s ,

battP ,
LHVQ  and t are, respectively, 

trip duration, equivalent fuel flow, actual fuel flow into ICE, 

equivalent fuel flow used by the EM, fuel equivalence factor, 

battery power, fuel lower heating value, and time step [43],[53]. 

ECMS was initially designed for HEVs operating in CS mode, 

using the equivalence factor to prevent from sudden battery 

depletion [12], [43]. In PHEVs, this strategy targets, instead, 

CD mode, and consequently the SoC reference is not a fixed 

value, but a scheduled battery depletion along the trip.  

ECMS is derived using the Pontryagin’s minimum principle 

(PMP) optimality conditions, which return a local optimization 

algorithm. PMP assumptions and equations derivation can be 

found in [53], [54], [55], and [43], which includes Lagrange 

multipliers. These simplifications result in an algorithm more 

computationally efficient than DP and well-suited for 

potentially online applications, which can generate controllers 

close to global optimal solution with appropriate tuning of the 

equivalence factor. This is, however, not straightforward, 

thanks to its high sensitivity to drive cycle characteristics [43]. 

ECMS has proved to outperform RB in a simulation 

environment [15]. Triboli et al. used PMP results to inspire a 

RB strategy, also validated through simulation, comparing it to 

CD – CS and conventional powertrain [17]. An application of 

ECMS to PHEV is described by Stockar et al., who obtained 

the optimal equivalence factor through offline iterations, 

studying its influence in CD – CS vs. BM [54]. However, 

ECMS on-line implementation requires further reduction of the 

computational time. This issue is addressed by the same 

authors, who proposed solving the Hamiltonian offline, and 

storing the optimal results in a map so as to facilitate its use 

online [43]. Further simplifications have been introduced to 

explore regular patterns in the solution, which allow for PMP 

approximation using piecewise linear equations in [18]. Fuel 

equivalence factor online tuning is achieved by Musardo et al. 

through an adaptive ECMS (A-ECMS), which is able to 

automatically modify the parameter based on trip information 

with periodical online updates [56]. Similarly, Tianheng et al. 

presented an A-ECMS using NN to predict future cycle demand 

in [6]. 

C. Model Predictive Control(MPC) 

As already mentioned, trip information is critical to EMSs in 

PHEVs. MPC offers such a predictive scheme that future cycle 

information can be incorporated into various EMSs [57]. Its 

operation comprises four main steps: 1) prediction over a fixed 

horizon with length N, which depends on the historical data 

recorded and system model; 2) control policy calculation from t 

to t+N based on the previous prediction; 3) application of the 

control policy calculated for the current instant t, discarding the 

rest; 4) update with real measurements at t, and return to Step 1. 

Using fast control algorithms in step 2 is particularly 

recommended due to MPC iterative computations [24]. Fig. 2 

illustrates the MPC framework and one iteration step. 

The algorithm performance relies on model quality, 

sampling step, and prediction horizon length. The horizon 

length has to be tuned accordingly with: control strategy used, 

computational effort, model accuracy, and external conditions 

and disturbances [57]. MPC can be also combined with GPS 

information, improving the prediction results by means of past, 

present, and future driving conditions [58].  

ECMS would benefit from additional drive cycle 

information through predictive algorithms such as MPC. It can 

be used to tune systematically the parameters, which will be 

less dependent on the drive cycle. Furthermore, MPC does not 

require full information of the drive cycle, as it happened with 

DDP. Instead, the prediction horizon and implementation of 

faster algorithms, such as quadratic programming (QP), allow 

for its potential application in real-time control [24]. This 

framework was used by Sun et al., who proposed a two level 

EMS using traffic information, MPC and NN, for long and 

 

 
Fig. 2. MPC basic problem structure (top) and single iteration of MPC 

algorithm (bottom) [57]. 

 

 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY CONNECTED VEHICLES SERIES 

 

5 

short term forecast [13]. Borhan et al. used QP in [24], and a 

PMP in a later publication, easing MPC computational burden 

[59]. A Lagrange multipliers derivation is detailed by Kermani 

et al. in [60], where the functions are approximated by maps 

and embedded into MPC framework. Using the same principle 

as in SDP, Ripaccioli et al. proposed a stochastic MPC 

approach, which models driver demand as a Markov process, 

and reduces the computational effort implementing QP when 

compared to SDP [61].  

D. Derivative Free Algorithms  

Derivative-free methods mainly concern metaheuristic 

algorithms inspired in nature and DIRECT deterministic 

method, which is detailed in part 4 in this subsection. They are 

utilized to solve optimization problems with large search space 

of likely solutions. The main metaheuristic algorithms 

employed by (P)HEV EMSs are simulated annealing, genetic 

algorithms, and particle swarm optimization [26], [34], [62], 

[63]. These algorithms do not require derivative calculations, 

but harness alternative methods to populate candidates for 

optimal solution. This solution search depends on certain 

parameters that facilitate getting rid of local minima, although 

convergence to global optima cannot be generally ensured [64].  

1) Simulated Annealing (SA) 

SA is a method inspired in the annealing process of metals. 

The solution is searched through a stochastic technique which 

takes the solution candidates that show improvement over the 

objective function, but also keeps suboptimal ones which still 

agree with a defined criterion. This characteristic prevents the 

algorithm from being trapped in local minima and enhances its 

evolution towards global optimal [62], [65]. The solution 

variability is controlled by the “temperature” of the iteration 

and rated using the objective function. The temperature 

decreases with the number of iterations, “cooling down” effect, 

evolving from global to local optimal search [62], [65]. New 

solutions are only accepted when meeting the Boltzman 

criterion with monotonically decreasing temperature 

parameter: 

 

' exp ;
E

p
T

 
  

 
with    1T k α T k                           (6) 

 

where 'p , E , T , and α , are a random uniformly distributed 

value [0 1], comparison between current and candidate 

solution, temperature of the iteration, and cooling parameters, 

respectively. SA is relatively easy to implement and provides 

satisfactory results with low computation burden, which makes 

it feasible for real-time applications [34], [65]. It was developed 

to solve combinatorial problems, generating competitive 

solutions when compared with DP in limited simulation time 

[64], [66]. It can also be readily extended to continuous 

optimization problems. SA trade-off between accuracy and 

calculation time can be controlled by termination conditions, 

which are usually expressed in terms of limited iterations and 

accepted tolerance [62], [64], [66].  

An example of SA application to hybrids control is presented 

by Wang et al., who developed an EMS for a series HEV. The 

simulation results showed convergence improvement when 

compared to DIRECT method for a fixed number of iterations 

[67]. SA is combined with RB to develop the EMS of an EV 

with two electrical power sources, battery and supercapacitor. 

Long-term energy management is determined using RB 

providing a reduced search space, whilst short term power 

management optimization is performed with SA. The results 

are validated in simulation environment in [64] and later in 

[65]. Chen et al. derived an EMS based on PMP for a PHEV 

and leveraged SA to search for optimal engine-on power and 

maximum current coefficient, easing the computation for 

random driving conditions [66]. Its convergence capabilities 

were upgraded by combining SA with GA in [68]. This hybrid 

algorithm took advantage of robust global convergence of GA 

in earlier stages, and reduced later phases runtime using SA. 

Similarly, SA and PSO convergence deficiencies are 

compensated by combining both algorithms to form a so-called 

PSOSA in [69].  

2) Genetic Algorithm (GA) 

GA is a stochastic method inspired on natural selection and 

genetic evolution, and a particular case of evolutionary 

algorithms. It consists of three phases: reproduction, crossover 

information, and mutation, which involve randomness so as to 

ensure population diversity. In each of the iterations, the 

solution is coded in simulated “chromosomes”. Then the best 

candidates are selected according to the objective (fitness value) 

and deployed to populate the next set of solutions following the 

previously listed steps. The process eventually converges to 

“the best solution”, a satisfying trade-off between 

computational effort and precision [62], [70], [71]. However, 

owing to limited runtime, this algorithm may deliver 

sub-optimal solutions and does not explicitly enforce 

constraints, which need to be considered in the form of penalty 

functions introduced into the fitness function, F [71]. 

 

1

1
( ) ( )

( )

conn

i i

i

F x α P x
J x 

                                                       (7) 

 

where ( )J x , iα , and ( )iP x  are, respectively, objective 

function, positive constant penalization, and penalty function 

for i
th

 constraint, being ( )J x  maximized whilst ( )F x

minimized in order to penalize for constraints violation. This 

algorithm provides good performance even when dealing with 

complex problems. Furthermore, it only saves current states 

and last population, requiring low memory resources. It is also 

compatible with a broad variety of models, such as linear and 

nonlinear models with continuous or discontinuous-time form. 

One of the main strengths of GA, compared to other 

optimization strategies, is the capacity of parallelism detection 

between different agents, which is particularly beneficial to 

computing Pareto solutions. It can also include elitism to make 

sure that the best solutions are passed to next iterative step 

without major changes [62].  
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GA is sometimes combined with other algorithms to 

improve the combined performance. Chen et al. [70] used GA 

to optimize the engine power in a power-split PHEV, whilst the 

optimal battery current was calculated using QP, provided that 

the model was expressed in quadratic terms. The parallelism 

property was exploited by Bashash et al.[72], where GA was 

adopted to optimize two conflicting objectives, i.e., energy cost 

and battery health in a PHEV. GA was also applied to a parallel 

HEV energy management to minimize fuel consumption, along 

with emissions [71]. 

3) Particle Swarm Optimization (PSO) 

PSO was introduced for the first time in 1995 by Kennedy, 

and Eberhart. It is inspired in the behaviour of social organism 

moving in groups, such as swarms, ant colonies, and bird 

flocking, which share information within the members. PSO is 

also considered as a particular case of evolutionary algorithms, 

thanks to the solution population characteristic similar to the 

crossover mechanism in GA. This algorithm populates particles 

states, position, and velocity. Particles can interact locally 

between each other with the purpose of interchanging 

information, and can store their last best position and group best 

solution, with the goal of improving the next population. The 

convergence behaviour depends on previous calculated 

solutions and particles velocity [34], [69], [73]. All particles 

update their position, i

dx , and velocity, i

dv , according to [73]: 

 

 

 

1 1

2 2

( 1) ( ) ( ) ( ) ...

( ) ( )

i i i

d d i d

i

i d

v k wv k c r pBest k x k

c r gBest k x k
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where i denotes each particle, pBest and gBest  are particle 

and global best-found location, and w ,
1c ,

2c ,
1r , and 

2r  are 

inertia weight, two positive constants, and two random 

parameters within [0, 1], respectively. Maximum and minimum 

velocity values are constraint within 
max

dv . PSO is robust to 

complex objective functions and merely requires population of 

two variables per particle (i.e., position and velocity), and 

iteration. The small number of tuning parameters facilitates its 

implementation and reduces its sensitivity to initial solutions, 

when compared to other metaheuristic optimization algorithms 

[34], [69], [73]. The basic PSO algorithm can be adapted to 

accept problems with constraints, as detailed by Hu et al. [74].  

A comprehensive comparison of derivative-free algorithms, 

SA, GA, PSO, and DIRECT, was carried out in [34]. These 

algorithms were compared, in terms of fuel consumption, 

vehicle performance, and computational characteristics, for a 

fixed number of iterations. The results identified PSO and GA 

as winning approaches, with PSO being slightly superior [34]. 

PSO performance can be enhanced by defining bounds in 

search scope inspired on “experience” over the best solutions. 

Nevertheless, despite a probable accuracy, the convergence 

speed is limited [75]. The online applications of PSO as EMS 

for PHEV was analysed by Lin et al.[76]. Satisfactory results 

were obtained with a long simulation time, making its online 

implementation difficult. The authors defended the necessity of 

faster algorithms to obtain a real-time controller from 

near-optimal PSO results. This issue was addressed in the case 

study using PSO in combination with a neural network. 

4) DIRECT Method 

Divided RECTangle (DIRECT) is a sampling derivative-free 

method, a modification of the standard Lipschitzian algorithm, 

where the weights of local and global search are equal. 

DIRECT scales the searching space into fixed areas with cubic 

shapes, and searches for optimal solutions at the centre point of 

each area. The best solutions are identified, and resampled 

following the longest coordinate direction of each cubic 

division. The algorithm completes until termination conditions 

are reached, which can be expressed in terms of solution 

accuracy and/or number of iterations. The result’s suitability is 

rated through a cost function [26], [34]. Fig. 3 illustrates three 

iterations of DIRECT method. 

Compared to other metaheuristic optimization algorithms, 

DIRECT is relatively simpler, as it does not require tuning 

parameters and can handle both equality and inequality 

constraints. Moreover, it is robust in the presence of 

nonlinearities and disturbances [26], [34]. Several applications 

of DIRECT method to HEV EMSs can be found in the 

literature, including Rousseau et al. [26] who used the 

Powertrain System Analysis Toolkit (PSAT) to design an EMS 

with tuneable variable thresholds. DIRECT method was 

applied to determine the most influencing parameters and their 

optimal values to design a RB for a set of drive cycles. Gao et 

al. analysed DIRECT performance by contrasting it with other 

derivative-free approaches in simulation environment for HEV 

fuel consumption reduction subjected to constraints on vehicle 

performance, which has been already referenced in PSO [34]. 

Whitefoot et al. used DIRECT to minimize fuel consumption in 

a HEV in offline investigation. The algorithm ran for a fixed 

number of iterations in order to procure controllable 

 

 
Fig. 3. Representation of three iterations of DIRECT method [26]. 
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computational burden, but it did not allow to evaluate the global 

optimality of solution. Therefore, this paper elucidated an 

offline implementation of DIRECT, without allusions to likely 

online applications [77]. DIRECT limitations for real-time 

applications are also revealed in [78]. The authors highlighted 

the capability of finding regions with local/global optimum 

solutions, but argued the necessity of considerable time to 

converge into a solution with a small error tolerance. 

E. Neural Networks (NNs) 

NNs perform brain-like computations inspired in biological 

brain behaviour, namely, operations emulating neurons 

activities as natural systems. As appeared in biological brains, 

each neuron receives impulses from other neurons through their 

dendrites. These signals are processed in the neuron’s body, 

and depending on inputs characteristics, an output signal is 

generated, which is sent to other neurons. Fig. 4 shows an 

example of a neuron that processes the weighted input signals,

0

n

i i

i

w x


 , and returns the result sign, y ,with respect to a 

threshold, t. Neurons undertake affine transformation and 

linear/non-linear operations in a very efficient fashion. These 

operations are usually expressed with transfer functions [35], 

[79]. Neurons can be combined so as to create networks by 

building layers, usually using feed–forward configurations (see 

Fig. 5). The number of layers and neurons can vary according to 

the process complexity, desired fidelity, and model 

nonlinearity. This architecture has to be defined prior to the 

neuron parameters calculation, which is always conducted 

using training data and the error back-propagation algorithm 

[46], [62], [76], [79]. 

The training data can be labelled with the desired output 

when the strategy to follow is clear, if the process is well known 

and understood. However, it is also possible to work with 

unlabelled data, which requires additional pattern recognition. 

The error convergence in NN is enhanced using error 

backpropagation, which targets to optimize the reduction of 

training error [35], [62]. The training process consists of 

least-squares regression, where the initial values of dendrites 

weights are assigned randomly [62], [79]. The amount and 

quality of training directly influence the NN performance, e.g., 

overfitting risk. However, there exists an optimal amount of 

training data, and therefore excess training does not always 

imply the performance improvement [62], [76]. NNs are easily 

implemented and can develop surrogated models of the 

underlying processes. These models can reproduce complex 

behaviour with high fidelity and low computation burden, the 

so-called “intelligent decision making”. Furthermore, NNs are 

treated as black box and no additional understanding of the 

process physics is required for its utilization [62]. Nonetheless, 

while a well-trained NN efficiently extrapolates solutions, this 

is not always guaranteed when the use cases are not 

contemplated on the training data.  

Applications of NNs to automotive purposes are supported 

by the statement included in [46], which affirms: “The 

algorithms that require iterations are not convenient for hybrid 

vehicle power distribution problem”. Khayyam et al. [28] 

proposed NN application in “hybrid multi-layer adaptive 

neuro-fuzzy inference”. This algorithm provided learning 

characteristics to the FL controller so as to adapt and increase 

its application range, which can automatically tune its values. 

The authors defended the importance of finding a trade-off 

between algorithm performance and information requirements, 

through analysing the influence of road, environmental 

conditions, and driver behaviour. Following the previous 

reasoning, Chen et al. [16] also supported the need of 

intelligent controllers that pursue a good trade-off between 

computational effort and algorithm robustness for a wider range 

of use cases. The authors employed NN to minimize the fuel 

consumption of a PHEV, based on training data from DP results 

of varied driving conditions. The NN consisted of two different 

modules, N1 and N2, which worked with different levels of trip 

information. Murphey et al. [80], [81] presented a power-split 

HEV EMS based on machine learning also trained with DP 

optimal results. This strategy combined road type and 

congestion level prediction, and used NNs to optimize battery 

power and engine speed. Likewise, Boyali et al. [46] developed 

a neuro-DP approach for HEV, where again the NN was trained 

with DP solutions. The resultant controller was also able to 

operate in real-time and exhibited parallel computation 

capabilities validated through simulation. Alternatively, Lin et 

al. [76] synthesized a NN controller trained with data generated 

using PSO. Other NNs applications concern their combinations 

with other algorithms to diminish computational effort. For 

instance, Sun et al. incorporated NN into MPC over a 

short-term prediction horizon [13]. The same authors also 

presented a future speed prediction algorithm based on machine 

 
Fig. 4. Example of neuron body with multiple inputs, affine operation, and 

single output [35]. 

 
Fig. 5. Example of NN structure for future speed prediction, including input, 

hidden, and output layer, as well as prediction level in terms of past and future 

information [13]. 
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learning including Markov Chain and NN. They claimed to 

obtain 92% fuel optimality using NN-based predictor, when 

compared to MPC benchmark solution using DP in simulation 

environment [82].  

F. Game Theory (GT) 

GT deals with the interaction between decision-makers, also 

known as players. The players pursue defined objectives and 

are considered as agents with self-interest. GT is inspired by the 

main characteristics describing ordinary games, which 

typically involve various players, a set of rules, and a number of 

allowable strategies. These available actions have an associated 

payoff, which rates how beneficial or detrimental the 

“movement” for each player is. The game itself only describes 

what the players can do, but not the ultimate actions, in the 

same way the model equations constrain the variables feasible 

values [36], [83], [84]. Every strategy followed by one player 

generates a benefit for the named agent and a loss for the rest, 

the so-called payoff. It is assumed that each player acts 

rationally towards the action that maximizes its own payoff, 

and the game evolves towards the steady-state case, where no 

player has any incentive to change its state. This is known as a 

Nash Equilibrium, a non-unique situation usually difficult to 

reach which does not necessarily represent the fairest outcome 

for all players [83]–[85]. Considering a two-player 

non-cooperative game with follower and leader feasible 

strategies u U and w W , respectively, the players tend to 

achieve in each stage a Stakelberg equilibrium (marked by *), 

described as [85] 

 
* *( , ) max min ( , )w W u UJ u w J u w                                       (10) 

 

Games can be classified in two groups depending on 

players’ behaviour with respect to other players. On the one 

hand, games are “non-cooperative” when the players take 

individual actions so as to maximize their own payoff. On the 

other hand, games are “cooperative” when the actions are taken 

to maximize group objectives. One example of non-cooperative 

game could be the interaction between driver and powertrain. 

This can be understood as the competition between the 

conflicting objectives, e.g., driver desired performance and fuel 

economy. Alternatively, the cooperation of ICE and EM, with 

the purpose to maximize their combined performance and fuel 

saving, represents a cooperative game [36]. The most common 

game in the literature for EMSs is two-player non-cooperative. 

Dextreit et al. [85], [86] applied this approach between driver 

and powertrain, to develop the EMS for an HEV Jaguar Land 

Rover Freelander 2. The driver intention was to obtain the 

desired vehicle performance, which resulted in inefficient 

working conditions, whilst the powertrain itself targeted fuel 

consumption optimization. This application highlights one of 

the main benefits of GT, which is the consideration of the driver 

as a part of the control strategy, anticipating that the driving 

style is intimately coupled with fuel consumption. The 

GT-based EMS was also compared to DP and MPC, 

showcasing its benefit with respect to the system robustness in 

simulation environment. GT can be implemented with receding 

horizon in the same way as MPC, however its computation 

burden can be comparable to DP, even when it uses simpler 

equations. This makes its online implementation difficult in 

vehicular applications. Some authors have tackled this problem 

with model simplifications through static maps and 

vector-based integration, which develop time- and drive 

cycle-independent strategies [85], [86]. A similar application of 

GT was described by Gielniak et al. for a fuel cell hybrid 

electric vehicle [87]. The game was again described by 

conflicting interests, i.e., powertrain efficiency versus vehicle 

performance. The authors underlined the fact that GT requires 

deep knowledge of the system elements and consequently 

cannot be extrapolated to other vehicles with different 

components. This constitutes one of the main drawbacks. GT 

had further applications for PHEVs to develop optimal 

charging strategies, “smart charging”, as detailed by 

Mohsenian-Rad et al. [88] and Sheikhi et al. [89]. 

G. Sliding Mode Controller (SMC) 

SMC is an algorithm inherently robust to nonlinearity and 

modelling uncertainty, which can efficiently work with system 

structures that alternatively switch. It is also insensitive to 

parameters change and disturbances, a salient characteristic that 

makes it useful for vehicular applications [19], [90]. This 

strategy requires the definition of a sliding surface, ( )s x , also 

known as switching function. The controller ( )u t is usually the 

same as ( )s x and designed to converge to the surface, ( ) 0s x  , 

in finite time, and to maintain its position, ‘reaching condition’. 

This is designed in the form of: 

 

( ), ( ) 0
( ) ; 1,2,..., ; ( ) ( )

( ), ( ) 0

i i

i i i

i i

u t for s x
u t i m u t u t

u t for s x



 



  
   

  
. (11) 

 

The complexity and performance of SMC depends on the 

sliding surface design. Consequently, the mathematics involved 

in this algorithm can be relatively complicated, in contrast with 

most of the foregoing approaches. Gokasan et al. [19], [90] 

developed a SMC-based controller to manage a series HEV 

with all-wheel-drive (AWD) for military purposes. This 

controller responded to the necessity of a robust solution to 

nonlinear, time-variant systems surrounded by parameters 

variation and external disturbances. Its robustness also allowed 

the use of simpler vehicle models. However, the applications of 

SMC have been more dominant in combustion engines control 

within hybrid powertrains, rather than EMSs on its own. There 

is a case of Gokasam et al. [90] who exploited SMC to improve 

engine operation conditions for optimizing the overall HEV 

efficiency, followed by [91] discussing a similar application to 

EMS design.  

H. Convex Programming (CP) and Analytic Solutions 

Due to the complexity of vehicle models, the aforementioned 

EMSs have to deal with mathematical difficulties, such as 

nonlinearity, various constraints, and computation burden. 

Some literatures also explore simplifying techniques to ease the 

implementation issues of EMSs, including linearization, QP, 
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CP, and analytical equations derivation. These formulations are 

amenable to powerful solvers available, which typically extract 

optimal solutions in reduced time and potentially increase the 

solution robustness. The quality of solution is, however, 

compromised by declined model fidelity after simplifications, 

thereby attaining near-optimal results [92]. 

CP is a generalization of linear programming (LP) and QP. In 

CP problems, local optima coincide with global optima, 

simplifying extensively the search of solution. Nevertheless, 

the algorithm can only be applicable when the problem is 

strictly expressed in convex terms, which requires both cost 

function and inequality constraints expressed in convex form, 

and affine equality constraints [37], [93]. Convex vehicle 

models need to be simplified to comply with convexity 

requirements [10]: 1) eliminate integer decisions: engine 

on/off, gear shift, etc.; 2) equality constrains must be relaxed, if 

they are originally not affine; 3) use new variables to preserve 

convexity, such as battery energy instead of SoC; and 4) 

problem coding in discrete-time. The formal definition of a 

convex function, f , is described as [93] 

 

 (1 ) ( ) (1 ) ( ), 0 1f θx θ y θf x θ f y θ                    (12) 

 

where x and y  are two points of the f function space. 

Numerous CP applications to (P)HEV EMSs have been 

reported in the recent literature. Zhang et al. [14] dealt with an 

analytical solution for the power management of a PHEV, 

where the vehicle model is simplified using quadratic equations. 

The solution provided a simulation error of 3.0%. Egardt et al. 
[93] improved PMP performance via expressing the cost 

function in convex terms and approximating the model with 

quadratic expressions. Nevertheless, the model equations 

required convenient reformulation following convexity rules, 

which compromised its accuracy. Another analytical solution 

for PMP was proposed by Serrao et al. [94]. Hu et al. designed 

two EMSs based on convex optimization so as to study 

fuel-to-traction and recuperation energy efficiencies in a series 

plug-in hybrid electric bus [95]. Beck et al. presented two 

approaches for a real-time adaptive EMS with QP optimization. 

Both solutions were compared in simulation environment with 

the offline DP benchmark, demonstrating commensurate 

optimality with a significant decrease in computational time 

[96]. A similar strategy was followed by Koot et al., where the 

authors used a QP problem formulation and DP as a benchmark 

[97]. The diminution of the strategy complexity not only 

encourages its real-time implementation, but also permits 

integrating new variables into the optimization, e.g., catalyst air 

temperature to reduce poisonous emissions [98], battery health 

[71], [72], and fuel cell health [99], [100]. CP has also been 

successfully implemented for EMS in a PHEV with a 

continuously variable transmission, which eliminates gearshift 

integer variable [101]. Furthermore, CP efficient computation 

enables increasing the number of system states and control 

variables for offline holistic studies, including EMS between 

others [102]–[105]. 

CP main limitation, nevertheless, lies in the formulation of 

an appropriate vehicle model. For instance, switch decisions 

cannot be optimized in the CP problem, and consequently the 

optimal gear shift cannot be easily pursued with high accuracy 

[18]. Sciarretta et al. [58] proposed a simplification of objective 

function for an HEV EMS, reaching a possible analytic solution 

to the optimization problem. However, the authors found 

limited applications of such an algorithm, owing to strong 

assumptions over the battery SoC.  

All the foregoing EMS approaches are straightforwardly 

summarized in Table I, in terms of main characteristics and 

application examples.  

IV. EMS INTERACTIONS WITH ITS 

As demonstrated in most optimization-based EMSs 

mentioned in Section III, future trip information is of utmost 

importance for reducing fuel consumption in PHEVs [9]. 

Taking the most pessimistic but probably realistic situation of 

TABLE I 

MAIN EMS CHARACTERISTICS AND APPLICATIONS SUMMARY 

Strategy Main Advantages Main Disadvantages Applications offline(1) control Applications online(2) control 

DP Global optimal–benchmark (PO) Curse of dimensionality 
Full cycle info (not in SDP) 

[7] [16] [40] [42] [44] [46] – [48] [41] [49] [50] – [52] 

ECMS Single obj. – equivalence factor 

Possible online implementation 

Cycle sensitivity (adaptive) 

Local opt. for deficient tuning 

[15], [17], [54] 

 

[6], [18], [43], [56] 

D. Free Stochastic solution generation: escape from 

local optima 

Few tunable parameters 
Control over terminal conditions 

Acceptable accuracy requires 

high no. iterations 

[26], [34], [67] – [69], [71], [72], 

[75], [77], [78] 

[64] – [66], [70], [76] 

NN Fast computation – online control 

 

Accuracy: training data quality 

and quantity 
Uncertain solution outside 

training cases  

[28] [16], [46], [80], [81] 

GT Trade-off conflicting objectives 
Driver introduction into EMS 

Curse of dimensionality 
Non-unique solution  

[85] – [87] (Map-based [85], [86]) 

SMC Robust to uncertainties 

Robust to parameters change 
Complex mathematics:s(x) [90], [91] – 

CP Reduced computational effort Strong model simplifications [94], [96] [66], [72], [93], [95], [98] 

[101]–[105] 
(1) When no allusion to real-time control is made by the authors; (2) As claimed by the authors including detailed assumptions and validated in simulation 

environment 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY CONNECTED VEHICLES SERIES 

 

10 

no future trip information into account, Huang et al. proposed a 

predictive algorithm based on machine learning, which uses 

150s of past cycle information to predict the next 50s of vehicle 

speed [106]. Although there is a relationship between current 

and future velocities, real-world cycles are, nonetheless, 

characterized by a certain level of randomness and strong 

disturbances due to traffic conditions. This has motivated 

growing research on EMSs with entire trip information [107] or 

with robustness to different levels of trip knowledge. As 

elaborated in [20], trip information is typically classified into 

four levels: 1) full information about distance, velocity, and 

road profile; 2) information about distance and road profile, 

along with estimated velocity; 3) trip distance; and 4) no 

information. 

The increasing popularity of smart phones promotes vehicles 

with GPS, wireless connection, and real-time traffic conditions, 

which can be obtained, for example, using Google services. 

Such information, combined with MPC, was exploited by Sun 

et al. [13] who developed a two-level controller for EMS of a 

power-split PHEV. Real-time traffic information was absorbed 

to perform a long-term planning at a supervisory level so as to 

accomplish the optimized reference SoC trajectory. This 

trajectory was then tracked at a lower level using 

MPC-optimized short-term engine torque and speed, given the 

availability of short-term velocity prediction provided by a NN 

forecaster [13]. Several other examples of EMS incorporating 

GPS information and route knowledge were shown in [9]. The 

importance of GPS and GIS information for global PHEV 

optimization was also showcased in [8].  

In recent years, an escalation in research initiatives has been 

observed to promote intelligent EMSs conscious of external 

environmental conditions, like trip knowledge. Gong et al. [19], 

[108] examined the impact of ITS information on the PHEV 

fuel consumption with the objective to find the relationship 

between vehicle performance and velocity profile, through a 

statistical analysis of drive cycle. In a previous publication, the 

authors also underscored the value of interplay among ITS, 

GIS, GPS, and traffic flow modelling. Historical data and 

real-time information were fused to provide enough 

information for EMSs optimization through global methods 

[109].  

A different approach is proposed by Ozatay et al.who 

targeted cloud-based future speed optimization for a group of 

vehicles [110]. The optimization was performed within three 

servers with “unlimited” resources. These received data from 

several vehicles, containing full information of traffic and road 

conditions. This data is used to compute optimal strategies, 

which were fed back to the driver serving as guideline. As the 

computational burden is generally not an issue in the cloud, DP 

can be utilized to assure global optimality. Accordingly, the 

vehicle can be exempted from expensive ECU capacity and 

thus its cost can be reduced. Moreover, this also allows for 

using more accurate models and extending the results to 

different drivers in similar conditions. Ozatay et al. concluded 

with vehicle test results displaying a fuel reduction in highway 

driving of 14.1%, when the reference velocity was perfectly 

followed, and approximately 7.4% in urban driving, given 

driver corrections [110]. Fig. 6 illustrates a similar approach, 

where vehicles driving in the same route shared and received 

information form the data base. Fig. 7 discloses the key 

procedures taking place internally in the vehicle control system. 

A comprehensive study of the major impact factors on fuel 

consumption was provided by Marano et al. in [111], with a 

particular emphasis on the weather conditions, including 

temperature and wind direction effects on rolling and 

aerodynamic resistance. Besides the clear importance of traffic 

conditions for fuel consumption, the way the driver faces the 

driving task has also a major effect. Reichart et al. [112] 

claimed more than 16% improvement in fuel consumption after 

intervening in driver’s driving style, while obtaining only 3% 

time penalty over the drive cycle execution in a conventional 

vehicle platform, according to simulation results. As a matter of 

fact, driver monitoring and driver style correction can improve 

noticeably fuel economy, as confirmed by Syed et al., where 

27.85% improvement in fuel efficiency by correcting driver 

driving style is observed in real-time simulation [113]. Driving 

style correction can be particularly critical to (P)HEVs, as small 

deviations in the torque demand can incur significant changes 

in the EMS, triggering, for instance, ICE starting. A detailed 

evaluation of driving-style influence on different vehicle 

platforms, BEVs, HEVs, and PHEVs, was conducted by 

 
Fig. 6. Connected vehicle framework with interchange of information with a 

traffic data base (figure is extracted from [13]). 

 
Fig. 7. Connected PHEV framework. It is able to receive information from 

ITS, GPS, GIS, etc., and combine internal signals measured so as to compute 

an adaptive control strategy.  
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Neubauer et al. on a vehicle simulator in [114].  

Optimal vehicle speed profile can be obtained combining trip 

information and driving style so as to guide drivers for minimal 

fuel consumption. However, it necessitates a good coordination 

of different sources, extensive data processing, and heavy 

computational burden. Consequently, on-board computational 

capability can be a limiting factor in this respect. With the latest 

research tendencies, vehicles are advocated to be considered as 

a part of a larger group which can be optimized at a higher 

scale. Cloud computing and ITS systems can ease the 

computational stress on-board, and provide an overall fleet 

optimization [9], [110]. Furthermore, this could set a useful 

framework for increased vehicle automation towards 

autonomous driving. 

V. OUTLOOK AND FUTURE TRENDS 

There has been a wealth of efforts on PHEV EMSs, 

including both rule- and optimization-based ones as revisited in 

Sections II – IV. As a prosperous area of research, various 

innovative strategies are expected to emerge for enhancing the 

performance, public acceptance, and market penetration of 

PHEVs, instead of just repeating a number of existing 

approaches. Further research opportunities will definitely gain 

considerable momentum from the advancement of optimization 

algorithms, ITS, smart grid, smart city, and other 

cyber-physical systems. In the following, we briefly but 

nontrivially discuss the future trends of PHEV EMSs from 

different perspectives, which could substantially contribute to 

safer, greener, and cheaper vehicles.  

A. Optimization Algorithms 

As elucidated in Section III, each optimization algorithm has 

its own strengths and limitations, a key reason why there has 

been no consensus technique to address the EMS problem. 

Consequently, a mixture of optimization algorithms with 

complementary characteristics is a promising direction of 

PHEV EMSs. For example, Elbert et al. combined CP with 

PMP to successfully optimize both the ICE on/off signal and 

power split in a series hybrid transit bus. PMP analytically 

obtains the ICE on/off strategy, which is then used, along with 

convex optimization, to compute the optimal solution. This 

combination allows for the introduction of integer variable 

optimization within the convex framework [115]. Similarly, 

Nüesch et al. combined DP with CP to resolve a mixed integer 

EMS optimization problem, which allows integrating engine 

on/off and gearshift into the convex optimization [116]. Such 

integer variables are pre-calculated over the entire drive cycle 

to enable expressing the optimization problem as convex terms. 

Panday et al. presented a synergy between GA and PMP. In this 

case, PMP received optimal parameter values from GA and 

used them to calculate the optimal strategy [117]. More such 

combinations could be anticipated in the near future.  

In parallel with the previous work, optimization itself 

represents a vast area of research. Novel optimization 

algorithms are continually emerging, some of which are 

expected to solve PHEV EMS problems with certain unique 

advantages, e.g., pseudospectral method [118] and hybrid 

optimal control law [47]. In addition, machine learning 

(data-driven optimization) is a rapidly growing area and 

provides numerous advanced learning techniques, e.g., NN, 

support vector machine, Bayesian inference, and reinforcement 

learning [119]. These could be integrated into the current 

PHEV EMSs to strengthen their autonomy and environmental 

consciousness. For instance, reinforcement learning has been 

recently successfully implemented in applications related to 

buses commuting within the same route [120].   

B. Consideration of Additional Model Dynamics and Cycle 

Information 

Quasi-static powertrain models had a prevalent adoption in 

synthesizing PHEV EMSs, because of their simplicity and fast 

computation. However, the results from simulation and 

real-test inevitably differ. To bridge the gap, dynamic models 

are welcome, such as transients-involved ICE models [111] and 

polarization-covered battery models [121]. Furthermore, 

PHEV have intense battery use and grid impact, comparable to 

battery electric vehicles. This fact needs to be addressed with 

appropriate battery models able to provide more realistic 

behaviour [122], including extreme temperature working 

conditions and cold temperature operation [123]. The 

concomitant challenge is that some computationally intensive 

optimization algorithms may not be directly applicable.     

Another key requirement for optimal vehicle operation is 

the available trip information. This is pursued through 

exploiting commuting trips, bus pre-established routes, and 

predictive algorithms, including MPC and machine learning. 

These algorithms have been used to develop the so-called 

adaptive strategies that update the parameter values of control 

strategies according to the route characteristics, e.g., A-ECMS 

[6], [96], [124]. Nevertheless, trip information needs to be 

acquired through additional instrumentation installed onboard, 

and consumes computational effort and memory resources, 

increasing the vehicle cost. 

C. Multiple Control Objectives  

Most of existing PHEV EMSs concentrated on a single 

control objective, i.e., fuel consumption minimization. 

However, many other design concerns should be considered as 

well, including: drivability for comfort [34], [71]; battery health 

for cost effectiveness [49], [72], [94]; emissions for eco-driving 

(which can be critical when PHEVs have minimum engine use 

and delay optimum exhausts temperature conditions [13],[18], 

[49], [98], [125]); ICE and battery thermal properties for safety; 

global CO2 emission including electricity generation [111]; etc.  

Incorporating some of such targets to enable multi-objective 

PHEV EMSs is one of the future research directions. One main 

challenge is how to achieve high-fidelity models depicting such 

concerns, e.g., battery degradation and thermal models suitable 

for PHEV operation. Battery health models considered in the 

existing (P)HEV EMSs are generally too simple to capture both 

capacity and power fading [66], [100]. Additional objectives 

also cause a significantly heavier computational burden. 

Accordingly, the difficulty of efficiently generating credible 

Pareto solutions arises [92]. Alternatively, the objective 

functions can be simplified either with single objective function 
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combined with constraints over “less important” targets, or 

through objectives weighted combination into one function 

[71]. On the one hand, the first approach returns sub-optimal 

results over the constraint targets. On the other hand, weighted 

objectives optimality is questioned by the selection of weight 

values [92]. Despite that multi-objective approaches have been 

addressed using CP, it is worth developing more 

computationally efficient optimization algorithms to 

compensate deficiencies of the current ones. 

D. Longer Time Scale 

The revisited EMSs were evaluated under a single drive 

cycle or several concatenated cycles. Hence, the time scale 

considered was for merely on-road driving and relatively short. 

Nonetheless, there will be increasing interactions between 

PHEVs, smart house, and smart grid, with the development of 

smart meters and communication technology. As sketched in 

Fig. 8, this incentivizes a longer time-scale (e.g., 24-hour) EMS 

problem, which manages energy utilization in both driving and 

parking. First assessment of combined recharging and on-road 

energy management in PHEVs was provided in [102], [126]. 

More complicated PHEV activities are definitely worth careful 

considerations in further research, like vehicle-to-grid and 

vehicle-to-house energy flows, subject to the intermittency of 

renewables, and developing a new research stream, e.g., “smart 

PHEVs charging”.  

E. Larger Space Scale 

Traditionally, PHEV EMSs were evaluated at a single 

vehicle level, and therefore, the space scale was relatively 

limited. With the continual development of smart devices, 

vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2X) 

communication technologies, there will be increasing 

connected PHEVs (see Fig. 9) and vehicle platooning, in the 

drive to increase road capacity and overall energy efficiency 

[127]. The platooning concept is usually associated with groups 

of heavy duty vehicles, where the longitudinal dynamics are 

controlled to reduce inter-vehicular distance [128]. However, it 

is also applicable to groups of light duty vehicles sharing route 

and schedules. Platooning will be developed along with the 

vehicular ad-hoc network (VANET), wireless environment 

closely related with ITS where data can be adequately 

exchanged [129]. Some examples of this tendency are already 

present in the literature. Baisravan et al. exploited vehicle 

connectivity advantages to develop an EMS for a group of 

HEVs. The authors proposed a two-level strategy, where the 

higher level controller benefits from shared information from 

smart traffic lights, V2X, and neighbours vehicles through V2V 

communication [130]. Likewise, Rios-Torres et al. targeted the 

reduction of fuel consumption and trip duration through online 

coordination of connected vehicles in merging road 

manoeuvres using PMP [131]. 

The EMS problem of such a fleet of PHEVs might be 

markedly different from the case of a single PHEV, due to 

spatial distribution, intra-vehicle communication/control, 

surrounding perturbation, and so forth. These unique attributes 

can strongly motivate innovative and even revolutionary PHEV 

EMS paradigms, e.g., mutil-agent cooperative EMS, 

cooperative look-ahead EMS, distributed MPC-based EMS, 

and many other advanced networked EMSs. Further, the level 

of vehicle connection will bolster a gradual introduction of 

increasing levels of automation. Luo et al. proposed an addition 

of V2V communication to safely perform lane change for 

normal and emergency cases, and returning to lane [132]. 

Similarly, Morales Medina et al. introduced a cooperative 

autonomous T-intersection control based on V2V 

communication with virtual platoons of vehicles [133]. 

Nevertheless, real-time traffic, ITS data, GPS, etc., assume a 

burdensome amount of information required to achieve optimal 

Situation Awareness (SAW), critical to ensure safety in 

VANET [134], which will become a thriving area of research. 

VI. CONCLUSIONS 

This review on PHEVs EMSs algorithms highlights 

strengths and weakness of virtually all the existing approaches 

in the open literature. It does not conclude with a single 

algorithm preferred for PHEVs energy management, but 

advocates mixing more than one to compensate for each own 

deficiencies. Nevertheless, it has been evidenced that the EMS 

cannot be really optimized unless detailed information about 

the future route is available. Since strong uncertainties 

 
Fig. 8. PHEV EMS in a longer time scale, e.g., 24-hour energy management 

including on-road driving and charging/discharging during parked 

(grid-to-vehicle, vehicle-to-grid, and vehicle-to-house modes). The house 

controller and PHEV EMS can communicate each other, in order to coordinate 

energy utilization in driving and parking.    

 

 
Fig. 9.Optimization of EMSs considering multi-scale space and time via 

connecting PHEVs with traffic, grid, and buildings (figure is taken from [9]). 
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surrounding driving experience hinder accurate predictions, 

augmented vehicular connectivity and evolution towards 

increasing levels of autonomy will mark a watershed for fuel 

consumption reduction and strategy optimization. Such a new 

era will be presumably led by information and big data, and is 

highly probable to be advanced by means of machine learning 

as a common framework. 
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