146 research outputs found

    A Survey on Dynamic Spectrum Access Techniques in Cognitive Radio Networks

    Get PDF
    The idea of Cognitive Radio (CR) is to share the spectrum between a user called primary, and a user called secondary. Dynamic Spectrum Access (DSA) is a new spectrum sharing paradigm in cognitive radio that allows secondary users to access the abundant spectrum holes in the licensed spectrum bands. DSA is an auspicious technology to alleviate the spectrum scarcity problem and increase spectrum utilization. While DSA has attracted many research efforts recently, in this paper, a survey of spectrum access techniques using cooperation and competition to solve the problem of spectrum allocation in cognitive radio networks is presented

    Analytical characterization of inband and outband D2D Communications for network access

    Get PDF
    Mención Internacional en el título de doctorCooperative short-range communication schemes provide powerful tools to solve interference and resource shortage problems in wireless access networks. With such schemes, a mobile node with excellent cellular connectivity can momentarily accept to relay traffic for its neighbors experiencing poor radio conditions and use Device-to-Device (D2D) communications to accomplish the task. This thesis provides a novel and comprehensive analytical framework that allows evaluating the effects of D2D communications in access networks in terms of spectrum and energy efficiency. The analysis covers the cases in which D2D communications use the same bandwidth of legacy cellular users (in-band D2D) or a different one (out-band D2D) and leverages on the characterization of underlying queueing systems and protocols to capture the complex intertwining of short-range and legacy WiFi and cellular communications. The analysis also unveils how D2D affects the use and scope of other optimization techniques used for, e.g., interference coordination and fairness in resource distribution. Indeed, characterizing the performance of D2D-enabled wireless access networks plays an essential role in the optimization of system operation and, as a consequence, permits to assess the general applicability of D2D solutions. With such characterization, we were able to design several mechanisms that improve system capabilities. Specifically, we propose bandwidth resource management techniques for controlling interference when cellular users and D2D pairs share the same spectrum, we design advanced and energy-aware access selection mechanisms, we show how to adopt D2D communications in conjunction with interference coordination schemes to achieve high and fair throughputs, and we discuss on end-to-end fairness—beyond the use of access network resources—when D2D communications is adopted in C-RAN. The results reported in this thesis show that identifying performance bottlenecks is key to properly control network operation, and, interestingly, bottlenecks may not be represented just by wireless resources when end-to-end fairness is of concern.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Marco Ajmone Marsan.- Secretario: Miquel Payaró Llisterri.- Vocal: Omer Gurewit

    Comnet: Annual Report 2013

    Get PDF

    Communication between nodes for autonomic and distributed management

    Get PDF
    Doutoramento conjunto MAPi em InformáticaOver the last decade, the most widespread approaches for traditional management were based on the Simple Network Management Protocol (SNMP) or Common Management Information Protocol (CMIP). However, they both have several problems in terms of scalability, due to their centralization characteristics. Although the distributed management approaches exhibit better performance in terms of scalability, they still underperform regarding communication costs, autonomy, extensibility, exibility, robustness, and cooperation between network nodes. The cooperation between network nodes normally requires excessive overheads for synchronization and dissemination of management information in the network. For emerging dynamic and large-scale networking environments, as envisioned in Next Generation Networks (NGNs), exponential growth in the number of network devices and mobile communications and application demands is expected. Thus, a high degree of management automation is an important requirement, along with new mechanisms that promote it optimally and e ciently, taking into account the need for high cooperation between the nodes. Current approaches for self and autonomic management allow the network administrator to manage large areas, performing fast reaction and e ciently facing unexpected problems. The management functionalities should be delegated to a self-organized plane operating within the network, that decrease the network complexity and the control information ow, as opposed to centralized or external servers. This Thesis aims to propose and develop a communication framework for distributed network management which integrates a set of mechanisms for initial communication, exchange of management information, network (re) organization and data dissemination, attempting to meet the autonomic and distributed management requirements posed by NGNs. The mechanisms are lightweight and portable, and they can operate in di erent hardware architectures and include all the requirements to maintain the basis for an e cient communication between nodes in order to ensure autonomic network management. Moreover, those mechanisms were explored in diverse network conditions and events, such as device and link errors, di erent tra c/network loads and requirements. The results obtained through simulation and real experimentation show that the proposed mechanisms provide a lower convergence time, smaller overhead impact in the network, faster dissemination of management information, increase stability and quality of the nodes associations, and enable the support for e cient data information delivery in comparison to the base mechanisms analyzed. Finally, all mechanisms for communication between nodes proposed in this Thesis, that support and distribute the management information and network control functionalities, were devised and developed to operate in completely decentralized scenarios.Durante a última década, protocolos como Simple Network Management Protocol (SNMP) ou Common Management Information Protocol (CMIP) foram as abordagens mais comuns para a gestão tradicional de redes. Essas abordagens têm vários problemas em termos de escalabilidade, devido às suas características de centralização. Apresentando um melhor desempenho em termos de escalabilidade, as abordagens de gestão distribuída, por sua vez, são vantajosas nesse sentido, mas também apresentam uma série de desvantagens acerca do custo elevado de comunicação, autonomia, extensibilidade, exibilidade, robustez e cooperação entre os nós da rede. A cooperação entre os nós presentes na rede é normalmente a principal causa de sobrecarga na rede, uma vez que necessita de colectar, sincronizar e disseminar as informações de gestão para todos os nós nela presentes. Em ambientes dinâmicos, como é o caso das redes atuais e futuras, espera-se um crescimento exponencial no número de dispositivos, associado a um grau elevado de mobilidade dos mesmos na rede. Assim, o grau elevado de funções de automatiza ção da gestão da rede é uma exigência primordial, bem como o desenvolvimento de novos mecanismos e técnicas que permitam essa comunicação de forma optimizada e e ciente. Tendo em conta a necessidade de elevada cooperação entre os elementos da rede, as abordagens atuais para a gestão autonómica permitem que o administrador possa gerir grandes áreas de forma rápida e e ciente frente a problemas inesperados, visando diminuir a complexidade da rede e o uxo de informações de controlo nela gerados. Nas gestões autonómicas a delegação de operações da rede é suportada por um plano auto-organizado e não dependente de servidores centralizados ou externos. Com base nos tipos de gestão e desa os acima apresentados, esta Tese tem como principal objetivo propor e desenvolver um conjunto de mecanismos necessários para a criação de uma infra-estrutura de comunicação entre nós, na tentativa de satisfazer as exigências da gestão auton ómica e distribuída apresentadas pelas redes de futura geração. Nesse sentido, mecanismos especí cos incluindo inicialização e descoberta dos elementos da rede, troca de informação de gestão, (re) organização da rede e disseminação de dados foram elaborados e explorados em diversas condições e eventos, tais como: falhas de ligação, diferentes cargas de tráfego e exigências de rede. Para além disso, os mecanismos desenvolvidos são leves e portáveis, ou seja, podem operar em diferentes arquitecturas de hardware e contemplam todos os requisitos necessários para manter a base de comunicação e ciente entre os elementos da rede. Os resultados obtidos através de simulações e experiências reais comprovam que os mecanismos propostos apresentam um tempo de convergência menor para descoberta e troca de informação, um menor impacto na sobrecarga da rede, disseminação mais rápida da informação de gestão, aumento da estabilidade e a qualidade das ligações entre os nós e entrega e ciente de informações de dados em comparação com os mecanismos base analisados. Finalmente, todos os mecanismos desenvolvidos que fazem parte da infrastrutura de comunicação proposta foram concebidos e desenvolvidos para operar em cenários completamente descentralizados

    Cooperative Data Backup for Mobile Devices

    Get PDF
    Les dispositifs informatiques mobiles tels que les ordinateurs portables, assistants personnels et téléphones portables sont de plus en plus utilisés. Cependant, bien qu'ils soient utilisés dans des contextes où ils sont sujets à des endommagements, à la perte, voire au vol, peu de mécanismes permettent d'éviter la perte des données qui y sont stockées. Dans cette thèse, nous proposons un service de sauvegarde de données coopératif pour répondre à ce problème. Cette approche tire parti de communications spontanées entre de tels dispositifs, chaque dispositif stockant une partie des données des dispositifs rencontrés. Une étude analytique des gains de cette approche en termes de sûreté de fonctionnement est proposée. Nous étudions également des mécanismes de stockage réparti adaptés. Les problèmes de coopération entre individus mutuellement suspicieux sont également abordés. Enfin, nous décrivons notre mise en oeuvre du service de sauvegarde coopérative. ABSTRACT : Mobile devices such as laptops, PDAs and cell phones are increasingly relied on but are used in contexts that put them at risk of physical damage, loss or theft. However, few mechanisms are available to reduce the risk of losing the data stored on these devices. In this dissertation, we try to address this concern by designing a cooperative backup service for mobile devices. The service leverages encounters and spontaneous interactions among participating devices, such that each device stores data on behalf of other devices. We first provide an analytical evaluation of the dependability gains of the proposed service. Distributed storage mechanisms are explored and evaluated. Security concerns arising from thecooperation among mutually suspicious principals are identified, and core mechanisms are proposed to allow them to be addressed. Finally, we present our prototype implementation of the cooperative backup servic

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Enabling and Understanding Failure of Engineering Structures Using the Technique of Cohesive Elements

    Get PDF
    In this paper, we describe a cohesive zone model for the prediction of failure of engineering solids and/or structures. A damage evolution law is incorporated into a three-dimensional, exponential cohesive law to account for material degradation under the influence of cyclic loading. This cohesive zone model is implemented in the finite element software ABAQUS through a user defined subroutine. The irreversibility of the cohesive zone model is first verified and subsequently applied for studying cyclic crack growth in specimens experiencing different modes of fracture and/or failure. The crack growth behavior to include both crack initiation and crack propagation becomes a natural outcome of the numerical simulation. Numerical examples suggest that the irreversible cohesive zone model can serve as an efficient tool to predict fatigue crack growth. Key issues such as crack path deviation, convergence and mesh dependency are also discussed

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario
    • …
    corecore