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Abstract 

Most used security mechanisms in high-speed networks have been adopted without 

adequate quantification of their impact on performance degradation. Appropriate 

quantitative network models may be employed for the evaluation and prediction of 

‘optimal’ performance vs. security trade-offs. Several quantitative models introduced in 

the literature are based on queueing networks (QNs) and generalised stochastic Petri 

nets (GSPNs). However, these models do not take into consideration Performance 

Engineering Principles (PEPs) and the adverse impact of traffic burstiness and security 

protocols on performance.  

The contributions of this thesis are based on the development of an effective 

quantitative methodology for the analysis of arbitrary QN models and GSPNs through 

discrete-event simulation (DES) and extended applications into performance vs. 

security trade-offs involving infrastructure and infrastructure-less high-speed networks 

under bursty traffic conditions. Specifically, investigations are carried out focusing, for 

illustration purposes, on high-speed network routers subject to Access Control List 

(ACL) and also Robotic Ad Hoc Networks (RANETs) with Wired Equivalent Privacy 

(WEP) and Selective Security (SS) protocols, respectively. The Generalised 

Exponential (GE) distribution is used to model inter-arrival and service times at each 

node in order to capture the traffic burstiness of the network and predict pessimistic 

‘upper bounds’ of network performance.  

In the context of a router with ACL mechanism representing an infrastructure network 

node, performance degradation is caused due to high-speed incoming traffic in 

conjunction with ACL security computations making the router a bottleneck in the 

network. To quantify and predict the trade-off of this degradation, the proposed 

quantitative methodology employs a suitable QN model consisting of two queues 

connected in a tandem configuration. These queues have single or quad-core CPUs 

with multiple-classes and correspond to a security processing node and a transmission 

forwarding node. First-Come-First-Served (FCFS) and Head-of-the-Line (HoL) are the 

adopted service disciplines together with Complete Buffer Sharing (CBS) and Partial 

Buffer Sharing (PBS) buffer management schemes. The mean response time and 

packet loss probability at each queue are employed as typical performance metrics. 

Numerical experiments are carried out, based on DES, in order to establish a balanced 

trade-off between security and performance towards the design and development of 

efficient router architectures under bursty traffic conditions. 

The proposed methodology is also applied into the evaluation of performance vs. 

security trade-offs of robotic ad hoc networks (RANETs) with mobility subject to Wired 

Equivalent Privacy (WEP) and Selective Security (SS) protocols. WEP protocol is 

engaged to provide confidentiality and integrity to exchanged data amongst robotic 

nodes of a RANET and thus, to prevent data capturing by unauthorised users. WEP 

security mechanisms in RANETs, as infrastructure-less networks, are performed at 

each individual robotic node subject to traffic burstiness as well as nodal mobility. In 
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this context, the proposed quantitative methodology is extended to incorporate an open 

QN model of a RANET with Gated queues (G-Queues), arbitrary topology and multiple 

classes of data packets with FCFS and HoL disciplines under bursty arrival traffic flows 

characterised by an Interrupted Compound Poisson Process (ICPP).  SS is included in 

the Gated-QN (G-QN) model in order to establish an ‘optimal’ performance vs. security 

trade-off. For this purpose, PEPs, such as the provision of multiple classes with HoL 

priorities and the availability of dual CPUs, are complemented by the inclusion of 

robot’s mobility, enabling realistic decisions in mitigating the performance of mobile 

robotic nodes in the presence of security.   The mean marginal end-to-end delay was 

adopted as the performance metric that gives indication on the security improvement. 

The proposed quantitative methodology is further enhanced by formulating an 

advanced hybrid framework for capturing ‘optimal’ performance vs. security trade-offs 

for each node of a RANET by taking more explicitly into consideration security control 

and battery life. Specifically, each robotic node is represented by a hybrid Gated GSPN 

(G-GSPN) and a QN model. In this context, the G-GSPN incorporates bursty multiple 

class traffic flows, nodal mobility, security processing and control whilst the QN model 

has, generally, an arbitrary configuration with finite capacity channel queues reflecting 

‘intra’-robot (component-to-component) communication and ‘inter’-robot transmissions. 

Two theoretical case studies from the literature are adapted to illustrate the utility of the 

QN towards modelling ‘intra’ and ‘inter’ robot communications. Extensions of the 

combined performance and security metrics (CPSMs) proposed in the literature are 

suggested to facilitate investigating and optimising RANET’s performance vs. security 

trade-offs.   

This framework has a promising potential modelling more meaningfully and explicitly 

the behaviour of security processing and control mechanisms as well as capturing the 

robot’s heterogeneity (in terms of the robot architecture and application/task context) in 

the near future (c.f. [1]. Moreover, this framework should enable testing robot’s 

configurations during design and development stages of RANETs as well as modifying 

and tuning existing configurations of RANETs towards enhanced ‘optimal’ performance 

and security trade-offs.   
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Chapter 1 Introduction 

1.1 Introduction 

High-speed networks have become the backbone of large network installations; 

therefore, it is vital to design secure networks of greater capacity that support 

high-volume traffic (c.f., [2 , 3 , 4]). Most security mechanisms embedded within 

these networks, such as access controls and encryptions, are adopted without 

any explicit determination of how they will affect the performance due to  

processing additional bits and  performing  more computations(c.f., [3 , 5]).  

Thus there is a great need to trade off between performance and security [6]. 

By trading off, either security is traded off/compromised for better overall 

performance or vice versa. To achieve this goal, quantitative tools are needed 

to model, evaluate and optimise the trade-off between security and 

performance. 

In order to accurately model and evaluate this trade-off under bursty traffic, 

performance and security mechanisms should be modelled in an appropriate 

way besides the use of proper traffic models for traffic variability together with 

the defining of suitable performance and security metrics which play a vital role 

in the evaluation and optimisation process.  Several studies in the literature [2 , 

4 , 5 , 7 , 8 , 9] state that high-speed network traffic exhibits bursty behaviour; 

therefore, including this assumption in the model makes it more realistic. 

This thesis develops an effective quantitative methodology for the analysis of 

arbitrary queueing networks (QN) models and Generalised Stochastic Petri 

Nets (GSPNs) through Discrete-Event Simulation (DES) and extended 

applications into performance vs. security trade-offs involving infrastructure and 

infrastructure-less high-speed networks under bursty traffic conditions. 

Specifically, investigations are carried out focusing, for illustration purposes, on 

high-speed network routers subject Access Control List (ACL) and also Robotic 

Ad Hoc Networks (RANETs) with Wired Equivalent Privacy (WEP) [10] and 

Selective Security (SS) (c.f.,[11]) protocols, respectively. Burstiness of traffic is 
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reflected within each case by using Generalised Exponential (GE) 

distribution[12] as inter-arrival and service times which enables the evaluation 

and prediction of pessimistic ‘upper bounds’ for the performance of the secure 

networks. 

In the context of a router with ACL mechanism representing an infrastructure 

network node, performance degradation is caused due to high-speed incoming 

traffic in conjunction with ACL security computations making the router a 

bottleneck in the network [3] and this considerably affects the overall 

performance of the high-speed network. To quantify and predict the trade-off of 

this degradation, the proposed quantitative methodology employs a suitable QN 

models for router with ACL.  

These queues have single or quad-core CPUs with multiple-classes and 

correspond to a security processing node and a transmission forwarding node. 

First-Come-First-Served (FCFS) and Head-of-the-Line (HoL) are the adopted 

service disciplines together with Complete Buffer Sharing (CBS) and Partial 

Buffer Sharing (PBS) buffer management schemes. The mean response time 

and packet loss probability at each queue are employed as typical performance 

metrics. Numerical experiments are carried out, based on DES, in order to 

establish a balanced trade-off between security and performance towards the 

design and development of efficient router architectures under bursty traffic 

conditions. 

The proposed methodology is also applied into the evaluation of performance 

vs. security trade-offs of RANETs with mobility subject to WEP and SS 

protocols. WEP protocol is engaged to provide confidentiality and integrity to 

exchanged data amongst robotic nodes of a RANET and thus, to prevent data 

capturing by unauthorised users. WEP Security mechanism in RANETs, as 

Infrastructure-less networks, is performed on each single node, subject to traffic 

burstiness as well as nodal mobility. In this context, the proposed quantitative 

methodology is extended to incorporate an open QN model of a RANET with 

Gated queues (G-Queues), arbitrary topology and multiple classes of data 
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packets with FCFS and HoL disciplines under bursty arrival traffic flows 

characterised by an Interrupted Compound Poisson Process (ICPP). SS is 

included in the Gated-QN (G-QN) model in order to establish an ‘optimal’ 

performance vs. security trade-off. For this purpose, performance engineering 

Principles (PEPs), such as the provision of multiple classes with HoL priorities 

and the availability of dual CPUs, are complemented by the inclusion of robot’s 

mobility, enabling realistic decisions in mitigating the performance of mobile 

robotic nodes in the presence of security.   

The proposed quantitative methodology is further enhanced by formulating a 

theoretical hybrid framework to capture ‘optimal’ performance vs. security trade-

offs for each node of a RANET by taking more explicitly into consideration 

security control and battery life. Specifically, each robotic node is represented 

by a hybrid Gated GSPN (G-GSPN) and a QN model, thus the framework is 

named G-GSPN_QN. In this context, the G-GSPN models bursty multiple class 

traffic flows, nodal mobility, security processing and control whilst the QN model 

has, generally, an arbitrary configuration and reflects ‘intra’-robot (component-

to-component) communication and ‘inter’-robot transmissions through arbitrary 

QN consisting of finite capacity channel queues. Two theoretical case studies 

from the literature are adapted to illustrate the utility of QN towards modelling 

‘intra’ and ‘inter’-robot communications. Moreover, Extensions of Combined 

Performance and Security Measure (CPSM) metric proposed in the literature 

[13] are suggested to facilitate investigating and optimising RANET’s 

performance vs. security trade-offs. 

1.2 Motivation 

Due to its significance, performance and security trade-offs modelling and 

evaluation in high-speed networks, which exhibit bursty behaviour, has been 

investigated in the literature using different approaches. Activating security 

mechanisms causes performance (quality) degradation such as increasing 

processing and transmitting times. Such degradation should be quantified in 

order to determine application specific parameters and model network traffic 
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flows towards improving Quality-of-Service (QoS) [14]. This quantification can 

be made through designing/proposing “Model-based quantitative technique” 

[15]. Several studies exploited models such as QNs and GSPNs, to quantify 

security impact and then explore the trade-off between performance and 

security [6 , 13 , 14 , 15].  For the best of the author knowledge, Zorkadis [6], in 

1994, was the first to propose a quantitative modelling of security trade-off for 

three nodes connected in tandem, using QNs in infrastructure network.  

Security is modelled implicitly where the service rate were assumed to be less 

when security mechanism is activated. The metric used in this study is pure 

performance metric, which is End-to End Mean Response Time that is used 

implicitly to show how to trade off between performance and security. 

Meanwhile, in 2008 Cho [15] introduced the concept of security trade-off for 

infrastructure-less network, i.e., a group of Mobile Ad Hoc Networks (MANETs) 

nodes, using Stochastic Petri Nets (SPNs).  Moreover, the author used Mean 

Time To Security Failure (MTTSF) as a security metric in addition to the Mean 

Response Time, R, as a traditional performance metric to indicate the 

improvement of the performance and security trade-offs. In 2010, Wolter and 

Reinecke [13] proposed a combined performance-security model for an abstract 

communication system, based on GSPN, in order to evaluate and optimise the 

trade-off between performance and security by means of CPSM concept which 

was introduced for the first time to enable simultaneous optimisation of 

performance and security in terms of one metric. However, these models do not 

take into consideration performance engineering principles and the adverse 

impact of traffic burstiness and security protocols on performance on the 

network. 

In this thesis, burstiness of traffic is reflected by utilising GE distribution as inter-

arrival and service times which enables predicting ‘Upper bounds’ for the 

performance-related security.GE distribution [12] is used to model inter-arrival 

and service times at each node in order to capture the traffic burstiness of the 

network and predict pessimistic ‘upper bounds’ of network performance. 
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1.3 Aims and Objectives 

The main aim of the research presented in this thesis is to develop an 

appropriate model-based quantitative approach to assess the performance and 

security trade-off for infrastructure and infrastructure-less high-speed networks 

subject to bursty traffic, based on individual QNs and combined QNs and 

GSPNs associated with performance metrics and combined performance and 

security metrics. These objectives include the following aspects:  

1. To use QNs and GSPNs quantitative analysis tools to model and quantify 

and mitigate security impact as well as performance security trade-offs in 

communication networks; 

2. To use the GE distribution to reflect  traffic burstiness, and to simulate it 

within DES as a random generator; 

3. To utilise and extend the existing security and performance metrics as well 

as  combined performance and security metrics;     

4. To design and construct a simulation program in Java for an open G-QN 

model with multiple classes and multiple servers subject to FCFS and HoL 

discipline; 

5. To propose a hybrid G-GSPN_QN framework and design a QN model for 

intra and inter-robot communications.  

1.4 Contributions 

This work establishes quantitative guidelines for the design and development of  

an effective quantitative methodology for the analysis of arbitrary QN models 

and GSPNs through DES and extended applications into performance vs. 

security trade-offs involving infrastructure and infrastructure-less high-speed 

networks under bursty traffic conditions. Specifically, investigations are carried 

out focusing, for illustration purposes, on high-speed network routers subject 

ACL and also RANETs with WEP and SS protocols, respectively.GE-type 

random variable has been simulated by utilising the fact that GE is a limiting 

case of Hyperexponential distribution (H2) by applying the approximation 
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algorithm of proposed in [12]. This GE variable is then used in the simulation 

program of open QN model to model inter-arrival and service times.  

In the first case study, a proposed quantitative QN node model subject to 

multiple classes FCFS and HoL discipline together with CBS and PBS. 

Repetitive Service-Fixed Destination blocking mechanism (RS-FD) [16] is 

exploited to reflect the behaviour of ACL mechanism. Security is modelled 

implicitly and explicitly as suggested by Zorkadis [6] and Saleh and Alkhatib[14] 

respectively. Traffic burstiness is captured by the use of GE as inter-arrival and 

service times, which enables the prediction of ‘Upper Bounds’ for the 

performance-related security. 

The second case study focuses on the trade-off between performance and 

security in RANETs, whose security functions are based on the WEP security 

(c.f., [10] and SS protocols (c.f., [11], [17]) at each robotic node. Security is 

modelled by an explicit QN node connected in tandem with another QN node for 

transmission. To make the model more realistic, the node’s mobility is reflected 

by the use of G-Queues, proposed in [18], to form an Interrupted Poisson 

Process (IPP) (c.f.,[19])input to the queue, which is connected to the security 

node. The case study considers an arbitrary stable open G-QN with infinite 

capacity, multiple FCFS and HoL classes and bursty GE inter-arrival traffic 

flows(c.f., [20]) characterised by an ICPP(c.f., [19]). 

The proposed quantitative methodology is further enhanced by formulating an 

advanced hybrid framework for capturing ‘optimal’ performance vs. security 

trade-offs for each node of a RANET by taking more explicitly into consideration 

security control and battery life. In particular, the framework is composed of 

GSPNs and QNs with arbitrary topology and multiple classes subject to FCFS 

and HoL discipline. Two theoretical case studies from the literature [21 , 22 , 23] 

were adapted to illustrate the utility of QN towards modelling intra-and inter-

robot communications. Two extended CPSMs based on the one proposed in 

the literature (c.f., [13]) are suggested to evaluate and optimise the trade-off. 



7 

 

Note that DES methodology involves simulating an open QN model with 

multiple classes and multiple servers with Gated queue subject to FCFS and 

HoL finite capacity queues with RS-FD blocking mechanism (c.f., [16]) where 

the inter-arrival and service times with GE distribution. 

1.5 Thesis Organisation 

Chapter 2 reviews high-speed networks and performance and security trade-

offs fundamentals. 

Chapter 3 surveys previous work on network traffic models used to capture 

burstiness in high-speed networks namely: IPP, GE and ICPP. 

Chapter 4 introduces quantitative techniques used to assess the trade-off 

between performance and security, in particular, QNs, GSPNs or combination 

of both and use in modelling and evaluating the trade-off. 

Chapter 5 it presents the proposed QN model for the high-speed router with 

ACL security mechanism which is modelled both implicitly and explicitly using 

QN under bursty traffic conditions. The performance-related security of the 

router is evaluated through appropriate performance metrics.  

Chapter 6 it introduces the proposed G-QN model for RANETs with WEP with 

SS security protocol where security is modelled explicitly within the QN as an 

individual node. Mobility of RANETs is reflected in the QN model with a Gated 

Queue, as proposed in [18]. 

Chapter 7 presents the proposed hybrid G-GSPN_QN modelling framework of 

RANETs in order to overcome some of the inherent limitations of individual QN 

and GSPN models. Two case studies are presented to reflect the utility of QN to 

model ‘intra’-robot component to component and ‘inter’-robot to robot 

communication. In addition, it presents three extended CPSMs that can be 

adopted to investigate an enhanced combined optimisation of performance vs. 

security trade-off in RANETs. Note that a detailed explanation of simulating GE-
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type random variable besides the main simulation building models used in 

chapter 5 to 7 are included in appendices A to G. 

Chapter 8 summarises the contributions of this thesis and makes some 

recommendations for future work.  
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Chapter 2 Performance and Security Trade-offs in High-

Speed Networks 

2.1 Introduction 

It is important to design secure and reliable networks of greater capacity that 

support high-volume traffic that exhibit burstiness behaviour [4 , 9 , 24].  

Towards achieving this goal, modelling and evaluating performance and 

security parameters is needed in order to evaluate and predict future traffic 

volumes [4]. It is not feasible to meet performance and security requirement 

simultaneously as they affect each other [5], thus it is vital to trade them off.  

This chapter presents the classifications of high-speed networks with a focus on 

routers and RANETs as examples.  It then describes performance and security 

concepts and their metrics and showing how security services affect the 

network’s performance. Determining this impact is required to identify the 

concepts of security and performance trade-off.  

2.2 The Classification of High-Speed Networks 

High-speed network can provide high-speed support to meets the requirements 

of transfer speed and access time over limited distances [25] and they now 

dominate both local area networks (LAN) and wide area networks (WAN) 

markets.  The most important of them are as follows: 

2.2.1 Infrastructure High-Speed Networks 

In infrastructure networks, the network services are provided to all nodes by 

particular servers which are responsible for assigning addresses and routing. 

The connection between these servers and nodes is made via wired or wireless 

channels [26]. Main types in this category are [4]: 

1. Fast Ethernet and Gigabit Ethernet; 

2. Fibre Channel; 

3. High-Speed Wireless LANs. 
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High-speed router is an example on this type of networks and it represents a 

linking device that provides security access control. 

a) High-Speed Routers  

A router is an access control device in infrastructure networks, among other 

devices (such as firewalls, switches, gateways).  Routers perform traffic filtration 

based on the predefined routing criteria, to protect the network components 

(c.f., [27].  This can be achieved by testing the packet’s headers and rerouting 

the traffic accordingly. An incoming packet is either forwarded to its destination 

(or next node) or dropped [3]. 

From a performance point of view, ACL security mechanism running on the 

router consumes the router’s CPU usage [3]. Thus, there is a need to trade off 

between its performance and security.  

2.2.2 Infrastructure-less High-Speed Networks 

In infrastructure-less networks, communicating nodes should group themselves 

and provide routing and security services via multi-hop transmissions. Each 

node acts as a router [26]. This category includes WLAN with infrastructure-

less, i.e. ad hoc networks. Such networks provide services and coverage of 

locations that are difficult to wire [4].  

A robotic mobile wireless ad hoc network (RANET) is an example on this type of 

networks and nodes within this network need to perform security encryption in 

order to protect their data. 

b) RANETs 

RANET allows robots to form wireless ad hoc network in order to exchange 

data among them. RANETs seem to have a most suitable architectural platform 

to support the dynamic nature of robotic applications (c.f., [28 , 29]). Robots are 

usually equipped with low-power wireless transceivers with short range enabling 

them to communicate only with close neighbours. The ad hoc environment of 

RANETs is cost-effective and requires fewer resources. Moreover, 

decentralized control in RANETs is a most suitable mechanism as it shows the 
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robustness of robot nodes to local failures and self-organisation, scalability and 

a wide range of applications. To this end, MANETs qualify as a most suitable 

choice for RANETs as the dynamic topology of MANETs supports mobility, self-

organisation and control without infrastructure which enable nodes to 

communicate over wireless channels without the presence of a 

fixed infrastructure (c.f., [29]). Robots can be ‘tele-operated’ where a human 

controls their operation through the network or ‘autonomous’ where robots 

exchange data through the network without human interaction. Robots among 

the RANET might be heterogeneous in terms of sensory skills, mobility and 

robot’s architecture (c.f., [30]). 

a) Typical Components of a Robot 

A typical robot may contain five fundamental units as following [31 , 32]: 

1. Controller  

It controls and processes the operations of robot mechanical parts by means of 

determining the appropriate signals to the actuators in order for the robot to 

perform the required tasks. 

2. Sensing Unit 

This unit gives information about the environment ‘External purpose sensor’, or 

the robot itself ‘internal purpose sensor’. ‘Internal sensors’ monitor the various 

parts of the robot, e.g., monitoring robot’s speed. ‘External sensors’ such as 

cameras and range sensors used to sense external data (e.g., video and 

distance measurements) and used by the controller to move the robot ‘Intra-

robot’ or  shared with other robots ‘Inter-robot’ and communications. 

3. Power Unit  

This unit deals with the energy consumption within the robot node where it is 

associated with all hardware components. The level of power decreases 

depending on the draw made by these components. 

4. Transmission/ Receiving  Unit 

It includes the transmitter and receiver (which are known as transceiver) within 

the robot to send and receive data. 

http://en.wikipedia.org/wiki/Machine
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5. Actuators 

These components are either mechanical or electric devices, such as motors 

and joints (which connects the parts of a robot’s arm to allow them moving in 

different directions). Actuators are controlled by the robot to create the required 

motion as a response to regulating signals from the controller [31].   The overall 

operation control of a robot involves three steps: namely:  sensing, processing 

and action   (c.f., [31]), as depicted in Figure  2-1. 

 

Figure ‎2-1 Intra-robot communications (adapted from [31]). 

2.3 Performance 

High-speed networks require data buffering and higher computation power to 

support high performance distributed computing [25]. The performance of such 

networks is rapidly degraded due to the gap between the high network speed 

and the traversed hardware according to Moore’s law (c.f.,[3 , 9]). Thus, it is 

vital to assess this degradation and work towards improving the overall 

performance of the network. For the purpose of performance evaluation, QoS 

metrics that indicate the network performance are introduced.  

2.3.1 Metrics 

Performance metrics help in prioritising the use of network’s resources 

according to the required application, e.g. real-time audio or video transmission 

[33]. It is worth mentioning that  when a network with multiple class is 

considered, the performance metric per class is known as a ‘Marginal metric’ 

while the overall performance metric is called an ‘Aggregate metric’ [34]. 

The most commonly used metrics in high-speed networks are as follows:  
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1-  Mean Response Time (W) 

This is the amount of time taken by the network device/node to process a 

message [2 , 33]. 

2-  End-to-End Delay  

End-to-end delay is defined as the total delay seen by messages or data 

packets that traverse the network from a source node to a destination node and 

includes processing delay, packetisation delay, transmission delay, queueing 

delay (c.f., [35]). 

3-  Packet Loss Probability (PLP) 

This is the percentage of messages that are blocked/lost on arrival if the linking 

device node is at full buffer capacity [2]. 

4-  Mean Queue Length (MQL) 

This represents the mean number of messages in the buffers waiting to be 

served [34].  

5-  Utilisation (U) 

This specifies the fraction/percentage of time required by the linking 

device/node to successfully process messages [33]. 

6-  Throughput 

Throughput is a measure of the amount of data (number of messages or data 

packets per unit of time) transmitted between two nodes in a given period of 

time [4].  

7- Power Consumption 

Power metrics assess power consumption and its progressive reduction power-

constrained networks [29]. Power metrics can be either ‘Explicit’ (c.f.,[36]) in 

which power is represented by the consumed power per bit (or byte) 

transmission, or ‘Implicit’(c.f., [37 , 38])  which are defined in terms of the 

network’s lifetime.  
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The following section introduces security service besides the relationship 

between these services and possible attacks against them. Finally, types of 

performance degradation caused by such services are outlined. 

2.4 Security 

In this section security services and attacks are described.  

2.4.1 Security Services 

A security service is the collection of mechanisms implemented to reduce the 

risk associated with threats [33]. The main services are Integrity, Access 

control, Confidentiality and they are needed to secure exchanged data in 

infrastructure networks (e.g., in routers and servers), or in individual nodes in 

infrastructure-less networks [39]. The following section gives a brief description 

of each service. 

1. Integrity Services 

This service helps to ensure that the network messages are not modified by 

unauthorised parties [33 , 40]. 

2.   Access Control Services  

This service ensures that only authenticated users who have specific 

authorisations are able to access particular resources [33 , 39 , 40]. 

3. Confidentiality Services  

Confidentiality ensures that network data are not visible to unauthorised parties 

[40 , 41] and they are based on cryptographic algorithms. Security services and 

their corresponding performance costs are summarised in Table  2-1. 

Table ‎2-1 Security services and their performance costs (adapted from [6]) 

Security 

Services 
Performance Costs 

Access Control Computation costs before and during information transfer stage. 

Confidentiality 
Computations/ processing   costs at the end nodes ( in end-to-end 

encryption)  or  at intermediate nodes. 

Integrity 

The expansion of the message length besides the computation 

costs (due to computing and appending Cyclic Redundancy Checks 

(CRC) to the message) 
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2.4.2 Attacks 

Attacks on high-speed networks cause damage to the stored or transmitted 

information. There are two main types of attacks (for wired and wireless 

networks) [40 , 41]: 

1. Access 

An access attack is an attempt to gain access to the stored or transmitted 

information that the attacker is not authorized to read. This type of attack is an 

attack against the confidentiality of the information. 

2. Modification 

This is an attempt to modify stored or transmitted information that an attacker   

is not authorised to modify. This type of attack is an attack against the integrity 

of the information. The relationships between security attacks and security 

services are shown in Table  2-2 (c.f.,[40]). 

Table ‎2-2 Security services (adapted from [40]) 

Security Service 

Attack Confidentiality Integrity 

Access ×  

Modification  × 

2.4.3 Metrics 

Unlike performance, it is not possible to measure security directly (c.f., [42]). 

However, by considering security as a ‘Process’, it can be quantified and linked 

with reliability” [43]. Reliability is related to the internal functionality of the 

system thus faults can be fixed based on pre-knowledge, while security protects 

the system against external attacks, which are not predictable. In this context,  

“measuring security is often similar to measuring reliability” (c.f., [13]).  From 

this perspective, some credible security metrics may be defined as follows (c.f.,  

[13 , 42]):  

1.  “The mean time to Incident Discovery (~corresponds to Mean Time to 

Failure in reliability)”; 
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2. “The Mean time taken to recover from an attack (~corresponds to  Mean 

Time to Repair in reliability)”;  

Wolter and Reinecke [13], on the other hand, defined some security metrics for 

a general encryption system in terms of the “probability of being in a certain 

condition, namely the following [13]: 

1. “The probability of the encryption key being valid”; 

2. “The probability of an undetected broke key” (i.e., the percentage of the 

amount of sensitive information leakage at a node). 

Moreover, several security metrics related to particular security mechanisms 

like cryptographic algorithms can be used such as ‘Encryption key length’ 

proposed for MANETs in [44]. 

In addition, some CPSMs were suggested by Wolter and Reinecke [13] in order 

to allow system designers to quantitatively determine acceptable trade-offs 

between performance and security. This can be made by assessing the degree 

of protection provided by security mechanisms at an acceptable level of 

performance (e.g., [13]). 

2.5 Trade-off between Performance and Security 

When the security is activated, to what extent will the network performance be 

affected? And is such degradation acceptable for the real-time applications in 

high-speed networks? In order to answer such questions, a trade-off between 

performance and security needs to be explored and this will help in[45]: 

1. Increasing the understanding of secure systems’ behaviour; 

2. Facilitating the evaluation of the adverse impact of security on performance 

and predicting its future behaviour; 

3. Performing quantitative evaluation of the secure systems being designed, 

thus leading to their optimisation.  

2.5.1 Approaches of Trade-off Evaluation 

Trading off between performance and security involves either compromising/ 

trading off security, in terms of security metrics, for better overall performance, 
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indicated by the performance metric, or vice versa. The performance-related 

security can be evaluated firstly by modelling performance and security 

accurately using effective quantitative modelling tools which include QNs and 

GSPNs and they have various features in terms of simplicity and modelling 

power.  It is also significant to define suitable metrics for both performance and 

security as well as appropriate combined metrics/ functions [13].  

This thesis suggests exploiting PEPs to optimise the performance of secure 

networks, which may or may not require hardware upgrades. Some approaches 

need hardware upgrades are such as multiple-core CPUs with higher speeds. 

While those do not required such upgrades are such as selective security [46] 

and space priority, service priority [16]. In this context, the scale of performance 

improvement is of significance. 

2.6 Case Studies Considered 

In both considered case studies, the adverse impacts of access control and 

encryption services are taken into consideration in routers and RANETs 

respectively. 

2.6.1 High-Speed Routers and ACLs 

In this section, brief descriptions to ACL mechanism besides Attacks on routers 

that can be prevented by ACL are provided [3]. ACL used to filter traffic entering 

or leaving an interface and it consists of a set of commands (i.e., list of security 

protections [47]) that define specifically which traffic flows are permitted and 

denied[47]. There are two types of ACL; ‘Standard’ and ‘Extended’ [48]. In 

standard ACL, the filtration is made according to the source IP address. While 

in extended ACL, which is most advanced, filters incoming/ outgoing traffic 

based on several parameters such as source IP address, destination IP 

address, the protocol used and port numbers as  shown in Figure  2-2.  

ACL can either check inbound (i.e., incoming) or outbound (i.e., outgoing) traffic 

thus ACL can be further classified to ‘Inbound ACL’ and ‘Outbound ACL’. More 

information about ACL classifications can be found in [39 , 47 , 49]. 
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Figure ‎2-2 The concept of ACL mechanism in the router (adopted from [47]) 

a) Attacks on High-Speed Routers  

Some of possible attacks against routers include “unauthorised access, 

rerouting, denial of service (DoS), and eavesdropping and information theft” 

(c.f., [27]). ACL security mechanism can detect and prevent several access 

attacks on routers, such as "Address Resolution Protocol (ARP), spoofing 

attacks, DoS attacks through filtering malicious traffic from the internal” (c.f., 

[27]). 

b)  ACL Security Application Vs. CPU Performance  

 The filtering process performed by ACL in a router - from the performance 

prospective - introduces computation costs during data transmission (c.f., [6]). 

Consequently, there is a need to reduce the “speed gap” [3] between bandwidth 

and the processors at the router which may make it a bottleneck in the network.  

When ACL is activated, the router’s CPU usage is consumed. To reduce this 

effect, a multi-core processor can be used for this purpose. 

c)  Multiple-Core CPUs 

A multi-core processor composed of two or more individually attached cores 

which are typically integrated into a single integrated circuit chip [50]. A multi-

core processor does not often need a new motherboard since it can use 

existing boards that feature the correct socket [51]. 
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2.6.2 RANETs and WEP 

Due to the fact that data exchanges among RANET nodes take place through 

an open medium, communications may be interrupted and easily captured by 

unauthorised users. To eliminate this impact, encryption algorithms such as 

WEP and Wi-Fi Protected Access (WPA) can be utilised (c.f., [15 , 52]). Attacks 

against RANETs and how WEP can reduce their effect are described below. 

a) Attacks on RANETs 

Possible attacks against RANETs can be either: ‘Passive attacks’, in which data 

can be read by the attacker) without being modified, or ‘Active attacks’ where 

data can be modified, thus leading to congestion. Consequently, this type of 

attack is more serious and should be detected as soon as it occurs. This can be 

performed using encryption mechanisms.  

b) WEP Protocol 

WEP provides confidentiality and integrity of stored and transmitted data (c.f., 

[10]). WEP encrypts data using a shared WEP secret key and it utilises CRC 

checksum for integrity. WEP offers a quite low level of security thus it can be 

cracked easily (c.f., [10]) but it is considered in this study to illustrate security 

modelling concepts in infrastructure-less networks. From the performance point 

of view, WEP involves employing extra bits to secure packets and consequently 

requires additional processing time, power to perform encryption (c.f., [10]). The 

performance of WEP can be enhanced via SS (c.f., [11]). 

c) SS 

To mitigate the adverse effect of security on network performance, SS 

mechanism, proposed in (c.f., [11]), can be used where only a percentage, p, of 

packets, where (0 ≤ p ≤ 1), are allowed to go through the security process to 

guarantee the acceptable levels of security in RANETs within required bounds 

of performance as well as power-saving in MANETs (c.f.,[11 , 17 , 46]).  
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2.7 Summary 

This chapter introduced the concept of high-speed networks and the 

significance of modelling and evaluating trading off between their performance 

and security. It also investigated the concept of security services and 

mechanisms and how they affect performance in communication networks. In 

addition, some commonly used metrics for performance and security have been 

briefly reviewed. In the following chapter, network traffic flows models will be 

introduced. 
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Chapter 3 Modelling Networks Traffic Flows 

3.1 Introduction 

The design of secure High-speed networks which run various applications and 

security services under bursty traffic is challenging [53]. To facilitate this task, it 

is important to investigate traffic models of the network to avoid QoS 

degradation. Such models should accurately evaluate and predict the network’s 

performance and security and to helps in mitigating the adverse impact of 

security on the system’s performance. Therefore, traffic models are an essential 

part of the performance evaluation of the network (c.f., [5 , 53]). This chapter 

reviews the traffic models used to reflect bursty traffic in high-speed networks. 

3.2 Traffic Characteristics 

The impact assessment of heterogeneous traffic flows on the performance-

related security of a high-speed network is one of the current key research 

issues in the field (c.f.,[54]). Once the traffic characteristics are better 

comprehended and credibly modelled, they may provide a strong basis for 

performance and security trade-off evaluation and optimisation (c.f., [55 , 56]).  

Moreover, networks’ best/worst-case scenarios can be identified for certain 

applications. This section provides an overview of traffic models that capture 

traffic burstiness. It also describes how such models have been used in this 

study for high-speed networks in general and for RANETs in particular.  

There are three important characteristics of a traffic source and they are as 

follows [57]: 

1. Traffic Average Data  Rate 

It gives an indication of the expected traffic volume for a given period of time. 

2. Traffic  Burstiness 

Burstiness describes the possibility of messages arrival in bulk/batches (i.e. in 

groups instead of individual arrivals). Considering burstiness is vital since it can 

predict the situations in which network congestion and loss of data occurs. Most 

traffic sources supported by high-speed networks are highly bursty (c.f., [24]). 
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Note that traffic studies in high-speed networks only mean and variance may be 

relied on and thus GE distribution which is completely defined in terms mean 

and variance implies least bias [16].  

3.3. Traffic Models 

Traffic describes and generates telecommunications traffic, which is important 

for two main reasons: 

1. Describing traffic flow to the service provider; thus, new connections with a 

specific QoS, such as  achieving  a given level of security) can be admitted 

without affecting other connections;  

2. Making new designs for future networks through the modelling of these 

networks and predicting their performance and security besides applying the 

traffic type to be tested [57]. 

The main arrival processes considered in this thesis for high-speed networks   

include IPP, Compound Poisson Process (CPP) and ICPP, which are stochastic 

process (i.e., random functions of time). These processes and some 

corresponding inter-arrival time distributions are summarised below: 

3.3.1 IPP 

An IPP traffic flow (c.f., [19]) is a modified Poison traffic process with two states, 

‘On’ and ‘Off’, as in Figure  3-1. In the ‘On’ state, traffic is generated according to 

Poisson process, while no traffic is generated in the ‘Off’ state.  Thus, the ‘On’ 

and ‘Off’ periods are exponentially distributed with means of 1/β and 1/ α 

respectively. IPP may be seen as a 2-state Markov Modulated Poisson Process 

(2- MMPP), where the mean arrival rate λ2 at ‘Off’ state is zero (c.f., [58]). IPP 

has been used to present voice, data and video transfer over the Internet. In the 

context of this study, the IPP will be used to model the wireless channel 

availability between a pair of communicating RANET nodes (c.f., [18 , 59]). 
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Figure ‎3-1 The IPP traffic model 

3.3.2 CPP 

A stochastic process (X(t), t ≥ 0) is called a  CPP process when it can be 

presented by (c.f.,  [60]): 

  ( )  ∑      

 ( )

   

 Eq. ‎3-1 

Where (N(t), t  ≥ 0) is the counting process for Poisson process and Y1, Y2, . . . 

are independent, identically distributed random variables with discrete 

distribution  represents the batch size that arrived at time t and they are 

independent of (N(t), t ≥ 0). When the batch size is geometrically distributed, 

the CPP is the counting process of a GE-type inter-event time distribution, 

which is described below: 

a)  GE Distribution 

 GE distribution is determined by (c.f., [12 , 20]). 

 F(t) = P(W t) = 1-τ e-τλt, t ≥ 0 Eq. ‎3-2 

where τ = 
 

(    )
,  W is the random variable, an inter-event time, and (1/λ, C2) 

are, respectively, the corresponding mean and squared coefficient of variation 

(SCV) defined by: 

    
   ( )

  ( )
 Eq.  3-3 

C2 gives an indication of degree of the burstiness of the inter-arrival and service 

time completion. The GE-type distribution is shown in Figure  3-2. 

GE can also be interpreted as ‘extreme case’ of the family of two-phase 

Hyperexponential-2 (H2) having the same λ and C2, where one of the two 

phases has a very large mean rate (i.e., zero service time). In this context, GE 
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model defines the ‘Upper’ performance bounds for the corresponding solutions 

based on two-phase H2 distribution with the same first two moments [12 , 20] 

(c.f., Appendix B). 

 

Figure ‎3-2 The GE-type distribution with parameters τ and σ (c.f., [12 , 20]) 

 

Over the years, GE has been linked with bursty traffic flows and variable service 

times (c.f., [20], [16]). GE is the most appropriate distribution to model 

simultaneous arrivals of messages, generated by bursty traffic sources to a 

secure  node in a high-speed network [16].Traffic burstiness impact can be 

assessed by increasing values of the SCV of inter-arrival times,    (  >1).  

a) The relation between  IPP  and GE  

IPP can be fitted according to the inter-arrival time process into H2 distribution 

as proposed in [61 , 62]. H2, in turn, can be approximated to GE when the 

tuning parameter k of H2    (c.f., [20]) (c.f., Appendix B for more details). 

Thus, IPP can be expressed in terms of GE parameters and this feature can be 

utilised in the context of the proposed performance and security trade-off 

framework for mobile RANETs (c.f., chapter 7), where IPP represents a Gate in 

G-queue to reflect a node’s mobility (c.f., [18]). GE then can express the inter-

arrival times of messages to enable predicting ‘upper bounds’ of networks 

performance in the presence of security. 

3.3.3 ICPP 

The ICPP (c.f., [58]), shown in Figure  3-3, is similar to an IPP except that the 

inter-arrival time within the ‘On’ state follows the GE-type distribution with mean 
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rate λ and   SCV,   
   , i.e., traffic in the ‘On’ state is generated according to 

CPP, whilst no traffic is generated in the ‘Off’ state. 

 

Figure ‎3-3 The ICPP traffic model 

3.4 Traffic Modelling for RANETs 

Poisson process was used as arrival processes in MANETs in (c.f., [18 , 63]). 

Since this assumption is not realistic to reflect bursty traffic, CPP may be 

adopted instead to model the inter-arrival and transmission times in MANETs 

(c.f., [64], [65] ).  Other traffic modelling studies and load distribution in MANETs 

can be seen in [18 , 56 , 59 , 66 , 67 , 68].Several approaches to mobility using 

QNs for MANETs employ IPP to capture the link state between a pair of 

communicating nodes such as the proposed  Gated Queue (G-Queue) by 

Bhatia et al.(c.f.,[18 , 59]). Under certain conditions, these studies may be 

applicable to RANETs (c.f., [64]). 

3.5 Summary 

This chapter reviewed most commonly used traffic flows models in high-speed 

networks to reflect their traffic burstiness nature. These models are such as IPP 

and ICPP. Once credibly modelled, these models will help in providing a strong 

basis for performance and security trade-off evaluation and optimisation (c.f., 

[55 , 56]) as well as determining the networks’ best/worst-case scenarios.  

The following chapter describes in detail the network modelling and evaluation 

tools and how they have been used to model and assess the trade-off between 

performance and security. 
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Chapter 4 Network Modelling and Evaluation Tools 

4.1 Introduction 

Network modelling and evaluation tools are needed to provide a way of 

exploiting traffic models as their input; they then produce a response that 

mimics the behaviour of the system being modelled. The main purpose of using 

these tools is to provide ‘Worst-case’ scenario evaluations for system designers 

[53]. Appropriate models are beneficial to assess and predict the suitability of 

new security protocols under different requirements prior to the actual 

implementation. This chapter reviews the most common network modelling and 

evaluation tools which are QNs, GSPNs, and combined QNs and GPSNs, to 

capture the behaviours of the network and evaluate its performance-related 

security.   

4.2 Network Evaluation Tools 

There are three ways of evaluating the performance and security trade-offs in 

high-speed networks: 

1. The measurements of a tested version (or prototypes of the system) of the 

system instead of the system itself, which is more expensive; 

2. The implementation of a mathematical model that describes the system‘s 

behaviour through equations and constraints. This approach is used when it 

is not feasible to build the system’s prototype. QNs, PNs and generalisations 

can be used in this context to model secure systems and  Maximum Entropy 

(ME) [12] principle can be used to analyse a network on QNs; 

3. The simulation of the system, in which a computer program is built to mimic 

the behaviour of the system. Simulation is used when the system to be 

evaluated is too complex or does not exist [45]. 

Since the implementations and performing of measurement-based evaluation 

are expensive and the performed tests are time-consuming, a model-based 

evaluation is more appropriate thus, it has been chosen in this study.  
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The model-based tools to evaluate the trade-off between performance and 

security are as follows: 

1- Queueing Networks; 

2- Petri Nets (PNs) and Generalisation. 

Simulation models composed of QNs have been used to evaluate the 

performance and security trade-offs. The following section presents a more 

detailed description of these techniques and their use in the literature to model 

security and performance-related security [45] in infrastructure and 

infrastructure-less networks.  

4.3. Modelling Network Tools and Performance vs. Security Trade-offs 

Fundamentals of QNs, PNs and generalisations are introduced in subsections 

4.3.1 and 4.3.2, respectively, in conjunction with their quantitative modelling 

applications on the evaluation of performance vs. security trade-offs (c.f., 

Table  4-1 based on: 

i) an open QN for generic networks and Gated QN (G-QN) model  of  a 

RANET [69], and 

ii) an SPN model of a general communication network [13] and a GSPN of a 

MANET [15]. 

Table ‎4-1 Modelling of performance vs. security trade-offs 

Security Modelling Performance-Security Modelling 

 Generic Networks 

    QNs [6 , 14 , 65], PNs [13 , 41 , 70]; 

 MANETs 

QNs [14 , 71]), SPNs [72 , 73]. 

 Generic Networks 

QNs [6 , 74]), GSPNs [13 , 41]; 

 MANETs  

QNs [64 , 69]), SPNs [15].  

 

Other approaches, besides QNs and GSPN quantitative models,  have been 

considered in the literature to assess the trade-off between performance and 

security in the context of encryption-related security in wireless networks [46 , 
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75 , 76] and networked control systems (c.f., [77 , 78 , 79]) and these 

approaches are out of the scope of this thesis. 

4.3.1 QNs 

In this section, the fundamentals of QN models and their use in modelling 

security services and performance-security trade-off are presented. 

a) Fundamentals of QN Models  

QNs are quantitative tools for modelling complex systems through a “concise 

graphical description” (c.f.,[80]) of service centres, queues and their disciplines 

besides routing amongst these nodes (c.f., [81]). A QN may be either ‘Open’, 

with an external arrival process generated by an infinite population source, or 

‘Closed’ with a fixed number of messages or ‘Mixed’ open and closed (c.f.,[82 , 

83]). In the context of this thesis, only open QNs are considered since external 

arrivals to the router/RANET nodes are expected to be secured and processed  

then they depart from the network. 

QNs may take into consideration scheduling strategies and priority rules, such 

as FCFS, in which all traffic flows have the same service priory, and HoL, where 

jobs are divided into classes and these with higher priority are served first [4 , 

34]. Low priority classes are not pre-empted from the queue server upon the 

arrival of high-priority class (c.f., [16]). QNs also have either single or multiple 

channel queues with infinite or finite capacity and, thus, blocking. [84].   

b) Buffer Management Schemes 

Buffer Management Schemes [16] provide space priority such as CBS and 

PBS. Under CBS, jobs from any class can join a finite capacity queue whenever 

there are free spaces for them. While in PBS, a threshold is set to allow high-

priority class jobs to occupy the whole capacity while those with lower priority 

classes can only join the queue if the total number of jobs in the queue is less 

than a threshold value.  

c) RS Repetitive services (RS) Blocking Mechanism 

According to this mechanism [16 , 85], if a job completes service at queue i and 

attempts to join queue j but upon arrival, it finds queue j at full capacity, then the 
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job is rejected and immediately goes back to receive another service at queue i. 

This action is repeated until the job completes a service at node i at the time the 

destination node j is not full.  There are two types of RS which are RS with 

Fixed Destination (RS-FD) and RS with Random Destination (RS-RD). In RS-

FD, the destination node j to which the job is routed is determined after the first 

service and it cannot be modified (changed) later. While for RS-RD, the 

destination node j, is selected at each service completion in an independent 

way of the one chosen previously. 

The main advantage of QNs is their ability to model the interaction between a 

system’s resources and its applied workload and  they are acceptable whenever 

the required level of detail for the model specification is not too high (c.f., [86]), 

and they can effectively represent single and multiple servers with priority and 

non-priority service disciplines and multiple classes under various blocking 

mechanisms  [16 , 20 , 87].However, QNs are not quite suitable for capturing 

more complex operations such as synchronisation of processes, software 

contention and concurrency (c.f., [81 , 83]). 

d) Security Modelling Using QNs 

Security can be either modelled implicitly or explicitly.  

i) Security Implicit  QNs 

An earlier open QN model was proposed by Zorkadis in [6], depicted in 

Figure  4-1, for the evaluation of performance vs. security trade-off in a general 

communication system with two linked firewalls through a wired channel. More 

specifically, two firewalls connected in tandem, via the communication channel,   

were modelled and analysed in [6], each of them having a stable M/G/1 

queueing system under FCFS discipline. Security functions (encryption, integrity 

and authentication) were modelled implicitly by means of reducing the overall 

mean transmission rate of the server at each M/G/1 queue.    



30 

 

 

Figure ‎4-1  The communication system modelled by Zorkadis [6] 

In this study [6], the impact of bursty traffic was not taken into consideration. 

Moreover, either a single queueing node or queues in tandem with one arrival 

class were investigated in the trade-off.  

ii) Security Explicit Queueing Models 

QN model was employed in [14] for the performance  and security  trade-off 

analysis of a static single MANET node, subject to the WEP security protocol 

(c.f., Figure  4-2), where security and forwarding service times have been 

modelled explicitly by a 2-stages hypoexponential distribution in which the 

service rates are different [71]. The impact of business has not been taken into 

consideration. In addition, only single-class, which served according to FCFS 

discipline, was considered.   

 

Figure ‎4-2 QN of a MANET node with two servers 

The performance-related security modelling and evaluation of a static RANET 

node with a WEP security mechanism was also investigated in [64] through 

QNs. A  MANET node was modelled as a queueing system with either single or 

dual server, where security was represented by a delay centre. Both inter-arrival 

times and service times follow GE distribution. In both models, mobility was not 

taken into consideration.  

In order to make MANET/RANET’s model more realistic, the concept of mobility 

modelling in MANETs / RANETs should be taken into consideration. Bhatia et 

al. [18 , 59] proposed a Gated Queue (G-Queue), where each node has an ‘On-
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Off’ gate to reflect the presence/absence, respectively, of a link with another 

network node. The concept of modelling mobility in MANETs / RANETs in the 

literature is described in more detail below. 

e) Mobility Modelling of MANETS / RANETs Using QNs 

Since RANETs’ functionality involves mobility, it is vital to model robotic nodes 

movements as well as the wireless links behaviour within the static queueing 

node, subject to the characterisation of the incoming traffic, and evaluate the 

network’s performance-related security. Mobility is the main cause of the link 

breaking down as the connection between two RANET nodes becomes 

unavailable often because one of the nodes has moved out of the coverage 

area of other nodes [59].  

Several approaches were suggested to model the channel availability within 

queueing nodes of a MANET, based on ‘G-Queues’, ‘Server vacation’ and 

‘Intermittent links’. These approaches use the IPP to capture the input/output 

link availability to/from a mobile node (c.f., [18 , 59 , 88 , 89]).  This study will 

focus only on G-QN since they have been used in the proposed models for its 

simplicity. More information can be found on other models in [18 , 59 , 88 , 89].  

i) G-Queues   

RANET nodes can be modelled as a stable open G-QN model, where the 

wireless links between a pair of nodes are either available or unavailable 

through ‘G-Queues’ (c.f., [18]).A G-queue, depicted in Figure  4-3, is a gate 

introduced at the entry of QN model, which represents the input link to that 

node. This input link goes ‘Off’ and ‘On’ exponentially with mean rates of α and 

β, respectively. When the link is up, it is said to be in phase ‘On’ and when it is 

down it is in state ‘Off’ (i.e., the node is disconnected from the RANET). 

 

Figure ‎4-3 A RANET node with a gated queue (c.f., [18]) 
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Note that the external mean arrival rate is denoted by λ whilst μ refers to the 

mean service rate. 

f) ME 

ME is an analytic tool used to determine” the probability distribution of the 

number of jobs in a queuing system by maximising the corresponding entropy” 

[90] subject to constraints in terms of mean number of jobs in the system. ME 

algorithm proposed in [20 , 74] can be applied in the context of performance 

versus security trade-off in high-speed networks modelled by for M router 

queues connected to form arbitrary open QN with and  R priority classes, finite 

capacity with blocking, where  the exact solution of such a network cannot often 

be performed (c.f., [16]. Thus, exploiting ME principle helps in overcoming 

potential state space explosion caused by increased the network size and the 

inclusion of multiple classes and blocking mechanisms. By applying ME, secure 

network can be decomposed into M individual queues with R classes, each of 

which can be approximately analysed in isolation to determine, in a cost-

effective way with acceptable accuracy, the required aggregate and marginal 

performance metrics. These metrics then express the scales of improvements 

in performance in the secure systems.  

4.3.2 PNs and Generalisations 

In this section, fundamentals of PNs and their generalisations such as 

Stochastic PN (SPN) and GSPN models are described. In addition, two case 

studies from the literature on the use of these models in modelling and 

evaluating of the performance-security trade-off are presented. 

a)  Fundamentals of PN-based Models and Generalisations  

PNs are credible modelling tools for the qualitative/quantitative analysis of 

complex system involving software contention, blocking and synchronisation. 

However, PNs and its generalisations cannot directly represent scheduling 

disciplines [82 , 83], motivating the use of extensions to increase their system-

modelling capabilities and analyses (c.f., [91]).  
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i) PNs 

A PN is a bipartite directed graph and it is composed of two types of nodes: 

‘Places’, p, and ‘Transitions’, t. A place is plotted as a circle and accommodates 

customers called ‘Tokens’, the total number of which defines its state. 

Transitions, plotted as boxes or bars, represent events/actions that change the 

system’s state. Arcs are the links between places and transitions representing 

interdependencies between them. Note that these arcs cannot be used to 

connect places to places or transitions to transitions.  The marking (M) of the 

PN is known as the number of tokens in each place and M0 indicates the initial 

marking of the PN (c.f.,[89 , 91 , 92 , 93]).The reachability set (or state space) 

can be defined as a group of markings reached from M0 as a result of sequential 

firing of transitions. Thus, a state space for a PN can be either finite or infinite, 

according to PN structure. State space explosion may occur when there is a 

very large set of markings of the PNs (c.f., [89 , 91 , 92 , 93]). When an arc 

connects from a place to a transition, this place is known as ‘Input place’, whilst 

if an arc connects from a transition to a place, this place is known as ‘Output 

place’. These concepts are depicted in Figure  4-4. 

 

Figure ‎4-4 Typical components of a PN (c.f., [89 , 92]) 

A transition is considered to be enabled if the number of tokens in each of its 

input places is at least one. Once enabled, firing of a transition may possibly 

change the state of the system and, consequently, the number of tokens in 

each of the input places for that transition is reduced by one token or more 

(according to the input arc multiplicity, connecting from a place to a transition). 

Similarly, the number of tokens in each of its output places is increased by one 
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(or more according to the output arc multiplicity, connecting from a transition to 

a place). 

Since time was not considered in traditional PNs, several extensions have been 

proposed to allow the performance analysis of more realistic systems to be 

evaluated. PNs can be extended by assigning time delays to places, transitions, 

arcs or tokens, and the resulting systems are known as Timed Petri Nets 

(TPNs).  In these extensions, time was assumed to be either deterministic or 

stochastic (c.f.,[89 , 91 , 92 , 93]). 

ii) SPNs 

When this delay is exponentially distributed, the resulting Timed Transitions 

PNs (TTPNs) is referred to as a SPN. The firing policy adopted for an SPN is 

the ‘Atomic firing policy’ (c.f., [89]), according to which firing of a transition (after 

a random period of time) is considered  as an ‘Atomic’ operation in the sense 

that tokens are removed from input places and deposited into output places with 

one indivisible action. 

iii)  GSPNs 

Since SPN-based modelling and evaluation of complex networks may become 

increasingly time-consuming with the potential of a state explosion, a GSPN 

was introduced in [89] as an attempt to address this problem and execute 

immediate transitions and inhibitors, where the corresponding states vanish, as 

appropriate. These immediate transitions have priority of firing over the ‘Timed’ 

transitions. Another type of arc was also defined as ‘Inhibitors‘, where the 

absence of tokens in an input place linked to this arc enables the transition for 

potential firing, given that the other input places have at least one token each 

(c.f., [89 , 91 , 92]). 

Some of the GSPN limitations are inability to model scheduling strategies.  

Moreover, PNs and their extensions (c.f., [89 , 91 , 92 , 93]) suffer from state 

space explosion as the network size increases. This is due to the fact that a 

GSPN model has the ability of provide “compact representations” [94] of 

complex systems which is, in turn, reflected in the sizes of their state spaces 
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that grow with the number of places in GSPN and of tokens in its initial 

markings [94].In the context of this study, GSPN is utilised to model security 

mechanism in order to evaluate more effectively the adverse impact of security 

on performance and associated trade-offs. 

b) PN-based Applications into Performance and Security Trade-offs  

For illustration purposes, two key modelling applications on performance vs. 

security trade-offs in MANETs with Intrusion Detection System (IDS)  using 

SPN [15]and a general communication system with encryption protocol  using 

GSPN [13], are discussed below: 

i) An SPN Model for Performance vs. IDS-based with Rekeying Security 

Trade-off for a MANET 

Cho et al.[15] analysed an SPN model focusing on the assessment of group 

communication system (GCS)  vs. IDS-based with rekeying for a MANET. 

 Model Description and Application Context 

Cho et al. [15] developed a robust SPN model for the evaluation of trade-offs 

associated with performance and security properties of a GCS for MANETs, 

which employs voting-based IDS with batch rekeying techniques in which a 

compromised node is evicted from the communicating group when the majority 

of nodes vote against it, and this is performed in a periodic manner at each 

node. Cho et al. [15] adopted a threshold-based periodic batch rekeying in order 

to reduce the rekeying overhead in MANETs attributed to the joining, leaving 

and evicting of nodes. The optimisation of this threshold value is important, 

since a large threshold value gives compromised nodes the opportunity to 

access data (i.e., violating security), whilst a low threshold value increases the 

computations and the rekeying overhead (i.e., degrading performance). The 

evaluation of the adopted SPN in [15] led to the identification of optimal settings 

in terms of batch rekeying intervals, maximise MTTSF and minimise mean 

response time simultaneously. 
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 Performance and Security Metrics Considered 

SPN’s model performance metrics are response time (R) and MTTSF (i.e., time 

between rekeying operations), as performance and security measures, 

respectively.  

 Remarks 

The SPN model of MANET in [15] was made at network level and not at the 

node level. Consequently, the characteristics of a single node might not be 

taken explicitly into consideration and this might prevents assuming the 

heterogeneity of nodes (i.e., it will not be easy to reflect the behaviours of 

various nodes in the proposed SPN). 

ii) A GSPN Model for Performance vs. Encryption-based Security Trade-

off for an Abstract Communication System  

Wolter and Reinecke [13] proposed a GSPN model of an abstract 

communication system with encryption protocol, based on a CPSM to 

investigate the performance and security trade-offs. 

 Model Description and Application Context 

Wolter and Reinecke [13] proposed a combined performance-security model for 

an abstract communication system, based on a GSPN, in order to evaluate and 

optimise the trade-off between performance and security by means of a 

combined metric (c.f., Figure  4-5).   

 

Figure ‎4-5 Wolter and Reinecke [13] model for a performance and security trade-off 
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The GSPN consists of two models, one for ‘Security’, modelling the encryption-

based security state of the system (the encryption key in particular) and one for 

performance, representing encryption processing and transmission. 

Once the encryption key is broken, the system becomes insecure and recovery 

process which requires producing a new key is performed. The two models are 

linked by an inhibitor arc, which connects the place ‘Restoring’ in the security 

model to the transition ‘Encrypt’ of the performance model.  

From the encryption application point of view, the system will act as follows: 

when the system is secure it encrypts and transmits messages. Once the 

encryption key is broken, the system becomes insecure and, in this case, 

messages are encrypted by invalid key and this indicates the leakage of 

sensitive information. When the system detects this problem (which is usually 

related to the integrity test included in the encryption protocol), the encryption 

process is interrupted and it stops/is inhibited until a new key is generated. 

During the time between key being compromised and detecting this incident, 

any encrypted message with the broken key can be seen as unsecure (i.e., 

information leakage). The adverse effect of security on performance is 

accounted for in terms of the security processing and potential extra delays due 

to the presence of a token in the security system state ‘Restoring’ of the security 

model (due to the inhibitor arc), which blocks the encryption process. This 

model investigates how to choose an appropriate encryption key length in terms 

of its corresponding encryption time. 

From one hand, the longer the encryption key, the higher the security level of 

encrypted messages which means they become more secure. On the other 

hand, longer key length increases the computational effort resulted by 

encryption. Thus an appropriate trade-off is needed. 

 Performance and Security Metrics Considered 

1. Performance Metric 
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The performance metrics considered is the ‘Throughput’ of ‘Send’ transition 

within the performance sub-model. 

2. Security Metrics  

Security metrics in this model were expressed in terms of probabilities of events 

to occur [13], e.g., ’Probability of the system being in secure state’; ‘Probability 

of the undetected broken key’ and  ‘The probability of detected broken key’.  

3. CPSMs 

An ‘Optimal’ trade-off between security and performance was established in [13] 

by proposing CPSM to determine an optimal key length for the encryption 

process that corresponds to the CPSM maximum value. CPSM is defined as 

“the sum of the throughput of the performance model and the probability of the 

system being in the ‘secure’ state (or, place) in the security model”, i.e., 

(throughput of performance sub-model) + (Probably of the system to be secure 

e.g., P (Secure), as depicted in Figure  4-6. 

 
Figure  4-6 CPSM proposed by Wolter and Reinecke (adapted from [13]) 

The optimum encryption time is 2 sec and it means that when using the 

corresponding encryption key length, both performance and security are 

maximise and using longer encryption keys causes  performance degradation in 

spite of improving security. Wolter and Reinecke[13] state that CPSM gives a 

measure that comprises the contribution made by performance besides security 
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and it should have a maximum. It is noteworthy that the throughput obtained in 

the model has a maximum since the capacity of the system is limited. 

 Remarks 

Wolter security model does not take bursty traffic into consideration.   

Appropriate extensions can be made to security sub-model in order to express 

more sophisticated scenarios for security protocols and control to provide, for 

example, the protection against information leakage. In order to make the 

CPSM more appropriate, utilisation can be used instead of the throughput since 

the latter is considerably greater than unity in context of high-speed networks 

and therefore; it will dominant the overall CPSM (after being added to the 

appropriate probability). Utilisation, on the other hand, is a fraction thus it has 

the same scale as probability does. Moreover, both utilisation and probability 

values are dimensionless. 

4.3.3 Combined QNs and GSPNs 

Due to the limitation of QNs and GSPNs, several suggestions have been made 

in the literature to combine them in one model in various forms  (c.f.,  [80 , 82 , 

83 , 89 , 95 , 96 , 97 , 98 , 99]).This combination can be generally  classified into 

two main types of modelling tools involving integrations of GSPNs and QNs, 

namely: 

1. Embedding a QN in a PN Component  (c.f., [82 , 83 , 95 , 100]); 

2. Integrating/Combining a QN with a GSPN(c.f.,  [80 , 82 , 83 , 89 , 95 , 96 , 97 

, 98 , 99]). 

This section will focus on the second type of combination between QN and 

GSPN, i.e. integrating QNs with GSPNs; it will then review one of the 

combination approaches which investigate the trade-off modelling between 

performance and reliability. 

a) Fundamentals of Combined  QN and  GSPN Models 

QNs and GSPNs were combined in order to exploit the best features of both 

modelling tools to overcome their limitations and provide an effective analytic 

solution to complex systems by including the required level of detail in the 
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model [86]. The concept of combining GSPNs and QNs was introduced for the 

first time in the literature by Balbo et al. [86] where he presented two case 

studies as example on the use of combined QN and GSPN model. In his first 

case study, for example, Balbo et al. modelled concurrency and synchronisation 

of software task executions on a system with M servers (CPU’s, I/O units). At 

modelling level, concurrent execution of tasks in software part were modelled by 

GSPN where the CPU and I/O units by Product Form Queueing Networks 

(PFQN) model. While at analysis level, QN part of the model was converted to a 

single timed transition using Principle of Flow Equivalence’ (FE) in order to 

reduces the state space of the underlying Markov chain of the overall GSPN 

model (c.f., [86 , 101] .However, Balbo et al does not provide a general and 

clear combination structure that can facilitate modelling of other various 

problems (c.f., [80 , 96]). Moreover, the performance and/or security of the 

proposed model were not evaluated. 

While in [97], Szczerbicka exploited the same combination approach to model 

the performance and reliability of a fault-tolerant computer system, which will be 

described in more detail in the next section. At modelling level, GSPN 

represents the ‘Fault model’ of the transmission channel fault and correction 

while QN model reflects the performance of the system. At analysis level, 

similarly to Balbo approach, Szczerbicka suggested the replacement of QN with 

either an equivalent timed transition or more complex GSPN-structure in order 

to eliminate the state space explosion of GSPNs. 

In a different context, Becker and Szczerbicka [80] proposed a Petri Nets 

including Queuing networks (PNiQ) to model and analysis manufacturing 

schemes, where a single-class QN was combined with a GSPN, in which QNs 

reflect the manufacturing production lines, while GSPNs captures the 

associated control and maintenance process. This model is then extended to 

Multi Class-Petri Nets including Queuing networks (MC-PNiQ) [96] model to 

count for multiple classes which was solved analytically using the flow-
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equivalent concept, and this leads to a very large percentage reduction of state 

space from 50% to 95%.  

As adifferent analysis approach, Szczerbicka and Ziegler [102] devised a 

simulation-framework based on active objects for the combination of a GSPN 

and QN as quantitative tool for evaluating the performance and reliability of 

computer systems, taking advantages of common abstract features between 

QNs and GSPNs ( i.e., both  transitions and servers represents events where 

the queue buffers and places represents a node condition). 

b) Advantages of combining QNs and GSPNs 

1. Combining & exploiting the best features of both  QNs and GSPNs to 

provide an effective & “computationally manageable” [102] solution of 

dynamics, control and  security of a system analytically or via simulation 

(c.f., [102]) and acting as a general purpose technique for solving certain 

classes of “Non-product form models” (c.f., [80 , 86 , 97]); 

2. Reducing the state space explosion and the model ‘graphical complexity’[96] 

where hardware interactions, routings, multiple classes & blocking can be 

modelled by QNs while software operations e.g., synchronisation and 

concurrency are reflected by GSPN (c.f., [80 , 86 , 97]); 

3. In the context of DES, adopting combined QNs & GSPNs will help in 

reducing the time required to update transitions status after each firing event 

in a pure GSPN model (as the overall  number of transitions/places required 

to model  the same system is reduces). 

c) Combined  QN and  GSPN-based Applications to Performance and Security 

Trade-offs 

Security was not considered straightforward in this study as reliability was 

investigated instead [97]. In particular, a combined QN and GSPN model was 

used to reflect the performance and reliability trade-off of a fault-tolerant 

computer system, (c.f., Figure ‎4-7), consisting of a central processor working 

according to processor sharing mode, with two local I/O units besides a remote 

one connected to the system through a communication channel. The reliability 
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of this channel was modelled by a GSPN whereas the processor and its local 

units were modelled by a QN [97].Transmissions (with the rate λsend) to/from the 

remote unit can be interrupted when the channel fails. Consequently, all 

transmitted jobs and those waiting for transmission are performed again in the 

CPU and they form a Poisson process with parameter λpert. For higher failure 

rates, the system’s throughput decrease since it cannot cope with the 

increasing number of returned jobs due to its limited processing power. The 

study then investigated the trade-off between CPU processing rate and channel 

failure rate. The combination structure is only customised to this particular 

application. Moreover, the pure metric ‘throughput’ was used to investigate the 

trade-off between the system’s performance and channel‘s reliability for single 

class and non-bursty traffic within infrastructure network.   

 

Figure  4-7 The Combined QN and GSPN proposed by Sczerbicka (c.f.,[97]) 

 Remarks 

It is worth mentioning that the suggested modelling approaches (i.e., [80 , 86 , 

96 , 97 , 99]), were used to perform modelling at the system/network level, 

however, they have not been used at nodal-level. In addition, the focus was 

mainly on reducing the state explosion when a single class is used. The 

proposed combined models were also customised to particular application thus 

they can hardly been generalised to reflect other various applications. These 

studies also presented analytic solutions and the performance and security 

evaluation were not considered except in Sczerbicka’s model which 
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investigated the performance- reliability trade-offs and it was associated only 

with the throughput as a main metric.  

Combined QNs and GSPN modelling approach can be beneficial  in the context 

of RANETs where the security operations (i.e., software part) can be reflected 

by GSPN model while the data processing (i.e., the hardware part)  can be 

simply  modelled using a QN model.  

To the best of the researcher’s knowledge, this modelling approach has not 

been made in the literature in the context of performance and security trade-off 

in infrastructure communication networks. It was either applied in the context of 

computer science and manufacturing applications [80 , 86 , 96 , 99]), or the 

performability of a distributed systems [97].  

Finally, performance-security evaluation of trade-offs in RANETs requires not 

only the adoption of appropriate quantitative modelling tools but also the joint 

optimisation of CPSMs. Thus combined QN and GSPN modelling approach can 

be used together with appropriate CPSMs.  

3.4 Summary 

This chapter reviewed the quantitative modelling and evaluation tools of 

performance and security trade-offs which are QNs and GSPNs models. It also 

described some existing case studies to model and evaluates the trade-off 

using QNs and GSPNs. Finally, the concept of CPSM was described as a new 

measure to simultaneously optimise performance and security. In the following 

chapter, the proposed QN models for investigating the trade-off between 

performance and security in routers will be presented.  
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Chapter 5 Modelling Performance and Security Trade-

off for Routers in High-Speed Networks Using QNs 

5.1 Introduction 

One of the key components affecting the performance of infrastructural high- 

speed networks in the realm of today’s voluminous traffic is the router node. 

The router is expected to process incoming messages with minimum delay and 

high-speed, subject to security constraints; however, the activation of the ACL 

security option in routers consumes the router’s CPU usage is which causes its 

performance to deteriorate [3 , 5].  Moreover, the gap between the router’s CPU 

processing power and the high-speed incoming traffic may cause a bottleneck 

in the network and this considerably affects the overall performance of the 

network. Consequently, packets processing is considerable delayed which 

causes performance deterioration of the overall high-speed network. 

It is vital to establish a feasible level for the router’s performance degradation 

and to determine whether this is acceptable for real-time applications. To 

quantify and predict the trade-off of this degradation, a quantitative analysis 

methodology is employs an appropriate QN model to predict and improve the 

performance of the secure router under heavy traffic conditions. This chapter 

has carried out, through DES, an investigation into the negative impact of the 

ACL security application on the router’s performance. It also considers the 

security modelling of the Extended-Inbound ACL function within high-speed 

router both implicitly and explicitly using two different QN models. Implicit 

modelling of security is performed by decreasing the service rate (forwarding 

rate) of the router’s CPU by a predefined percentage, while the explicit 

modelling is achieved by assigning an individual QN node representing 

Extended-Inbound ACL security function, which is connected in tandem with 

another QN node presenting the forwarding queue. 
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Both QN models have single-core and quad-core processors for FCFS and HoL 

subject to CBS and PBS buffer management schemes. Service priority and 

space priority are suggested as an attempt to adopt Performance-engineering 

concepts to reach a performance-related security trade-off in high-speed 

networks.  Both inter-arrival and service time distributions are modelled by the 

GE, which is completely defined in terms of its first two moments [12], in order 

to reflect the inter-arrival times of packet traffic burstiness and the variability of 

service times at the router node. Numerical experiments and comparative 

studies of performance versus security under typical scenarios are presented. 

The considered metrics for both models are the router’s mean response time, 

packet loss probability.  

As a future research direction, an analytic methodology is explored, based on 

the principle of ME, for the cost-effective performance related security modelling 

and evaluation of high-speed networks using arbitrary open queueing networks 

(QNs) models with finite capacity[20], [16]. 

5.2 The Router and the ACL Security Mechanism 

Performance of the router is adversely affected by ACL activation since the 

router needs to perform more computations [3 , 39 , 49]. In the following 

section, a QN model is proposed to evaluate and predict the router performance 

in the presence of security. Note that the Extended ACL is selected in this study 

since it requires longer time to match several criteria during traffic filtration. In 

addition, inbounded ACL, in which traffic filtering is applied for a packet before it 

is processed for routing [48], is considered in this study. 

5.3 The Proposed Models for the High-Speed Router 

In this section, a QN model is proposed for a high-speed router with ACL 

security mechanism. The computations impact of ACL on the router 

performance is modelled in two ways: 

 Implicitly, where the service rate of the router’s CPU (or server) is reduced 

by a small percentage, p; 
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 Explicitly, where the security is modelled by a separate QN node. This 

approach is similar to the one suggested by Saleh and Alkhatib[14 , 103].  

The two ways besides the proposed QNs are described as follows. 

5.3.1 Modelling Security Implicitly 

ACL mechanism’s action within a high-speed router is modelled implicitly by 

using a single finite capacity queueing model with GE inter-arrival and service 

times distributions. This approach is similar to the one proposed by  Zorkadis [6] 

to model security using QNs. However, the Zorkadis assumes a less values for 

the service rate instead of defining a reduction rate. The proposed models for 

the router subject to FCFS and HoL disciplines are shown in Figure ‎5-1 and 

Figure  5-2 respectively. 

 

(a) 

 

(b) 

Figure  5-1 The proposed QN models of the  router with FCFS discipline (a) single-core CPU 

router, (b) quad-core CPU router 
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(a) 

 

(b) 

Figure ‎5-2The proposed QN models of the  router  with HoL discipline (a) single-core CPU 

router, (b)  quad-core CPU router 

a) The Performance Metrics 

The performance metrics of this study give a clear idea of the router’s 

performance-related security functions, showing how fast and reliable it is; they 

are as follows: 

1. Mean Response time (W) 

This is the time taken by a router to process a packet (i.e. the time between 

receiving data and forwarding data out of the router). It differs according to 

the queueing discipline used [104]. 

2.  Packet Loss Probability (PLP) 

This is the percentage of packets that get blocked / lost on arrival if the router 

node is at full capacity [104]. 

These performance metrics were chosen because they are directly affected 

when the router is overloaded in the event of congestion. Any significant 

increase in these values may lead to the assumption that congesting has occu- 
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rred, which may be a symptom (result) of an attacks.  

b) Simulation Input Description 

DES [105] code was implemented using a Java package to simulate 

GE/GE/c/N/FCFS CBS, PBS and GE/GE/c/N/HoL CBS in terms of router 

response time and packet loss. The program was run up to 15 independent 

times. GE distribution is considered a limited case of hyperexponential 

distribution (H2) with high value of the tuning parameter K (K approaches 

infinity), as stated in [106]. Table  5-1 shows sample experimental results 

(together with 95% confidence intervals). 

Table ‎5-1 Simulation results for the secure high-speed router 

λ1 

Packet 

Loss 

95% 

CI 

Mean Response 

Time 
95% CI 

Aggregate 

Utilisation 

95% 

CI 

1×10
5
 0.0029 ±0.0001 2.791×10

-6 
±27×10

-9
 0.239 ±0.001 

2×10
5
 0.0053 ±0.0002 3.556×10

-6
 ±31×10

-9
 0.299 ±0.002 

3×10
5
 0.0090 ±0.0003 4.435×10

-6
 ±30×10

-9
 0.357 ±0.001 

4×10
5
 0.0148 ±0.0002 5.427×10

-6
 ±36×10

-9
 0.415 ±0.001 

5×10
5
 0.0220 ±0.0005 6.400×10

-6
 ±38×10

-9
 0.469 ±0.001 

6×10
5
 0.0325 ±0.0007 7.521×10

-6
 ±53×10

-9
 0.522 ±0.002 

 

Single-core and quad-core CPU performance was firstly compared for both 

FCFS and HoL disciplines to show that quad-core outperforms single-core. 

Then the quad-core CPU router model was simulated without considering the 

security component, after which the security effect on forwarding speed was 

taken into account.  

The main aim is to assess the adverse effect of the security mechanism on the 

performance of the router and check the performance gain when a quad-core 

processor is used under FCFS and HoL service disciplines. In this context, two 

priority classes are considered, namely video conversation and file transfer. The 

first class requires high bandwidth and is sensitive to the router delay as it is a 

real-time application. The simulation input values are as follows: 

Mean arrival rate λ1 was in the range 1×105  to 6 ×105 packets/sec for the high-

priority class and λ2 = 3× 105 packets per second for the low-priority class. SCV 

for the inter-arrival times are SCVa1= 4, 8 and SCVa2 = 4, 8.  Mean service rate 
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μ = 4.16 ×105 packets /sec and SCVs= 4.The simulation program was executed 

for both CBS and PBS. The threshold for the PBS was set to 10% and 30% 

which means that when low-priority class packets occupy 10% (or 30%) of the 

buffer space, not further packets of this class are allowed to enter the queue.  

 The number of CPU cores = 1, 4 (i.e., single-core and quad–core processor 

respectively). The buffer size was 50 packets for both FCFS and HoL and the 

choice of such a low value was justified in [106] for high-speed routers. The 

packet size is assumed to be 1500 bytes (as in Ethernet [4]), so the total 

bandwidth for both classes is 5 Gbps (given that the router forwarding rate is 

5Gbps and, in terms of packets per sec, it is 5Gbps/ (1500 ×8) =0.416 MBps) 

and the total input load is in the range 4 ×105 to 10.16 ×105; i.e., the maximum 

applied load is twice that of the router’s forwarding speed. 

As stated in [3], the security component ACL has a massive effect on the router 

forwarding speed and it represents a bottleneck for routers in high-speed 

networks. In the simulation, the security degradation effect parameter [6] was 

defined and assumed to degrade the router service rate by 15%, for illustration 

purposes. These two values were expressed as follows: 

 Security_degredation=0.15;  

Forwarding_Speed=1-Security_degredation; 

Mean_service_rate= Forwarding Speed*V2; 

where V2 is the router mean service rate. 

c) Results 

Results shown from Figure  5-3  to Figure  5-6 show the relations between the 

adopted performance metrics for the router node as functions of the high-priority 

class mean arrival rate in order to check the bursty effect on such a class, which 

requires the best service by the router, and also to study its impact on the low-

priority class. The effect of buffer-sharing methods was also taken into account 

by the simulation. Four different scenarios were applied for the queueing 

models. Table  5-2 summaries these scenarios. 
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Table ‎5-2 Simulation scenarios 

Scenario Criteria Description 

A 

C=1,4; Sec=’Off’ 

FCFS, HoL; 

SCVa1=SCVa2= 4. 

Effect of the number of cores in the 

router CPU on the performance. 

B 
C=4,  Sec=’On’, ’Off’, 

FCFS-CBS, HoL-CBS. 

Comparing between FCFS and HoL 

with and without security activation. 

C 
C= 4; Sec=’On’, ’Off’; 

SCVa1=SCVa2=4, 8; 

Assessing the effect of SCV of the 

packets inter-arrival on the 

performance. 

D 
FCFS-CBS, Sec=’Off’, FCFS-PBS,     

Th =10%, Th = 30%, Sec=’On’. 

Assessing the threshold  value effect 

on the router performance 
 

i) Effect of the Number of Cores in the Router CPU on the Performance. 

Figure  5-3 illustrates the comparison of the single-core and quad-core CPU and 

the effect of the core number on the router performance in terms of router’s 

CPU packet loss probability, when security application is ‘Off’ where the 

performance of the router is not affected by security.  It is obvious that the use 

of quad-core CPU considerably reduce the router’s packet loss probability. 

 

Figure ‎5-3 Router PLP for single-core and quad-core CPU for FCFS and HoL disciplines with 

security ‘On’/’Off’ for λ2= 3× 10
5
 packets /sec 

ii) Effect of the Security Component on the Router Performance 

Figure  5-4 shows the comparison between the simulated service disciplines in 

terms of PLP for the quad-core CPU for security ‘On’ and ‘Off’ for λ2 = 3×105 

packets /sec. It is clear that the presence of the ACL mechanism degrades both 

queueing systems. The HoL model gives, as expected, better trade-off between 
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performance and security for high-priority packets in terms of PLP, Since HoL 

high-priority classes have the lowest packet loss, and they are served first by 

the router. The low-priority class packet loss is discriminated here. The packet 

loss increased once the security was activated since the router buffer 

overflowed faster, and any incoming packets were discarded, as no space was 

available. 

 

Figure ‎5-4  Router PLP for quad-core CPU FCFS and HoL disciplines with security ‘On’/’Off’ for 

λ2= 3× 10
5
 packets /sec 

iii) Effect of Traffic Burstiness Degree on the Performance of the Router 

The increase in the burstiness of the arrival process of packets degrades the 

system performance during the activation of the ACL mechanism. Figure  5-5  

depicts the behaviour of the router when the traffic burstiness of the arriving 

packets is increased. It is clear that the performance is worsening. In fact, since 

the current applications require data to be transferred at high-speed, the router 

should forward these data coming from difference sources and at different 

speeds, at an acceptable speed compared with its standard forwarding power. It 

is important to make the router secure at all times, since most of today’s 

applications require access control provided by the router. Therefore, combining 

the effect of ACL activation and the high data burstiness should be taken into 

consideration. In terms of the router’s PLP, it is obvious from Figure  5-5 that the 

router’s performance deteriorates (i.e., marginal as well as aggregate PLP 
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becomes higher).  It is obvious that the use of HoL discipline discriminates low- 

priority class packets and PLP which is further degraded by increasing 

burstiness of high-priority classes.  

 

Figure ‎5-5 Router mean response time comparison for quad-core CPU for FCFS and HoL 

discipline with security ‘On’/’Off’ for λ2=3× 10
5
 packets /sec and Ca

2
 = 4 and 8 

iv) Effect of Buffer-Sharing Schemes on the Router Performance 

The CBS and the PBS buffer management schemes are implemented under the 

FCFS service discipline. It is assumed that arrivals occur with mean arrival rate 

λ1 as class 1 and mean arrival rate λ2 as class 2. 

Figure  5-6  shows the comparisons between the router’s mean response time 

for FCFS under CBS and PBS with and without security activation. The router 

performs well in the BPS in general and its performance is gradually improved 

with the decreasing of the threshold value. When the threshold = 10 %, the 

FCFS performs extremely well compared with the case of CBS in the presence 

of ACL mechanism. This is because the number of class 2 packets is limited to 

just 10% in the buffer of the router node. This gives class 1 packets a better 

chance of entering the router. In this case, class 2 packets are discriminated. 

The packet loss increased once the security was activated since the router 

buffer overflowed faster and any incoming packets were discarded as no space 

was available.   
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This indicates that PBS gives a good trade-off between performance and 

security in high-speed network routers. This holds even for a highly bursty traffic 

of arriving packets (by letting Ca2 = 8). In fact, this improvement takes place on 

the cost of class 2 discrimination. Therefore, depending on the application 

nature of each class, performance Engineers can choose to discriminate the 

application that is less sensitive to delay and packet loss and with shorter 

packets (where variable packet sizes are mostly applicable). In this way, the 

most important application will perform at the required Quality of Service (QoS). 

 

Figure  5-6 Router Mean response time for quad-core CPU-FCFS CBS and PBS discipline with 

security ‘On’/’Off’ for λ2= 3× 10
5
 packets /sec 

5.3.2 Modelling Security Explicitly 

In this section, a more detailed queueing model for the router is proposed in 

which the ACL mechanism-denying function is taken explicitly into 
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evaluated  by employing two GE-type queues in  tandem with finite capacity and 

single-core and quad-core processors, as appropriate, to represent a router 

under FCFS and HoL service disciplines. More specifically, Extended-Inbound 

ACL security mechanism is represented as an explicit (independent) single 

server QN model which is connected in tandem with another QN model that 

reflects the processing function within the router which can be either single or 

quad-core CPUs. The router is assumed to have finite capacity queue with RS-

FD blocking mechanism, to reflect ACL behaviour, subject to CBS and PBS 

management schemes. The arrived packets to the router are assumed to have 

two different classes which can be served subject to FCFS and HoL. DES is 

used to evaluate the performance degradation in terms of packet mean 

response time and PLP. 

a) The Proposed QN for the High-Speed Router with ACL 

This section introduces, in Figure  5-7 to Figure  5-10,  four different scenarios of 

two queueing nodes in tandem, representing an ACL-related node 1 and an 

engine forwarding-related node 2 of a  router with finite capacity, N, and two 

distinct classes of packets (c.f., R = 2). The order of queueing nodes is made 

since Inbound ACL is considered where security mechanism is applied first on 

the incoming packets then they can be processed and forwarded. The ‘Accept-

Deny’ behaviour of ACL is explicitly reflected by RS-FD blocking mechanism. 

b) Definitions and Notations 

For each queueing node i, i = 1, 2 and packet class j, j = 1, 2, let: 

λij be the mean arrival rate of class j packets at node i; 

    
     the SCV of the inter-arrival time of class j packets to node i; 

μij be the mean transmission (service) rate for class j packets at node i; 

     
  be the SCV of the transmission time for class j at node i; 

ρij be the server utilisation of class j packets at node i; 

λdij be the mean inter-departure rate of class j packets at node i; 

    
  be the SCV of the inter-departure time of class j packets at node i; 
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‘p’ be the packet acceptance probability by the ACL security mechanism thus  

‘1-p’ representing the denying probability, and 

‘θ’ be  the threshold value for  PBS scheme.  

c) Description of Two Queueing Nodes in Tandem 

In this study, the ACL and forwarding engine queueing nodes represent a router 

with or without ACL security mechanism, respectively, and they are modelled by 

either single-core CPU GE/GE/1/N/FCFS/CBS and GE/GE/1/N/HoL/CBS or 

PBS queues (c.f., Figure  5-7 and  Figure  5-8 and) or quad-core  GE/GE/c/N/ 

FCFS/CBS and GE/GE/c/N/HoL/CBS or PBS queues, respectively (c.f.,  

Figure  5-9 and Figure  5-10).  

Note that these queueing models can also be applied for firewalls, since they 

work in a similar way to the routers (when the encryption function is not taken 

into account in both the router and firewall). 

 

Figure ‎5-7 The queueing model for the router with single-core CPU and FCFS discipline 

 

Figure ‎5-8  The queueing model for the router with single-core CPU and HoL discipline 
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Figure ‎5-9 The queueing model for the router with quad-core CPU and FCFS discipline 

 

Figure ‎5-10 The queueing model for the router with quad-core CPU and HoL discipline 
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implies that the same packet should be treated in the same way by ACL (i.e., an 

accepted packet cannot be denied if it has been accepted  by ACL). 

d) Performance Metrics 

Since the router’s node  is assumed to have two  types of packets, performance 

metrics per class, which known as a ‘Marginal metric’, instead of the  overall 

performance metric known as ‘Aggregate metric’, are considered ‘[34]. 

In this context, two performance metrics are adopted and are briefly described 

below: 

1. Marginal Mean Response Time (W) 

This is the mean time a router takes to process a packet of a particular class 

type (i.e., it is the mean time between receiving a data packet  of a class at ACL 

queue (i.e., node 1) and transmitting it out from the forwarding function queue 

(i.e., node 2) of the router. This metric differs according to the queueing 

discipline used (c.f.,  [84], [2]).  

2. Marginal Packet loss  Probability ( ) 

This is the percentage of packets belong to a particular class type get blocked 

on departure from the ACL queue (c.f., node 1) if the forwarding function queue 

(c.f., node 2) is at full buffer capacity (c.f.,[2]).  

e)  Simulation Analysis 

DES algorithm, based on the one described in [105], was implemented using a 

Java package to simulate the behaviour of the GE/GE/c/N/FCFS/PBS and 

GE/GE/c/N/HoL/CBS queues (with 95% confidence interval) in terms of the 

marginal mean response time and PLP at the router. The main aims of the 

simulation experiments are to assess the adverse effect of the ACL security 

mechanism on the performance of the router and predict the performance gain 

when a quad-core processor is used under FCFS and HoL service disciplines.  

The program was run independently up to 60 times, using the GE-type 

distribution as a limited case of hyperexponential distribution (H2) with a tuning 

parameter k → ∞ (c.f., [12]). Single-core and quad-core CPU performance 

metrics were firstly simulated and compared under both FCFS and HoL 
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disciplines to assess the performance gains of quad-core CPU vs. single-core 

CPU with or without the application of the ACL security component of the router. 

For the HoL discipline, two priority classes are taken into consideration.  The 

first class is assumed to be sensitive to the router delay and in need of high 

bandwidth. Four different scenarios and parameterisations for the queueing 

models employing single-core and quad-core CPUs, as appropriate, are 

summarised in Table  5-3. 

Table ‎5-3 Simulation scenarios 

Scenario Router Topology and Parameterisation Experiment 

1 

Input Data: c = 1; c = 4; FCFS-CBS; 

SEC = ‘Off’, ‘On’; λ1  (10
5
, 3   10

5
), λ2 = 10

5
; 

SCVa1 = SCVa2 = 4; 

μ1 = 1.5   10
5
,  μ2 = 10

5
; 

SCVS1= 8, SCVS2 = 4; N=10. 

Output Metrics: Class 1 Marginal Mean 

Response Times, R1 at the router. 

Assessing the effect of 

the number of cores of 

the CPU with FCFS-CBS 

on the performance of 

the router for buffer size 

N = 10 with and without 

security activation. 

2 

Input Data: c = 1; c = 4; HoL-PBS; 

θ = 30%; SEC = ‘Off’, ‘On’; 

λ1  (10
5
, 3   10

5
),  λ2 = 10

5
; 

SCVa1 = SCVa2 = 4; 

μ1 = 1.5   10
5
, μ2 = 10

5
; 

SCVS1 = 8, SCVS2 = 4; N= 30. 

Output Metrics: Class Marginal PLPs  , i = 1, 2) 

at the forwarding queueing node of the router. 

 

Assessing the effect of 

the number of cores in 

CPU with HoL-PBS on 

the performance of the 

router for buffer size N = 

30 with and without 

security activation. 

3 

Input Data: c = 1; c = 4; FCFS-CBS; 

HoL-PBS; θ = 30%; SEC =‘Off’, ‘On’; 

λ1    (10
5
, 3   10

5
),  λ2 = 10

5
; 

SCVa1 = SCVa2 = 4; 

μ1 = 1.5   10
5
,  μ2 = 10

5 
; 

SCVS1 = 8, SCVS2 = 4; 

SCVa1 = SCVa2 = 4; N=10. 

Output Metrics: Class1 Marginal total Mean 

Response Time, R1 at the router. 

 

Comparing the 

performance of FCFS -

CBS vs. HoL-PBS for 

class 1 at the router for 

buffer size N = 10 with 

and without security 

activation. 

4 

Input Data: c = 1; c = 4; FCFS-CBS, 

HoL-PBS; θ = 30%; SEC =‘Off’, ‘On’; 

λ1  (10
5
, 3   10

5
),  λ2 = 10

5
; 

SCVa1 = SCVa2 = 4; 

μ1 = 1.5   10
5
,  μ2 = 10

5
; 

SCVS1 = 8, SCVS2 = 4; 

SCVa1 = SCVa2 = 4; ‘On’; N=30. 

Output Metrics: Class 2 Marginal PLP,    at the 

forwarding queueing node at the router. 

Comparing the 

performance of FCFS -

CBS vs. HoL-PBS for 

class 2 at the router’s 

forwarding queueing 

node for buffer size N = 

30 with and without 

security activation. 



59 

 

The typical simulation input values of the scenarios are as follows: Mean arrival 

rate λ1 in the range 1   105 to 3  105 packets/sec for the high-priority class and 

λ2 = 1   105 packets/sec for the low-priority class. The SCV for the inter-arrival 

times SCVa1 and SCVa2 are set equal to 4. The values of the mean rate and 

SCV for the service times are given by μ1 = 1.5   105 packets /sec and SCVS1 = 

8 for class 1 and μ2 = 1   105 packets /sec and SCVS2 = 4 respectively. For 

class 2, the simulation program was executed for both FCFS and HoL under 

CBS and PBS, respectively. For illustration purposes, the threshold, θ= θ2 for 

the PBS is set to 30% whilst the ACL denying probability, p, was set to 10%.  

The buffer size, N, is fixed to either 10 or 30 packets under both FCFS and HoL 

(n.b., the buffer size selection in high-speed routers is justified in [106]). 

f) Numerical Results 

Figure  5-11 to Figure  5-14  show numerical simulation experiments involving 

the performance metrics of the router as functions of the high-priority class 

mean arrival rate in order to assess the performance effect of traffic workload 

and burstiness of packets classes 1 and 2, as appropriate. More specifically, 

these experiments evaluate the quality-of-service (QoS) for both classes at  the 

router’s Forwarding  Function Node 2 with or without the presence of the ACL 

security mechanism, subject to FCFS and HoL scheduling rules and the CBS 

and PBS management schemes.  

i)  Assessing the Effect of the Number of Cores and the Security 

Component on the Performance of the Router with FCFS-CBS 

Figure  5-11 illustrates the comparison of the single-core and quad-core CPUs 

under FCFS discipline and assesses the effect of the core number on the router 

performance metrics by focusing on the Class 1 Marginal Mean Response 

Times, R1, of the router for buffer size N=10.  As expected, the quad-core CPU 

gives the better performance and, clearly, the presence of the ACL security 

mechanism causes performance degradation at the router. Moreover, the gap 

between security ‘Off’ and ‘On’ vs. performance is reduced in this case by 

increasing the processing power of the router (i.e., replacing a single-core CPU 
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with a quad-core CPU achieves a better trade-off between performance and 

security).  

 

Figure ‎5-11 Class 1 marginal mean response time under FCFS-CBS for single and quad-core 

CPUs for router’s buffer size N=10 

ii)  Assessing the Effect of the Number of Cores and the Security 

Component on the Performance of the Router with HoL-PBS Discipline 

An assessment of the effect of the number of cores in CPU with HoL-PBS on 

the performance of the router for buffer size N = 30 with and without ACL 

security mechanism is depicted in Figure  5-12 using single- and quad-core 

CPUs with security ‘On’ and ‘Off’.  As expected, the marginal PLP of class 2 is 

higher than that of the higher-priority class 1 in all cases under consideration. 

Moreover, this probability decreases for both priority classes once the ACL 

security mechanism is activated. This is attributed to the reduced input flow of 

packets at the forwarding engine queue due to the loss of packets that find, on 

arrival, the ACL security queue at full capacity. It is verified that the gap 

between security ‘Off’ and ‘On’ versus performance is also reduced in this case 

by using a quad-core CPU.  HoL PBS model gives, as expected, better trade-off 

between performance and security for higher-priority packets. 
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Figure ‎5-12 Marginal PLP under HoL-PBS for single- and quad-core CPUs for router’s buffer 

size N=30 

iii)  Comparing the Performance of FCFS-CBS vs. HoL-PBS for Class 1 

with and without Security Activation for Buffer Size N=10 

Figure  5-13 shows performance comparisons between FCFS-CBS and HoL-

PBS for class 1 packets with and without security activation. With a class 2 

buffer threshold θ = 30%, the HoL-PBS, as expected, performs extremely well 

for the high-priority class, especially for quad-core  CPUs, as compared with the 

FCFS-CBS with or without the ACL security mechanism.  Moreover, the 

performance gap between securities ‘Off’ and ‘On’ was further reduced in this 

case by using quad-core CPUs, especially for the high-priority class under the 

HoL-PBS policy for both single-core and quad-core CPUs. 

This indicates that HoL-PBS policy may give, in the presence of a highly bursty 

traffic of arriving packets (with   
 > 1), a balanced trade-off between 

performance and security for routers in high-speed networks. Cleary, this 

improvement takes place at the expense of class 2. Thus, depending on the 

nature of each class application, one may choose to discriminate against the 

application that is less sensitive to delay and packet loss and also deals with 

shorter-length packets. Thus, packets of different classes may be broadly 

served in a way satisfies the required QoS constraints.  
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Figure ‎5-13 Marginal mean response time of FCFS-CBS and HoL-PBS disciplines for both 

single- and quad-core CPUs for router’s buffer size N=10 

iv) Comparing the Performance of FCFS-CBS vs. HoL-PBS for Class 2 

with and without Security Activation for Buffer Size N=30 

Figure  5-14 focuses on the marginal PLP at the forwarding engine queues and 

shows performance comparisons between FCFS-CBS and HoL-PBS with and 

without security ACL activation. With threshold fixed to 30%, the HoL-PBS 

performs, as expected, extremely well compared with FCFS-CBS in the 

presence of ACL mechanism. Clearly, the marginal PLP is decreased once the 

ACL security mechanism is activated. This indicates that HoL-PBS gives a good 

trade-off between performance and security in high-speed network routers, 

particularly for the higher-priority class. In this way, the most important 

application may be performed at the required QoS.  
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Figure ‎5-14 Marginal PLP of FCFS-CBS and HoL-PBS disciplines for both single-core and 

quad-core CPUs for router’s buffer size N=30 

5.4 ME as a Cost-Effective Methodology for the Trade-off Analysis of High-

Speed Routers with ACL 

ME [12 , 20 , 90] can be used to analyse a queueing network of M queues, with 

finite capacity represent high-speed routers with R traffic classes (c.f., [16]), to 

assess performance vs. security trade-off [74]. This network can be 

decomposed into M individual queues with R classes, each of which can be 

analysed in isolation, subject to the evaluation of the blocking-dependent 

effective service times and overall arrival and departure processes at each 

router queue. These processes are based on the departing, merging and 

splitting traffic streams per queue k and class i, as appropriate. The first two 

moments of GE for these traffic streams are calculated by the formulae devised 

in [16 , 20 , 107] and the queues of the routers can be presented, as 

appropriate, by the GE/GE/c/N/FCFS/CBS, GE/GE/c/N/HoL/CBS and 

GE/GE/c/N/HoL/PBS building block queues, whose analytic ME solutions can 

be seen in [16 , 20].    
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server flow formulae (c.f. [16 , 20 , 107]). This concept is depicted for router with 

ACL in Figure  5-15 for high-speed router with ACL. Thus, multiple servers QN 

can be approximated by single server queue with total mean service rate, μt = 

cμ and the same service time SCVs (c.f., [108]).  

 
Figure ‎5-15 Heavy traffic approximation for Forwarding Engine (HoL) queueing system of the 

high-speed router 

5.5   Summary 

Performance-engineering concepts were applied, as appropriate, to mitigate the 

adverse effect of Extended-inbound ACL security mechanism on the 

performance of routers towards a trade-off between performance and security in 

high-speed networks under heavy traffic flows condition.  In this context, ACL 

mechanism within the router was modelled in two ways:  

Firstly, implicitly by decreasing the service rate (or the forwarding rate) of the 

router’s CPU by a predefined percentage; and 

Secondly, explicitly by assigning an individual QN node for ACL which is 

connected in tandem with another QN node representing the forwarding engine 

queue.  RS-FD Blocking mechanism was exploited to reflect the behaviour of 

ACL security mechanism.  

In both models, the queues are GE-type queues with single-core and quad-core 

CPUs under FCFS and HoL service disciplines for the evaluation of 

performance-related security via simulation, subject to CBS and PBS buffer 

management schemes. In the second QN, RS-FD blocking mechanism was 
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used to explicitly model the ‘Accept-Deny’ behaviour of ACL security 

mechanism. A comparative numerical study was conducted in terms of two 

performance metrics: mean response time and PLP. 

Although the ACL security mechanism has an adverse effect on the 

performance of the router, the numerical experiments results indicated that 

adopting quad-core CPUs enhance the trade-off between performance and ACL 

security for routers in high-speed networks. Moreover, In particular, the 

performance gap between ACL security ‘Off’ and ‘On’ was reduced in the 

presence of highly bursty traffic flows of packets under the HoL-PBS and FCFS-

CBS policies incorporating quad-core CPUs, especially for the high-priority 

class of the HoL discipline, unfortunately at the expense of the low-priority 

class.  

Based on the obtained results, a telecommunications engineer may choose, 

depending on the nature of each class application, to discriminate against the 

application that is less sensitive to delay and packet loss. In this way, all classes 

of packets may be broadly made to satisfy the required QoS constraints. This 

study is a first step towards establishing a balanced trade-off between security 

and performance using quantitative means for the design and development of 

router architectures under bursty traffic conditions. ME principle, was suggested 

for futurework, as a cost-effective analytic methodology for secure high-speed 

routers when they are modelled with arbitrary open QNs models in order to  

investigate the performance and security trade-offs in high-speed routers [20], 

[16]. 

The following chapter will present how the quantitative methodology will be 

extended to appropriately model RANETs in order to investigate their 

performance and security trade-offs. 
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Chapter 6 Performance-Related Security Modelling and 

Evaluation of RANETs Using G-QNs 

6.1. Introduction 

In a fast-evolving mobile wireless robotic environment, the network 

infrastructure is most likely to be formed in an ad hoc fashion, especially as 

robots are most likely to be equipped with low-power wireless transceivers with 

short range, thus providing additional robustness against the single point of 

failure of centralized approaches (c.f., [29]). Thus, RANET, with its simplified 

design, low operational cost and decentralized control, seems to be a most 

suitable and unique architectural choice for the networked mobile wireless 

robots and the dynamic nature of their applications (c.f., [29 , 54 , 64]).   

Performance and security are two of the main aspects that should be taken into 

consideration during the design, development, tuning and upgrading of 

RANETs. Existing metrics and the derivation of new ones are required in order 

to assess performance-related security and power-saving constraints (c.f.,[54]).   

Security in RANETs is an important issue due to the associated open medium, 

implying that “any sensitive sent data between two nodes can be received by 

other nodes in close proximity” (c.f., [109]). This feature makes RANETs more 

sensitive to security threats than wired networks. An optimal trade-off between 

performance and security should lead to the establishment of robust and cost-

effective standards for RANETs [54 , 110]. To reduce security threats in 

RANETs, it is possible to apply some of the existing security protocols used for 

wired networks, such as the MAC layer WEP protocol (c.f., [64], [111]). Note 

that WEP is a MAC layer protocol that provides access control in wireless 

networks and prevents modification and disclosure of data being transmitted 

(c.f., [10]). WEP introduces extra bits during encryption process and 

consequently, requires additional delay and consume more power to implement 

the encryption.  
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In order to determine suitable trade-offs between performance and security of 

WEP, and enable efficient and secure communications amongst the robot 

nodes, this chapter presents a quantitative methodology which is based on the 

one proposed for high-speed routers, and is extended as appropriate. This 

extension is made due to the fact that to WEP security mechanisms in RANETs, 

as infrastructure-less networks are performed at each individual robotic node 

subject to traffic burstiness as well as nodal mobility. In this context, the 

proposed quantitative methodology is extended to incorporate an open arbitrary 

topology  QN model of a RANET with Gated queues (G-Queues), where each 

node  models a robotic node  with infinite capacity queues and dual CPUs, 

multiple classes of data packets under FCFS and HoL disciplines  and bursty 

arrival traffic flows characterised by an ICPP(c.f., [20]). SS [11] and PEPs are 

included in the (G-QN) model in order to establish an ‘optimal’ performance vs. 

security trade-off. Moreover, G-Queues are also included within the model to 

account for node’s mobility (c.f., [18], [59]) to enable realistic decisions in 

mitigating the performance of mobile robotic nodes in the presence of security. 

The mean marginal end-to-end delay was adopted as the performance metric to 

indicate the trade-off improvement. Numerical experiments are carried out, 

based on DES, in order to establish a balanced trade-off between security and 

performance towards the design and development of efficient RANETs 

architectures under bursty traffic conditions. 

6.2. Performance Evaluation of a RANET with WEP Security and SS 

In this section, a case study is presented focusing on DES analysis of a stable 

open G-QN model of a RANET with WEP security protocol [10] and/or SS (c.f., 

[11 , 17 , 46]), as appropriate.  

The aims of the study are to i) quantify the adverse effect of security on the 

performance of the ad hoc robotic nodes of a RANET when the WEP security 

protocol with or without SS functionality is enabled, and ii) establish suitable 

experimental trade-offs between RANET’s performance and WEP security/SS 
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protocols, based on performance engineering upgrades of the corresponding 

open G-QN model.  

6.2.1 Performance versus Security Trade-off under WEP 

The adoption of the WEP protocol involves the employment of extra bits to 

secure frames and, as a consequence, requires additional processing time, 

power and memory to perform encryption at a sending RANET node and 

decryption at a receiving node (c.f., [10]).   

To mitigate the adverse effect of security on network performance, SS 

mechanisms, especially selective encryption, were proposed so that only a 

percentage, p (0 ≤ p ≤ 1) of data packets will be going through the security 

process(c.f., [11 , 17 , 46]).  In this context, an adaptive performance vs. 

security trade-off was introduced in [11 , 17 , 46], which also improves power-

saving in MANETs. Consequently, a selective WEP security mechanism may 

also be applied to guarantee the acceptable levels of security in RANETs within 

required bounds of performance.  

In the case study, ‘On’ and ‘Off’ WEP as well as selective WEP security with 

percentage p (0 ≤ p ≤ 1) are taken into consideration for the analysis of the 

employed open G-QN model towards the establishment of effective 

performance vs. security trade-offs in RANETs.  More specifically,   an open G-

QN is employed to assess the adverse impact of security on the performance of 

a RANET, where each robotic node consists of two queueing nodes in tandem - 

(c.f., Figure  6-1), the first one representing implicit security processing and 

control under the WEP protocol and the second one for transmission - along 

with an ‘On-Off’ gate, reflecting the profile of an arrival process under nodal 

mobility. Both security and transmission nodes were parameterised through the 

mean rate and SCV of the service time.  
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Figure ‎6-1  A G-QN for a RANET node 
 

6.2.2 The Simulation Analysis for an Open G-QN Model of a RANET 

Consider a stable open G-QN model of a RANET with infinite capacity and 

arbitrary topology comprising N (N ≥ 1) service nodes and R (R ≥ 1) distinct 

FCFS and HoL classes of data packets, as appropriate. Each node is 

composed of two sub-nodes, as depicted in Figure  6-2, the WEP queue whilst 

the second one models the transmission queue. 

Channel availability at each WEP sub-node is captured by introducing a gate 

[18]at the channel entry of the queue of each node. When this channel is 

broken due to the node mobility, the queue is said to be in ‘Off’ phase and no 

arrivals can enter the WEP queue, as the node is no longer connected with the 

network. When the queue is at the ‘On’ phase, the arriving packets are allowed 

to enter the WEP queue for security service. The generic DES algorithm has 

been implemented in Java and is constructed to analyse the stable open G-QN 

model of a RANET with infinite capacity and arbitrary topology (c.f., [112]). Each 

node may have either one or more servers and operates according to either 

FCFS or HoL scheduling disciplines, as appropriate. Both external inter-arrival 

and transmission ‘Service’ times follow the GE-type distributions. In this context, 

each G-Queue with WEP-based security has an overall ICPP arrival process 

(i.e., GE-type inter-arrival times and exponential holding times during ‘On’ and 

‘Off’ periods) modelling the mobility of each RANET node.    
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Figure ‎6-2 A stable open feed-forward G-QN model of a RANET with WEP and SS 
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Without loss of generality and for illustration purposes, this chapter presents an 

open G-QN model with feed-forward configuration and three classes of packets 

(depicted in Figure  6-2  by three different colours:  class 1 indicated by red, 

class 2 indicated by blue and class 3 indicated by purple). Note that the traffic 

intensity for the network varies from moderate to high values (in the range 0.35 

to 0.90). Each transmission sub-node may have a single server or dual servers 

(as specified in the simulation inputs).  The performance metric of the mean 

marginal end-to-end delay of the stable open G-QN model is adopted and 

relative comparisons are carried out under various experimental scenarios, 

where the WEP with SS protocol is activated or deactivated. The simulation 

scenarios are tabulated in Table  6-1. The three distinct classes with different 

service requirements considered in this study are displayed in Table  6-2. 

Table  6-1 Simulation scenarios 

Open G-QN Model of a RANET Parameterisation 

1. Evaluating the adverse effect of security 
on RANET’s performance for single server 
under FCFS and HoL rules (c.f., 
Figure  6-3, Figure  6-4) 

k→ +∞; 

  
       

     
Sec = ‘Off’, ‘On’; 
c = 1, 2; p = 0, 1; 
FCFS, HoL. 

2. GE-type Performance Bounds for 
RANETs: Varying the tuning parameter k 
of the H2(k) inter-arrival times per class for 
single and dual server under FCFS and 
HoL rules(c.f., Figure  6-5). 

k = 2, 10, 100, +∞; 

    
       

     
Sec =  ‘On’; 
c = 2;  
p = 1 (100% of  packets are     
encrypted) 
FCFS, HoL. 

3. Varying the SCV of the inter-arrival times 
per class for RANETs with dual servers 
under FCFS and HoL rules (c.f.,  
Figure  6-6 to Figure  6-8). 

k→ +∞; 
Sec = ‘Off’ / ‘On’; 

  
 = 1, 20, 50, 100, 200;  

 = 5; 
c = 2;  
p = 0, 1; 
FCFS, HoL.  

4. Improving RANET’s performance by 
utilizing the SS under FCFS and HoL 
rules (c.f., Figure  6-9 to Figure  6-11). 

k→ +∞; 
Sec =’On’; 

  
 =  1, 20, 50, 100, 200;   

 = 5; 
c = 2;  
p = 0.5, 1 (50% and 100% of           
packets are encrypted respectively) 
FCFS, HoL. 
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6.2.3 Numerical Experiments 

In this section, a series of numerical experiments, based on the simulation 

scenarios 1–4 listed in Table  6-1and the associated simulation Inputs of 

Table  6-2is carried out in order to address some of the main performance-

related security aspects of a RANET, based on DES analysis of the 

corresponding stable open G-QN model of Figure  6-2. More specifically, these 

experiments aim to i) Quantify the adverse performance effect of security; ii) 

Establish GE-type performance bounds; iii) Predict the adverse performance 

impact of traffic burstiness, by means of increasing SCV value up to 200, for 

illustration purposes; and iv) improve RANET performance via WEP when SS 

with probability p, (0 ≤ p ≤ 1), is ’Off’ or ‘On’ respectively. 

Table ‎6-2 Simulation inputs 

Parameters Data Values 

Number of Classes R = 3 classes; 

Number of Servers per node c = 1, 2; 

Network topology Feed-forward (c.f., routing matrix); 

Number of RANET Nodes   N = 3 RANET nodes; Sec = ‘Off’; 

Number of RANET Sub-nodes   N = 6 RANET sub-nodes; Sec = ‘On’; 

Number of servers per node c = 1, 2; 

 Mean Arrival Rates per class 

λ1  = 100, 400, …, 2200 packets per 

second (pps); 

λ2  = 120, 420, …, 2400 packets per 

second (pps); 

λ3  = 140, 440, …, 2600 packets per 

second      ( pps).   

SCV of Inter-arrival Times  per Class    
   40,    

    ,   3
  = 40. 

Channel Bandwidth  (BW) 11 Mbps. 

Mean Transmission Time per Packet Packet size/ BW.    

Mean Packet Size per Class ( in    

Bytes) (n.b., Packet Sizes are 

Exponentially      

 Distributed)  

(625,750,875) bytes respectively 

Queueing Disciplines FCFS, HoL. 

Mobility Parameters per Node: 

α  (transition rate  to ‘Off’ state) α1 = 0.04 , α2 = 0.05, α3 = 0.05. 

β transition rate to ‘On’ state)  β1 = 20, β2 = 10, β3 =10. 
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a)‎ Quantifying‎ the‎ Adverse‎ Effect‎ of‎ WEP‎ Security‎ on‎ RANET’s‎

Performance  

Based on Simulation Scenario 1, Figure  6-3 and Figure  6-4  focus on classes 1 

and 2, displaying the marginal mean end-to-end delays of the open G-QN vs. 

the mean arrival rates of classes 1 and 2 respectively, under FCFS and HoL 

rules with WEP security ‘On’ and ‘Off’ and GE-type inter-arrival and service 

times (in the simulation, the GE-type distribution is represented as a H2 (k ~ 

105) distribution). 

 

Figure ‎6-3 Mean end-to-end delay vs. mean arrival rate for class 1 with WEP sec ‘On’ and ‘Off’ 

for an open GE-type G-QN model with single and dual servers under FCFS and HoL rules 

Clearly, the WEP security activation has an adverse effect on RANET’s 

performance with the HoL rule, giving the most optimistic value for mean end-

to-end delays, for the highest priority class 1. Moreover, under the FCFS rule, 

the mean end-to-end delays are most pessimistic. The performance of the open 

G-QN model is improved using dual servers at each forwarding node, where the 

difference (distance) of the marginal mean end-to-end delays with and without 

WEP activation is much closer (especially for higher-priority classes under HoL) 

when a dual server is used rather than a single server. This means that with 

only using dual server, the secure RANET node will almost produce a marginal 

delay equal for non- secure node, and this improvement is achieved effectively 

when HoL discipline is applied, as shown in Table  6-3, as there is not much 
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difference in the RANETs node delay when WEP is activated, for both single 

and dual servers. If a quad-core CPU is used, for example, the scale of 

improvement in performance will be reduced slightly compared with dual server, 

thus using dual server will meet the QoS required and recue the upgrading cost. 

It can be said that the positive impact of performance engineering 

(hardware/software) upgrades of the open G-QN model is of a ‘Non-linear’ 

nature (c.f., Table  6-3 and Table  6-4) 

Table  6-3 Performance distances: differences between class 1 mean end-to-end 

delays for single and dual servers with WEP security ‘On’ and ‘Off’ 

No. of 

Servers 

Performance distance (sec) when 

FCFS is adopted 

Performance distance (sec) 

when HoL is adopted  

c = 1 1  0.0219 

c =2 0.01793 0.00616 

 

Figure ‎6-4Mean end-to-end delay vs. mean arrival rate for class 2 with WEP security ‘On’ and 

‘Off’ for an open GE-type G-QN model with single and dual servers under FCFS and HoL rules 
 

Table ‎6-4 Performance distances: differences between class 2 mean end-to-end delays for 

single and dual servers with WEP security ‘On’ and ‘Off’ 

No. of 

Servers 
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Performance distance (sec) 

when HoL is adopted  
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b)‎‎Establishing‎RANET’s‎Experimental GE-type Performance Bounds  

Following Simulation Scenario 2, different values of the tuning parameter k of 

the H2 (k) family of distributions, namely: k = 2, 10, 100, 105 (~ k →+∞), are 

being used in Figure  6-5 to determine GE-type (i.e., k → +∞) pessimistic 

performance bounds for the mean end-to-end delay of class 3 of the open G-

QN vs. its marginal mean arrival rate with similar parameterisation as in 

Table  6-1. It can be observed in Figure  6-5  that the mean end-to-end delay of 

class 3 increases as the tuning parameter k attains higher values.  It becomes 

apparent, therefore, that, as the tuning parameters k increase, and the effect of 

traffic burstiness becomes more and more acute. This is particularly true with 

WEP security activation where extra ‘service’ time is needed for all data packets 

to be encrypted. The extremal case of k → + ∞ gives the worst performance, 

corresponding to GE-type pessimistic performance bounds (whilst the best-case 

scenario corresponds to the k = 2), where the delay increases from only 0.03 

sec for highly utilised node to around 0.1sec. Note that similar GE-type extremal 

behaviour has also been observed for classes 1 and 2 (c.f., [20]). 

 

Figure ‎6-5 GE-type pessimistic performance bounds for the mean end-to-end delay vs. mean 

arrival rate for an open G-QN model for class 3 over those obtained using H2(k), k=2, 10, 100, 

10
5
 distributions with WEP security ‘On’ and dual servers under FCFS and HoL rules 
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c)‎Evaluating‎the‎Adverse‎Effect‎of‎Traffic‎Burstiness‎on‎RANET’s‎

Performance 

Focusing on an open G-QN, which is parameterised according to Simulation 

Scenario 3 with GE-type external inter-arrival and ‘Service’ times (c.f., GE ~ H2 

(k=105)), evaluations of the adverse effect of traffic burstiness on the marginal 

mean end-to-end delays of classes 1-3 vs. their marginal mean arrival rates, 

respectively, are shown in Figure  6-6 to Figure  6-8. The results depicted 

indicate that, as the total mean arrival rate for each class 1-3 increases, the 

mean end-to-end delay time per data packet with security enabled is relatively 

much larger than that of the corresponding time without security. Moreover, it is 

obvious that increasing the SCV of the packet inter-arrival times has an adverse 

effect of the mean end-to-end delay per class as this leads to the arrival of 

batches of data packets with increasing geometrically-distributed sizes.  The 

best case is obtained when the inter-arrival times are exponentially distributed 

with SCV equal to equal 1. The worst performance is attained when the SCV 

reaches its maximum value of 200. 

 
Figure ‎6-6 Mean end-to-end delay vs. mean arrival rate for class 1 with WEP security ‘On’ for an  

open G-QN model with dual servers under FCFS and HoL rules and increasing Ca
2 
values 
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Figure ‎6-7 Mean end-to-end delay vs. mean arrival rate for class 2 with WEP security ‘Off’ for an  

open G-QN model with dual servers under FCFS and HoL rules and increasing Ca
2
 values 

 

Figure ‎6-8 Mean end-to-end delay vs. mean arrival rate for class 3 with WEP security ‘On’ and 

‘Off’ for an open G-QN model with dual servers under HoL rule and increasing Ca
2
 values 

d)‎‎Enhancing‎RANET’s‎Performance‎via‎SS 

Adopting the Simulation Scenario 4, Figure  6-9 to Figure  6-11 display the 

marginal mean end-to-end delays of an open GE-type G-QN vs. the mean 

arrival rates for classes 1-3, with full and selective WEP securities, respectively. 

Further to the introduced hardware upgrading from a single to a dual server (in 

conjunction with the ‘Software’ upgrade from FCFS rule to HoL rule (in favour of 

higher-priority classes), the adverse performance effect of security can be 

reduced further by introducing the selective WEP security (encryption) at each 

node of the open G-QN. This may be applied to ensure a certain level of 

security for RANET whilst operating within the required performance bounds. It 
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is clear from Figure  6-9 to Figure  6-11  that, when p = 0.5 under HoL discipline, 

the highest priority class has, as expected, the best performance in terms of 

mean end-to-end delay.  This is also applicable for the second priority class 

whilst, for the third class under FCFS, p = 0.5 gives the best performance.  

Clearly, HoL under full WEP security provides an improvement only for the 

highest priority class where the other lower classes have been penalized. In 

contrast, the SS gives comparable improvements for all classes. 

 

Figure ‎6-9 Mean end-to-end delay of an open G-QN model vs. mean arrival rate for class 1 with 

WEP security (100%) / SS (50%) ‘On’ and dual servers subject to FCFS and HoL rules 

 

Figure ‎6-10 Mean end-to end delay of an open G-QN model vs. mean arrival rate for class 2 

with WEP security (100%) / SS(50%) ‘On’ and dual servers subject to FCFS and HoL rules 
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Figure ‎6-11 Mean end-to-end delay of an open G-QN model vs. mean arrival rate for class 3 

with WEP (100%) security / SS(50%) ‘On’ and dual servers subject to FCFS and HoL rules 

6.3 Summary 
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‘optimal’ performance vs. security trade-offs for each robotic node by taking 

more explicitly into consideration security control and battery life by the use of 

GSPNs. 
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Chapter 7 Performance and Security Trade-offs in 

RANETs: Suggestions for Futurework 

7.1 Introduction 

In this chapter, the hybrid G-GSPN_QN framework is proposed for modelling 

performance vs. security trade-off in RANETs, at nodal level, to formulate a 

more advanced quantitative methodology. This framework reflects most of 

robots hardware components and also security and performance operations at 

the node. The G-GSPN models security operations and control whilst robotic 

architectural hardware for intra-robot component to component and inter-robot 

to robot transmission is represented by a QN. The node’s mobility is captured 

by ‘On-Off’ GSPN model and the battery charging and discharging is also 

reflected by a GSPN. Two theoretical case studies on RANETs, adapted from 

the literature, are presented in order to illustrate the use of QNs to reflect ‘intra’ 

and inter-robot communication. In addition, two extended CPSMs are presented 

as examples to determine the system’s parameters that enhance the 

optimisation of performance vs. security trade-offs in RANETs. Potential usages 

of the framework for future work are included. 

7.2 A Hybrid G-GSPN_QN Model 

GSPN model alone is not  straight forward for modelling the forwarding part of 

the RANET node, which includes internal robot operations and control, 

represented by QN, since a GSPN does not provide simple and direct modelling 

to accommodate more complex priority scheduling and blocking based 

strategies (c.f., [95 , 100 , 113]).  In addition, the inclusion of a queueing 

discipline, multiple classes or stochastic routing (c.f., [80 , 99]), blocking 

mechanisms in a GSPN [85] causes a state space explosion with a complex 

graph presentation of the network. As a result, the performance analysis of such 

a model becomes impossible. On the other hand, QNs cannot reflect more 
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complicated structures such as simultaneous resource possession and 

synchronisation which are required to model security control [80 , 99].  

In order to overcome the inherent limitations of the modelling power of the QN 

model besides the state space explosion in GSPN, a hybrid modelling 

framework is proposed for the quantitative analysis of (high-speed network) / 

RANETs, where each robotic node may be represented by an abstract open 

hybrid G-GSPN_QN model with HoL priorities, subject to CPSMs.  The main 

advantage of a hybrid GSPN and QN for RANETs is to model more effectively 

its performance and security behaviour and capture the interaction between the 

external workload and a RANET limited resource in a simple way. 

To this end, the adverse impact of security on the overall performance of a 

RANET node may be assessed via quantitative analysis, and optimal trade-offs 

may be established for the  evaluation and prediction of the impact of varying 

model parameters (c.f., [15]) on existing (e.g., [13]) and extended CPSMs.  

The general structure of the proposed open hybrid G-GSPN_QN model is 

depicted in Figure  7-1. This model is composed of an open G-GSPN with a 

gated multi-class ‘On-Off’ external arrival process capturing security processing 

and state-based controls as well as nodal mobility and power consumption. 

Moreover, it is connected in tandem with an arbitrary QN model with finite 

capacity channel queues with blocking. The power consumption GSPN sub-

model is included to make the framework of RANET more realistic, since the all 

robot’s components (sensors, controllers, actuators and transmission unit) are “ 

power consumers”[114], where sensing, control related computation, motion 

and communication consume high portions of robot’s battery power.  

Generally speaking, the exchanged data between robots/nodes can have three 

different classes for sensory and control messages from other robots besides 

sensory data from the robot’s sensor. Note that the number of classes for 

sensory data corresponds to the number of external robot’s sensor such as 
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Figure ‎7-1 An open hybrid G-GSPN_QN model of a RANET node with initial L lifetime of units, 

finite capacity channel queues and two HoL classes 

The three classes are labelled as Arrivals_1 and Arrivals_2 and Arrivals_3 and 

as shown in Figure  7-1 respectively. The nature of these classes is often 

‘Application-dependent’ i.e., and which application is considered what purpose 

the study should serve, and QN ‘Modelling-level dependent’, i.e., how much 

details to be included in the model to serve that required purpose of study. 
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The first two classes (i.e., as Arrivals_1 and Arrivals_2), which have two 

different priorities, go through security check first (security processing GSPN 

sub-model) then they are passed to QN forwarding sub-model as GSPN_Dep_1 

and GSPN_Dept_2 and are processed according to their type. In addition to 

these two classes, Arrivals_3 class, representing sensory data collected from 

the environment, arrive  and processed by  the forwarding QNs sub-model and 

they are not checked by security processing GSPN sub-model since they are 

directly acquired by the robot’s sensor from its environment (such as video 

stream or distance measurement made from a particular object). The robot’s 

outputs sent to other robots are represented as QN_Dep_1 and QN_Dep_2. 

It is noteworthy that QN_Dep_1 and QN_Dep_2 classes have (often) the same 

nature of Arrival_1, Arrivals_2 classes received from other robots. In special 

cases, some of these classes are only considered as input to other robots when 

we have heterogeneous robots – with different structure and functionality. 

Two case studies are adapted from the literature for autonomous robots [22] 

and a tele-operated robot [21 , 23] respectively, for illustration purposes. They 

are considered to show the modelling effectiveness of QNs to reflect intra-robot 

component to component and within a robotic node as well as Inter-robot to 

robot (or to other nodes) transmission. It is noteworthy that the second case 

study is a special case of RANETs, since it contains a single robot connected 

with a tele-operator via relays. However, this can reflect an advantage of the 

proposed framework possibility of modelling heterogeneous robots/ nodes. 

7.2.1 The GSPN-based Traffic and Mobility Model 

 The traffic and mobility model of a RANET node may be modelled  by a multi-

class ‘On-Off’ arrival process of messages represented by IPP (c.f., [69]), when 

the firing times of the transition is exponentially distributed (n.b., for  transitions 

with GE firing times, the resulting arrival process is ICPP). Thus, as can be 

observed at the bottom of the diagram in Figure  7-1, there are two places in the 

proposed GSPN model, which are labelled ‘On’ and ‘Off’, relating to nodal 
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mobility and showing whether or not a robotic node is either connected to or 

disconnected from other nodes of the RANET. The events leading to these 

changes are the changes in level of the signal-to-noise-ratio (SNR) of the 

incoming signal due to robot’s movement (c.f., [18 , 59]). 

Each arrival process of  Arrival_1’ and ‘Arrivals_2’ classes, in security  GSPN  

sub-model, follows an IPP arrival process with an overall inter-arrival time 

distribution of messages associated with a two-stage hyperexponential (H2) 

distribution (c.f., [61 , 62]). As a special case IPP, representing the G-Queue 

concept, it can be parameterised in terms of GE as the inter-arrival time’s 

distribution. Consequently, GE distribution can fully replace the Gated Queue 

and represent the node’s mobility using the corresponding parameters of IPP 

(c.f., Appendix B for the corresponding formulae), which leads to the 

framework’s simplification. Moreover, it will be feasible to predict the upper 

bounds of the performance (which characterises the worst case scenario). 

7.2.2 The GSPN-based Security Model 

The state transitions of the ‘Security’ model in RANET node is represented in a 

general-purpose GSPN model with messages subject to HoL priorities in 

Figure  7-1. It may be based on group key encryption integrated with IDS (c.f., 

[15]) towards the protection of the system against both external and internal 

attacks, respectively. Thus, a security model of this kind is conceived as a 

generalisation of those proposed in [13].  ‘Security’ model may be linked with 

the ‘Performance’ model by using several inhibitor arcs, as appropriate, to 

exercise more advanced security control and prevent information leakage (i.e., 

transmitting messages to be encrypted with compromised keys).  

The GSPN can be associated, for example, with 3-states in terms of the 

encryption key status linked to the security functionality, as depicted in 

Figure  7-2. To this end, the key is either ‘Valid’, ‘Undetected Broken Key’ or 

‘Detected Broken Key’. Whenever the result of the security check indicates that 

there is a compromised node, rekeying should take place. If the encryption time 
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increases, the rate of security incidents is decreased accordingly whilst security 

detection and system recovery rates are assumed to be fixed. The incident 

detection normally depends on the quality of the security mechanism adopted 

such as IDS and its parameters; false positive and false negative probabilities.  

As suggested by Wolter and Reinecke [13], the incident rate is adjusted 

according to the used encryption key. In addition, Cho [15] stated in her model 

that the detection rate is dynamically adjusted according to the incident rate. 

Both of these assumptions can be adopted in GSPN security model. 

 

Figure ‎7-2  3-States GSPN security sub-model 

7.2.3 The Hybrid Performance Model 

The performance model of a RANET node, shown in Figure  7-3, is of a hybrid 

nature and is composed of two heterogeneous modelling parts with messages 

subject to HoL priorities: a GSPN part emulating encryption-based security 

processing which is called ‘ Security processing GSPN’ sub-model, and a QN 

part consisting of finite capacity channel queues with blocking for ‘intra’- robot 

component to component communication and ‘inter’- robot to robot 

transmission, which is called  ‘Forwarding QN’ sub-model’.  

a-  Encryption-based security processing GSPN Sub-model 

The operation of this sub-model is as follows:  Once the messages from high or 

low priority class arrived at the node from the sender, it is then encrypted taking 
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first. If the encryption key is detected as ‘Not Valid’, i.e., broken, the node waits 
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for a new key to be generated. After the security operations/computations for 

incoming messages have been performed, the messages are passed to the 

forwarding QN sub-model for further operations and labelled as GSPN_Dep_1 

and GSPN_Dep_2 in Figure  7-3. These classes can be used to control the 

robot and shared with other robots. Note that the encryption modelling structure 

using GSPN is very similar to those suggested in [13 , 115]. Encryption delay 

follows exponential distribution, thus these classes form Poisson process (n.b., 

this delay can follow any general distribution to reflect traffic burstiness and 

correlation). It is worth pointing out  that the security computations cause the 

consumption of the limited power battery of the robot, presented in the 

framework in terms of the battery life time as suggested in [37 , 38]. Thus 

whenever a message is encrypted, the battery life time is reduced accordingly. 

This is reflected in the framework by making the ‘Life-time’ place as input to the 

‘Encrypt’ transition  thus the firing of ‘Encryption’ transition reduce the number of 

tokens ‘L’ in ‘Life-time’ place, as will be explained later in this chapter.   

b- Forwarding QN Sub-model  

Forwarding QN sub-model can be simple (i.e., single ‘server’ QN node) or 

complex (i.e., network of single ‘server’ queues with arbitrary topology).   When 

a network of queues is used to model the forwarding QN sub-model, it is usually 

contains the sensor, controller, actuator and transmission units, each of which is 

represented by a QN node. These queueing nodes are, often, subject to HoL 

priority classes, with finite capacity thus it can distinguish between the types of 

the incoming messages and serve the messages with higher priority first. 

According to the operation conditions and/or application context of modelled 

robot, FCFS disciple might also be used. 

GSPN_Dep_1 and GSPN_Dep_2 messages are passed to the controller (as 

intra-robot component to component communications), together with external 

‘sensory’ and /or control data Arrivals_3, which to determine whether to share 

them with other robots via the ‘Transmission unit’ or to pass them to the 
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‘Actuator’ to causes the required movement of the robot [30 , 31]. All or selected 

messages, labelled as QN_Dep_1 and QN_Dep_2, are then transmitted by the 

robot node, after being formatted as appropriate, for further processing by 

intermediate nodes or routed for its final destination as ‘Inter-robot to robot 

communications’. 

It is worth mentioning that due to the limited memory of the robot, and especially 

those involved in monitoring the environment for a long period of time, data are 

discarded (i.e., overwritten) to save more space for new data [116]. This action 

is indicated in Figure  7-1and Figure  7-3 by (discarded data). 

 

Figure ‎7-3 The Hybrid Performance Model 

Due to the computations / processes made in the forwarding QN sub-model, the 

robot’s battery life time is reduced. The reduction is a function of the performed 

process of the robot (e.g., the power consumed caused by the controller and 

sensing is much less than that caused by motion and transmission) [114]. 

These various reductions in the power consumption model are reflected the 

enabling function of the transition ‘Reduce power’ as appropriate.  

In the following, two case studies are adapted, for illustration purposes, from [21 
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of the proposed framework. In particular, these case studies are considered to 

show how intra-robot component to component and inter-robot to robot 
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communication can be reflected by an ‘Application-dependent’ and ‘Modelling-

level-dependent’ QN model.  

In the first case study, adapted from [22], number of robots communicate 

according to ad hoc network and work co-operatively to collect and exchange 

control and sensory data messages between them in order to build 3-D maps of 

unknown place. These data are assumed to be secure with WEP protocol.  

In the second case study, adapted from[21 , 23], a single robot is remotely 

controlled by a tele-operator to perform navigation/ monitoring task by means of 

capturing video data of  a place and send it back to the tele-operator who has 

full control of the robot. In order to extend the coverage area for the robot, 

intermediate mobile nodes are used (acting as relays).  

It is worth pointing out that the second case study is a special case of RANET, 

where a single robot is involved in performing a particular task. However, in the 

context of this thesis, this case study explicitly shows the flexibility of the 

proposed framework in modelling heterogeneous structures and functionalities 

of robots /nodes. In both case studies, power consumption of the robot’s battery 

is not taken into consideration. 

i- Case Study 1  

This case study on autonomous robots adapted from [22] to show how to model 

intra and inter robot communications using QN model. This type of robots has 

full control of co-operate data sensing and exchanging to perform a common 

task as well as controlling robots’ motions to a particular target. 

1. Application Context 

A group of robots co-operatively navigate an unknown place and build its 3-D 

map. Each robot is provided with a range sensor. The 3-D map is updated 

according to measurements from its own range sensor (which are the 

dimensions measured from the robot’s position to a particular obstacle) and 

localisation module (i.e., the information of the robot’s position -within the map- 
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at which these measurements are made) besides the received measurement 

made by other robots. Only necessary measurement information, selected- for 

example- with probability p as defined by the adopted cooperation probabilistic 

strategy, are shared with other robots. This information is assumed to be 

secured with WEP protocol to provide information confidentiality. The updating 

process of the 3-D map besides sharing information can be affected by security 

computations as well as the transmission media. Thus, accurate modelling of 

intra and inter-robot communications will help in evaluating performance and 

security trade-offs. 

2. The‎robot’s‎Components 

In the following, the different components of a single robot and the operation/ 

interaction of robot’s nodes are described. The robot’s is assumed to have a 

‘Sensor’, ‘Controller’, a ‘Localisation unit’, and an Actuator ’and ‘Transmutation 

unit’. The ‘Sensor’ provides the sensory and control data to the robot. The 

‘Localisation unit’ gives the robot’s position with respect to its surrounding area. 

The ‘Controller’ processes incoming data and produces the required response 

to the actuator which accordingly changes the robot’s position to a new selected 

‘Exploration viewpoint’. In the same time, selected data are transmitted to 

(shared with) other robots via ‘Transmission unit’. 

3. The proposed QN 

This section describes the proposed QN model for the scenario described 

above. In particular, it provides information on the input traffic flow to the QN 

sub-model as well as the components of the proposed QN model and how they 

interact. 

a. The input  Traffic Flow  

Each robot receives four classes for data and position measurement as input 

and they are assumed to have exponential inter-arrival time process. The first 

two classes for data and position (control) measurement made by other robots 

indicated by brown lines and labelled as GSPN_Dep_1, GSPN_Dep_2 in 

Figure  7-4. These data come from GSPN sub-model after being checked for 
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WEP security. In addition, each robot acquires the other two classes 

measurement and control (i.e., position data) from its sensor and localisation 

modules respectively, indicated by blue lines and labelled as Arrivals_3 and 

Arrivals_4 in Figure  7-4. The received data presented by the four classes 

(GSPN_Dep_1, GSPN_Dep_2, Arrivals_3, Arrivals_4) have different priorities, 

thus HoL discipline is assumed for both ’3-D map update’ and ‘Transmission 

unit’. The sensor and actuator, on the other hand, are assumed to act according 

to FCFS discipline since they served event according to their occurrence time. 

b. The Components of the Proposed QN  

The corresponding proposed QN model of the forwarding sub-model of the 

robot is composed of four single-server QN nodes, namely: 

 ‘3-D‎ map‎ update’ which receives the four classes data (GSPN_Dep_1, 

GSPN_Dep_2) for received sensory and control data, and (Arrivals_3, 

Arrivals_4) for the acquired data by the robot’ sensor and  updates the 3-D map 

of the navigated place accordingly to determine the new position of the robot; 

 

Figure ‎7-4 QN model for the intra-communication and inter- robot to robot communications 
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‘Transmission unit’ sends the selected measurements to be shared with other 

robots (indicated by QN_Dep_1 and QN_Dept_2), and 

‘Actuator’ which is a mechanical part such as electric motor that causes robot’s 

movement. 

It is worth mentioning that data acquired by the robot itself are assumed to have 

higher priority over the received data from other robots. In order to simplify the 

model, the ‘Sensor’ and ‘Localisation unit’ are considered as sources of data 

thus they are not presented as queueing nodes in the model.  

c. The‎‎QN‎Component’s‎‎Operation/‎Interaction 

The incoming data from security GSPN sub-model and from the environment to 

‘3-D map update’ queue and are utilised to update the map then they go 

through the ‘Controller’ which process data according to FCFS discipline since 

they are served according to their occurrence time. Selected data, according to 

the adopted cooperation strategy, are shared with other robotic nodes with 

probability p while the remaining data are discarded with probability (1-p), after 

passing through the ‘Controller’. The position information (which is control data) 

is passed from the ‘Controller’ to the ‘Actuator ‘unit while measurements data 

are discarded. Only selected sensing measurements are shared with other 

robots through the ‘Transmission unit’ and they are transmitted according to 

HoL discipline to preserve class-priority. Based on provided data to the 

‘Actuator’, the robot is moved towards the new position. Upon reaching that 

target, the robot repeats the whole process with a new measurements provided 

by the sensor from its new position. 3-D map creation and update involve two 

steps and require keeping some measurement data within this unit. From the 

modelling-level point of view, for model simplicity, these two processes are 

combined in a single QN node ‘3-D map and Update’. 

d. The QN output  traffic flow  

The output classes (QN_Dep_1, QN_Dep_2) from QN sub-model should be 

similar to those represent its input traffic classes to the robot (Arrivals_1, 
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Arrivals_2). This is considered in the design where QN_Dep_1represents 

sensory data (aggregated from the robot itself and other robots) and QN_Dep_2 

represents control data (aggregated from the robot itself and other robots). 

ii- Case Study 2  

This case study, adapted from [21 , 23], is for a tele-operated robot which is 

assumed to be communicated with tele-operator according to ad hoc network 

technology to perform navigation tasks.  In this context, the robot is assumed to 

be totally controlled by the tele-operator who might be able to communicate 

directly with the robot or it might be far from it. In the latter case, intermediate 

nodes, which are assumed to be mobile, are used to deliver data between the 

robot and tele-operator. Despite having only one robot in this case study, an 

assumption of having multiple robots with multiple operators can be made as 

proposed in [117]). This case study can be generalised to account for robots 

communications. This might be made through semi- autonomous robots with 

multiple tele-operators. 

1. Application Context 

The operation of the robot is as follow: the robot captures video from the 

surround area using video camera and sends it back to the tele-operator. As a 

response, the tele-operator can display this streaming video and sends back 

control data to the robot in order to move to the required position.  In this case, 

there are two communication cases:  

Video captured by the robot’s camera together with  tele-operator control traffic, 

which all are  secured by using WEP protocol during transition, are forwarded 

between robot and other relays nodes in ad hoc manner. Tele-operator can 

either communicate directly with the robot if they are in the same coverage area 

or via other mobile nodes that extend the coverage area. 

Traffic transmission is delayed due to the transmission media and WEP security 

computations. As a result, ‘Timely control’ of the robot might not be feasible. 

Thus it is of importance to investigate a balanced trade-off in which 
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transmission delay is reduced while preserving reasonable security level and 

video quality. 

2. The‎Robot’s‎Components 

The robot itself is composed of four parts: ‘Sensor’ which is the video camera, 

‘Controller’, ‘Actuator’, to allow the robot to move and the ‘Transmission unit’ 

which transmits back video data to the operator (either directly or via other 

nodes). It is assumed that video data goes from the robot towards the tele-

operator while control data goes from the tele-operator towards the robot. 

3. The Components of the Proposed QN 

This section describes the input traffic flow to the QN sub-model as well as the 

components of the proposed QN model and how they are interacting. 

a. The Input  Traffic Flow 

There are three types of traffic that present the input to the robotic node, as 

shown in Figure ‎7-5. All of these classes are assume to have exponential inter-

arrival time process. The first two classes are ‘Control data received directly 

from tele-operator’, indicated by GSPN_Dep_1 in Figure ‎7-5, in order to control 

the movement of the robot and ‘Forwarded control data from other nodes’, 

indicated by GSPN_Dep_2 in Figure ‎7-5. These classes are passed from the 

GSPN sub model to QN after being checked by WEP and they have the same 

priorities. The third class is the ‘Video data from robot‘s camera’, indicated by 

Arrivals_3 in Figure ‎7-5, and since this data is acquired directly by the robot, 

there is no need to check it by WEP security protocol. This class is assumed to 

have lower priority while both control data classes have higher priority. 

b. The QN Components 

The corresponding proposed QN model for the robot’ forwarding part for this 

case study is depicted in Figure  7-5. The proposed QN model is composed of a 

’Sensor’ which is the video camera, ‘Controller’, ‘Transmission‎ unit’, and 

‘Actuator’. 
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Figure  7-5 QN model for intra and inter robot communications 

c. The‎QN‎Component’s‎‎Operation/ Interaction 

Both control classes Arrivals_1 and Arrivals_2 are received from GSPN security 

model and they enter the ‘Controller’ queueing node as GSPN_Dep_1 and 

GSPN_Dep_2.  Arrivals_3, on the other hand, is received by ‘Sensor’ queueing 

node and it is then passed to ‘Controller’ node. Since these classes have 

different priority, HoL is assumed to be the queueing discipline for the 

‘Controller’ node. These data are then processed and interpreted by the 

‘Controller’ which convert them to motion commands and passes them to the 

‘Actuator’, which in turn, moves the robot as required.  

d. The QN Output  Traffic Flow 

The output class (QN_Dep_1) from QN sub-model represents video data sent 

back to the tele-operator by the robot node.  Unlike the previous case study, 

video traffic is assumed to go in one direction (from the robot to the tele-

operator), since other intermediate nodes are not robots; they act as relays to 

only forward video and control data. Note that, in the case of modelling these 

relay nodes, both ‘Sensor’ and ‘Actuator’ queueing nodes should be excluded. 

The input classes to the ‘Controller’ within relay QN model are ‘GSPN_Dep_1’ 

and ‘QN_Dep_1’. The features of ‘Controller’ and ‘Transmission’ queueing 

nodes are the same as those of the robot QN model.  The output control and 
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video data classes are sent by the ‘Transmission unit’ to the robot and tele-

operator respectively. 

iii. Further Remarks  

When a large network of robots with multiple classes, queueing disciplines and 

routing and blocking mechanisms is modelled and theoretically analysed by 

pure GSPN, the corresponding state space will explode [80 , 85 , 96 , 97 , 118 , 

119]. The resulting pure GSPN model becomes “graphically complex” and not 

comprehensible [96].  This is due to the increase of number of places/transitions 

required to reflect these aspects. Moreover, the GSPN cover more details (such 

as concurrency and synchronisation) than QN and this requires more state 

space. Therefore, the use of QN model to reflect, in a simple way, the 

forwarding model of the robot that involves the forth mentioning modelling 

aspects will eliminate this problem.  

 When simulation is used as evaluation tool of the hybrid GSPN and QN model 

compared with pure GSPN, QN effectively reduce the time required to complete 

the simulation [102] due to its simpler topology and smaller associated event list 

and it can decrease implementation complexity of the overall simulation code.  

7.2.4 The Power Consumption Model 

As depicted in the proposed G-GSPN-QN model of Figure  7-6, the power 

consumption model of a RANET node may be modelled by the battery’s lifetime 

representing the number of tokens in the power place assigned to each node 

according to uniform distribution (c.f., [120]). 

In this context, the number of tokens in the place ‘Life-time’, L (L > 0), 

represents the robot’s battery lifetime and it is an input place for the transition 

‘Power Reduction’ consuming power with, say, an exponential delay. Security 

protocols requiring computations together with the transmission process of 

messages will contribute to more power consumption of the battery and, thus, 

reduce progressively the number of remaining tokens (units of time) in the input 
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place ‘Life-time’ for the transition ‘Power Reduction’ it could include a check of 

departure events of the internal components queueing nodes within the 

forwarding QN each of which has its own reduction rate. For example, the 

power reduction rates of the robot considered in [114] are:  Motion 12.1%-

44.6% Sensing 1.9%-5.1% Microcontroller 14.8%-28.8%. In terms of simulation, 

these reduction percentages can be included in the enabling function 

expression of ‘Reduce power’ transition. In addition to previously mentioned 

sources of power consumption, a fixed reduction rate of the battery life time is 

applicable when the robot is idle (c.f., [114]). 

 

Figure ‎7-6  Power consumption GSPN sub-model 

It is noteworthy that robot’s battery might be recharged [114] when its remaining 

lifetime reaches a predefined threshold. This event is represented in the GSPN 

model by the ‘Recharging’ transition and it is defined in the transition enabling 

function. This mechanism enables the robot to resume its task effectively 

without being interrupted or stopped due to battery exhaustion. In addition, 

multimedia traffic can be handled effectively without concerns about power 

consumption.  

The use of the power consumption model gives an indication of the adverse 

impact of security and transmission computations on the ‘Life-time’ reduction of 

the robot’s battery. In particular, determining the optimal length of encryption 
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keys vs. power consumption trade-offs may enable the battery to maintain 

energy levels for longer and, thus, benefit the operational efficiency of real-life 

applications. 

7.2.5 Extended CPSMs 

In the context of the encryption protocol modelled using the proposed hybrid 

framework (c.f., Figure  7-7) and for illustration purposes, two extended CPSMs 

are introduced, namely CPSM-Maximum and CPSM-Minimum, based on CPSM 

proposed by Wolter and Reinecke [13]. These CPSMs may be utilised to 

determine in order to determine the optimal encryption time.  

 

Figure ‎7-7 Hybrid QN and GSPN model 
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utilisation and PLP. Thus, this will prevent the performance metric dominating 

the overall value of the CPSM when added the security metric represented by 

probabilities (such as probability of the key to be valid).  
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and probability of key breaking, are also added together but their combined 

metric has to be minimised.  

In this context, for illustration purposes the following CPSMs are defined: 

 CPSM1 is defined as ‘the sum of the utilisation of the QN model plus the 

probability of the system being in a ‘Valid’ place (or ‘State’). This metric may 

be used to determine a maximum utilisation (which gives an indication of 

maximum encrypted messages ready to be transmitted) when the system is 

secure, i.e., having a valid key. This metric can be seen as a CPSM-

Maximum expressed by 

CPSM1=Utilisation + P(Valid Encryption Key) 

 CPSM2 is defined as ‘the sum of the PLP in the encrypting place plus the 

probability of the system being in ‘Undetected Broken Key’ place. CPSM2can 

be seen as CPSM-Minimum and it should give a lowest possible PLP in 

‘Encryption’ place when the system is under undetected attack, i.e., the 

encryption key is broken. Clearly, this combined metric is expressed by 

CPSM2= PLP in ‘encryption’ place +P(Undetected Broken Key) 

In the following sections, numerical experiments are carried out to show the 

behaviour of the extended CPSMs and how they are affected by the traffic 

burstiness. 

 The arrived messages to the model are assumed to have single class. In 

addition, the firing time of ‘Arrivals’ transition has GE distribution with SCV=1, 

50 and 100, while the firing times of other transitions and the ‘send’ service 

times are exponentially distributed. Input parameters for the model used to 

determine the suggested CPSMs are listed in Table  7-1. 

In the following, the CPSMs are firstly plotted together with their corresponding 

individual performance and security metrics. Then, the impact of messages 

inter-arrival times burstiness on these metrics is assessed. 
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Table ‎7-1 Input parameters of hybrid QN and GSPSN to determine CPSM1 and CPSM2 

Parameter Value 

Arrivals 8 messages per sec 

Encrypt 0.01 to 0.34 step 0.01 sec 

Fail (time to key breaking) 
1.25, 25, 50, 100, 600  to 

15100 step 500 sec 

Undetected Broken key 12 sec 

Rekey 36 sec 

Send 10 messages per sec 

SCV of inter-arrival times 1, 50, 100 

Capacity‎of‎‘Encryption’‎place‎
and‎‘Send’‎queue‎buffer 

100 

 

a) The behaviour of the extended CPSMs 

Figure  7-8 depicts CPSM1 and its components, i.e., the utilisation of the QN 

model (indicated by the blue curve) and the probability of the encryption key 

being valid (indicated by the green curve). 

 

Figure ‎7-8 CPSM1 when SCV of messages inter-arrival times is equal to 1 [1] 

For low encryption times, messages do not wait for long times to be encrypted. 

Since the security level is low, the key can be broken easily. As the encryption 

times increase, messages begin accumulating waiting to be encrypted.  

Consequently, this leads to an increase of the overall delay and thus, a 
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considerable decrease in the throughput and utilisation of queue ‘Send’. 

However, beyond a particular encryption time (or consequently for an 

encryption key length), the security level will be almost the same (c.f., [13]) but 

increasing the key length will definitely decrease the utilisation as described 

earlier. It is clear that the probability of the key being valid increases linearly 

with encryption time as it is related with the time to next security failure, i.e., key 

breaking. For the considered model, optimal encryption time according to 

CPSM1, which gives an optimised performance and security simultaneously, is 

around 0.13 sec. 

Figure  7-9 shows CPSM2 and the corresponding metric which are PLP in 

‘encryption’ place and the probability of the system being in ‘Unetected broken 

key’ state. The increase in the encryption times causes the accumulation of 

messages in place ‘Encryption’ and due to its limited capacity, messages are 

lost. Thus it is vital to minimise the probability of the key being compromised 

which leads to system recovery. There is an optimal encryption time at which 

the encryption process is fast enough and the corresponding key is secure 

enough so that it cannot be broken easily.  At this time, PLP is at its minimum 

as well as the key breaking rates. Beyond this time, messages accumulate in a 

linear manner, and so the PLP, in ‘Encryption’ place which is further increased 

whenever the system is recovering from a security failure which causes 

encryption suspension. When the place ‘Encryption’ becomes full, new arrived 

messages are lost and therefore the overall number of messages, as well as 

PLP, remain unchanged. In contrast to short keys, longer encryption keys are 

more secure thus they are less likely to be broken. Therefore, the probability of 

‘Undetected Broken Key’ is decreasing as a function of encryption times.  
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Figure ‎7-9 CPSM2 when SCV of messages inter-arrival times is equal to 1 [1] 

 

b) Impact of SCV on Extended CPSMs 

It is worth mentioning that the probabilities of the key being valid, undetected as 

broken or detected as broken by the system are not affected by the change of 

the traffic burstiness. Thus the change in performance components of the 

extended CPSMs causes the change of the combined metrics. 

Figure  7-10 depicts CPSM1 for different degrees of traffic burstiness. It is clear 

from the figure that CPSM1 has an obvious maximum when the traffic 

burstiness is low, i.e., when SCV = 1 where the inter-arrival times are 

exponentially distributed. However, when the burstiness degree increases, the 

utilisation will decrease due to the increasing messages loss and therefore 

CPMS1 curves are shifted down accordingly.  It is noteworthy that CPSM1 curve 

becomes flatter which hides its maximum value and this behaviour is caused by 

the system being overwhelmed.  

Since the probability of having a ‘valid’ key is independent of the SCV impact, 

the overall combined metric will remain the same.  

The increase of the traffic variability shifts the optimal encryption time to higher 

values according to the corresponding SCV.  Therefore, it can be concluded 

that longer encryption keys are needed for traffic with higher burstiness degree. 
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It is also clear that the curve is shifted down with increased traffic burstiness 

since the system throughput decrease accordingly. 

 

Figure ‎7-10 CPSM1 for difference SCV vlues ofmessages interarrival times [1] 

 

Figure  7-11 shows the impact of increasing the degree of traffic burstiness on 

CPSM2. It is obvious that higher the burstiness of traffic the more messages are 

entering the system and this leads to higher PLP and therefore the curves are 

shifted up. Similar to CPSM1, the increasing of the traffic burstiness requires 

longer encryption key lengths.  

 
Figure ‎7-11 CPSM2 for difference SCV  vlues of messages interarrival times [1] 
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7.2.6 Overall Remarks  

This framework can model more meaningfully and explicitly the behaviour of 

security processing and control mechanisms besides capturing the robot’s 

heterogeneity (in terms of the robot architecture and application/task context) in 

in the near future [1]. Moreover, this framework should enable testing robot’s 

configurations during design development stages of RANETs as well as 

modifying and tuning existing configurations of RANETs towards enhanced 

‘optimal’ performance and security trade-offs.   

The limitation of the framework may include the following issues: there is no 

explicit formula by which the encryption key lengths can be expressed in terms 

of the corresponding encryption time. Moreover, the estimation of failure, 

detection and rekeying times, presented in GSPN security model, needs a wide 

knowledge of the nature of the modelled system (i.e., its hardware and 

software) and considered protocol.  For the above mentioned reasons, it was 

not straightforward to validate the results obtained from the model against those 

of a real system. As a consequence, the overall behaviour of the modelled 

system was not compared to that of a real system and this is left to be carried 

out in a future work. 

7.3 Summary 

In this chapter, a hybrid modelling framework was proposed to support future 

work on the quantitative analysis of performance vs. security trade-offs in 

RANETs, where each robotic node was represented by an abstract open hybrid 

G-GSPN_QN model with multi-class ‘On-Off’ external arrival process with HoL 

priorities and associated with CPSMs. The proposed model consisted of four 

linked sub-models reflecting  traffic and (nodal) mobility, security, performance 

and power consumption with ‘intra’-robot component to component 

communication for mobility control and ‘inter’-robot to robot for transmission. 

More specifically, the model was composed of an open G-GSPN _QN capturing 

security processing and state-based controls as well as nodal mobility and 
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power consumption and battery charging and discharging. The G-GSPN sub-

model was connected in tandem with an arbitrary QN model with finite capacity 

channel queues with blocking.  Two theoretical case studies from the literature 

were adapted to illustrate the utility of QN towards modelling intra-robot 

component to component and inter-robot to robot communications. 

Furthermore, two extensions of CPSM were suggested for illustration purposes 

towards facilitating the determination of parameters that may lead to enhanced 

combined optimisation of performance vs. security trade-off in RANETs.  
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Chapter 8 Conclusions and Future Work 

This chapter includes the main conclusions of the thesis together with future 

research directions.  

8.1 Conclusions 

This thesis introduced a quantitative methodology to quantify and predict, under 

bursty traffic conditions, the performance degradation and associated trade-offs 

caused by security mechanisms. In this context, an effective quantitative 

methodology for the analysis of arbitrary QN models and GSPNs through DES 

was developed based on PEPs in the context of extended applications into 

performance vs. security trade-offs for high-speed networks with or without 

infrastructure. In particular, the methodology was employed to carry out 

investigations on high-speed network routers subject Access Control List (ACL) 

and also Robotic Ad Hoc Networks (RANETs) with Wired Equivalent Privacy 

(WEP) and Selective Security (SS) protocols, respectively.  The burstiness of 

traffic was captured by adopting GE-type inter-arrival and service times  which 

also enables  predicting the pessimistic ‘upper bounds’ of the network’s 

performance in the presence of security mechanism. In this regard, Appendices 

A to G accommodated the implemented simulation algorithms in java for open 

G-QN models with multiple classes and multiple servers, subject to FCFS and 

HoL infinite/finite capacity queues with RS-FD blocking and SS, subject to GE 

and H2 type inter-arrival and service times. Moreover, a DES algorithm was 

developed in java for the quantitative analysis of the adopted GSPNs.  

     More specifically, Chapter 5 presented a high-speed router with Extended-

inbound ACL mechanism, where performance degradation of the router was 

caused due to high-speed incoming traffic in conjunction with ACL security 

computations making the router a bottleneck in the network. To quantify and 

predict the trade-off of this degradation, the proposed quantitative methodology 

employed a suitable open QN model consisting of two queues connected in a 

tandem configuration corresponding to a security processing node and a 

transmission forwarding node. PEPs were introduced to the analysis of these 

two queues and included single or quad-core CPUs with multiple-classes 
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subject to service with or without priorities (e.g., FCFS or HoL) service 

disciplines together with space priorities with CBS and PBS buffer management 

schemes. To this end, performance-related security trade-offs were determined 

in order to mitigate the adverse effect of security on router’s performance. 

Moreover, RS-FD blocking was employed to reflect the ‘Accept-Deny’ behaviour 

of ACL mechanism. Mean response time and PLP were selected as typical 

performance metrics to assess the improvement in performance and security 

trade-off. Numerical experiments were carried out, based on DES, in order to 

establish an ‘optimal’ balanced trade-off between security and performance 

towards the design and development of efficient router architectures under 

bursty traffic conditions.  

Moreover, Chapter 6 dealt with the DES analysis of RANETs with WEP and SS 

protocols (c.f., [46]) in order to achieve, in the presence of limited resources, an 

‘optimal’ compromise between network performance and a tolerable level of 

security. The focus was on modelling at nodal level of RANETs, as 

infrastructure-less networks, since the WEP mechanism is performed at each 

individual robotic node, subject to traffic burstiness and nodal mobility. 

Therefore, the proposed network model was extended, to reflect the 

communication of robotic nodes, to be in the form of an open QN model with 

arbitrary topology comprised from G-queues with dual-core CPU, subject to 

multiple classes with an infinite capacity queues under FCFS and HoL 

disciplines. The external arrival traffic flows, which exhibit burstiness, is 

characterised by an Interrupted Compound Poisson Process (ICPP). The mean 

marginal end-to-end delay was adopted as a typical performance metric to 

capture a trade-off balancing performance and security. Numerical DES 

experiments were carried out according to various scenarios to establish 

enhanced performance and security trade-offs. 

SS was also included in the Gated-QN (G-QN) model with service priority and 

dual-core CPUs in order to mitigate the adverse effect of security on RANETs 

performance and establish an ‘optimal’ performance vs. security trade-off. SS 



108 

 

may achieve great performance vs. security improvements, especially in real-

time applications with multimedia information (c.f., [46]).  Moreover, including 

the robot’s mobility concept, through G-queue [18 , 59] , within the QN model of 

a RANET enabling realistic decisions in mitigating the performance of mobile 

robotic nodes in the presence of security. 

The associated numerical experiments for both models in chapters 5 and 6, 

showed that security improvements achieved by the acquisition of additional 

hardware and software resources was of ‘non-linear nature’. Furthermore, the 

proposed QN models may clearly assist telecommunications engineers to 

choose to discriminate against an application that is less sensitive to delay and 

packet loss, and this will lead to satisfy the required QoS constraints. 

Finally, Chapter 7 proposed an enhanced quantitative methodology in the form 

of an advanced hybrid framework for capturing ‘optimal’ performance vs. 

security trade-offs for each node of a RANET by taking more explicitly into 

consideration security control and battery life.   Specifically, each robotic node 

was represented by a hybrid Gated GSPN (G-GSPN) and a QN model. 

In this context, the G-GSPN included bursty multiple class traffic flows, nodal 

mobility, security processing and control whilst the QN model has, generally, an 

arbitrary configuration with finite capacity channel queues to reflect ‘intra’ 

robot(component-to-component) communication and ‘inter’ robot-to-robot 

transmissions. 

In particular, two theoretical QNs models were adapted from the literature [21 , 

22 , 23] on secure robot to illustrate the utility of a QN towards reflecting ‘intra’ 

and ‘inter’ robot communications. Finally, two examples on extending CPSMs, 

based on the CPSM proposed by Wolter and Reinecke [13], were proposed 

towards the determination of an ‘optimal’ performance and security trade-off. 

To summarise, the potential applicability of the hybrid framework may include: i) 

Modelling more meaningfully and explicitly the behaviour of security processing 

and control mechanisms; ii) Capturing RANET’s heterogeneity (in terms of the 

robot architecture and application/task context) in the near future (c.f. [1]) and 
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iii) Testing, modifying and tuning the configurations of RANETs during design 

and development stages towards ‘optimal’ performance and security trade-offs.   

8.2 Recommendations for Future Work 

Possible extensions of the work include the following research themes and 

associated applications in RANETs: 

1. Developing new protocols in order to optimise different CPSMs for diverse 

RANETs applications under bursty and correlated traffic flows [24]. Possible 

correlated traffic flows are the Batch Markovian Arrival Process (BMAP) and 

Batch Renewal Process (BRP). Note that the BMAP is a generalisation of 

Poisson process that allows arrivals of correlated batch sizes, in addition to 

dependent non-exponentially distributed inter-arrival times (c.f., [121]). On 

the other hand, a BRP facilitates the investigation of the impact of correlation 

on network’s performance independently of any other traffic characteristics 

and it is completely defined by sets of counts and intervals correlations by 

means of Index of Dispersion for Counts (IDCs) and it is defined as the 

variance in the number of arrivals in an interval of time t divided by the mean 

number of arrivals in  time t and Index of Dispersion for Intervals (IDIs) and it 

is defined as the variance of n intervals  between n+1 individual arrivals 

divided by the squared  mean of  this interval (c.f.,[122]). BMAP and BRP can 

be constructed with the same IDCs and IDIs (c.f., [123]) and be used to 

obtain numerically optimistic and pessimistic CPSMs, respectively.  

2. Applying the ME principle and a queue-by-queue decomposition algorithm 

(as proposed in [16 , 20 , 87] to investigate performance-related security of 

routers and RANET. Such an approach will facilitate the design and 

evaluation of optimal trade-offs between performance and security 

Furthermore, the coordination and implementation of a more globally-related 

standardisation process (c.f., European Telecommunications Standards 

Institute (ETSI), Institute of Electrical and Electronics Engineers (IEEE), etc.) 

for networked mobile wireless robotics is recommended, thereby 
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guaranteeing high performance levels in the presence of efficient security 

mechanisms. Exploiting ME principle could help in overcoming potential state 

space explosion caused by increased the network size and the inclusion of 

multiple classes and blocking mechanisms; 

3. Designing and developing optimal broadcasting/multicasting algorithms to 

achieve performance gains in RANETs, such as those based on tree and 

cluster methods proposed by Mkwawa and Kouvatsos (c.f., [124])). This 

poses challenging problems because of the “variable and unpredictable 

characteristics of RANET’s medium as well as the fluctuation of signal 

strength and propagation with respect to time and environment” (c.f.,[54]); 

4. Exploiting the synergy and operational cognitive similarities between 

RANETs and Cognitive Radio Mobile Wireless Ad Hoc Networks (CRAHNs), 

will be of interest since RANETs may employ Cognitive Radio (CR) to extend 

the cognitive-type functionalities and attributes of robotic nodes, such as new 

techniques for cooperative heterogeneous network architectures, dynamic 

spectrum access, security mechanisms etc. Conversely, CR-based RANETs 

may “form suitable intelligent test beds for motivating, informing, assessing, 

validating, predicting and verifying concepts and mechanisms for CRAHNs” 

(c.f., [28 , 54 , 69 , 125]); 

5. Extending the GSPN security model proposed by Wolter and Reinecke [13], 

to include the protection (or reduction) of information leakage when the 

system is non-secure. This model can then be associated with more 

advanced security protocols like IDS for GCS proposed by Cho in [15]  by 

utilising the  hybrid  GSPN and QN framework; 

6. Exploiting the library of security mechanisms proposed by Cortellessa and 

Trubiani [41], which includes the implementation of a GSPN model that is 

applicable to several types of security services, such as access control and 

encryption, which may be used for representing security operations under the 

auspices of the proposed hybrid G-GSPN_QN framework; 
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7. Implementing the proposed RANET hybrid G-GSPN_QN model in the 

context of autonomous robots and considering multi-robot single tele-

operator and multi-robot multi tele-operator [117] instead of a single robot.  

Moreover, the framework can be integrated with the architecture proposed by 

Redi and Bers in[126] for autonomous robots  operations  including routing 

protocols, internal robot communications and data forwarding. 

8. Finally, investigating further the credibility of Fuzzy Petri Nets (FPNs) [127]  

and Coloured Fuzzy Petri Nets (CFPN) [128] models in the context of 

routing protocols for RANETs. These models have been successfully 

employed to investigate MANETs with incomplete information about state 

and time (c.f., [128 , 129 , 130]). Note that in FPNs, one or more of the PN 

components can be fuzzy (i.e., the information they convey may be 

‘uncertain and incomplete’ [129]).  
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Appendix A Discrete Event Simulation Technique 

A.1 Introduction 

This appendix describes the simulation and validation of the models that have been used as 

basis for the rest of the simulation models throughout the thesis. Simulation is used in this 

thesis as an evaluation tool for the network performance and security trade-offs.   

The simulation used in this study is a purpose-built DES written in Java. Generally speaking, 

simulation can be event-driven, process-oriented, or distributed [131]. DES was chosen since it 

is easy to construct and commonly used in the literature. DES Technique considers systems in 

which changes occur at discrete instances in time such as the arrival of messages at a router or 

a robotic node.  This event, the arrival, will cause a change in the state of the router’s model. 

During the time between these arrivals, the state remains unchanged [131]. 

Test beds/measurements are realistic tools for evaluating the performance and security of high-

speed networks; however, it is impractical to configure them/set them up. In addition, when the 

size of the implemented nodes within the network is large, the evaluation process becomes 

expensive. Consequently, it is difficult to perform the comparison for various protocols under the 

same conditions. For these reasons, simulation is considered a better choice and is widely used 

for analysing complex networks [132]. 

Analytic models based on queueing theory provide elegant analytical solutions; nevertheless, as 

the system complexity increases, they may require a number of simplifying assumptions that 

must be made to derive equations for the performance metrics parameters. Simulation, on the 

other hand, is a more generic prediction tool which overcomes queueing theory’s limitation and 

it can be used to model reality in greater detail [4]. This can be performed by constructing the 

system’s model in the form of a program and calculating the measurements over time, and 

obtaining the performance metrics [132]. 

The simulation algorithms of GE random variable, QNs and SPNs are explained. In particular, 

the main building blocks for the models used throughout the thesis were validated against 

appropriate analytical solutions from the literature.  

A.2 Features of Simulation 

Generally speaking, the use of simulations can help reduce the development costs of a system 

as well as improve the safety of the experiments and debugging [133].  The main advantage of 

simulation is its ability to capture and track the dynamic behaviour of complex systems and 

evaluate them over time [134]. Several Simulation packages such as NS-2 [135], as its 

enhanced functionality is suitable for wireless scenarios”, Omnet++ [136], GloMoSim [132] have 

been used in the literature on this subject and they provide an environment to design and 

compare proposed and existing protocols. Despite the large number of these simulation 

packages, the simulation used in this study is implemented using Java programming [137]; a 

purpose-built DES has been used for its flexibility and simplicity in programming besides its 
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ability to analyse complex systems. One of the limitations of the simulation is that the 

produced results mainly depend on the random generators used (c.f., [105]). Simulation 

programs have been constructed for simulating GE random variable besides QNs, G-QNs and 

SPNs models for the proposed models.  

A.3 Simulation‎Models’‎Components‎ 

This section describes the simulation of the GE distribution besides the main building blocks 

used in the proposed models in this study. These models are GE/GE/c, Open QN with G-

Queues, and SPNs. Validations of these models are also included.  

A.3.1 Simulating GE-Type Distribution 

The Algorithm H2  GE(c.f., Appendix  B), describes the steps for generating a GE-type random 

variable (RV) t by using an H2–type distribution [20]  with a large value of the tuning parameter 

k. GE validation is considered among the next simulation  model of multiple servers. 

A.3.2 Simulating GE/GE/c Queue  

The simulation is based on the method proposed by Law and Kilton [105].    

The structures of the simulation algorithms are presented in  appendix C. 

a) Validation of GE/GE/c/FCFS Queue with ME Solution [20] 

The solution of a single class GE/GE/c/FCFS queue with c (c ≥ 2) [20], provided in Appendix D, 

has been utilised to validate the simulation results with 95% CI. The validation results are 

shown in Figure A-1and the input parameters for GE/GE/c model are listed in Table A-1. The 

comparisons between the analytic solution presented in  [20]and the simulation results are 

shown in Figure A-1.  It is obvious that the simulation results match the analytic solution. 

A-1 Table Input parameters for the GE/GE/C simulation program 

Input parameters 

Mean arrival rate (λ) [ 0.50 7 step 0.5] 

SCV of arrival times 8 

Mean service rate per server (µ) 8 

SCV of service  times 8 

Number of Servers (c) 3 
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Figure A-1 The validation for the mean waiting time in the queue for GE/GE/c 

A.3.3 Simulating Open Queueing Network   M/G/1 FCFS with Single Class and G-

Queues 

In the context of this study, the simulation of open QN with G-queue, (c.f., Figure A-2),  with 

multiple servers, SS and multiple classes and subject FCFS and HoL disciplines subject to 

arbitrary topology with infinite/finite capacity and RS-FD blocking mechanism  where inter-arrival 

times and service times has GE distribution.  This mode is based on the basic simulation 

algorithm for open QNs with single server and single queue with FCFS infinite capacity 

presented by Leemis [138]. 

 

Figure A-2 The open QN model with multiple classes and gated queues 

Security is modelled using delay centres and SS is also taken into consideration in the 

simulation program. Each service node has its own queue with infinite/finite capacity with its 

own type of queueing discipline (FCFS, HoL) and service time distribution. The simulation 

model construction is described in Appendix E. 

 

 

0 1 2 3 4 5 6 7
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Mean Arrival Rate

M
e
a
n
 W

it
in

g
 T

im
e
 i
n
 t

h
e
 Q

u
e
u
e

 

 

 Thoeritical

Simulation

  

  

λ 03, Ca3 λ 02 , Ca02 

λ01, Ca01 

λ
 20,

Ca20 

λ
 30, 

 

λ
10, 

C
a10

 
µ1, 

C
s1

 

µ
3, 

C
s3

 

µ
2, 

C
s2

 

  



124 

 

a) Validation of the Simulated Model with GI/G/1/ FCFS Queue with Gates 

An open QN model with k nodes each with single server and single class according to FCFS 

discipline has been validated against the analytic solution suggested by Bhatia (c. f.,[59])  as 

explained in Appendix F. Three G-QN nodes in mesh topology connected according to the 

topology are shown in Figure A-2, where the routing matrix, p, is specified by matrix p in Eq. A-

1. The input parameters for the simulation programme are given in Table A-2. By validating the 

simulation results, with 95% CI, with the formulae provided by Bhatia, [18 , 59] and included in 

Appendix E, it can be seen they are nearly matched, as depicted in Figure A-3 and Figure A-4. 

   [

               
  2         2     2
  2            2
  2        2    

] Eq. A-1 

 

Table A-2 The input parameters for the Open QN model with gated-queues 

Input parameters 

Mean arrival rate (λ) per node From 1 to  4 with step 1 

SCV of arrival times per node 3 

Mean service rate per server (µ) 5 

SCV of service  times 1 

Number of Servers (c) 1 

Off rate (α) per node 0.1 

On rate  (β) 0.05 

Number of nodes (N) 3 

 

 

Figure A-3 The validation of mean queue time simulation for node 1 
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Figure A-4 The validation of the end-to-end queueing delay for the three nodes 

A.3.4 Simulation of SPN  

The simulation of SPNs (c.f., [139]), is structured as described  in Appendix G. To simulate 

Timed Transitions PNs (TTPNs) in general and SPNs in particular, the correspondence between 

events and transition firing can be utilised [140], where events in DES occur when a transition 

fires.  

a)  Validation of SPN with GE/GE/1/N Solution 

The GE/GE/1/N corresponding model is shown in Figure A-5Figure  and the input parameters 

are listed in Table A-3. 

 

Figure  A-5  The simulated SPN model 

 

 Table A-3 Input parameters for SPN validation 

Input parameters 

Mean firing rate  of t1 [1-4  with step 1] 

  
  6 

Mean firing rate of t2 5 

  
  6 

Place limit 50 

 

The validation results for SPN (with general firing times - which are GE) against GE/GE/1/N ME 

solution [20] is depicted in Figure A-6. 
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Figure A-6 The validation for the mean waiting time of tokens in a place 
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Appendix  B   GE Distributions 

B.1 GE and H2 Distributions 

The PDF function of H2 is given by[12]: 

 (   )    ( )  ( )    {   ( ) }     ( )  ( )    {   ( ) }      Eq.  B-1 

where 1/υ and C
2
 are the mean and SCV and where k is a set of ‘Tuning parameters’  of H2 

family, k  (    ),α1(k), α 2(k), υ1(k) and υ2(k) are given by Eq. E. B-4 to E. B-7  (c.f.,  [12]): 
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 Eq.  B-5 

   ( )     ( )  Eq.  B-6 

   ( )  
   ( ) 

   
 Eq.  B-7 

GE-type distribution can be considered an 'extremal' member of a family of two-phase 

H2distributions with the same first two moments. When k +  , H2    [20]), i.e GE is an 

extremal case of an H2 type distribution as shown in Fig.  A.1.(c.f., by[12]). 

   
    (    )

 (   )   ( )           
         Eq.  B-8 

 

Figure B-1 The approximation of GE distribution using H2 distribution with ’Tuning’ parameter   

(    )(a) 2-phase Hyperexponential Distribution (b) GE-type distribution (c.f, [12]) 
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B.2 The Relationship between IPP and GE  

IPP can be fitted according to the inter-arrival time process into hyperexponential distribution 

[12 , 61 , 62]. Assuming Xi is the inter-arrival time between messages (i) and the message (i+1), 

the distribution of the inter-arrival time Xi is hyperexponential distribution (H2) with cumulative 

distribution function[61 , 62]: 

 ( )    (   −   )    (   −   )             Eq.  B-9                                                                                               

The four parameters of the hyperexponential distribution (λ1, λ2, α1, α2) are expressed in terms 

of  IPP parameters (λ, α,  β ) as follows [61 , 62]: 

    
         

2
 Eq.  B -10 
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 Eq. B -11 
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 Eq. B -12 

         Eq. B -13 

        √       )
         Eq. B -14 

The mean E(t), variance Var(t), and C
2
 of the hyperexponential distribution, in terms of IPP 

parameters, are[34]: 
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 Eq. B -15 

    ( )  
2   

  
 
2   

  
 (

  

  
)
 

 (
  

  
)
 

 Eq. B -16 
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Eq. B -17 

by equating the mean of GE (υ) to  1/E(t) of H2 (i.e      E(t)), expressed by IPP parameters, 

from  Eq.  B-15 and calculating the C
2
 for GE from  Eq. B-17 (which gives the SCV of H2 in 

terms of IPP parameters) and subtituting  these values (  and C
2
)  in  Eq. B-2   to  Eq. B-7 to 

obtain  the corresponding values for    ( ),  ( ), A, B,  ( ),   ( ). In this way, GE r.v.  is  

generated  using H2  r.v,  whose parameters are expressed in terms of IPP, by  making k → +  . 

i.e.: 

IPP (λ, α,  β) → H2(λ1, λ2, α1, α2) →   (  ( )   ( )   ( )   ( ))    (          ) 
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B.3 Generating a GE-type Distribution from a Family of H2 Distributions with the Same 

First Two Moments  

The AlgorithmH2  GE is shown in Figure B-2, Figure B-3, with a large value of the k ≥ 1000 in 

order to generate proper GE RVs[12]. 

Begin  

Step 1: Specify the values for υ and C
2 

for the required GE-RV, X (c.f., Part 1); 

Step 2: Input the value of the tuning parameter k; 

Step 3: Calculate α1(k), α2(k), υ1(k) andυ2(k) using the specified  values of υ and   C
2
in Step 1; 

Step 4: Generate U1[0,1] and U2 [0,1]  (uniformly distributed random variables);                                                                                                                           

Step 5: If U1[0,1]    α1(k), go to Step 6, otherwise to  Step 7;                                                                                       

Step 6: Generate an exponential RV, X1 with mean rate υ1(k) using U2 [0,1]; go to End; 

Step 7: Generate an exponential RV, X2 with mean rate υ 2(k) using U2  [0,1];                                                                                                                                                                                                         

End 

 

Figure. B-2 The simulation algorithm for GE RV[12] 

 

Figure B-3 The flowchart of algorithm H2 →GE using H2 distribution with ’tuning’ parameter   (    ) ([12 , 

74 , 112]) 

Start 

Input the values of υ and 
C

2 
of the GE-type RV and 

the tuning parameter k of 
the H2- type RV 

Compute the values of 
α1(k), α2(k), υ1(k) andυ2(k) 

of the H2- type distribution 

Generate two uniform RVs 
U1[0,1] and U2[0,1] 

If U1[0,1] <α1(k)? 

t:= 
 

𝜐 (k)
 ln (U2[0,1]) t:= 

 

𝜐 (k)
 ln (U2[0,1]) 

End 
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Appendix C GE/GE/c Simulation Algorithm 

The simulation algorithm for GE/GE/c is described below: 

a) Main Function 

 The main function calls the timing  function to determine the next event and  then transfers 

control to the  corresponding event function (which can be either arrival or departure)  to update 

the system state appropriately. After simulation termination, report function is called to generate 

the results of interest [105]. 

Main Function() 

BEGIN 

   Initialise () 

/* Starting the loop */ 

WHILE  (num_customer<num_customer_required)  /*termination   condition*/ 

BEGIN 

    Timing () 

If (next event type == 0) 

   CALL Arrival() 

 ELSE 

CALL Departure() 

     Update () 

     END WHILE  

Report () 

END 

 

Figure C-1 Main function structure for GE/GE/c  simulation (adapted from [105]) 

b) Initialising function 

This function initialises the simulation model at time zero.  

Initialising function() 

BEGIN /* initialize the state variables*/ 

  ENTER  Mean_ arrival = λ, Num_of_servers = c, SCVa=  
 ; 

  SCVs =  
 , mean_service rate for all servers  

  num_customer_required, 

  SET  sim_time=0.0, num_customer=0;  

  num_in_q=0; server_status=0;  /*server status IDLE*/ 

  area_num in q=0 0; area_num_in_0.0; area_server_status=0.0; 

  time_last_event=0.0; Q_Limit=1000; time_next_event[0]=sim_time +GE   

mean_interarrival, SCVa); /*Determine next arrival*/ 

For  I=1 TO c DO  

     time_next_event[i]=max_double; /* Initialise  next departure*/ 

END FOR 

END 
 

Figure C-2 Structure of Initialising function of GE/GE/c simulation (adapted from [105]) 

c) Timing Function 

It determines the next event is from the event list; the simulation clock is then advanced to the 

time of that event occurrence.  
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Timing function () 

BEGIN 

int index; min= 1000000; 

  FOR  I = 0 TO c DO 

    BEGIN  (IF time_next_event [i]< min) THEN  next_event_type  = i;  /* the index of 

the first idle server*/    END FOR 

 Sim_time= time_next_event[next_event_type]; 

END 

 

Figure C-3 Structure of Timing function of GE/GE/c simulation (adapted from [105]) 

d) Arrival Function 

This function is called when arrival at the QN occurs, as shown in Figure C-4. 

Choose_Idle_Server function, shown in Figure C-5 is then called within this function to 

determine whether there is an idle server or not 

Choose_Idle_Server function() 

BEGIN 

int index=0;  

For  i=1 TO c DO   

  BEGIN 

    IF (ServerStatus(i) = False)   Index =i;  BREAK; 

  END FOR 

Return  index; /* record the index  of the idle server*/ 

 END 
 

Figure C-4 Structure of Choose_Idle_Server function of GE/GE/c simulation (adapted from [105]) 

ArrivalFunction()  

 BEGIN 

num_customer ++; 

Time_next_event[0] = sim_time+exp(lamda; K= ChooseServerIdle(); 

IF (k != 0)  /* If there is an idle Server 

   BEGIN 

    server_status [k]= 1; /* make server busy*/    time_next_event[k] = sim_time + 

expon(mean_service[k]);  num_custs_delayed++;   END IF 

ELSE IF ( num_in_q<Q_Limit) 

 /* All servers are busy and the queue is not at full capacity*/  

   BEGIN 

   num_in_q ++;   time_arrival [num_in_q] = sim_time; END ELSE IF 

END 
 

Figure C-5 Structure of Arrival function of GE/GE/c simulation (adapted from [105]) 

e) Departure Function 

This function, shown in Figure C-6, is called when a job departs from QN node. 

Departure(Server) 

BEGIN 

IF (num in q == 0) /* queue empty*/ 

   BEGIN  

     server_status [server]= 0/* server IDLE*/ time_next_event[server] = max_double;  

   END IF 

 ELSE /* serve a  job from the queue*/ num_in_q --;total_of_delays += (sim_time-

time_arrival[1]); num_custs_delayed ++; 

     time next event[server] =sim_ time+expon(mean_service[server]); 

  FOR  i=1 TO num_in_q DO time_arrival[i]=time_arrival[i+1];   END ELSE 

END 
  

Figure C-6 Structure of Departure function of GE/GE/c simulation (adapted from [105]) 
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f) Update Function: 

It calculates the server utilisation for GE/GE/c, as shown in Figure C-7. 

Update() 

BEGIN 

   time_since_last_event = sim_time - time_last_event;  

   time_last_event  =sim_time;  Busy_servers=0; 

 FOR  server=1 TO c DO  

     IF (server_status [server]==1) THEN 

       Busy_servers++;  END FOR 

     area_server_status += Busy_servers  *time_since_last_event;  

END 

 

Figure C-7 Structure of Update function of GE/GE/c simulation (adapted from [105]) 

g) Report Function: 

It produces a report contacting the required performance metrics when the simulation ends, as 

shown in Figure C-8. 

Report() 

BEGIN 

 U= area_server_status / (sim_time*c); /* Traffic Intensity*/ 

 average_delay_in_q = total_of_delays / num_custs_delayed ; /*Mean   Queueing Time*/ 

average_number_in_queue = area_num_in_q / Sim_time; /* MQL*/  

server_utilization=area_server_status/sim_time; /* Server Utilisation*/ 

END 

 

Figure  C-8 Structure of Report function of GE/GE/c simulation (adapted from [105]) 
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Appendix D ME Solution for GE/GE/c/FCFS Queue 

For a single class GE/GE/c/FCFS queue with c (c≥ 2) homogeneous servers at equilibrium, let 

p(n) be the ME state probability, n ≥ 0, subject to normalisation, least number of busy servers 

probabilities, i.e. uj=∑  ( ) 
   , j = 1, 2, . . ., c, and mean waiting length, Lq constraints and it is 

given by”[20]: 
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     Eq. D-1 

 

Where: hj(n) =1 if n ≥j,  or 0 otherwise; 
 

 Lq(n)= n-c, if  n ≥c, or 0 otherwise;  

 and Gn= ∏   
 
   , n=1,2,…..c and  gj, j=1,2,……c; and x are   the Lagrangian coefficients 

corresponding to (uj, j=1,2,3,….,c} and Lq  are constraints.  

The Lagrangian coefficients are determined by[20]: 
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Appendix E Simulation Algorithm for Open Queueing Network   GE/GE/1 

FCFS with Single Class and Gated Queues 

E.1 Simulation Description  

The single-server service nodes are indexed s = 1, 2... k. Index s=0 is reserved for ‘Super node’ 

for external arrival and departure. The set of service nodes is denoted S = [1, 2,…., k ] with S0 =  

S = 0,1, 2,…, k. The service rate of node s   S is  μs. There is a (k + 1)  (k + 1) node transition 

matrix p defined in such a way that each job leaving node         will transition to node         

with probability [138]: 

  [    ]    (                                 ) Eq.  8E-1 

By convention p[0, 0] = 0. 

This matrix represents the network topology, as shown in Eq. C.2, and each row of p must sum 

to 1.0.  

 p= 

[
 
 
 
 

  [   ]  [  2]  [   ]   [   ]

 [   ]  [   ]  [  2]  [   ]   [   ]

 [2  ]  [2  ]  [2 2]  [2  ]     [2  ]
      

 [   ]  [   ]  [  2]  [   ]   [   ]]
 
 
 
 

 
Eq. E-2 

 

 

p matrix should be converted  to a cumulative node transition matrix P, as in Algorithm I (c.f., 

Figure E-1). This cumulative node transition matrix can then be used to simulate the node-to-

node transitions of jobs as they move into, though, and out of the network, as in Algorithm II 

(c.f., Figure E-2). 

Algorithm I:  

P_construction_function() 

BEGIN 

FOR x=0  TO K DO  / *looping over rows*/ 

  BEGIN 

  P[x,0]=p[x,0]; / * elements of the 1st column are identical to     those in p 

matrix 

        FOR y=1 TO k  DO  / * looping over columns */ 

            P[x,y]=P[x,y-1]+p[x,y];  /* convert from  Probability Density Function 

(PDF)to Cumulative Distribution Function (CDF)*/ 

        END FOR 

      P[x,k]=1.0; /* last column elements*/ 

   END FOR 

END 
 

Figure E-1   the algorithm of selecting the next node in simulating an OQ network with random topology 

(adopted from [20]) 
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Algorithm II:  

Next_Node function() 

 BEGIN 

   U= Random();    

   Y=0; 

   WHILE (P[x,y] <u) DO 

     BEGIN WHILE 

       Y++ ; 

    END WHILE 

   Return y;  

END 
 

Figure E-2 The selection algorithm of the next node (adopted from [20]) 

It is worth pointing out that the number of network service nodes can be arbitrarily large; the 

network topology can be arbitrarily complex. Each node has a gate, which is either ‘On’ with 

rate β or ‘Off’ with rate α. Next-event simulation of a network of single-server service nodes with 

Gated Queue (G- queues)[18 , 59]can be constructed under the following assumptions: The 

simulation model of QN with G-Queues is described in Figure D-3, where the main function calls 

the sub-functions: Initialisation, timing, arrival, departure, transition, update, and report. 

D.2 Simulation Algorithm  

The simulation algorithm of OQN with gated queue is described in detail below: 

 Main Function 

 The main simulation algorithm of QN Model with G-queue is shown in FigureE-3.The main 

difference between this program and the GE/GE/C program is as follows: In arrival() function, 

there is a need to call Find_Next_Node (0) function passing the first row of the routing matrix, 

while in departure(s) function Find_Next_Node (s) is  called   with passing ‘s’ row number. G-

Queue [59 , 88], can be simulated in a similar way to M/M/1 [105]. The main difference is that 

the arrival of jobs will be interrupted. The functions of Initialise, Timing and Arrival need to be 

modified to reflect the interruption event within them. Moreover, a new function called Transition 

is added. An outline of the simulation algorithm is presented below.  

Main() 

BEGIN 

Initialization(); 

WHILE (Arrivals < Arrivals_Required) 

    BEGIN WHILE 

  timing();  /* determine the type of next event*/ 

  S= next_event_type() ; 

     IF (S== 0) THEN 

       CALL arrival();  /*external arrival to node s’*/ 

   ELSE IF (S>= 1) AND(S<=N) THEN  CALL departure(S);/* departure from s*/ 

     ELSE CALL transition(); 

    END  WHILE 

  report();  

 END 

 

Figure E-3 The main function of simulating Open QN model (adopted from [138]) 
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 Initlisation Function 

This function initialises the nodes as well as defining the topology through p matrix and the two-

dimension event list. In addition, it then schedules the arrival at each node and assumes all 

servers are idle. It also indicates the number of servers per node and the discipline per node 

(either HoL or FCFS).  Finally, the gates for all nodes are assumed to be ‘On’.The concept of 

the two-dimension event list was used, and the structure for this list is depicted in Figure E-4. 

 

Figure E-4 The event list for simulating an Open QN model with arbitrary topology and G- queues 

 

  If column j = 0 and row i > 1, it means the next event is an external arrival at node # j.If column 

number j > 0 and row number i > 0, this indicates a departure from the server # j of node # i.If 

column number j = 0 and row number i >1, this mean the gate of a node j will be either ‘Off’ if it 

is already ‘On’ or vice versa. 

 Timing Function  

This function searches through the whole event list to determine the time and type for the next 

event, which is the minimum time among all values; it then records its row and column indexes/ 

numbers. According to the row and column indexes, either arrival, departure or transition 

functions will be called.  

 Arrival Function 

This function is called when arrival at the QN occurs, after which the system state is updated 

accordingly. The arrival of a new job is then scheduled according to GE distribution. If the 

nodes’ gate is ‘Off’, the job is discarded; otherwise, it is served if the server is idle or queued 

otherwise. 

 

 

j 

i 
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 Departure Function 

In this case, the server that performed departure from a particular node is made idle if there are 

no jobs in the queue; otherwise, another job is selected from the queue according to the service 

discipline, and its departure time is then scheduled. The job departing from the current node is 

routed to another node according to the routing matrix (i.e. the arrival function is performed to 

deal with the departed job). If the current node is not connected to other nodes, the departed job 

will not be traced /considered any further. 

 Update Function  

It calculates the server utilisation besides the overall utilisation  in a similar way to GE/GE/c 

queue simulation. 

 Report Function 

Performance metrics that can be obtained are Lq, Wq, U, in a similar way to single node 

GE/GE/c, but they are calculated for each single node. 

 Transition Function 

. If the column number (j) = 0 and the row is between 1 and N, this means the gate of a node j 

will be either ‘Off’ if it is already ‘On’ or vice versa, as shown in Figure E-5 

Transition Function() 

BEGIN 

    IF (state ==1) THEN   /* On State*/  state =2;/* Off State*/ 

       ELSE    state=1;   END IF 

         time_next_event[3]=sim_time+expon(rate[state]); /* Schedule the next 

transition for the corresponding state*/  

END 
 

Figure E-5 The simulation algorithm for the transition function 
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Appendix F The Solution of Open QNs with Gates 

The effective mean arrival rate and SCV for a node with gate is calculated as follow[59]: 

        ∑        

 

   

 Eq. F-1 

    
     ∑      

   ∑   

 

   

 

   

   Eq. F-2 

Let λ   denotes the mean arrival rate of the interrupted arrival process, due to the On-Off gate 

and    
    is the effective SCV of the arrival process at node j.The total arrival rate    at node j 

due to external and internal traffic flows at node j is given by[59]: 

Where            Eq. F-3 

and         
 

   
 Eq. F-4 

The utilisation per node is calculated as: 

    
   

µ 
 Eq. F-5 

Where:   
  (      
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 Eq. F-6 

Where    and     are derived after considering merging and splitting of traffic streams and are 

given as follows[59]: 
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Thus it is possible to calculate the mean waiting time at node j by[59]: 
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 Eq. F-12 

The mean waiting time of a customer in a network,    , ( i.e., the End-to-End Delay) is given by: 

    ∑       

 

   

 Eq. F-13 

 Where the mean response time per node,     , is given by[59]:: 

         
 

µ 
 Eq. F-14 
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Appendix G Simulating SPNs 

F.1 Simulation Description 

Similar to the QN simulation concept, simulating SPN require the creation of an event list and 

scheduling the transition firing and executing the firing event for the transition with minimum 

firing time. According to the fired transition, the network marking is updated and the list of newly 

enabled transitions is updated (enabled transitions may become disabled and vice versa). 

Consequently, new events are inserted into the event list and old events are removed from the 

list.  The simulation time (or clock) is advanced to the next event timestamp. This is given by the 

sum of  the current simulation time and the minimum remaining firing time of the enabled 

transition[141]. It is worth mentioning that the topology of SPN is defined through input and 

output functions, which specify the connectivity between places and transitions, as described 

below[139 , 142]: 

 (   )  {
                                 (   )       

                                 (   )     
 Eq. G-1 

A simple example depicted in Figure G-1 shows how to define I(t,p) and O(t,p), which are 

expressed in Eq. G-2: 

 

 

Figure F.1 An example on defining SPN topology (adopted from [139] 

 (   )  [
   
   
   

]   (   )  [
   
   
   

] Eq. G-2 

F.2 Simulation Algorithm 

 Main Function: 

It coordinates the functioning between sub-functions and generates a report of the system 

elements and the corresponding performance metrics, shown in Figure G- 2[139 , 142]:.  

Main() 

BEGIN 

Initialisation(); /* Setting imitating SPN /*  

WHILE (Termination Condition is not met)  DO 

  BEGIN 

Check_newly_enabled_transitions() /* Check for newly enabled    transitions and 

generate  the firing time them */ 

 

 

  

t1 t2 t
3
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p
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p
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Timing(); /* determine the transition with the minimum remaining firing time */ 

   Firing() /*  perform the firing for the selected transition 

      Update()/*update SPN according to the new marking 

   END WHILE 

Report(); /*Calculate  performance metrics*/ 

END 
 

Figure G-2  simulation algorithm of SPN ( adapted from [139]) 

 Initlisation Function 

This function initialises the marking of the SPN and defines the topology through Input and 

Output matrixes. It also then checks for the transitions, which are enabled by default (which do 

not have input places), and enables them throughout the simulation, as well as generating the 

firing times for them. Firing rates for transitions are initialised. Figure G-3 outlines the tasks of 

this function. 

Initialise function () 

Step 1: initialise  Global and local clock to zero and set initial marking; 

Step 2: initialisation all counters and variables used to determine required metrics; 

Step 3: define the SPN topology through I(t,p), O(t,p) functions; 

Step 4: Return to the main function. 
 

Figure G-3 The simulation algorithm for initialise function( adapted from [139]) 

 Check Newly Enabled Function 

The main task of this function is to check for newly enabled transitions after updating the 

marking of SPN, i.e. by checking the enabling function in which all input places for each 

transition are checked to determine whether they contain the required number of tokens. Once 

found, exponentially distributed firing times are generated to these enabled transitions 

according to their firing rates. Consequently, a list of enabled transitions is created and their 

firing times are recorded in local timers, as shown in Figure G-4. 

check_newly_enabled_transitions function () 

Step 1: searching for the transitions that are enabled by default   (i.e. without 

input places) and putting them in a special array  

(enabled_transitions_by_default);  

Step 2: Check for previously enabled transitions whether they become disabled for the 

current marking; 

Step 3:  generate firing times for these transitions; 

Step 4: for those transitions have input places check  for each transition whether 

its input places have at least one token;  

Step 5: the enabled transition are listed in an array (newly_enabled_transitions)and 

the firing time for them are generated; 

Step 6: Return to the main function. 
 

Figure G-4 The simulation algorithm for Check_newly_enabled_transitions function( adapted from [139]) 
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 Timing Function  

This function, presented in Figure G-5, searches through the whole SPN network for the 

transition with the minimum remaining firing time and then records its index.  

Timing function() 

Step 1: Loop for all newly enabled transitions; 

Step 2: find the transition with the minimum firing time; 

Step 3: record the transition index and the firing time; 

Step 4: Return to the main function. 

 

Figure G-5 The simulation algorithm for Timing function (adapted from [139]) 

 Firing Function 

The firing process is performed in this function, as depicted in Figure G-6 .  

Firing function() 

Step 1: Update the Global clock to be synchronised with the firing time for the 

selected transition in ( Timing Function); 

Step 2: decrease the minimum firing time from  local times for all enabled 

transitions; 

Step 3: if the fired transition is enabled by default, generate a new firing time for 

it, otherwise make it disabled; 

Step 4: Update the counters to calculate the performance metrics at the current 

simulation time; 

Step 5: Update the marking of SPN (by decreasing one token from each input place for 

the fired transition and increasing the number of tokens for its output places; 

Step 6: Return to the main function. 

 

Figure G-6 The simulation algorithm for Firing function (adapted from [139]) 

 Update Function  

The simulation time will be updated by adding the minimum firing time in the previous function. 

All firing times of the transitions will be reduced by the amount of the minimum firing time. These 

tasks are outlined in Figure G-7. 

Update function() 

Step 1: Update the local clocks (times) for each enabled transition by decreasing the 

minimum firing time from their firing times; 

Step 2: Update the statistics, as shown below in the performance calculations; 

Step 3: Return to the main function. 

 

Figure G-7 The simulation algorithm for Update function (adapted from [139]) 

 Report Function 

The statistics will be updated in the way shown in Figure G-8. 
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Report function() 

Step 1: Calculate the mean number of tokens in a particular place by  Eq. A.1; 

Step 2: Calculate the mean waiting time in a place by Eq.A.2; 

Step 3: Calculate the fraction of time that a transition is enabled by Eq.A.3; 

Step 4: Calculate the throughput of a given transition  Eq.A.4 

Step 5: Return to the main function. 
 

Figure G-8 The simulation algorithm for Report function (adapted from [139]) 

The obtained performance metrics from the simulation are [142]: 

1- Mean number of tokens in the place: This corresponds to the mean response time in QNs 

and it is expressed by mean number of jobs/ simulation time, i.e.[142]:  

 
   

∑   τ

  
 

Eq. G-1 

2- Mean waiting time in the place 

This is calculated by: mean number of jobs in the place divided by the number of tokens in 

that place[142]:: 

    
∑   τ

  
 Eq. G-2 

where M is the number of tokens at the beginning of the cycle, τ is the duration  of the cycle, 

and Nτ is the number of different tokens that have passed through  this place until the current 

cycle. So, calculating the sum (M * τ) at each cycle  at the end of the simulation. The value of  

Nt can be obtained by incrementing a counter each time an input transition fires  and puts 

tokens in the place. 

3- Transition utilisation: This is the fraction of time during which a transition is enabled, and it 

is expressed by duration of firing time for a transition / simulation time, i.e.[142]:  

    
∑   

  
 Eq. G-3 

Where Fj is the firing time for a transition j  

4- Transition throughput: This metric can be defined as the ‘number of firing times divided by 

the simulation time’, i.e., [142]: 

    
  

  
 Eq. G-4 

Where TS is the simulation time and NF is the number of firings of the transition. 
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