674 research outputs found

    Online error detection and correction of erratic bits in register files

    Get PDF
    Aggressive voltage scaling needed for low power in each new process generation causes large deviations in the threshold voltage of minimally sized devices of the 6T SRAM cell. Gate oxide scaling can cause large transient gate leakage (a trap in the gate oxide), which is known as the erratic bits phenomena. Register file protection is necessary to prevent errors from quickly spreading to different parts of the system, which may cause applications to crash or silent data corruption. This paper proposes a simple and cost-effective mechanism that increases the resiliency of the register files to erratic bits. Our mechanism detects those registers that have erratic bits, recovers from the error and quarantines the faulty register. After the quarantine period, it is able to detect whether they are fully operational with low overhead.Postprint (published version

    Design techniques for xilinx virtex FPGA configuration memory scrubbers

    Get PDF
    SRAM-based FPGAs are in-field reconfigurable an unlimited number of times. This characteristic, together with their high performance and high logic density, proves to be very convenient for a number of ground and space level applications. One drawback of this technology is that it is susceptible to ionizing radiation, and this sensitivity increases with technology scaling. This is a first order concern for applications in harsh radiation environments, and starts to be a concern for high reliability ground applications. Several techniques exist for coping with radiation effects at user application. In order to be effective they need to be complemented with configuration memory scrubbing, which allows error mitigation and prevents failures due to error accumulation. Depending on the radiation environment and on the system dependability requirements, the configuration scrubber design can become more or less complex. This paper classifies and presents current and novel design methodologies and architectures for SRAM-based FPGAs, and in particular for Xilinx Virtex-4QV/5QV, configuration memory scrubbers

    Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    Get PDF
    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Analyse und Erweiterung eines fehler-toleranten NoC für SRAM-basierte FPGAs in Weltraumapplikationen

    Get PDF
    Data Processing Units for scientific space mission need to process ever higher volumes of data and perform ever complex calculations. But the performance of available space-qualified general purpose processors is just in the lower three digit megahertz range, which is already insufficient for some applications. As an alternative, suitable processing steps can be implemented in hardware on a space-qualified SRAM-based FPGA. However, suitable devices are susceptible against space radiation. At the Institute for Communication and Network Engineering a fault-tolerant, network-based communication architecture was developed, which enables the construction of processing chains on the basis of different processing modules within suitable SRAM-based FPGAs and allows the exchange of single processing modules during runtime, too. The communication architecture and its protocol shall isolate non SEU mitigated or just partial SEU mitigated modules affected by radiation-induced faults to prohibit the propagation of errors within the remaining System-on-Chip. In the context of an ESA study, this communication architecture was extended with further components and implemented in a representative hardware platform. Based on the acquired experiences during the study, this work analyses the actual fault-tolerance characteristics as well as weak points of this initial implementation. At appropriate locations, the communication architecture was extended with mechanisms for fault-detection and fault-differentiation as well as with a hardware-based monitoring solution. Both, the former measures and the extension of the employed hardware-platform with selective fault-injection capabilities for the emulation of radiation-induced faults within critical areas of a non SEU mitigated processing module, are used to evaluate the effects of radiation-induced faults within the communication architecture. By means of the gathered results, further measures to increase fast detection and isolation of faulty nodes are developed, selectively implemented and verified. In particular, the ability of the communication architecture to isolate network nodes without SEU mitigation could be significantly improved.Instrumentenrechner für wissenschaftliche Weltraummissionen müssen ein immer höheres Datenvolumen verarbeiten und immer komplexere Berechnungen ausführen. Die Performanz von verfügbaren qualifizierten Universalprozessoren liegt aber lediglich im unteren dreistelligen Megahertz-Bereich, was für einige Anwendungen bereits nicht mehr ausreicht. Als Alternative bietet sich die Implementierung von entsprechend geeigneten Datenverarbeitungsschritten in Hardware auf einem qualifizierten SRAM-basierten FPGA an. Geeignete Bausteine sind jedoch empfindlich gegenüber der Strahlungsumgebung im Weltraum. Am Institut für Datentechnik und Kommunikationsnetze wurde eine fehlertolerante netzwerk-basierte Kommunikationsarchitektur entwickelt, die innerhalb eines geeigneten SRAM-basierten FPGAs Datenverarbeitungsmodule miteinander nach Bedarf zu Verarbeitungsketten verbindet, sowie den Austausch von einzelnen Modulen im Betrieb ermöglicht. Nicht oder nur partiell SEU mitigierte Module sollen bei strahlungsbedingten Fehlern im Modul durch das Protokoll und die Fehlererkennungsmechanismen der Kommunikationsarchitektur isoliert werden, um ein Ausbreiten des Fehlers im restlichen System-on-Chip zu verhindern. Im Kontext einer ESA Studie wurde diese Kommunikationsarchitektur um Komponenten erweitert und auf einer repräsentativen Hardwareplattform umgesetzt. Basierend auf den gesammelten Erfahrungen aus der Studie, wird in dieser Arbeit eine Analyse der tatsächlichen Fehlertoleranz-Eigenschaften sowie der Schwachstellen dieser ursprünglichen Implementierung durchgeführt. Die Kommunikationsarchitektur wurde an geeigneten Stellen um Fehlerdetektierungs- und Fehlerunterscheidungsmöglichkeiten erweitert, sowie um eine hardwarebasierte Überwachung ergänzt. Sowohl diese Maßnahmen, als auch die Erweiterung der Hardwareplattform um gezielte Fehlerinjektions-Möglichkeiten zum Emulieren von strahlungsinduzierten Fehlern in kritischen Komponenten eines nicht SEU mitigierten Prozessierungsmoduls werden genutzt, um die tatsächlichen auftretenden Effekte in der Kommunikationsarchitektur zu evaluieren. Anhand der Ergebnisse werden weitere Verbesserungsmaßnahmen speziell zur schnellen Detektierung und Isolation von fehlerhaften Knoten erarbeitet, selektiv implementiert und verifiziert. Insbesondere die Fähigkeit, fehlerhafte, nicht SEU mitigierte Netzwerkknoten innerhalb der Kommunikationsarchitektur zu isolieren, konnte dabei deutlich verbessert werden

    Investigating the Optical Link Performance of the End-of Substructure Card and Susceptibility to SEUs

    Get PDF
    Particle physics experiments carried out by CERN attempt to investigate the fundamental forces of matter. One of these experiments is the ATLAS experiment, which studies the proton-proton collisions in the LHC. A series of upgrades are planned to increase the luminosity by a factor of five, leading to the high-luminosity LHC (HL-LHC). This upgrade will increase the potential for new discoveries but brings with it design challenges in relation to the harsh radiation environment and significant data throughput required. The ATLAS experiment is building a new detector to cope with these challenges, titled the Inner Tracker (ITk). A crucial part of this new detector is the End-of-Substructure (EoS) card, which constitutes the interface between the ondetector electronics and the off-detector systems. In addition to the operational challenges, the HL-LHC does not allow for repairs or replacing of EoS cards once operation commences, emphasizing the need for thorough testing and qualification of this component. This thesis focuses on characterizing the performance of the EoS card in the presence of radiation, under non-ideal operating conditions and the impact of optical link parameters. The first set of tests is centered on qualifying the radiation tolerance of the EoS card. The radiation environment within the ITk poses a threat to the stable operation of electronics as energetic particles have the potential to cause erroneous changes in device logic, known as Single Event Upsets (SEU). The SEU susceptibility of the EoS card, with a focus on the Versatile Link Plus Transceiver (VTRx+) component, is studied by irradiating the EoS card with a neutron source with a distributed energy spectrum and a peak energy of 11MeV while performing a bit error rate (BER) test to monitor for radiation induced errors. The second set of tests deals with characterizing the impact of an irregular power supply on the EoS card's performance through simulating noise on the supply lines and monitoring the response in BER. The final set of tests investigates the impact the VTRx+ configuration parameters have on the quality of the optical signal. These tests were carried out at the University of Cape Town (UCT) with the support of DESY, a national research institute in Germany, responsible for the production of the EoS cards. A number of new firmware, software and hardware modules were developed as part of this work in order to carry out the tests required. The most significant of which comprised a novel firmware addition allowing for the evaluation of the optical signal quality with an FPGA. This contribution is now being integrated into the quality control proceedings at DESY, to be used in assessing optical signal quality of the entire set of approximately 1552 EoS cards being produced

    Data acquisition for Germanium-detector arrays

    Get PDF
    Die Wandlung von analogen zu digitalen Signalen und die anschließende online/offline Verarbeitung ist die technologische Voraussetzung zahlreicher Experimente. Für diese Aufgaben werden häufig sogenannte Analog-Digital-Wandler (ADC) und FPGAs („field-programmable gate array“) eingesetzt. Die vorliegende Arbeit beschreibt die Evaluierung der FPGA und ADC Komponenten für die geplante FlashCAM 2.0 DAQ (FC2.0 DAQ). Die Entwicklung der ersten FlashCAM (1.0) DAQ (FC1.0 DAQ) wurde unter Federführung des Max-Planck-Instituts für Kernphysik im Jahre 2012 begonnen und war ursprünglich eine exklusive Entwicklung für das Cherenkov Telescope Array (CTA) Experiment. In der Zwischenzeit wird FlashCAM in zahlreichen Experimenten (HESS, HAWK, LEGEND-200, etc.) eingesetzt, die sowohl Photomultiplier (PMTs) als auch High Purity Germanium (HPGe) Detektoren umfassen. Beide Detektorentypen unterscheiden sich massiv in ihren Anforderungen und können auch von der neuen DAQ abgedeckt werden. Das Themengebiert der Arbeit umfasst den gesamten funktionellen Umfang einer modernen DAQ. Moderne DAQ Systeme benötigen eine möglichst hohe Read Out Performance zwischen dem DAQ Board und dem es kontrollierenden Server. Die Umsetzung eines leistungsfähigen Firmware Designs und das Design einer hierauf angepassten Hardware/Softwareschnittstelle wird am Beispiel der Zynq Familie vorgestellt. Die Zynq-Familie von Xilinx ist von besonderem Interesse, da der Hardwarehersteller Trenz Elektronik ein flexibles, einfach aufsteckbares Modulkonzept mit verschiedenen SoCs der Zynq-Serie anbietet. Neben der Read Out Performance einer DAQ ist ihre Auflösungsgrenze von entscheidender Bedeutung für das Gelingen des finalen Experiments. Die verwendete FADC Karte muss sich daher durch exzellente SNR und Linearitätseigenschaften auszeichnen. Die Evaluierung solcher FADC Karten setzt ein Testsetup voraus, dass in Signalreinheit und Stabilität die hohen Anforderungen der devices under test übertreffen muss. Praktisch sind diese Bedingungen nur unter hohem (Kosten) Aufwand erreichbar. Im Rahmen der Arbeit wurden daher auch alternative Testkonzepte entwickelt, die mit akzeptablen Abstrichen in der Genauigkeit eine Messung im experimentellen Umfeld ermöglichen können. Da sich die Themengebiete in ihrem Inhalt deutlich unterscheiden, wurde die vorliegende Arbeit in zwei Themenkomplexe aufgeteilt. Der erste Teil der Arbeit beschäftigt sich mit dem Einsatz der Zynq Familie in der geplanten „FlashCAM“ Nachfolger DAQ. Der zweite Teil widmet sich der ADC Nichtlinearitätsbestimmung. Die wichtigsten Ergebnisse der Arbeit lassen sich folgt zusammenfassen: ▪ Die „High Performance“ (HP) Schnittstellen der Zynq-UltraScale+ haben eine aussetzerfreie Bandbreite von 2.4 GB/s in den externen Arbeitsspeicher der Trenz Module. Wird noch zusätzlich die standardmäßig vorhandene 1 Gb PS-Ethernet Verbindung betrieben, verbleibt der CPU noch eine Bandbreite von mindestens 0.5 GB/s in den Arbeitsspeicher. Im Fall der Zynq-7000 Serie ist eine effiziente Implementierung der HP Schnittstellen schwierig, da die CPU nur vergleichsweise niedrige Arbeitsspeicherzugriffsraten erreicht. Die HP Schnittstellen sind eine wichtige Designalternative da ein durchgehender Datentransfer in den externen Arbeitsspeicher ein Design ermöglichen würde dass weniger stark durch den verfügbaren FPGA internen Speicher begrenzt ist. Dies wäre besonders für Anwendungen in der HPGe-Spektroskopie wünschenswert, da der praktische Nutzen des verwendeten Designs stark von der zur Verfügung stehende Puffergröße abhängt. ▪ Die “Accelerator Coherency” Schnittstelle (ACP) ermöglicht ein direkter Datentransfer aus der FPGA in den Cache der Zynq-CPU. Die entworfene ACP-CMA hat eine Bandweite von bis zu 2.4 GB/s und bietet für Cache-CPU Zugriffe noch ausreichend Reserve. Dass die Zynq-CPU die Cachedaten ohne ein Abwürgen der ACP-CMA verarbeiten kann, ist entscheidend. Wäre dies nicht der Fall könnte die CPU im Parallelbetrieb von Ethernet und ACP-CMA nicht die notwendigen Vorarbeiten zur Ethernet-Übertragung („Event Building“) bewältigen. In der Evaluierung wurde eine maximale Event Building Bandbreite von 0.7 GB/s festgestellt. Wahrscheinlich ist die reale maximale Bandbreite deutlich höher anzusiedeln. Einschränkend muss betont werden, dass in praktischen Applikationen zusätzliche Einschränkungen in Kraft treten, die de-facto einen kontinuierlichen Betrieb der ACP-CMA unmöglich machen. Diese Einschränkungen – die nicht prinzipieller Natur sind - wurden in der durchgeführten Ermittlung nicht berücksichtigt. Da weiterhin alle Zynq-FPGAs über einen Cache verfügen, ist die ACP-CMA eine Designlösung, die auf allen verfügbaren Zynq-FPGAs sinnvoll implementiert werden kann. Dies unterscheidet sie von der entwickelten HP-DMA, die häufig nur für Implementierungen in einer Zynq-UltraScale FPGA interessant ist. ▪ Der neuentwickelte FC2.0 Prototype wurde bereits in experimentellen Setups eingesetzt. Als Anwendungsbeispiel dient die Messung und Analyse eines γ-ray Spektrums eines HPGe-Detektors. ▪ Der Erfolg einer ADC Nichtlinearitätsbestimmungen ist stark von der Signalreinheit des verwendeten Eingangssignal abhängig. In Simulationen konnte gezeigt werden, dass die neu entwickelten Verfahren nur relativ schwach durch Pulsernichtlinearitäten verfälscht werden. Einen praktischen Vergleich zwischen den neuen und einer klassischen Methode konnte keinen signifikanten Unterschied feststellen. Die untersuchten Methoden können daher für eine zukünftige Implementation in FC2.0 empfohlen werden

    Data Acquistion for Germanium-Detector Arrays

    Get PDF

    Discovering New Vulnerabilities in Computer Systems

    Get PDF
    Vulnerability research plays a key role in preventing and defending against malicious computer system exploitations. Driven by a multi-billion dollar underground economy, cyber criminals today tirelessly launch malicious exploitations, threatening every aspect of daily computing. to effectively protect computer systems from devastation, it is imperative to discover and mitigate vulnerabilities before they fall into the offensive parties\u27 hands. This dissertation is dedicated to the research and discovery of new design and deployment vulnerabilities in three very different types of computer systems.;The first vulnerability is found in the automatic malicious binary (malware) detection system. Binary analysis, a central piece of technology for malware detection, are divided into two classes, static analysis and dynamic analysis. State-of-the-art detection systems employ both classes of analyses to complement each other\u27s strengths and weaknesses for improved detection results. However, we found that the commonly seen design patterns may suffer from evasion attacks. We demonstrate attacks on the vulnerabilities by designing and implementing a novel binary obfuscation technique.;The second vulnerability is located in the design of server system power management. Technological advancements have improved server system power efficiency and facilitated energy proportional computing. However, the change of power profile makes the power consumption subjected to unaudited influences of remote parties, leaving the server systems vulnerable to energy-targeted malicious exploit. We demonstrate an energy abusing attack on a standalone open Web server, measure the extent of the damage, and present a preliminary defense strategy.;The third vulnerability is discovered in the application of server virtualization technologies. Server virtualization greatly benefits today\u27s data centers and brings pervasive cloud computing a step closer to the general public. However, the practice of physical co-hosting virtual machines with different security privileges risks introducing covert channels that seriously threaten the information security in the cloud. We study the construction of high-bandwidth covert channels via the memory sub-system, and show a practical exploit of cross-virtual-machine covert channels on virtualized x86 platforms

    Performance Analysis of Tracking on Mobile Devices using Local Binary Descriptors

    Get PDF
    With the growing ubiquity of mobile devices, users are turning to their smartphones and tablets to perform more complex tasks than ever before. Performing computer vision tasks on mobile devices must be done despite the constraints on CPU performance, memory, and power consumption. One such task for mobile devices involves object tracking, an important area of computer vision. The computational complexity of tracking algorithms makes them ideal candidates for optimization on mobile platforms. This thesis presents a mobile implementation for real time object tracking. Currently few tracking approaches take into consideration the resource constraints on mobile devices. Optimizing performance for mobile devices can result in better and more efficient tracking approaches for mobile applications such as augmented reality. These performance benefits aim to increase the frame rate at which an object is tracked and reduce power consumption during tracking. For this thesis, we utilize binary descriptors, such as Binary Robust Independent Elementary Features (BRIEF), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Invariant Scalable Keypoints (BRISK), and Fast Retina Keypoint (FREAK). The tracking performance of these descriptors is benchmarked on mobile devices. We consider an object tracking approach based on a dictionary of templates that involves generating keypoints of a detected object and candidate regions in subsequent frames. Descriptor matching, between candidate regions in a new frame and a dictionary of templates, identifies the location of the tracked object. These comparisons are often computationally intensive and require a great deal of memory and processing time. Google\u27s Android operating system is used to implement the tracking application on a Samsung Galaxy series phone and tablet. Control of the Android camera is largely done through OpenCV\u27s Android SDK. Power consumption is measured using the PowerTutor Android application. Other performance characteristics, such as processing time, are gathered using the Dalvik Debug Monitor Server (DDMS) tool included in the Android SDK. These metrics are used to evaluate the tracker\u27s performance on mobile devices
    corecore