
Online Error Detection and Correction of Erratic
Bits in Register Files

X. Vera, J. Abella, J. Carretero, P. Chaparro, A. González
Intel Barcelona Research Center

Intel Labs - Universitat Politècnica de Catalunya
Barcelona, Spain

{xavier.vera, jaume.abella, javierx.carretero.casado,
pedro.chaparro.monferrer,antonio.gonzalez}@intel.com

Abstract— Aggressive voltage scaling needed for low power
in each new process generation causes large deviations in the
threshold voltage of minimally sized devices of the 6T SRAM
cell. Gate oxide scaling can cause large transient gate leakage
(a trap in the gate oxide), which is known as the erratic bits
phenomena.

Register file protection is necessary to prevent errors from
quickly spreading to different parts of the system, which may
cause applications to crash or silent data corruption. This paper
proposes a simple and cost-effective mechanism that increases
the resiliency of the register files to erratic bits. Our mechanism
detects those registers that have erratic bits, recovers from the
error and quarantines the faulty register. After the quarantine
period, it is able to detect whether they are fully operational with
low overhead.

I. INTRODUCTION

Scaling of CMOS minimum feature size continues to enable
Moore’s law trend in integration densities [1]. With every new
process technology, random dopant fluctuations phenomena
may result in larger deviations in the threshold voltage of
minimally sized devices of SRAM cells. This mismatch may
reduce available cell noise margin, which results in unstable
cells. Erratic bit phenomena have been already reported in
advanced flash memories [2], and have been attributed to
trapping/detrapping effects that modify the threshold voltage.
Recently, it has been reported the observance of erratic behav-
ior in SRAM for 90nm [3].

Maintaining adequate cell noise margin is becoming even
more challenging for modern processors, which require lower
operating voltage (Vcc) due to electric field density and power
limitations. Although technology scaling reduces the power
consumption per transistor, it increases the power density per
area unit. Therefore, assuming constant chip area [1], the
power demand of a processor increases much faster than the
power envelop, which is not expected to grow substantially
due to cooling solution costs. Similarly, scaling transistors
and keeping Vcc constant increases the electric field density
that transistors experience, leading to higher stress and faster
degradation. In consequence, Vcc must be decreased in each
new process generation. Some important market segments
such as embedded processors and laptops have further Vcc
constraints to extend battery life. Those processors make an
aggressive use of Dynamic Voltage and Frequency Scaling

(DVFS) techniques to adapt their Vcc and frequency to the
current workload and battery state [4], [5].

Whereas the erratic erratic bits phenomenon can be elimi-
nated for 90nm SRAMs by process optimization, erratic bits
behavior gets worse with smaller cell sizes. Making things
worse, dimensions and operating voltages of transistors have
been shrinking constantly, which has increased their sensitivity
against radiation phenomena. Therefore, a single radiation
such as alpha particles released by radioactive impurities
and neutrons coming from outer space can cause a transient
error [6].

In this work we will focus on protecting the register file.
Register files are accessed very frequently, which increases the
probability of errors to propagate to the output of the program.
Thus, protecting them is critically important.

Some general methods to tolerate transient and permanent
faults due to soft errors or fabrication defects have been
deployed in the past [7]–[9]. Although they are not especially
suited for low Vcc related failures, they may help to tolerate
them to some extent. Some of such methods are based on
deactivating faulty blocks [8], which could disable too many
registers in the register file. Some other methods are based on
the concept of redundancy such as triple modular redundancy
(TMR) [9]. TMR cost is unaffordable for most of the scenarios
because tripling the register file requires roughly triple area
and power. Some information redundancy is also provided
with error detection and/or correction schemes such as parity
and ECC [7]. Parity or ECC suffice to detect and/or correct
infrequent errors, but they are not suitable for a large number
of permanent errors. In general, registers with faulty bits must
be disabled permanently, which may decrease the number
of available registers drastically. Therefore, register file yield
rapidly decreases. A low register file yield translates into
significant performance loss or even a useless core because
it has fewer registers than required to operate. Thus, new
techniques to tolerate moderate and high error rates due to
permanent faulty bits at the expense of low overhead are
required.

Low-latency storage structures such as register file, latches
and some first level caches (DL0, IL0, DTLB, ITLB) do
not employ ECC due to its huge cost in area and delay,
and use parity instead (like Intel R© MontecitoTM [10]). Parity

81978-1-4244-4595-0/09/$25.00 c© 2009 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on July 26,2010 at 12:07:57 UTC from IEEE Xplore. Restrictions apply.

allows detecting a single error, but once the error is detected,
correction is only possible if the instruction that produced the
corrupted value has not left the pipeline. Over-estimation of the
erratic bits problem can result in over-design of the protection
mechanisms, which will eventually increase the reliability cost.
On the other hand, insufficient protection of register files will
make the system unreliable and therefore useless. Hence, a
tradeoff between reliability and cost must be achieved.

This paper proposes a simple and cost-effective mechanism
that increases the resiliency of the register files to the erratic
bits problem. Our proposal recovers from erratic bits in the
register file; whenever an error is detected, our mechanism
figures out whether it is an erratic bits problem or a soft error,
identifies the erratic bit and recovers from the error without
requiring further information. Later, the entry affected by the
erratic bits problem can be disabled to prevent future errors.

As a result, register files (or other low-latency storage
structures) protected only with error detection techniques
can recover from the erratic bits problem and thus, higher
reliability is achieved. Moreover, significant energy savings
can be achieved because the Vcc can be further reduced, even if
intermittent errors appear more often, because our mechanism
allows full recovery.

The rest of the paper is organized as follows. Section II
reviews the effect of low Vcc on the faulty bit rates in register
files. Section III introduces our mechanism to detect and
correct erratic bits caused by low Vcc. Section IV highlights
some related work. Finally, Section V summarizes the main
conclusions of this work.

II. Vcc IMPACT ON THE REGISTER FILE

Faults experienced by semiconductor devices are likely
to increase due to shrinking geometries and lower power
voltages. Intermittent faults occur due to unstable or marginal
hardware, and are usually observed under some particular
environmental conditions (e.g., high temperatures). In this
section, we give an overview of the erratic bits problem.

For conventional register files, the Vcc allowed during
active operation is dictated primarily by read/write margins
of the worst SRAM cells. Vcc in standby modes needing fast
reactivation is set mainly by the minimum voltage required
for data retention and soft error rate. In order to meet energy
efficiency goals, designers have to use a relatively large SRAM
cells to achieve the low Vcc values.

Gate oxide scaling can cause large transient gate leakage,
which is inevitable due to physics and is likely to worsen with
technology shrinking and voltage scaling. Published data [2],
[3] shows no correlation between pre and post burn-in units.
Recent studies have shown that the faultiness of each bit is
independent of its location and the faultiness of its neighbor
bits [3], [11]. Thus, the exact number of faulty bits and their
location is highly unpredictable given that the fault probability
of each bit is roughly the same.

As a consequence, the faulty bit distribution is basically
random. Similar observations apply to those bits that become
faulty in the field due to degradation, since their location is also

Vulnerable

Allocate Write Last Read Commit

Fig. 1. Example of situation where parity detects and corrects an error by
flushing the pipeline

Vulnerable

Allocate Write Last ReadCommit

Fig. 2. Example of situation where parity can detects but not correct an error

random. The minimum Vcc at array/chip level is determined
to tail the bits that display an erratic behavior; however,
since BI/Stress causes the redistribution of erratic bits, the
conventional guardbanding strategy do not longer work.

Erratic bits are also intermittent errors, which manifest as
stuck-at bits during a period in the order of micro- or mili-
seconds. Normal bits can become erratic, while previously
stable bits can show fluctuations. The data obtained from faulty
bits is basically random. A faulty bitcell may be unable to flip
its contents fast enough at write time. This way, its contents
are not updated properly sometimes. Similarly, some bitcells
may fail to provide their contents in time when they are read
because they cannot feed bitlines properly. Finally, a faulty
bitcell may flip its contents if process variations spoil its data
retention capabilities. In any case, the value obtained from
such a faulty bitcell can be different from what was written in
the cell and can change easily in subsequent read operations.

Whereas permanent faulty bits can be easily identified by
means of March tests [12] at boot time or during operation,
similarly to the case of Intel R©PellstonTMtechnology [10],
such approaches are of little help to solve the erratic bits
problem due to their intermittent nature. Therefore, an online
mechanism that detects faulty bits is required.

A. Vulnerability of the Register File

Parity in the register file allows detecting a single bit error,
but once the error is detected, correction is only possible if
the instruction producing the value corrupted has not left the
pipeline. Let us consider the situation shown in Fig. 1. If the
error is detected when the value is read, flushing the pipeline
and re-executing from the oldest instruction would correct
the error, since we would be able to re-generate the wrong
value. Notice that this situation is more likely in out-of-order
processors, where there is usually an important slack between
the value is written back to the register file, and the instruction
commits. For in-order processors, this slack is very small, and
in many designs, when instructions write-back, they leave the
pipeline.

However, for those cases when a register is read after the
producer leaves the pipeline (see Fig. 2), the re-execution of
the instruction that generated the value is not possible, and

82 2009 15th IEEE International On-Line Testing Symposium (IOLTS 2009)

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on July 26,2010 at 12:07:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I

BASELINE PROCESSOR

Parameter Value
Memory 45ns latency
UL2 4 MB, 16-way, 12 cycle hit, 1 R/W port
DL1 32KB, 8-way, 3 cycle hit, 1 read + 1 write port
I-Cache 32KB, 8-way, 3 cycle hit, 1 read + 1 write port
DTLB/ITLB 128 entries, 8-way
ROB/MOB 128/30 loads, 22 stores
Register File 128 Int, 128 FP
Issue Queue (IQ) 32 entries, 6 issue, up to 3 Ints, up to 2 FP
Integer Units 3 ALUs, 2 AGU, 1 multiplier
FP Units 1 adder, 1 multiplier

TABLE II

WORKLOADS

Benchmark suite #traces Desc./Examples

Encoder 62 Audio/video encoding
SPECfp 41 Spec Fp 2K
SPECint 35 Spec Int 2K
Kernels 52 VectorAdd, FIRs

Multimedia 85 WMedia, photoshop
Office 75 Excel, word, powerpoint

Productivity 45 Internet contents creation
Server 53 TPC-C

Workstation 49 CAD, rendering

therefore, recovery is not possible unless we have some kind
of checkpoint which is expensive in general.

B. Parity Protection

We have evaluated how often parity allows us detecting and
recovering from errors in the register file. We have measured
the coverage it provides for single-bit upsets for a processor
that resembles an Intel R© CoreTM Micro-Architecture (see
Table I). This is an advanced out-of-order processor that was
designed for efficiency and optimized performance across dif-
ferent market segments. Since the vulnerability of a processor
depends on the dynamic behavior of the processor (and thus,
the benchmarks run), we opt to run more than 500 traces
representing all kind of benchmarks. They are detailed in
Table II, and include kernels, Office, multimedia applications
and SPEC programs. The experiment consists in measuring the
AVF [13] of all the different registers: for each register, we
measure how many values are consumed before the producer
leaves the pipeline. We plot in Fig. 3 the s-curve. Results show
that employing only parity makes 90% of the benchmarks
have less than 50% possibilities to recover from a single-bit
upset. Moreover, the average coverage (i.e., errors detected and
corrected) for parity is μ = 28.6% (σ = 15.1%). Therefore,
we need a simple mechanism to identify and recover from
intermittent errors caused by erratic bits reducing those cases
where errors detected by parity could not be recovered.

III. PROTECTING THE REGISTER FILE

Next, we describe a simple and cost-effective mechanism
that increases the resistance of the register file to erratic bits.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

C
o

ve
ra

g
e

Traces

PARITY

Fig. 3. Coverage for parity

Fig. 4. Flow diagram to detect and recover from the erratic bits problem

A. Identifying and Recovering from erratic bits

In the rest of the explanation we will consider a register file
protected with parity (or any other error detection mechanism)
to explain how our mechanism is implemented. Notice that our
methodology can also be applied to other structures protected
with other error detection techniques. For instance, we can
use our mechanism to identify and recover from intermittent
errors in copy-back caches.

Our mechanism exploits the fact that intermittent errors due
to the erratic bits problem make some bits to stick at “0” or
“1” for some time: it does not matter which value we write
into that bit, we will always read the same value.

Fig. 4 outlines the algorithm employed. All values are stored
with their corresponding error detection codes (i.e., parity bit),

2009 15th IEEE International On-Line Testing Symposium (IOLTS 2009) 83

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on July 26,2010 at 12:07:57 UTC from IEEE Xplore. Restrictions apply.

Register file

Rx

stuck at “1”

(A) 00111011(0)

(B) 11000100(1)

(C) 11001100(1)

original value
00110011(0)

(D) 00001000(0)

NOT

read Rx

write Rx

read Rx

NOT

XNOR

 0 = 0

Vccmin
problem

Soft
error

original value 00110011(0)

Fig. 5. Example of recovery from an intermittent error due to the Vccmin problem using only parity to detect the error

which are treated as part of the value (they are not recomputed
at any point). The error correction starts when parity detects
an error. In that case, we need to find out if the error is caused
by the erratic bits problem, and correct it. This is very easy
to implement if we make use of the property that erratic bits
behave like stuck-at bits. If we invert the read register (which
is faulty), and write it back again, we would have the original
(and correct value) inverted. Therefore, we have corrected the
error and can continue with the execution.

Example. For illustration purposes, we run the example in
Fig. 5 to explain in detail our solution:

1) Let us assume that the original value is 00110011 and
its parity bit is 0. Parity checking detects an error when
reading a register (Rx), which has the fifth bit stuck at
“1” due to the erratic bits problem. We start reading the
defective value and its parity bit, 00111011(0), and
store it in latch A. We want to highlight that A differs
from the original (correct) value in a single bit (the one
stuck at “0” or “1”). Such bit can be even the parity bit.

2) We invert A and store it in B: as a result, we obtain
11000100(1). Notice that B is the inverse of the
original value in all bits but one (the one with the erratic
bits problem).

3) The inverted value (B) is stored in Rx. Since the faulty
bit behaves like a stuck-at bit, when we write-back, the
only bit that was not the inverse of the original value in
B is flipped because such bit is stuck at “1” in Rx. Thus,
Rx contains the original value inverted, 11001100(1).

4) Rx is read and stored in C.
5) If the error detected by parity were caused by the erratic

bits problem, inverting C would give us the correct
value. We make sure that the error is an erratic bit by
XNORing A and C and storing the result in D. The result
obtained in our example is 00001000(0). Notice that

the faulty bit is exactly in the position where the bit is
“1”.

6) If it is an intermittent error caused by erratic bits, we
only need to invert C to recover.

However, soft errors may also flip some bits. Let us see how
our mechanism would work:

1) Let us assume that the original value is 00110011 and
its parity bit is 0. Parity checking detects an error when
reading a register (Rx), which has the fifth bit flipped to
“1” due to a particle strike. We start reading the defective
value and its parity bit, 00111011(0), and store it in
latch A.

2) We invert A and store it in B: as a result, we obtain
11000100(1). Similar to the previous case, B is the
inverse of the original value in all bits but one (the one
with the particle strike problem).

3) The inverted value (B) is stored in Rx. Now, Rx works
fine; therefore, when we write-back, we do not obtain
the original value inverted, rather 11000100(1).

4) Rx is read and stored in C.
5) XNORing A and C yields a 0. Therefore, we conclude

that the error was caused by a soft error.

The erratic bits problem is very unlikely to affect several
bits (orders of magnitude lower probability than single bit). In
any case, the problem resides in the detection part, since our
mechanism would be able to recover the original value.

Notice that if the erratic behavior disappears before we store
the inverted value, our mechanism will consider the error as
a soft error, and it will not be able to correct it.

B. Unprotected Register Files

For those implementations where the register file is un-
protected, our mechanism still works, although at a higher
cost in terms of performance and with some extra hardware

84 2009 15th IEEE International On-Line Testing Symposium (IOLTS 2009)

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on July 26,2010 at 12:07:57 UTC from IEEE Xplore. Restrictions apply.

changes. Basically, for every register access, we would need to
make sure that the operation is correct. If we do not want to
stall the processor on every read access, we would require
specific hardware for inverting, latching and XNORing for
every potential read (i.e., every read port), and either some
extra write ports, or some logic to share the write ports, giving
priority to the validation. Notice that this would cause some
performance loss due to stalled instructions when write ports
are not enough.

C. Disabling Entries Affected by Vccmin

The entry with the erratic bits problem (register Rx in our
example described in Fig. 5) must be disabled temporally
to prevent further errors. We have two different options,
depending on the processor architecture.

1) Physical Register File: Once a register is detected to
suffer the erratic bits problem, we take it out from the pool
of available registers. This is achieved as follows:

1) We have a list (vccmin list) similar to the regular free
list where we place registers affected by the erratic bits
problem.

2) The register that has the erratic bits problem is remapped
(only if needed) and transferred to the vccmin list. The
easiest way of remapping would be: (i) flush, (ii) change
the RAT if necessary with a new allocated register and
move the contents of the register, and (iii) re-executing
from the oldest instruction.

One of the main properties of the erratic bits problem is
that it is intermittent; this is, after some time (order of micro-
or mili-seconds) the problem may disappear and the register
may be fully operational again. Therefore, we do not want to
remove the registers as if they had a permanent error. Rather,
we need to check whether those registers in the vccmin list
are free of faulty bits and bring them back to the free list.
We propose a simple option which consists in every T cycles
(in the order of millions), move all registers in the vccmin list
to the free list. If the erratic bits problem still exists, faulty
registers will be removed again.

2) Architectural Register File: Organizations like in-order
cores or out-of-order cores that keep speculative values in the
reorder buffer, use an architectural register file. In those cases,
we would need some spare registers, in such a way that the
malfunctioning one are replaced by new ones.

The spare registers can be in a different register file, and
will be accessed by the lower bits of the tag (like a cache).
Each register will be only in one of the register files; in order
to know where, we employ:

• A bit vector that indicates for each register whether it is
in the normal register file or the spare register file

• A bit added to each register tag indicating in which bank
it is stored so reads/writes can be done fast.

When a malfunctioning register is detected, we first identify
which spare register would use; if it is empty, it starts using
it and sets the corresponding bit in the bit vector. If it is in
use, the value is “evicted” to the normal register file, it starts

using it and the bit vector is updated accordingly. Notice that
detecting whether the spare register is in use is as simple as
ORing those entries of the bit vector corresponding to registers
that would map in such spare register.

Similar to the case of the physical register file, in order
to find out if registers work, we enable them, and check for
potential errors at runtime.

D. Overhead

The cost of the mechanism is very low in terms of perfor-
mance and hardware. Whenever the error is detected, which
will happen rarely, the processor is stalled and few simple
operations are required. Such operations can be implemented
either as microcode to use existing hardware or with specific
hardware (i.e., logic for inverting and XNORing, and few
latches). Restoring the value and writing it back to an entry
requires few steps. For instance, in the case of the register file
the commit stage must stall and wait for all instructions in
the pipeline to stop. Then, the value recovered must be stored
in a free register, the rename table updated and the pipeline
flushed to resume execution.

IV. RELATED WORK

Redundancy is a widely used technique to recover from
transient faults in a processor. Replicating register values
into unused registers to recover from transient faults and
soft errors was proposed in [14] where if ECC signals an
error, correct value is taken from the uncorrupted register that
holds the copy. Recently Reis et al. proposed using hardware-
software hybrid schemes which achieves fault tolerance by
replicating instructions at compiler level and using hardware
fault detectors that make use of this redundancy [15], [16].

Replicating parts of the core has also been explored.
DIVA [17] uses a simple in-order core as a checker for an out-
of-order core. It has to design the checker from scratch since
the objective is to catch design errors of a complex design that
cannot be verified at design time. The IBM G5 [18] replicates
the frontend and the execution engine, and all instructions are
executed twice in parallel. By comparing the output of the
instructions, it detects errors. In order to recover from errors,
it keeps a copy of the register file.

Multithreading is used for error detection and recovery [19]–
[21]. The general idea is to use the multithreading capabilities
existing in modern SMT processors to run two copies of the
same thread and after execution check the outcome of the
instructions to detect the errors and recover from them if it is
possible.

The inherent hardware redundancy in CMPs has been also
used for error detection and correction [22]. A detailed ef-
ficient implementation of CMPs executing redundant threads
with recovery capabilities has been described in [23].

Recently, Montesinos et al. [24] have proposed to use
a small ECC table to protect the most vulnerable register
versions in the register file against soft errors. Compared to
our work, we do not limit the total number of registers to
be protected. Moreover, they do not deal with the erratic bits
problem.

2009 15th IEEE International On-Line Testing Symposium (IOLTS 2009) 85

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on July 26,2010 at 12:07:57 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSIONS

Technology scaling and aggressive voltage scaling results
in large deviations of the voltage threshold for SRAM. The
observable impact is the erratic behavior of many bits. More-
over, due to their intermittent nature, classic offline testing
techniques do not longer work.

ECC is currently used for caches. However, low-latency
storage structures such as register file, latches and some first
level caches (DL0, IL0, DTLB, ITLB) do not employ ECC
due to its huge cost in area and delay, and use parity instead.
In order to solve this problem, this paper proposes a set of
mechanisms that increases the reliability of the register file
against the erratic bits problem. Our mechanism detects those
registers that have erratic bits, recovers from the error and
quarantines the faulty register. After the quarantine period, it
is able to detect whether they are fully operational with low
overhead. As a result, we can detect and recover from all faults
due to erratic bits.

Since our mechanism enables full recovery for the erratic
bits problem, structures protected only with error detection
techniques (e.g., parity) can operate at lower operating volt-
ages to save power even if the erratic bits problem is exacer-
bated, because we can recover from such errors.

ACKNOWLEDGMENTS

The Spanish Ministry of Education and Science under grant
TIN2007-61763 partially supported this work.

REFERENCES

[1] S. I. Association, International Technology Roadmap for Semiconductors
(2005 Edition), http://public.itrs.net ed.

[2] T. Ong, A. Fazio, N. Mielke, S. Pan, N. Righos, G. Atwood, and S. Lai,
“Erratic erase in etox/sup tm/ flash memory array,” in Proceedings of
the Symposium on VLSI Technology (VLSI). Digest of Technical Papers.,
1993, pp. 83–84.

[3] M. Agostinelli, J. Hicks, J. Xu, B. Woolery, K. Mistry, K. Zhang, S. Ja-
cobs, J. Jopling, W. Yang, B. Lee, T. Raz, M. Mehalel, P. Kolar, Y. Wang,
J. Sandford, D. Pivin, C. Peterson, M. DiBattista, S. Pae, M. Jones,
S. Johnson, and G. Subramanian, “Erratic fluctuations of SRAM cache
vmin at the 90nm process technology node,” in Technical digest of IEEE
International Electron Devices Meeting (IEDM), December 2005, pp.
655–658.

[4] G. Semeraro, D. Albonesi, S. Dropsho, G.Magklis, S. Dwarkadas,
and M. Scott, “Dynamic frequency and voltage control for a multiple
clock domain microarchitecture,” in Proceedings of the ACM/IEEE
International Symposium on Microarchitecture (MICRO 35), 2002, pp.
356–367.

[5] A. Iyer and D. Marculescu, “Power efficiency of voltage scaling in multi-
ple clock, multiple voltage cores,” in Proceedings of the 2002 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD02), 2002,
pp. 379–386.

[6] R. Baumann, “Soft errors in advanced computer systems,” in Proceed-
ings of IEEE Design and Test of Computers. Los Alamitos, CA, USA:
IEEE Computer Society, 2005, pp. 258–266.

[7] C. Chen and M. Hsiao, “Error-correcting codes for semiconductor
memory applications: A state of the art review,” IBM Journal of Research
and Development, vol. 28, no. 2, pp. 124–134, 1984.

[8] I. Koren and Z. Koren, “Defect tolerance in vlsi circuits: techniques and
yield analysis,” Proceedings of the IEEE, vol. 86, no. 9, pp. 1819–1838,
1998.

[9] R. Lyons and W. Vanderkulk, “The use of triple modular redundancy to
improve computer reliability,” IBM Journal of Research and Develop-
ment, vol. 6, no. 2, pp. 200–209, 1962.

[10] E. Fetzer, D. Dahle, C. Little, and K. Safford, “The parity protected,
multithreaded register files on the 90-nm Itanium microprocessors,”
IEEE Journal of Solid-State Circuits, vol. 41, no. 1, January 2006.

[11] J. Kulkarni, K. Kim, and K. Roy, “A 160 mv, fully differential, robust
schmitt trigger based sub-threshold SRAM,” in Proceedings of the
2007 International Symposium on Low Power Electronics and Design
(ISLPED07), 2007, pp. 171–176.

[12] R. Rajsuman, “Design and test of large embedded memories: An
overview,” IEEE Design and Test of Computers, vol. 18, no. 3, pp.
16–27, 2001.

[13] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor,” in Proceedings of the 36th
International Symposium on Microarchitecture (MICRO). New York,
NY, USA: ACM Press, 2003.

[14] G. Memik, M. Kandemir, and O. Ozturk, “Increasing register file
immunity to transient errors,” in Proceedings of Design, Automation
and Test in Europe (DATE), 2005.

[15] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “SWIFT:
Software implemented fault tolerance,” in Proceedings of the Interna-
tional Symposium on Code Generation and Optimization (CGO), 2005.

[16] G. Reis, J. Chang, N. Vachharajani, R. Rangan, D. August, and
S. Mukherjee, “Design and evaluation of hybrid fault-detection systems,”
in Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), 2005.

[17] T. Austin, “DIVA: a reliable substrate for deep submicron microarchi-
tecture design,” in Proceedings of International Symposium on Microar-
chitecture (MICRO), 1999.

[18] L. Spainhower and T. Gregg, “IBM S/390 parallel enterprise server G5
fault tolerance: a historical perspective,” IBM Journal of Research and
Development, vol. 43, no. 5/6, pp. 863–873, 1999.

[19] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and
evaluation of redundant multithreading alternatives,” in Proceedings of
the 29th annual International Symposium on Computer Architecture
(ISCA), 2002.

[20] E. Rotenberg, “AR-SMT: A microarchitectural approach to fault toler-
ance in microprocessors,” in Proceedings of the Annual International
Symposium on Fault-Tolerant Computing (FTC), 1999, p. 84.

[21] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault recovery
using simultaneous multithreading,” in Proceedings of the 29th Interna-
tional Symposium on Computer Architecture (ISCA), 2002.

[22] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream processors:
improving both performance and fault tolerance,” in Proceedings of the
33th International Symposium on Microarchitecture (MICRO), 2000.

[23] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz, “Transient-
fault recovery for chip multiprocessors,” in Proceedings of the 30th
International Symposium on Computer Architecture (ISCA), 2003.

[24] P. Montesinos, W. Liu, and J. Torrellas, “Using register lifetime pre-
dictions to protect register files against soft errors,” in Proceedings of
the IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN07), 2007, pp. 286–296.

86 2009 15th IEEE International On-Line Testing Symposium (IOLTS 2009)

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on July 26,2010 at 12:07:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

