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ABSTRACT PAGE

Vulnerability research plays a key role in preventing and defending against malicious computer
system exploitations. Driven by a multi-billion dollar underground economy, cyber criminals
today tirelessly launch malicious exploitations, threatening every aspect of daily computing.

To effectively protect computer systems from devastation, it is imperative to discover and
mitigate vulnerabilities before they fall into the offensive parties’ hands. This dissertation is
dedicated to the research and discovery of new design and deployment vulnerabilities in three
very different types of computer systems.

The first vulnerability is found in the automatic malicious binary (malware) detection system.
Binary analysis, a central piece of technology for malware detection, are divided into two
classes, static analysis and dynamic analysis. State-of-the-art detection systems employ both
classes of analyses to complement each other's strengths and weaknesses for improved
detection results. However, we found that the commonly seen design patterns may suffer from
evasion attacks. We demonstrate attacks on the vulnerabilities by designing and implementing
a novel binary obfuscation technique.

The second vulnerability is located in the design of server system power management.
Technological advancements have improved server system power efficiency and facilitated
energy proportional computing. However, the change of power profile makes the power
consumption subjected to unaudited influences of remote parties, leaving the server systems
vulnerable to energy-targeted malicious exploit. We demonstrate an energy abusing attack on
a standalone open Web server, measure the extent of the damage, and present a preliminary
defense strategy.

The third vulnerability is discovered in the application of server virtualization technologies.
Server virtualization greatly benefits today's data centers and brings pervasive cloud
computing a step closer to the general public. However, the practice of physical co-hosting
virtual machines with different security privileges risks introducing covert channels that
seriously threaten the information security in the cloud. We study the construction of
high-bandwidth covert channels via the memory sub-system, and show a practical exploit of
cross-virtual-machine covert channels on virtualized x86 platforms.
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Chapter

Introduction

Computer system security is not just a static term—it also represents an ongoing
and unending warfare, with battles taking place in the cyberspace at any moment.
Started as vandalism or for personal glories in the early days of computing, the
act of computer system exploitations quickly evolves into organized cyber-crime as
computers and network spread through the modern society. Nowadays, driven by a
multi-billion dollar underground economy [7, 29], malicious computer system exploita-
tions are sub-divided into specialized categories, such as system hijacking (e.g., bot
farming), data stealing (e.g., theft of personal or business information), spamming,
and even digital terrorism (e.g., denial-of-service blackmailing), threatening every as-
pect of our daily computing. Fortunately, defensive technologies and security research
have also made comparable improvements and corresponding specializations, protect-
ing the cyberspace infrastructure as well as most of our everyday computing activities
from the harms of malicious exploits. However, enticed by strong financial incentives,
attackers are constantly probing and developing new offensive technologies, and the
war will continue on for the foreseeable future.

Central to both offensive and defensive technologies, vulnerability research plays

a key role in crafting malicious exploitations as well as developing corresponding pro-
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Figure 1.1: The Progression of a Vulnerability
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tections. As show in Figure 1.1, a vulnerability may go through different stages of
transformations on both the offense side and the defense side. On the offense side, the
attackers first turn a vulnerability into a workable attack vector. Then they proceed
to create exploits that leverage the attack vectors to achieve their malicious goals.
And finally, the attackers obtain profits through successfully launched exploits. On
the defense side, in response to a vulnerability discovery, security advisories are first
published to alert the system administrators, the vendors of the vulnerable product,
as well as the security service providers. Then, the responsible parties investigate the
vulnerability and develop countermeasures, such as security patches, workarounds,
and exploit prevention techniques. And finally, with the deployment of countermea-
sures, the vulnerable system is secured from the attackers’ exploit. In order to protect
computer systems from the attackers’ devastation, it is imperative for the defenders
to reach the end on the progression chart first. And thus the timely discovery of

vulnerabilities is critical to successful defenses.

Vulnerabilities of computer systems, by their causes of introduction, can be clas-

sified into the following three general categories:

1. Vulnerable design: Vulnerabilities can be introduced into a system at the
design stage through various errors and failures, such as logic flaws, use of

unwarranted assumptions, and failure to incorporate certain security aspects.

2



2. Vulnerable implementation: Even with a secure design, vulnerabilities can
still enter a system at its implementation stage. Vulnerable implementations
take forms of a wide spectrum of “bugs”, ranging from accidental errors (e.g., ty-
pos) to bad practices (e.g., insufficient checking or normalization of user input),

and to rogue features (i.e., unspecified or documented implementations).

3. Vulnerable deployment: Malpractice in system deployment, such as deploy-
ing a system out of its original designed context, can also introduce vulnerabili-
ties. Deployment errors subject a system to unanticipated operation conditions,
such as failed premises, malformed input, and ambiguous command interpreta-
tions, which may either directly lead to or increase the likelihood of vulnerability

manifestation.

While the most commonly encountered vulnerabilities belong to the category
of vulnerable implementation, those vulnerabilities typically have simple corrections
that can be developed and deployed within a short time frame. The now pervasive
on-line software update systems provided by major operating system and application
vendors are good examples of mature industrial solutions that could rapidly respond
to implementation vulnerability discoveries. Compared to implementation vulnera-
bilities, the other two categories of vulnerabilities, namely the design and deployment
vulnerabilities, are less often discovered. However, those vulnerabilities are much
more difficult to respond to and to mitigate in a timely manner. And thus design and
deployment vulnerabilities pose more security hazard, if they were to be employed by
the offensive parties.

This dissertation is dedicated to the research and discovery of new design and
deployment vulnerabilities in three very different types of computer systems that are

or are becoming important parts of our computing infrastructure.
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1.1 Malware Detection and Classification

Malicious software, known as “Malware”, is a class of power weapons used by at-
tackers to assault computer systems. It is commonly employed by attackers to hijack
computer systems and steal information. Taking forms of worms, viruses, and Trojan
horses, malware propagates on to a large number of personal computers as well as
servers either by automated exploits of vulnerabilities, or by exploiting the human

factors (e.g., curiosity, trust, management flaws, etc.).

The first line of defense against malware is automatic malicious binary detection
and classification. With the prevalence of anti-malware software nowadays, binary
executables are subjected to a number of detection scans during transportation and
before execution. In addition, automatic malware analysis and classification systems
are employed by security product vendors and researcher to facilitate quick responses
to malware outbreaks. However, we have found a vulnerable design, buried deep in

many automatic malicious binary detection and classification systems.

Automatic malicious binary detection works by extracting the characteristics,
a.k.a. signatures, of an unknown binary executable, and comparing the results against
a pool of signatures from known malware. And if enough similarities are found, the
binary executable in question is asserted as malicious. As a central piece of the auto-
matic malicious binary detection, binary analysis techniques can be coarsely divided
into two classes—static analysis and dynamic analysis. Static analysis techniques an-
alyze binary executables without executing them. Instead, a number of static metrics
are derived from the binary data, ranging from statistical features such as byte en-
tropy and n-gram distributions, to semantic features such as control flow and system
call patterns. Dynamic analysis techniques, in contrast, perform analysis by executing

the subject binary in a controlled fashion, such as emulation, sand-boxing or symbolic

4
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Figure 1.2: Vulnerable Malware Detection System Designs

execution, and monitoring the subject’s run-time activity. Each class of techniques
has its own strengths and weaknesses. Static analyses feature high throughput and
low resource consumptions; but they suffer binary obfuscation evasion attacks, par-
ticularly, polymorphism and metamorphism. Dynamic analyses enjoy high detection
accuracy and suffer less from binary obfuscation; however, they demand significantly
longer process time and more computing resources than static analyses.

In order to increase both detection accuracy and performance, state-of-the-art
automatic malicious binary detection and classification systems employ both static
analyses and dynamic analyses. And these two classes of components are commonly
seen organized in design patterns similar to those shown in Figure 1.2(a) or 1.2(b).
The rational of using these designs is that dynamic analyses are too “expensive” to
be placed on the critical path of the detection procedure. Instead, static analyses
or static pre-processing can be employed to handle or filter out most unobfuscated
binary executables, leaving only those particularly-difficult-to-determine binaries for
dynamic analyses to process.

These designs suffer unwarranted assumption and flawed logic. In particular, the

problematic assumption is that static analysis can always differentiate obfuscated
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programs from unobfuscated ones. However, it is perceivable that some meticulously
crafted binary transformations can produce obfuscated binaries that are indifferen-
tiable from unobfuscated binary in terms of static features. Such kind of binary trans-
formations invalidates the above assumptions and reveals a logic loophole within these
designs—dynamic analyses, incorporated for the purpose of complementing static
analyses’ weaknesses against code obfuscation, could be effectively bypassed due to
the very same weaknesses.

In Chapter 2, we present an exploit of this design vulnerability in automatic
malicious binary detection and classification systems. We introduce mimimorphism,
a novel binary obfuscation technique that camouflages malware binaries as legitimate
executables. Inspired by a steganographic technique—the mimic functions, we create
the mimimorphic transformation by augmenting a high-order mimic function with
customized assembler and disassembler. Mimimorphic transformation is capable of
encoding arbitrary data into “mimimorphic binaries” —pseudo-executable binaries
that are indistinguishable from unobfuscated benign binary code in terms of statistical
features such as byte entropy and frequency distributions, as well as semantic features
such as control flow finger prints. As a result, mimimorphism defeats a range of static
analysis techniques by obfuscating the malicious code and misguiding the analyses
to assert the the obfuscated binary as obfuscated, allowing mimimorphic malware to

evade the vulnerable detection systems.

1.2 Server System Power Management

Power management has become increasingly important for server systems nowadays.
As the cost of commodity hardware decreases, energy cost has become a major factor

in server system total cost of ownership (TCO). To address the increasing energy
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concern and demand for power saving, the concept of energy proportional computing
has been introduced.

Energy proportional computing aims to improve energy efficiency by making
servers consume energy proportional to its workload. Numerous techniques have been
developed to facilitate energy proportional computing, covering a variety of aspects,
from low-level hardware features such as processor Dynamic Voltage and Frequency
Scaling (DVFS) and hard disk spin-down, to high-level system-wise management
schemes such as cluster load provisioning and virtual machine consolidation. While
the server system power savings have been significantly improved thanks to these
technological advancements, a new type of vulnerability, energy targeted exploits, has
quietly emerged from behind the scene.

Historically, performance and security have been considered as primary metrics
for server system evaluation and operation, while the power management has been
largely down-played or even ignored. For this reason, server systems used to be
power-inefficient and energy-disproportional, that is, a server consumes the same or
similar amount of power regardless of the workload it processes. And for the very
same reason, power management has never been considered as a security concept
for server systems. However, the adaptation to energy proportional computing has
changed the scope of server system security concept, and this change have not yet
been paid attention to.

Switching power consumption profiles from “constant” to “workload-proportional”
has introduced a new variable into the server system operation metrics, the power
usage. And more significantly, while other operation variables, such as network band-
width and security privileges, are either audited or access-restricted to system admin-
istrators, the newly introduced system power usage variable is largely unaudited, and

its value can be heavily influenced by remote users (i.e., whoever submits workload to
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the server) outside of the system administrators’ control. The lack of incorporation
of the power management factor in the security framework results in a serious design
vulnerability, leaving current server systems completely open to (i.e., no means to
detect or defend) energy targeted attacks.

In Chapter 3, we demonstrate a realistic energy attack on a standalone web server
system, exploiting this server system power management vulnerability. By profiling
request serving energy cost of an open Web service under different operation con-
ditions, we identify an attack vector that an anonymous remote user can exploit to
abuse the server’s power consumption. Then, leveraging knowledge of human Web
browsing behaviors, we proceed to design a stealthy attacking strategy, which ensures
low attack traffic volume as well as statistically indistinguishable request timing sig-
natures (i.e., request inter-arrival time) from those of the benign human users. We
launch the energy attack against our testbed server, and systematically measure the
extent of damage. We find out that this attack is able to significantly increase the

power consumption of victim servers under typical workloads.

1.3 Virtualization and Privacy

Server virtualization are widely deployed in today’s data centers. Providing the bene-
fit of dynamic workload consolidation and simplified resource management, virtualiza-
tion technologies greatly reduce data center operation cost, enabling low-cost access
to utility based cloud computing services, and bringing pervasive cloud computing a
step closer to the general public.

However, a major factor that impedes the adaptation of public cloud computing
is the concern of privacy, or information security in general. The public cloud is a

heavily commuted, dynamic, and possibly hostile environment, and thus private data
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stored in the cloud are more susceptible to loss or leakage. Cloud vendors and users
battle data leakage by orchestrating a variety of technologies, such as network isolation
(such as VLAN and VPN), encryption, firewalls, traffic filtering, intrusion detection,
etc. Despite the efforts being spend on information safeguarding, the potential risks
of data leakage still loom the cloud, one of which is the covert channels.

Covert channels exploit imperfections in the isolation of shared resources between
two unrelated entities, and enable communications between them via unintended
channels, bypassing mandatory access controls placed on standard communication
channels. Previous research have shown that on non-virtualized systems, covert chan-
nels can be constructed using a variety of media, such as file system objects, network
interfaces, shared processor cache, etc. Although to date there is no known practical
exploit of covert channels in the cloud, recent research have precautionarily pointed
out the potential risk of physical co-residency on virtualized systems.

Co-hosting virtual machines (VMs) with different security privileges on the same
physical hardware risks introducing deployment vulnerabilities. Server virtualiza-
tion technologies meet the objective of computing consolidation by creating multiple
logically separate, virtual computing platforms, multiplexing the shared underlying
physical hardware. And the “logically-separate-but-physically-shared” design choice
clearly indicates that server virtualization does not intend to provide computing en-
vironment identical to that of physically separated machines. As a result, it is in-
evitable for virtualized environment to have subtle but non-negligible differences from
non-virtualized ones, especially in non-standardized aspects, such as covert channel
security. However, few applications or security mechanisms today are prepared to
accommodate these differences. Therefore, physically co-hosting VMs with different
security privileges put systems (especially security systems) on the VMs out of their

originally designed context, thereby introducing deployment vulnerabilities.
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Based on our above assertion, in Chapter 4 we study the construction of high-
bandwidth cross—VM channels on the virtualized x86 platform, focusing on the mem-
ory sub-system. We first analyze existing low-bandwidth cache covert channel tech-
niques, and understand their inefficiencies and limitations in a virtualized environ-
ment. Then we perform an in-depth study of x86 processor cache and memory archi-
tecture, and design novel cache and memory bus covert channels that overcome the
obstacles of existing techniques. We then conduct realistic experiments, and show
that our covert channels can achieve high bandwidth, low cache footprint and reliable
data transmission. Our study is the first among its kind to prove that the threat of

covert channel attacks in the cloud is both realistic and practical.
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Chapter

Vulnerability in Static Binary Analysis

Automatic malicious binary detection is the first line of defense against malicious soft-
ware. With the prevalence of anti-malware software nowadays, a piece of binary code
is subjected to a number of static analysis and detection scans during transportation
and before execution. Consequently, binary obfuscation is critical for malware to
succeed in propagation. The widely used code obfuscation techniques, such as poly-
morphism and metamorphism, focus on evading syntax based detection. However,
statistic test and semantic analysis techniques have been developed to thwart their
evasion attempts. More recent binary obfuscation techniques are divided in their
purposes of attacking either statistical or semantic approach, but not both. In this
chapter, we introduce mimimorphism, a novel binary obfuscation technique with the
potential of evading both statistical and semantic detections. Mimimorphic malware
uses instruction-syntax-aware high-order mimic functions to transform its binary into
mimicry executables that exhibit high similarity to benign programs in terms of sta-
tistical properties and semantic characteristics. We design and implement a prototype
mimimorphic engine on the Intel x86 platform, and prove its capability of evading
statistical anomaly detections, using byte frequency distributions and entropy tests,

as well as semantic analysis detection techniques, using control flow fingerprinting.
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2.1 Motivation

To date, real-time malware detection largely relies on static binary analysis, due to
its significant speed and resource consumption advantages over dynamic executable
analysis [45, 48, 53, 64, 83]. Malware mainly evades static analysis detections through
binary obfuscations, namely oligomorphism, polymorphism, and metamorphism [84].
Oligomorphism is used to evade byte sequence signature detections on the malware
functional code. It utilizes simple operations such as XOR to scramble malware func-
tional code before propagation, and decodes it while executing. Evolved from oligo-
morphism, polymorphism encodes malicious code by “packing” (i.e., compressing or
encrypting), and then camouflages the “unpacker” (the decompression or decryp-
tion code) by using binary mutation techniques, such as instruction substitution and
register remapping. Instead of packing program binaries, metamorphism generates
different instruction combinations to represent the same functional part of a mali-
cious program in its variants. The major techniques employed by metamorphism are
binary-level mutations and meta-level transformations. A meta-level transformation
first translates binary code into an intermediary representation called P-code, then
manipulates the P-code, and finally composes new instances from the P-code. In this
way, metamorphic malware can significantly shuffle its program contents and escape

substring signature based detections.

Although the classic polymorphism and metamorphism enable malware to gener-
ate many binary instances with different byte patterns, they cannot effectively dis-
guise the presence of malicious code in terms of statistical properties and program
semantics. Compression and encryption in polymorphism usually change the statisti-
cal characteristics of a program in such a dramatic manner that the malware program

can be easily classified as suspicious and be further scrutinized. Exploiting this prop-
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erty, byte-frequency based detection methods such as Anagram [93] and PAYL [94],
and entropy based detection methods such as Bintropy [54] have been proposed to
uncover polymorphic malware. Additionally, because compressed or encrypted code
segments are no longer executable, they can be easily identified by advanced disas-
semblers [51]. Such a filtering strategy has been applied to extract the unpackers of
polymorphic worms [50]. Meanwhile, metamorphism preserves semantic equivalences
between different variants. This property is thus exploited by semantic analysis tech-
niques. For example, MetaAware [104] detects variants of metamorphic malware
based on analysis of system call and library call instructions.

With the advancements in detection, state-of-the-art evasion techniques are mov-
ing beyond polymorphism and metamorphism. Targeting byte-frequency-based static
anomaly detection, polymorphic blending attacks [27] manipulate the statistics of
malware through byte padding and substitution. Designed to thwart semantic anal-
ysis, [60] mutates a program’s control flow by transforming constants into an NP-
complete problem. However, while flying under the radar of their targeted detec-
tion methods, these evasion techniques are ineffective against other analysis tech-
niques. Polymorphic blending can hardly escape semantics based detection because
byte padding and substitution destroy the executable semantics, making it easy to
single out the unpacker code. Similarly, encoding control flow with opaque constants
induces identifiable syntax patterns, which can be used as signatures.

We introduce mimimorphism, a new approach to binary obfuscation. Mimimorph-
ism is unique in that instead of targeting at a specific detection approach, it aims
to camouflage malware binaries as legitimate executables and thus significantly in-
creases malware’s resistance against a range of static statistical and semantic analy-
ses. Leveraging a steganographic technique called the mimic function, mimimorph-

ism transforms a malware executable into “mimic-binaries” that resemble ordinary
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benign programs. To achieve this goal, we augment a high-order mimic function with
customized assembler and disassembler, creating an instruction-syntax-aware mimic
function—the core of the mimimorphic engine. The mimimorphic engine captures
the high-order instruction-level characteristics of a given set of benign programs, and
encodes malicious binaries based on the captured characteristics. As a result, a mimij-
morphic binary acquires highly similar statistical properties and semantic structures

to those of ordinary benign programs.

2.2 Related Work

Attackers increasingly employ polymorphic and metamorphic techniques [84] to dis-
guise their attacks and evade intrusion detection systems. The core of these techniques
is to change the appearance of malicious code. Although the bit patterns of poly-
morphic attacks are distinctly different, their malicious functions remain the same.
A number of tools have been developed for generating polymorphic shellcode {20, 55]
and polymorphic executables [43, 70, 103]. Since polymorphic malware and meta-
morphic malware are able to significantly transform their contents in propagation,
as mentioned by Newsome et al. [64] and Crandall et al. [14], they can effectively
circumvent the perimeter of the network intrusion detection systems that are based
on contiguous byte string signatures [45, 48, 83].

A basic approach to detecting polymorphic worms is based on byte statistics,
such as byte frequency [94] and byte entropy [54]. Wang et al. [94] developed a
payload-based anomaly detector, PAYL, which profiles the byte distribution of packet
payloads and detects the abnormal byte distributions of polymorphic worms. Lyda et
al. [54] demonstrated that the byte entropy of executables can be used to effectively

identify packed or encrypted malware. Tang et al. [86] introduced the position-aware
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distribution signature (PADS), which is capable of detecting polymorphic worms by
recording a byte frequency distribution for each position in the signature “string”.

There are several advanced polymorphic attacks [20, 27] designed to evade de-
tections based on byte statistics. Detristan et al. [20] built a polymorphic engine
called CLET, which uses byte padding to approximately match the normal byte dis-
tribution. Fogla et al. [27] introduced the polymorphic blending attack that exploits
byte substitution and byte padding to achieve a very close match to normal profiles.
The polymorphic blending attack is effective in evading 1-gram and 2-gram PAYL,
as well as other detection methods based on low-order byte distributions. However,
the problem of generating optimal polymorphic blending attacks is shown to be NP-
complete, and a near-optimal heuristic approach must be used.A drawback to these
mimicry attacks, similar to basic polymorphic attacks, is that the encrypted regions
do not contain valid instruction sequences, ‘while the attack vector and decryption
routines are still executable, making these regions easily differentiated.

To counter mimicry attacks, higher-order byte patterns have been used in recent
detection methods [69, 93]. Wang et al. [93] presented a new anomaly detector called
Anagram, which is capable of detecting a modified polymorphic blending attack [27)].
Anagram employs a Bloom filter to reduce the computation and storage require-
ments for modeling higher-order n-grams, in particular, n-grams 2-9 are chosen for
experiments. While higher-order n-grams tend to produce better signatures, their
training costs are much higher. Perdisci et al. proposed a multi-classifier system
[69]. It summarizes higher-order n-grams as pairs of non-consecutive bytes, reducing
the dimensionality of fully modeling higher-order n-grams. A clustering algorithm,
originally proposed for text classification, is also used to reduce the dimensionality.
The experimental results demonstrate that the proposed detector is as robust against

evasion as a hypothetical 7-gram PAYL.
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A different approach for polymorphic worm detection is based on syntactic signa-
tures composed of multiple invariant substrings. The rationale behind this approach is
that invariant substrings such as protocol framing substrings and high-order bytes of
overwritten addresses often occur in all variants of polymorphic malware. Polygraph
[64] proposes three types of syntactic signatures and related automatic signature
generation algorithms. Hamsa [53] shares a similar design principle and signature
scheme with Polygraph, but is faster, more noise-tolerant and attack-resilient. Both
Polygraph and Hamsa require innocuous and suspicious traffic pools for signature
generation, and thus, are vulnerable to training attacks. Perdisci et al. [68] presented
a noise injection attack, in which injecting just one fake anomalous flow per real worm
flow can prevent Polygraph from generating an accurate worm signature. Similarly,
Newsome et al. [65] stated that malicious training can cause problems even when all
of the training data are correctly labeled, and demonstrated that this type of attacks
in general can be effective against both Polygraph and Hamsa. Gundy et al. [32]
developed a polymorphic engine for PHP code and a polymorphic PHP-based worm
that is able to evade Polygraph and Hamsa. Venkataraman et al. [89] presented the
fundamental limits on the accuracy of a class of pattern-extraction algorithms for

signature-generation in an adversarial setting.

More recent research has begun to focus on semantic analysis methods that extract
higher-level meaning from executables[13, 46, 50, 102, 104]. Christodorescu et al.
[13] proposed a semantic-aware malware detection system, which essentially exploits
the uniform behavior exhibited by the variants of the same malware. A program is
classified as malicious if it contains a sequence of instructions exhibiting the behavior
specified by a malware template. Kruegel et al. proposed a polymorphic worm
detection scheme [50] by utilizing the structural information. Based on the facts that

the decryption routines of polymorphic worms are usually executable and their control
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flow graphs (CFG) are fairly stable across worm mutations, the proposed method
employs the static analysis and comparison of binary’s CFG for worm detection.
As another semantic analysis method, MetaAware [104] detects metamorphic worms
by matching call instruction patterns. A pattern usually comprises multiple sub-
patterns, each constituting library and system call instructions with corresponding
parameter setting instructions.

Due to the fundamental roles of control flow and data flow analyses in static
analysis, Moser et al. [60] designed a binary obfuscation scheme based on the concept
of opaque constants. They demonstrated that advanced semantics-based detections
(such as model checking [46]) can be effectively thwarted by hiding key constants
of the control flows using obfuscation transformations. Barak et al. [2] discussed
the theoretical limits of program obfuscation. In particular, they proved that it is
impossible to hide certain families of properties via function-preserving obfuscation.

The concept of mimicry attack has also been applied in dynamic host based in-
trusion detection systems (IDS). In the context of system call monitoring, a mimicry
attack is defined as a sequence of malicious system calls that exploits flaws in the
IDS program model [91], and is thus considered as legitimate. Traditionally, these
attacks are manually constructed [85, 91], but recent research [28, 49, 66] has shown

that they can be automatically developed.

2.3 Background

The idea of mimic functions was first introduced by Peter Wayner [98] as a stegano-
graphic technique. A mimic function transforms given input data into certain output
that assumes the statistical properties of a different type of data, thereby concealing

the true identity of the original data.
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2.3.1 Regular Mimic Function

The Huffman mimic function [98], referred to as the “regular mimic function,” is the
functional inverse of the Huffman coding. The use of a mimic function involves three
phases, digesting (i.e., Huffman tree building), encoding and decoding.

Like Huffman coding, a mimic function requires a Huffman tree to operate. In the
digesting phase, a Huffman tree is constructed based on the frequency of each symbol
appearing in a given piece of mimicry target data. In the encoding phase, the mimic
function applies the Huffman decoding operation on the input data, and produces the
mimicry output by referring to the Huffman tree. In the decoding phase, the mimic
function applies the Huffman encoding operation, referring to the same Huffman tree,
and uncovers the original input data from the mimicry output. In order to produce the
mimicry output with a symbol frequency distribution similar to that of the mimicry
target data, the input data must be random (i.e., follow uniform distribution). To
meet this requirement, the input data can be randomized, such as XORing with a
sequence of random numbers.

However, the regular mimic function suffers from a limitation that the symbol
frequency of the mimicry output is limited to negative powers-of-2, e.g., 0.5, 0.25,
0.125, and so on. There are several techniques to overcome this limitation and we

choose to use the high-order mimic function.

2.3.2 High-order Mimic Function

High-order mimic function differs from regular mimic function mainly in the digest-
ing phase. Instead of building a single Huffman tree, an ny-order mimic function

constructs a collection of Huffman trees for a detailed “profile” of the mimicry target.
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Figure 2.1: The Prefixed Symbol Tables Figure 2.2: The Prefixed Huffman Forest

Specifically, as shown in Figure 2.1, each observed unique symbol prefix of length
n — 1 is associated with a frequency table, which records occurrences of symbols with
the given prefix. At the end of the digesting phase, each table is converted into a
Huffman tree. This results in a forest of Huffman trees, each labeled by its symbol

prefix, as shown in Figure 2.2.

Correspondingly, in the encoding and decoding phases of an ny-order mimic func-
tion, a symbol prefix cache of length » — 1 is maintained, recording the sequence of
symbols that have just been encoded or decoded. For each symbol to be encoded
or decoded, the high-order mimic function first locates the Huffman tree whose label
corresponds to the current symbol prefix, and then performs Huffman decoding and

encoding operations respectively, using the located Huffman tree.

Compared to a single Huffman tree in a regular mimic function, the Huffman forest
in a high-order mimic function contains more detailed symbol frequency distributions
as well as interdependencies among a number of adjacent symbols. As a result,
the output produced by an ng-order mimic function comnsists of n-grams that are
observed in the mimicry target; and the occurrence of each n-gram is close to that of

the mimicry target.
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Table 2.1: Mimicry English Text Table 2.2: Mimic Function Runtime Analysis
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The starting every intended to find the Recording frequency 1
same order mimic files. A Method is Input length n
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. Tree conversion | Sort C
mimics the path down the most even
though, offer no way that is, in this Construct tree ¢
paper. Figure will not overflow mem- Number of tables ¢
ory. These produced by truncating let- Encoding / Decoding = O(n)
ter. This need to handle n-th ordered || For each symbol | Locate Huffman tree 1
compartment of nonsense words cannot Huffman de(en)coding | 1
bear any resemblance to B because... Input length n

2.3.3 The Power of High-order Mimic Function

Compared to the polymorphic blending attack, the state-of-the-art payload mimicry
technique, the high-order mimic function holds two major advantages.

Structural and semantic mimicry: The output of a high-order mimic func-
tion manifests structural and even semantic similarities to the mimicry target. Table
2.1 lists a sample mimicry text output produced by a 6;,-order mimic function, us-
ing Wayner’s paper [98] as the mimicry target. Without the concept of “word” or
“grammar,” the mimic function manages to produce the paragraphs with correctly
spelled words and semi-sensible sentences. In addition, it also successfully reproduces
the grammatical feature that every sentence starts with a capitalized letter. While
a human reader may eventually realize that the output is mere mimicry, it is very
difficult to differentiate the output from “normal” English text by using statistical
tests, such as byte frequency (spectrum) and entropy. Some of the sentences can even
trick grammar parsers.

Run-time efficiency: While polymorphic blending attack on large n-grams is a

hard problem [26], the high-order mimic function have a linear time computational
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complexity, as shown in Table 2.2. Let R denote the order of a mimic function,
and M denote the number of possible symbols in a given language. In the digesting
phase, using a hash table for prefix lookup, collecting symbol usages and constructing
symbol frequency tables take linear time. Converting all symbol frequency tables into
Huffman trees takes sub-linear time, with a constant bound!. And thus the digesting
phase overall runs in linear time. The encoding and decoding phases essentially
consist of a prefix lookup followed by a Huffman decoding or encoding, which are
constant time operations for each input or output symbol. Therefore, the encoding

and decoding phases also run in linear time.

2.3.4 Enhancements to High-order Mimic Function

The high-order mimic function is a powerful evasion technique against statistical
anomaly detection, thanks to its ability to transform any data and reproduce statisti-
cal and structural features of the mimicry target. However, without proper enhance-
ments, the mimic function falls short against semantic analysis detection.

Compared to human languages, binary machine languages (i.e., executables) have
higher density and less structural flexibility. Without the knowledge of instruction
syntax, the mimic function is unable to generate continuous long sequences of legit-
imate instructions. The control flows in the mimicry output are very often inter-
rupted by malformed instructions, and thus fail to reproduce semantic properties of
the mimicry target. We resolve this problem in our proposed mimimorphic engine by
helping the mimic function understand the machine language. We augment the mimic

function with customized assembler / disassembler. The enhanced mimic function is

1The total number of entries in each table is bounded by M and the total number of tables is
bounded by Min(n, RM). In theory, the constant RM can be very large. However, the upper bound
is reached only when the input data is completely random. For meaningful data such as English text
or executable binaries, the actual bound is much lower because the number of possible fixed-length
substrings is limited.
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Table 2.3: Mimimorphic Terms

Terms Description

Mimicry target The target binaries to be mimicked

A high-order instruction “profile” produced by

Mimicry digest digesting the mimicry target

Mimicry output | The output of the mimic function

A fake executable composed from the mimicry output

Mimicry instance (contains malware encoded by the mimimorphic engine)

aware of instruction syntax, and thus is capable of generating executable instructions

as well as mimicking control flows.

2.4 Mimimorphic Engine Design

The mimimorphic engine consists of four major components: assembler, disassembler,
high-order mimic function, and pseudo-random number generator. In this section, we
describe the function of each component and detail the three operational phases of
the mimimorphic engine: digesting, encoding and decoding. Table 2.3 defines a few

important terms used throughout this section.

2.4.1 Digesting

In the digesting phase, the mimimorphic engine takes a set of binary executables as
the mimicry target, and produces a mimicry digest—a high-order machine language
“profile.” Two components, the disassembler and the mimic (digesting) function, are
involved in this phase, as shown in Figure 2.3.

Preparing for the digesting function, the disassembler decodes instructions in the
executable binary streams into CommonInst structures, as shown in Figure 2.4. This

structure is designed to provide a generalized abstraction from platform-specific ma-
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Figure 2.3: The Digesting Phase Figure 2.5: The Instruction Digest Table

chine instructions, making the mimimorphic engine easily deployable on any instruc-
tion set architecture. The ID field contains an index to identify each unique instruc-
tion. The mimic function treats this field as a symbol in the machine language. The
prefix fields, not to be confused with the “symbol prefix” of the mimic function, corre-
spond to the fields within an instruction that alter the instruction behaviors, such as
atomic operation and address size override. The parameter fields record instruction
parameters. Each parameter further includes three fields: type name, length, and
content, indicating the type, size and content of a parameter, respectively.

After the disassembly, the digesting function processes the decoded instructions
in a sequential manner. Internal to the digest function, a sequence of most recently
processed instruction IDs, called InstPfz, is maintained, acting as the “symbol prefix”
of the mimic function. For each CommonInst, the digest function first tries to locate

an instruction digest table (IDT) associated with the InstPfr. And if absent, a new
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table is created. Then, the digest function records the information of the CommonInst
into the IDT. Finally, it appends the current instruction ID to InstPfr before moving
onto the instruction.

The IDT consists of instruction digest records (IDRs), indexed by the instruction
ID. Each record includes a frequency counter of the instruction, as well as frequency
counters of each type of prefixes and parameters, in the form of nested tables. To
record the information of a CommonInst, we locate the IDR (or create a new one)
with the matching instruction ID and increment its frequency counters and all the
frequency counters corresponding to each of the prefixes and parameters noted in the
CommonInst. Figure 2.5 illustrates the structure of an IDT and its IDRs.

At the end of the digesting phase, each IDT is converted into an instruction
Huffman tree (IHT), based on the frequency counter of each IDR inside the table.
Correspondingly, each IDR is turned into an instruction encoding template (IET) by
converting all the frequency tables associated with the prefixes and parameters into

Huffman trees.

2.4.2 Encoding

Utilizing the mimicry digest, the encoding phase transforms an arbitrary piece of
binary into a sequence of executable instructions that resembles the mimicry target.
Three components of the mimimorphic engine—the pseudo-random number generator
(PRNG), the mimic (encoding) function, and the assembler—are involved in this
phase, as shown in Figure 2.6.

Algorithm 2.1 provides a high level overview of the mimimorphic encoding op-
erations. Similar to the digesting function, the encoding function also maintains an

InstPfz, recording the sequence of the most recently encoded instruction IDs. In the
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Input Data / Algorithm 2.1 Mimimorphic Encoding
Bin: Input binary data

) 4
9 Digest: Mimicry digest

RSeed: Pseudo-RNG seed

A

Mimicry Fir:mc:t:)en Initialize InstP fx;
Digest SBin = Randomize(Bin, RSeed);
while SBin is not empty do
IHT = Lookup(Digest,InstP fx);
IET = TreeWalk(IHT, S Bin);

Inst = InstEncode(IET, SBin);

Mimicry Append Inst to InstCollection;
Executable Update InstP fx with Inst;
end while

Figure 2.6: The Encoding Phase Result = Assemble(InstCollection);

A 4
Assembler

Randomize function, the input data (i.e., malicious binary) is randomized by XORing
with a pseudo-random data stream generated by the PRNG. This randomization is
a dual purpose operation: on one hand, it ensures that the input data satisfies the
requirement of the mimic function (i.e., uniformly distributed); on the other hand, it
completely erases all the characteristics of the original binary. The TreeWalk function
searches for an IET from the IHT by “walking” down the Huffman tree from the root
node, taking left or right branches according to the (randomized) input bits—this is
essentially a Huffman decoding operation. Then, the InstEncode function constructs
mimicry instructions based on the IET. Each prefiz or parameter field in the IET is
associated with a Huffman tree, and thus the generation of a prefix or parameter is
essentially a Huffman decoding operation as well. The constructed mimicry instruc-
tions are stored in the form of CommonInst structures, which are later converted to
binary machine instructions by the assembler.

Figure 2.7 shows an example of a 74-order mimimorphic engine generating an

instruction in a function prologue. First, an IHT is looked up based on the six
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Figure 2.7: An Encoding Example

previously-generated instructions. Then the engine searches the tree branches ac-
cording to the input bits, until a leaf node is reached. The leaf node is an IET of
a “MOV” instruction, which contains the information of this instruction used after
this particular prefix in the mimicry target. The encode function then leverages this

information to generate a mimicry “MOV” instruction.

2.4.3 Decoding

The decoding phase is the inverse of the encoding phase, as shown in Figure 2.8.
Based on the same mimicry digest, the decoding phase uncovers the input data from
the mimicry output. There are three components of the mimimorphic engine involved
in this phase: the disassembler, the mimic (decoding) function, and the PRNG.

The high level description of the mimimorphic decoding operations is given in
Algorithm 2.2. Again, the InstPfz is used to record the most recently decoded in-
struction IDs. A mimicry instance is first disassembled into CommonInst structures,
before being processed sequentially. The NodeLookup function locates the IET in the
IHT with the matching instruction ID. Meanwhile, it produces a stream of data bits

that corresponds to the branches to take from the root of the Huffman tree to the leaf

26



Mimicry
Executable

Algorithm 2.2 Mimimorphic Decoding

Mimicryr,: Mimicry instance
Digest: Mimicry digest
RSeed: Pseudo-RNG seed

Disassembler

Initialize InstP fz;

Decode InstCollection = Disassemble(Mimicryry,);
Function for each Inst in InstCollection do

IHT = Lookup(Digest, InstP fz);
(IET,IData) = NodeLookup(IHT, Inst);

4
< prne >—D IData = InstDecode(IET, Inst);
! Append IData to Dataggang;
i Input Data / Update InstPfx with Inst;

end for
Figure 2.8: The Decoding Phase  Result = Derandomize(Datarand, RSeed);

node—this is essentially a Huffman encoding operation. The InstDecode function
further retrieves the data bits encoded in each mimicry instruction by performing
similar Huffman encoding operations for all the prefixes and parameters with their
corresponding Huffman trees in the JET. Finally, the Derandomize function uncovers
the original data by XORing the decoded data with a pseudo-random data stream,

which are generated by the PRNG with the same seed used in the encoding phase.

Figure 2.9 shows an example of a T;,-order mimimorphic engine decoding the
instruction produced in the previous encoding example. First, an IHT is located
based on the six previously-generated instructions. Then the engine looks up the
leaf node IET that corresponds to the current instruction to be decoded, in this
example, the “MOV” instruction. The path from the IHT root to this leaf node is
then converted to data bits. The similar operations are performed for each of the
prefixes and parameters of the “MOV” instruction, using the corresponding Huffman

trees in the IET and producing a stream of data bits.
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Figure 2.9: An Decoding Example

2.4.4 Design Issues

We now discuss a few important design issues in the digesting and encoding phases,
which affect the quality of mimicry.

Handling of embedded data in digest binaries: In the digesting phase,
the mimicry target binaries are first disassembled into CommonInst structures before
digesting. However, in most legitimate executable binaries, there are a small but non-
negligible amount of embedded data, which mainly consist of constants and jump
address tables. Simply ignoring these embedded data might cause the statistical
properties of the mimicry output to deviate from those of the mimicry target, resulting
in the degradation of mimicry quality. We resolve this problem by masquerading
embedded data as special one-byte-no-parameter “instructions” and digesting them
along with other real instructions.

Selecting a good random source: Recall that, in the encoding phase, a regular
mimic function requires input data to be uniformly distributed, so as to produce the
mimicry output with the statistical properties approximating those of the mimicry
target. Correspondingly, a high-order mimic function also requires the input data to

be randomized on high-order. In our mimimorphic engine design, we select MT19937
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PRNG [57], which claims to have equidistribution in 623 dimensions. Other PRNGs
that can pass high dimensional distribution tests could be used as well.

Ensure valid control flow generation: Although the mimimorphic engine
ensures valid instruction generation, it does not guarantee to produce valid control
flows. This is because branch/call instructions use byte offset to redirect control flows.
However, the lengths of x86 instructions are not fixed. And in addition, when the
mimimorphic engine produces a branch/call instruction, there is no prior knowledge
of subsequent instruction to be generated. As a result, a byte offset could point to
the middle of a following instruction, invalidating the control flow. We resolve this
problem by performing control flow correction on the intermediate data after the
encoding phase. Instead of outputting the binary as soon as each instruction is gen-
erated, we keep all the CommonInst structures in a linked list. Then, for each branch
and call instruction, we inspect whether its referring offset aligns to an instruction,
and make corrections if necessary. We have verified the effectiveness of the solution
by performing control flow analysis and basic block identification [50] on the mimicry
output with and without control flow correction. We have observed that the number

of valid basic blocks increases by nearly seven times with control flow correction.

2.5 Implementation

We have implemented a prototype of the mimimorphic engine on the Intel x86 ar-
chitecture. While the current implementation works on the Windows XP, its core
component is OS-independent and can be easily ported to Unix variants. In the
following, we briefly describe some non-trivial implementation details.

First, a mimicry target is required for the mimimorphic engine to perform trans-

formations. We randomly select 100 executable files from the system32 folder of
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the Windows XP, and extract their “text” sections to form a representative set of
“normal” executables. System executables and libraries make good candidates of the
mimicry target, because they exist on the majority of victim hosts, and they are also
commonly delivered over the Internet (i.e., in forms of security patches).

Second, based on our observation of the basic block size of the mimicry target,
we set the order of mimic functions to 7-8. Considering the unique feature of mimi-
morphism, we attempt to generate mimicked control flows that can be used to evade
advanced semantic analysis detection. Because control flows are formed by basic
blocks, the success of mimicking basic blocks is essential to the generation of mimicry
control flows. We profile the basic block size of our selected mimicry target executable
files, and observe that 89% of the executable files have the average basic block size
less than or equal to eight instructions.

Third, we use a hash table to provide fast prefix lookup of IHT. Although the
number of possible “symbol prefix” grows exponentially as the order of the mimic
function increases, the number of observed unique prefixes is bounded by the size of
input. With a relatively large hash table (22 bits), we are able to achieve reasonably
low collision rate. In our experiments, the utilization rates of the hash table are
below 20% and 25% for 7,,-order and 8;,-order mimic functions, respectively. For
both mimic functions, 85% of entries are collision free, and over 99% of entries have

less than or equal to one collision.

2.6 Evaluation

We use 7;,-order and 8;,-order mimic functions in the mimimorphic engine (M; and
Mj for short). An 83KB executable file is used as a hypothetical malware program,

on which we apply mimimorphic transformations. For each M; and Mg, we generate
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100 instances of the mimicry output, and each instance uses a different seed value
for input data randomization. We evaluate the effectiveness of mimicry from two
detection aspects: statistical test and semantic analysis test.

Note that, whether the executable file is a “real” malware or not is irrelevant to
our evaluation. This is because (1) as stated in Section 2.4.2, the input randomization
in the encoding phase has completely erased all the characteristics of the input data,
thereby any input data would yield equivalent output; and (2) the detections we
apply in our experiments are generic anomaly and similarity tests, instead of specific

malware detections (such as commercial malware/virus scanners).

2.6.1 Statistical Tests

We run our mimimorphic output, M7 and Ms; files, against statistical tests, namely the
Kolmogorov-Smirnov and byte entropy tests. The Kolmogorov-Smirnov test is a gen-
eral purpose statistical test frequently used in steganalysis—the analysis of stegano-
graphic techniques, whereas the byte entropy test is proposed for detecting packed or
encrypted malware [54]. Although the Kolmogorov-Smirnov test is more powerful, it
can only determine if a sample is anomalous, whereas the byte entropy can determine
if a sample is, with high probability, a compressed or encrypted file.

The Kolmogorov-Smirnov test evaluates how much two samples (or a sample and
a distribution) differ by measuring the maximum distance between two empirical
distribution functions: KSTEST = max | S)(z) — Sa(x) |, where S; and S, are the
empirical distribution functions of the two samples. This test is distribution free—
in other words, the test statistic is not dependent on a specific distribution, and
thus, is very general in applicability. For our experiments, we perform Kolmogorov-

Smirnov test between samples of either mimicry or legitimate files and a collection of
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Table 2.4: Kolmogorov-Smirnov Results Figure 2.10: Kolmogorov-Smirnov Results

legitimate files. If the test statistic is low, the sample is classified as normal, otherwise
it is classified as suspicious.

The mean and standard deviation of the Kolmogorov-Smirnov test scores are listed
in Table 2.4. Although the test scores of the mimicry files are higher on average, the
majority of these test scores fall within one standard deviation of the legitimate
mean, as shown in Figure 2.102. For the legitimate files, the mean score is 0.074
and the standard deviation is 0.045. For M, and Mg files, the mean scores are 0.109
and 0.093, respectively. Therefore, the Kolmogorov-Smirnov test is unable to reliably
differentiate mimicry files from legitimate files. The standard deviation of the mimicry
files is very low compared to that of the legitimate files. This is mainly due to the size
of the mimicry files. M7 and Mg files are approximately 2.4MB and 3.3MB, whereas
the legitimate files range from 1KB to 0.5MB. As smaller files are statistically more
likely to vary from the expected value, the variance of the mimicry files, whose sizes
are larger on average, is very small.

The byte entropy detects compressed or encrypted data by measuring the ran-
domness of the distribution of bytes: entropy(X) = —>_ P(z)logP(z), where X is a
byte sample and P(z) is the probability P(X = ). For}:mr experiments, we measure

the byte entropy of different test samples, either mimicry or legitimate files. If the

2 This figure is for illustration purpose only, and is not drawn to scale.
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Frequency

Mean | Std. Dev.
Legitimate | 6.353 0.258

M 6.545 0.021
Mg 6.528 | 0.021 0 j Bee Ente
Table 2.5: Byte Entropy Results Figure 2.11: Byte Entropy Results

entropy is high, then the sample is suspected as compressed or encrypted malware,
which may be further examined by unpacking via emulation or other dynamic anal-
ysis. However, if the entropy is low, i.e., in the range of typical executables, then the
sample is classified as uncompressed and unencrypted.

The mean and standard deviation of the byte entropy test scores are listed in
Table 2.5. For the legitimate files, the mean score is 6.353 and the standard deviation
is 0.258. For M, and Msp, the mean scores are 6.545 and 6.528, respectively. Like
the Kolmogorov-Smirnov results, the standard deviation of the mimicry files is very
low, again due to their file sizes. In comparison to those of legitimate files, the test
scores of M7 and My are slightly higher on average, but fall well within one standard
deviation of the legitimate mean, as shown in Figure 2.113. Based on these results,
the byte entropy test is unable to differentiate mimicry files from legitimate files.
Moreover, because packed and encrypted executables are identified by their high byte
entropy scores [54], and thus M7 and My are also successful in disguising their packed

content as normal executables.

3This figure is for illustration purpose only, and is not drawn to scale.
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Figure 2.12: A Sample of M; Control Figure 2.13: Bad Fingerprints in Collec-
Flow Graph tions of M; and M; Instances

2.6.2 Semantic Analysis Test

We use M; and Mjg to evaluate mimimorphic attacks against semantic analysis de-
tection, particularly, the detection based on control flow fingerprinting [50]. This de-
tection technique analyzes the control flows of binaries, and generates “fingerprints”
for those control flows. To detect polymorphic malware, the system compares the
fingerprints for suspicious network traffic against the fingerprints of known malware
instances. If a sufficient number of fingerprints match, the detection system asserts

that the traffic contains malware.

Mimimorphism attacks the control flow fingerprinting detection by introducing a
large number of mimicked control flows resembling those of legitimate binaries. The
detection system generates a number of fingerprints from a database of malware, i.e.,
M; and Mg instances. A fingerprint is defined as “good” if it matches only malware
files, but if the fingerprint matches both malware and legitimate files, it is considered

as “bad.” Figure 2.12 presents an example of “mimicry control flow graph” in an
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M, Mg
Mean | Std. Dev. | Max. | Min. Mean | Std. Dev. | Max. | Min.
Bad fprts. 1856.46 372.5 3321 | 1057 (] 11407.99 | 912.42 | 14216 | 9606
Matched files | 72.93 14.53 92 44 81.37 4.06 91 70

Table 2.6: Bad Fingerprints for M7 and Mg Instances

M7 instance. Except for the underlined function addresses, the instruction sequence
matches that of a system library file. As a result, the fingerprint generated from
this segment of code is “bad.” When the majority of fingerprints generated by the

detection system are bad, it would suffer high false positives.

As a basic test, we first measure fingerprints that are common in the original
hypothetical malware program and the M;/Mjg instances. We observe that only one
file from each set of instances, M; and Mg, has one or more common fingerprints
with the hypothetical malware. The M, file shares three common fingerprints, while
the Mg file shares only one. Thus, overall M; and My are successful in erasing the
signatures from the original malware. We then proceed to measure the number of
bad fingerprints produced from M; and Mg instances, and the number of good and

bad fingerprints shared by all M; and Mj instances.

Table 2.6 presents the results of fingerprint comparisons in terms of mean, stan-
dard deviation, maximum and minimum counts between the legitimate files and
M,/ My files, respectively. The “bad fingerprints” row shows the number of bad
fingerprints. The “matched files” row shows the number of legitimate files that share
one or more fingerprints with a mimicry file. For all rows, larger numbers indicate

that mimicry attacks are more successful.

On average an M, mimicry file contains 1856.46 bad fingerprints, and shares one
or more bad fingerprints with 72.93% of the legitimate filess. The most successful

M; mimicry instance shares one or more fingerprints with 92 legitimate files, while
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Figure 2.14: Shared Bad Fingerprints in Collections of M; and Mjs Instances

the least successful instance reproduces fingerprints in only 44 legitimate files. On
average, an Mg mimicry file contains 11407.99 bad fingerprints, and shares one or
more fingerprints with 81.37% of the legitimate files. The most successful Mg mimicry
instance shares fingerprints with 91 legitimate files, while the least successful instance

reproduces fingerprints in only 70 legitimate files.

Figure 2.13 illustrates the total number of bad fingerprints contained in a collection
of N (1 < N < 100) M; and M; files. It highlights the mimimorphic engine’s
capability to mimic fingerprints from the legitimate files. The dashed and solid lines
are curve fittings of the M; and Mg data points, respectively. We can see that for
both M; and Mg files, as the number of instances increases, the total number of bad
fingerprints increases, following a polynomial distribution.

Results in Table 2.6 and Figure 2.13 indicate that both M; and Mg are successful in
mimicking control flows of the mimicry target binaries. An M; or Mg mimimorphic
malware instance contains thousands to tens of thousands of bad fingerprints. As
a result, the high false positive rates make it impractical to use the control flow
fingerprints of a mimimorphic malware instance for detecting the other instances.

With greater efforts, a number of mimimorphic malware instances can be collected

and analyzed, and their shared fingerprints can be extracted. However, our results
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Shared fprnts. | Bad fprnts. | Good fprnts.
M, 161 18 143
Mg 339 321 18

Table 2.7: Shared/Good/Bad Fingerprints of All M7 and Mg Instances

show that such an approach can only achieve limited improvements on detecting
mimimorphic malware. Figure 2.14 presents the results of the fingerprint comparisons
between the legitimate files and a collection of N instances (2 < N < 100) of M,
and Mjg files, respectively. The line signifies the number of bad fingerprints. While
the bad fingerprint counts for N = 2 decrease dramatically compared to the results
in Table 2.6, the decrease slows down and the bad fingerprints stabilize at a non-zero
value. More specifically, when N = 100, there are 18 bad fingerprints for M, files,
and 321 bad fingerprints for Mj files.

While the above two figures indicate very positive results for both M; and Mg, the
number of shared fingerprints among 100 mimicry files presented in Table 2.7 gives
us some surprises. When N = 100, there are 161 fingerprints shared by all M, files,
but only 18 match legitimate files. This implies that the M; mimimorphic engine
generates 143 fingerprints that can be used to identify the mimimorphic instances!
However, the results are much better for Mg files. Whereas there are 339 shared
fingerprints in all Mg files, 321 of them match legitimate files, leaving only 18 addi-
tional fingerprints. The polymorphic instances of a malware normally have tens to
hundreds of shared fingerprints [50]. Thus, even with 100 instances of Mg mimimor-
phic malware, there are still comparable amount of bad signatures mixed with the
good signatures of the malware. Therefore, even given a large number of identified
instances, Mg mimimorphic malware can still maintain enough bad fingerprints to

render the control flow fingerprints unusable.
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2.7 Discussion

In this section we first present an interesting phenomenon observed in our evaluations.

Then we discuss several issues related to the real world applications of Mimimorphism.

2.7.1 Artifact Generation

Table 2.7 shows an interesting phenomenon that the mimimorphic engine produces
shared fingerprints in all instances that do not belong to any legitimate file. This
phenomenon is caused by digesting data with limited order mimic functions.

When the mimic function digests two sequences of symbols that share a common
subsequence with interdependencies longer than the order of the mimic function,
the interdependencies will be partially merged. And thus the mimicry transforma-
tion may produce erroneous symbol sequences that mix and match the two original
symbol sequences. For an intuitive example, the 6;-order English mimic function
sometimes generates erratic words, such as “operationale” and “instructural”, which
are the combinations of the words “operational” and “rationale”, and “instruction”
and “structural”, respectively. Because the the number of such long symbol sequences
are very limited, the mimic function tends to reproduce the same erratic words persis-
tently. This problematic phenomenon can be greatly reduced by increasing the order
of the mimic function, as demonstrated by the Mj files. Back to the previous ex-
ample, a 7y-order English mimic function does not produce the word “instructural”,

because “instruction” and “structural” do not have any common 7-grams.

2.7.2 Robustness

Mimimorphism is robust against a range of static analysis detection methods, such

as automatic n-gram signature generation, and c