
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2012

Discovering New Vulnerabilities in Computer Systems Discovering New Vulnerabilities in Computer Systems

Zhenyu Wu
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wu, Zhenyu, "Discovering New Vulnerabilities in Computer Systems" (2012). Dissertations, Theses, and
Masters Projects. Paper 1539623356.
https://dx.doi.org/doi:10.21220/s2-9n2f-ke48

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-9n2f-ke48
mailto:scholarworks@wm.edu

Discovering New Vulnerabilities In Computer Systems

Zhenyu Wu

Chengdu, Sichuan, China

Master of Science, The College of William and Mary, 2007

Bachelor of Science, Denison University, 2005

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
May 2012

Copyright © 2012 Zhenyu Wu

All Rights Reserved

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Approved by the Committee, April 2012

~a:=
Committee Chair

Associate Prof. Haining Wang, Computer Science

e;co~e of William and Mary

·fC--
ciate Professor Phil Keams, Computer Science

The College of William and Mary

Associate Prof. Weizhen Mao, Computer Science

The College of William and Mary

Associate Profelsor Qun Ll, Computer Science

The College of William and Mary

~ Yv
Dr. Zhichun Li

NEC Laboratories America Inc.

ABSTRACT PAGE

Vulnerability research plays a key role in preventing and defending against malicious computer
system exploitations. Driven by a multi-billion dollar underground economy, cyber criminals
today tirelessly launch malicious exploitations, threatening every aspect of daily computing.
To effectively protect computer systems from devastation, it is imperative to discover and
mitigate vulnerabilities before they fall into the offensive parties' hands. This dissertation is
dedicated to the research and discovery of new design and deployment vulnerabilities in three
very different types of computer systems.

The first vulnerability is found in the automatic malicious binary (malware) detection system.
Binary analysis, a central piece of technology for malware detection, are divided into two
classes, static analysis and dynamic analysis. State-of-the-art detection systems employ both
classes of analyses to complement each other's strengths and weaknesses for improved
detection results. However, we found that the commonly seen design patterns may suffer from
evasion attacks. We demonstrate attacks on the vulnerabilities by designing and implementing
a novel binary obfuscation technique.

The second vulnerability is located in the design of server system power management.
Technological advancements have improved server system power efficiency and facilitated
energy proportional computing. However, the change of power profile makes the power
consumption subjected to unaudited influences of remote parties, leaving the server systems
vulnerable to energy-targeted malicious exploit. We demonstrate an energy abusing attack on
a standalone open Web server, measure the extent of the damage, and present a preliminary
defense strategy.

The third vulnerability is discovered in the application of server virtualization technologies.
Server virtualization greatly benefits today's data centers and brings pervasive cloud
computing a step closer to the general public. However, the practice of physical co-hosting
virtual machines with different security privileges risks introducing covert channels that
seriously threaten the information security in the cloud. We study the construction of
high-bandwidth covert channels via the memory sub-system, and show a practical exploit of
cross-virtual-machine covert channels on virtualized x86 platforms.

Table of Contents

Dedication

Acknowledgements

List of Tables

List of Figures

List of Algorithms

1 Introduction

1.1 Malware Detection and Classification

1.2 Server System Power Management

1.3 Virtualization and Privacy

2 Vulnerability in Static Binary Analysis

2.1 Motivation ..

2.2 Related Work

2.3 Background .

2.3.1 Regular Mimic Function

2.3.2 High-order Mimic Function

2.3.3 The Power of High-order Mimic Function .

2.3.4 Enhancements to High-order Mimic Function

2.4 Mimimorphic Engine Design

2.4.1 Digesting

2.4.2 Encoding

2.4.3 Decoding

2.4.4 Design Issues

iv

v

vi

vii

ix

1

4

6

8

11

12

14

17

18

18

20

21

22

22

24

26

28

2.5 Implementation

2.6 Evaluation

2.6.1 Statistical Tests .

2.6.2 Semantic Analysis Test .

2. 7 Discussion

2.7.1 Artifact Generation .. .

2.7.2 Robustness

2. 7.3 Application Constraints

2. 7.4 Decoder Detection

2.8 Summary

3 Vulnerability in Server Power Management

3.1 Motivation

3.2 Background

3.2.1 Power Distribution . . .

3.2.2 Energy Proportionality .

3.2.3 Real Server Measurements

3.2.4 Threat of Energy Attacks

3.2.5 Feature of Energy Attacks

3.3 ¥nergy Attack on Server Systems

3.3.1 Scenario Selection

3.3.2 Case Study: Wikipedia Mirror Server

3.4 Attack Evaluation

3.4.1 Configuration and Setup

3.4.2 Workload-Response Time Profile.

3.4.3 Attack Measurements

3.4.4 Damage Assessment

3.5 Defending Against Energy Attacks

3.5.1 Defense Challenges

3.5.2 Energy-Aware Programming .

3.5.3 Defense Experiment

3.6 Discussion

3.6.1 Attack Variations . .

3.6.2 Attack Applicability

ii

29

30

31

34

38

38

38

39

40

41

42

43

44

45

46

47

48

49
51

51

52

55

55

56

57

58

59

60

61

66

68

68

69

3.6.3 Limitation of Defense .

3. 7 Related Work

3.8 Summary

4 Vulnerability in Virtualizated Public Cloud

4.1 Motivation

4.2 Related Work

4.3 Struggles of the Classic Cache Channels

4.3.1 Addressing Uncertainty ..

4.3.2 Scheduling Uncertainty . . .

4.3.3 Cache Physical Limitation .

4.4 Covert Channel in the Hyper-Space

4.4.1 Redesigning Data Transmission

4.4.2 {Re)Discovering the Memory Bus Channel

4.4.3 Enabling Reliable Communication .

4.5 Evaluation

4.5.1 In-house Experiments ...

4.5.2 Amazon EC2 Experiments

4.6 Discussion

4.6.1 Damage Assessment .

4.6.2 Mitigation Techniques

4.7 Summary

5 Conclusion

5.1 Contribution to Knowledge

5.2 Future Research

5.2.1 Data Center and Cloud Computing

5.2.2 Mobile System Security

References

Vita

iii

69

70
72

74

75

77
79
80

84

85

86

86

89

94

99

99
101
104
104

105
107

109

110

111
111
113

115

126

To my parents,

for their unending love and encouragement;

And to Vera,

for her companion and support.

iv

ACKNOWLEDGEMENTS

The work of this dissertation would not have been possible without the guidance,
encouragements and support from my committee members, professors, colleagues,
friends, and family.

I owe my deepest gratitude to my advisor, Dr. Raining Wang, who fostered my
interests in research, and provided me with invaluable guidance and support in every
step of my graduate study.

I would like to express my sincere gratitude to the professors in the Computer Science
department, for their excellent and challenging coursework. I am thankful to Dr. Phil
Kearns, for providing research insights and serving on my dissertation committee; Dr.
Qun Li and Dr. Weizhen Mao, for their encouragements and support as my committee
members; Dr. Evgenia Smirni and Dr. Virginia Torczon, for their kindness and
considerations as graduate director and department chair.

I am grateful to my former colleagues, who shared with me their research passion and
inspirations. Dr. Mengjun Xie and Dr. Steven Gianvecchio, with whom I have really
enjoyed years of collaborations and co-authorship; Dr. Chuan Yue, who encouraged
my with cheerful and supporting words. I am especially thankful to Dr. Mengjun
Xie, who has also provided precious mentor-ship and assistance along most part of
my graduate study.

I am also grateful to Dr. Zhichun Li, for his mentor-ship and valuable input as my
external committee member; Dr. Yueping Zhang, for his mentor-ship and encourage­
ments on my research.

I am thankful to the staff of the Computer Science Department, and especially, to
Ms. Vanessa Godwin and Ms. Jacqulyn Johnson, for their persistent and unfailing
administrative support.

I am also thankful to my colleagues, Zhang Xu, for his timely assistance on my
research project for the final chapter; Zi Chu, for his unselfish support of sharing
office desk with me during my final semester.

Finally, I want to give my heartfelt gratitude to my family, whose love and encour­
agement allowed me to finish this journey. I hope that this work makes you proud.

v

List of Tables

2.1 Mimicry English Text

2.2 Mimic FUnction Runtime Analysis.

2.3 Mimimorphic Terms

2.4 Kolmogorov-Smirnov Results

2.5 Byte Entropy Results

2.6 Bad Fingerprints for M 7 and M8 Instances

2.7 Shared/Good/Bad Fingerprints of All M 7 and M 8 Instances

3.1 Server System Configurations

3.2 Percentage of Power Increases due to Attack

4.1 Experimental System Configurations

4.2 Cache Latencies vs. Access Pattern Lengths

4.3 Various Invalid Scheduling Patterns

vi

20

20

22

32
33
35

37

47
59

82
82
85

List of Figures

1.1 The Progression of a Vulnerability

1.2 Vulnerable Malware Detection System Designs

2.1 The Prefixed Symbol Tables .

2.2 The Prefixed Huffman Forest

2.3 The Digesting Phase
2.4 The Commoninst Structure . .

2.5 The Instruction Digest Table .

2.6 The Encoding Phase

2.7 An Encoding Example

2.8 The Decoding Phase

2.9 An Decoding Example

2

5

19

19

23

23

23

25

26

27

28

2.10 Kolmogorov-Smirnov Results . 32

2.11 Byte Entropy Results 33

2.12 A Sample of M7 Control Flow Graph 34

2.13 Bad Fingerprints in Collections of M7 and M 8 Instances 34

2.14 Shared Bad Fingerprints in Collections of M 7 and M8 Instances 36

3.1 System Power Consumptions. 47

3.2 Power Consumption and Response Time vs. Caching Scenarios. 53

3.3 Power Consumption and Response Time Profiles of Victim Server 56

3.4 Effects of Attack Under Selective Benign Workload 57

3.5 Collective Effects of Attack Under Different Benign Workload 58

3.6 Example Component Flow Chart 62

3. 7 System Power Measurement and Attack Detection 64

3.8 Maintaining Client Power History for Defensive Throttling 64

3. 9 Media Wiki Flow Chart 66

3.10 Defense Measurement Results 66

vii

4.1 Memory Address to Cache Line Mappings for Ll and L2 Caches 81

4.2 Memory Address to L2 Cache Line Mapping with Virtualization 83

4.3 Timing-based Cache Channel Bandwidth Test 88

4.4 Timing-based Memory Bus Channel Bandwidth Tests 94

4.5 Memory Bus Channel Quality Sample on EC2 95

4.6 Effects of Non-participating Workload on Bandwidth and Error Rate 100

4.7 Memory Bus Channel Capacities of EC2 .. 102

4.8 Reliable Transmission with Adaptive Rates 103

viii

List of Algorithms

2.1 Mimimorphic Encoding 25
2.2 Mimimorphic Decoding 27
4.1 Classic Cache Channel Protocol 80
4.2 Timing-based Cache Channel Protocol 87
4.3 Timing-based Memory Bus Channel Protocol 93
4.4 Reliable Timing-based Memory Bus Channel Protocol. 98

ix

Introduction

Computer system security is not just a static term-it also represents an ongoing

and unending warfare, with battles taking place in the cyberspace at any moment.

Started as vandalism or for personal glories in the early days of computing, the

act of computer system exploitations quickly evolves into organized cyber-crime as

computers and network spread through the modern society. Nowadays, driven by a

multi-billion dollar underground economy [7, 29), malicious computer system exploita­

tions are sub-divided into specialized categories, such as system hijacking (e.g., bot

farming), data stealing (e.g., theft of personal or business information), spamming,

and even digital terrorism (e.g., denial-of-service blackmailing), threatening every as­

pect of our daily computing. Fortunately, defensive technologies and security research

have also made comparable improvements and corresponding specializations, protect­

ing the cyberspace infrastructure as well as most of our everyday computing activities

from the harms of malicious exploits. However, enticed by strong financial incentives,

attackers are constantly probing and developing new offensive technologies, and the

war will continue on for the foreseeable future.

Central to both offensive and defensive technologies, vulnerability research plays

a key role in crafting malicious exploitations as well as developing corresponding pro-

1

Attack Vector

Security
Advisories

Craft of Exploits

Investigation and
Mitigation

Figure 1.1: The Progression of a Vulnerability

tections. As show in Figure 1.1, a vulnerability may go through different stages of

transformations on both the offense side and the defense side. On the offense side, the

attackers first turn a vulnerability into a workable attack vector. Then they proceed

to create exploits that leverage the attack vectors to achieve their malicious goals.

And finally, the attackers obtain profits through successfully launched exploits. On

the defense side, in response to a vulnerability discovery, security advisories are first

published to alert the system administrators, the vendors of the vulnerable product,

as well as the security service providers. Then, the responsible parties investigate the

vulnerability and develop countermeasures, such as security patches, workarounds,

and exploit prevention techniques. And finally, with the deployment of countermea-

sures, the vulnerable system is secured from the attackers' exploit. In order to protect

computer systems from the attackers' devastation, it is imperative for the defenders

to reach the end on the progression chart first. And thus the timely discovery of

vulnerabilities is critical to successful defenses.

Vulnerabilities of computer systems, by their causes of introduction, can be clas-

sified into the following three general categories:

1. Vulnerable design: Vulnerabilities can be introduced into a system at the

design stage through various errors and failures, such as logic flaws, use of

unwarranted assumptions, and failure to incorporate certain security aspects.

2

2. Vulnerable implementation: Even with a secure design, vulnerabilities can

still enter a system at its implementation stage. Vulnerable implementations

take forms of a wide spectrum of "bugs", ranging from accidental errors (e.g., ty­

pos) to bad practices (e.g., insufficient checking or normalization of user input),

and to rogue features (i.e., unspecified or documented implementations).

3. Vulnerable deployment: Malpractice in system deployment, such as deploy­

ing a system out of its original designed context, can also introduce vulnerabili­

ties. Deployment errors subject a system to unanticipated operation conditions,

such as failed premises, malformed input, and ambiguous command interpreta­

tions, which may either directly lead to or increase the likelihood of vulnerability

manifestation.

While the most commonly encountered vulnerabilities belong to the category

of vulnerable implementation, those vulnerabilities typically have simple corrections

that can be developed and deployed within a short time frame. The now pervasive

on-line software update systems provided by major operating system and application

vendors are good examples of mature industrial solutions that could rapidly respond

to implementation vulnerability discoveries. Compared to implementation vulnera­

bilities, the other two categories of vulnerabilities, namely the design and deployment

vulnerabilities, are less often discovered. However, those vulnerabilities are much

more difficult to respond to and to mitigate in a timely manner. And thus design and

deployment vulnerabilities pose more security hazard, if they were to be employed by

the offensive parties.

This dissertation is dedicated to the research and discovery of new design and

deployment vulnerabilities in three very different types of computer systems that are

or are becoming important parts of our computing infrastructure.

3

1.1 Malware Detection and Classification

Malicious software, known as "Malware", is a class of power weapons used by at­

tackers to assault computer systems. It is commonly employed by attackers to hijack

computer systems and steal information. Taking forms of worms, viruses, and Trojan

horses, malware propagates on to a large number of personal computers as well as

servers either by automated exploits of vulnerabilities, or by exploiting the human

factors (e.g., curiosity, trust, management flaws, etc.).

The first line of defense against malware is automatic malicious binary detection

and classification. With the prevalence of anti-malware software nowadays, binary

executables are subjected to a number of detection scans during transportation and

before execution. In addition, automatic malware analysis and classification systems

are employed by security product vendors and researcher to facilitate quick responses

to malware outbreaks. However, we have found a vulnerable design, buried deep in

many automatic malicious binary detection and classification systems.

Automatic malicious binary detection works by extracting the characteristics,

a.k.a. signatures, of an unknown binary executable, and comparing the results against

a pool of signatures from known malware. And if enough similarities are found, the

binary executable in question is asserted as malicious. As a central piece of the auto­

matic malicious binary detection, binary analysis techniques can be coarsely divided

into two classes-static analysis and dynamic analysis. Static analysis techniques an­

alyze binary executables without executing them. Instead, a number of static metrics

are derived from the binary data, ranging from statistical features such as byte en­

tropy and n-gram distributions, to semantic features such as control flow and system

call patterns. Dynamic analysis techniques, in contrast, perform analysis by executing

the subject binary in a controlled fashion, such as emulation, sand-boxing or symbolic

4

(a) Static Analysis Filtering (b) Pre-processor Filtering

Figure 1.2: Vulnerable Malware Detection System Designs

execution, and monitoring the subject's run-time activity. Each class of techniques

has its own strengths and weaknesses. Static analyses feature high throughput and

low resource consumptions; but they suffer binary obfuscation evasion attacks, par­

ticularly, polymorphism and metamorphism. Dynamic analyses enjoy high detection

accuracy and suffer less from binary obfuscation; however, they demand significantly

longer process time and more computing resources than static analyses.

In order to increase both detection accuracy and performance, state-of-the-art

automatic malicious binary detection and classification systems employ both static

analyses and dynamic analyses. And these two classes of components are commonly

seen organized in design patterns similar to those shown in Figure 1.2(a) or 1.2{b).

The rational of using these designs is that dynamic analyses are too "expensive" to

be placed on the critical path of the detection procedure. Instead, static analyses

or static pre-processing can be employed to handle or filter out most unobfuscated

binary executables, leaving only those particularly-difficult-to-determine binaries for

dynamic analyses to process.

These designs suffer unwarranted assumption and flawed logic. In particular, the

problematic assumption is that static analysis can always differentiate obfuscated

5

programs from unobfuscated ones. However, it is perceivable that some meticulously

crafted binary transformations can produce obfuscated binaries that are indifferen­

tiable from unobfuscated binary in terms of static features. Such kind of binary trans­

formations invalidates the above assumptions and reveals a logic loophole within these

designs-dynamic analyses, incorporated for the purpose of complementing static

analyses' weaknesses against code obfuscation, could be effectively bypassed due to

the very same weaknesses.

In Chapter 2, we present an exploit of this design vulnerability in automatic

malicious binary detection and classification systems. We introduce mimimorphism,

a novel binary obfuscation technique that camouflages malware binaries as legitimate

executables. Inspired by a steganographic technique--the mimic functions, we create

the mimimorphic transformation by augmenting a high-order mimic function with

customized assembler and disassembler. Mimimorphic transformation is capable of

encoding arbitrary data into "mimimorphic binaries" -pseudo-executable binaries

that are indistinguishable from unobfuscated benign binary code in terms of statistical

features such as byte entropy and frequency distributions, as well as semantic features

such as control flow finger prints. As a result, mimimorphism defeats a range of static

analysis techniques by obfuscating the malicious code and misguiding the analyses

to assert the the obfuscated binary as obfuscated, allowing mimimorphic malware to

evade the vulnerable detection systems.

1.2 Server System Power Management

Power management has become increasingly important for server systems nowadays.

As the cost of commodity hardware decreases, energy cost has become a major factor

in server system total cost of ownership (TCO). To address the increasing energy

6

concern and demand for power saving, the concept of energy proportional computing

has been introduced.

Energy proportional computing aims to improve energy efficiency by making

servers consume energy proportional to its workload. Numerous techniques have been

developed to facilitate energy proportional computing, covering a variety of aspects,

from low-level hardware features such as processor Dynamic Voltage and Frequency

Scaling (DVFS) and hard disk spin-down, to high-level system-wise management

schemes such as cluster load provisioning and virtual machine consolidation. While

the server system power savings have been significantly improved thanks to these

technological advancements, a new type of vulnerability, energy targeted exploits, has

quietly emerged from behind the scene.

Historically, performance and security have been considered as primary metrics

for server system evaluation and operation, while the power management has been

largely down-played or even ignored. For this reason, server systems used to be

power-inefficient and energy-disproportional, that is, a server consumes the same or

similar amount of power regardless of the workload it processes. And for the very

same reason, power management has never been considered as a security concept

for server systems. However, the adaptation to energy proportional computing has

changed the scope of server system security concept, and this change have not yet

been paid attention to.

Switching power consumption profiles from "constant" to "workload-proportional"

has introduced a new variable into the server system operation metrics, the power

usage. And more significantly, while other operation variables, such as network band­

width and security privileges, are either audited or access-restricted to system admin­

istrators, the newly introduced system power usage variable is largely unaudited, and

its value can be heavily influenced by remote users (i.e., whoever submits workload to

7

the server) outside of the system administrators' control. The lack of incorporation

of the power management factor in the security framework results in a serious design

vulnerability, leaving current server systems completely open to (i.e., no means to

detect or defend) energy targeted attacks.

In Chapter 3, we demonstrate a realistic energy attack on a standalone web server

system, exploiting this server system power management vulnerability. By profiling

request serving energy cost of an open Web service under different operation con­

ditions, we identify an attack vector that an anonymous remote user can exploit to

abuse the server's power consumption. Then, leveraging knowledge of human Web

browsing behaviors, we proceed to design a stealthy attacking strategy, which ensures

low attack traffic volume as well as statistically indistinguishable request timing sig­

natures (i.e., request inter-arrival time) from those of the benign human users. We

launch the energy attack against our testbed server, and systematically measure the

extent of damage. We find out that this attack is able to significantly increase the

power consumption of victim servers under typical workloads.

1.3 Virtualization and Privacy

Server virtualization are widely deployed in today's data centers. Providing the bene­

fit of dynamic workload consolidation and simplified resource management, virtualiza­

tion technologies greatly reduce data center operation cost, enabling low-cost access

to utility based cloud computing services, and bringing pervasive cloud computing a

step closer to the general public.

However, a major factor that impedes the adaptation of public cloud computing

is the concern of privacy, or information security in general. The public cloud is a

heavily commuted, dynamic, and possibly hostile environment, and thus private data

8

stored in the cloud are more susceptible to loss or leakage. Cloud vendors and users

battle data leakage by orchestrating a variety of technologies, such as network isolation

(such as VLAN and VPN), encryption, firewalls, traffic filtering, intrusion detection,

etc. Despite the efforts being spend on information safeguarding, the potential risks

of data leakage still loom the cloud, one of which is the covert channels.

Covert channels exploit imperfections in the isolation of shared resources between

two unrelated entities, and enable communications between them via unintended

channels, bypassing mandatory access controls placed on standard communication

channels. Previous research have shown that on non-virtualized systems, covert chan­

nels can be constructed using a variety of media, such as file system objects, network

interfaces, shared processor cache, etc. Although to date there is no known practical

exploit of covert channels in the cloud, recent research have precautionarily pointed

out the potential risk of physical co-residency on virtualized systems.

Co-hosting virtual machines (VMs) with different security privileges on the same

physical hardware risks introducing deployment vulnerabilities. Server virtualiza­

tion technologies meet the objective of computing consolidation by creating multiple

logically separate, virtual computing platforms, multiplexing the shared underlying

physical hardware. And the "logically-separate-but-physically-shared" design choice

clearly indicates that server virtualization does not intend to provide computing en­

vironment identical to that of physically separated machines. As a result, it is in­

evitable for virtualized environment to have subtle but non-negligible differences from

non-virtualized ones, especially in non-standardized aspects, such as covert channel

security. However, few applications or security mechanisms today are prepared to

accommodate these differences. Therefore, physically co-hosting VMs with different

security privileges put systems (especially security systems) on the VMs out of their

originally designed context, thereby introducing deployment vulnerabilities.

9

Based on our above assertion, in Chapter 4 we study the construction of high­

bandwidth cross-VM channels on the virtualized x86 platform, focusing on the mem­

ory sub-system. We first analyze existing low-bandwidth cache covert channel tech­

niques, and understand their inefficiencies and limitations in a virtualized environ­

ment. Then we perform an in-depth study of x86 processor cache and memory archi­

tecture, and design novel cache and memory bus covert channels that overcome the

obstacles of existing techniques. We then conduct realistic experiments, and show

that our covert channels can achieve high bandwidth, low cache footprint and reliable

data transmission. Our study is the first among its kind to prove that the threat of

covert channel attacks in the cloud is both realistic and practical.

10

Vulnerability in Static Binary Analysis

Automatic malicious binary detection is the first line of defense against malicious soft­

ware. With the prevalence of anti-malware software nowadays, a piece of binary code

is subjected to a number of static analysis and detection scans during transportation

and before execution. Consequently, binary obfuscation is critical for malware to

succeed in propagation. The widely used code obfuscation techniques, such as poly­

morphism and metamorphism, focus on evading syntax based detection. However,

statistic test and semantic analysis techniques have been developed to thwart their

evasion attempts. More recent binary obfuscation techniques are divided in their

purposes of attacking either statistical or semantic approach, but not both. In this

chapter, we introduce mimimorphism, a novel binary obfuscation technique with the

potential of evading both statistical and semantic detections. Mimimorphic malware

uses instruction-syntax-aware high-order mimic functions to transform its binary into

mimicry executables that exhibit high similarity to benign programs in terms of sta­

tistical properties and semantic characteristics. We design and implement a prototype

mimimorphic engine on the Intel x86 platform, and prove its capability of evading

statistical anomaly detections, using byte frequency distributions and entropy tests,

as well as semantic analysis detection techniques, using control flow fingerprinting.

11

2.1 Motivation

To date, real-time malware detection largely relies on static binary analysis, due to

its significant speed and resource consumption advantages over dynamic executable

analysis [45, 48, 53, 64, 83]. Malware mainly evades static analysis detections through

binary obfuscations, namely oligomorphism, polymorphism, and metamorphism [84].

Oligomorphism is used to evade byte sequence signature detections on the malware

functional code. It utilizes simple operations such as XOR to scramble malware func­

tional code before propagation, and decodes it while executing. Evolved from oligo­

morphism, polymorphism encodes malicious code by "packing" (i.e., compressing or

encrypting), and then camouflages the "unpacker" (the decompression or decryp­

tion code) by using binary mutation techniques, such as instruction substitution and

register remapping. Instead of packing program binaries, metamorphism generates

different instruction combinations to represent the same functional part of a mali­

cious program in its variants. The major techniques employed by metamorphism are

binary-level mutations and meta-level transformations. A meta-level transformation

first translates binary code into an intermediary representation called P-code, then

manipulates the P-code, and finally composes new instances from the P-code. In this

way, metamorphic malware can significantly shuffle its program contents and escape

substring signature based detections.

Although the classic polymorphism and metamorphism enable malware to gener­

ate many binary instances with different byte patterns, they cannot effectively dis­

guise the presence of malicious code in terms of statistical properties and program

semantics. Compression and encryption in polymorphism usually change the statisti­

cal characteristics of a program in such a dramatic manner that the malware program

can be easily classified as suspicious and be further scrutinized. Exploiting this prop-

12

erty, byte-frequency based detection methods such as Anagram [93] and PAYL [94],

and entropy based detection methods such as Bintropy [54] have been proposed to

uncover polymorphic malware. Additionally, because compressed or encrypted code

segments are no longer executable, they can be easily identified by advanced disas­

semblers [51]. Such a filtering strategy has been applied to extract the unpackers of

polymorphic worms [50]. Meanwhile, metamorphism preserves semantic equivalences

between different variants. This property is thus exploited by semantic analysis tech­

niques. For example, MetaAware [104] detects variants of metamorphic malware

based on analysis of system call and library call instructions.

With the advancements in detection, state-of-the-art evasion techniques are mov­

ing beyond polymorphism and metamorphism. Targeting byte-frequency-based static

anomaly detection, polymorphic blending attacks [27] manipulate the statistics of

malware through byte padding and substitution. Designed to thwart semantic anal­

ysis, [60] mutates a program's control flow by transforming constants into an NP­

complete problem. However, while flying under the radar of their targeted detec­

tion methods, these evasion techniques are ineffective against other analysis tech­

niques. Polymorphic blending can hardly escape semantics based detection because

byte padding and substitution destroy the executable semantics, making it easy to

single out the unpacker code. Similarly, encoding control flow with opaque constants

induces identifiable syntax patterns, which can be used as signatures.

We introduce mimimorphism, a new approach to binary obfuscation. Mimimorph­

ism is unique in that instead of targeting at a specific detection approach, it aims

to camouflage malware binaries as legitimate executables and thus significantly in­

creases malware's resistance against a range of static statistical and semantic analy­

ses. Leveraging a steganographic technique called the mimic function, mimimorph­

ism transforms a malware executable into "mimic-binaries" that resemble ordinary

13

benign programs. To achieve this goal, we augment a high-order mimic function with

customized assembler and disassembler, creating an instruction-syntax-aware mimic

function-the core of the mimimorphic engine. The mimimorphic engine captures

the high-order instruction-level characteristics of a given set of benign programs, and

encodes malicious binaries based on the captured characteristics. As a result, a mimi­

morphic binary acquires highly similar statistical properties and semantic structures

to those of ordinary benign programs.

2.2 Related Work

Attackers increasingly employ polymorphic and metamorphic techniques [84] to dis­

guise their attacks and evade intrusion detection systems. The core of these techniques

is to change the appearance of malicious code. Although the bit patterns of poly­

morphic attacks are distinctly different, their malicious functions remain the same.

A number of tools have been developed for generating polymorphic shellcode [20, 55]

and polymorphic executables [43, 70, 103]. Since polymorphic malware and meta­

morphic malware are able to significantly transform their contents in propagation,

as mentioned by Newsome et al. [64] and Crandall et al. [14], they can effectively

circumvent the perimeter of the network intrusion detection systems that are based

on contiguous byte string signatures [45, 48, 83].

A basic approach to detecting polymorphic worms is based on byte statistics,

such as byte frequency [94] and byte entropy [54]. Wang et al. (94] developed a

payload-based anomaly detector, PAYL, which profiles the byte distribution of packet

payloads and detects the abnormal byte distributions of polymorphic worms. Lyda et

al. (54] demonstrated that the byte entropy of executables can be used to effectively

identify packed or encrypted malware. Tang et al. [86] introduced the position-aware

14

distribution signature (PADS), which is capable of detecting polymorphic worms by

recording a byte frequency distribution for each position in the signature "string".

There are several advanced polymorphic attacks [20, 27] designed to evade de­

tections based on byte statistics. Detristan et al. [20] built a polymorphic engine

called CLET, which uses byte padding to approximately match the normal byte dis­

tribution. Fogla et al. [27] introduced the polymorphic blending attack that exploits

byte substitution and byte padding to achieve a very close match to normal profiles.

The polymorphic blending attack is effective in evading 1-gram and 2-gram PAYL,

as well as other detection methods based on low-order byte distributions. However,

the problem of generating optimal polymorphic blending attacks is shown to be NP­

complete, and a near-optimal heuristic approach must be used.A drawback to these

mimicry attacks, similar to basic polymorphic attacks, is that the encrypted regions

do not contain valid instruction sequences, while the attack vector and decryption

routines are still executable, making these regions easily differentiated.

To counter mimicry attacks, higher-order byte patterns have been used in recent

detection methods [69, 93]. Wang et al. [93] presented a new anomaly detector called

Anagram, which is capable of detecting a modified polymorphic blending attack [27].

Anagram employs a Bloom filter to reduce the computation and storage require­

ments for modeling higher-order n-grams, in particular, n-grams 2-9 are chosen for

experiments. While higher-order n-grams tend to produce better signatures, their

training costs are much higher. Perdisci et al. proposed a multi-classifier system

[69]. It summarizes higher-order n-grams as pairs of non-consecutive bytes, reducing

the dimensionality of fully modeling higher-order n-grams. A clustering algorithm,

originally proposed for text classification, is also used to reduce the dimensionality.

The experimental results demonstrate that the proposed detector is as robust against

evasion as a hypothetical 7-gram PAYL.

15

A different approach for polymorphic worm detection is based on syntactic signa­

tures composed of multiple invariant substrings. The rationale behind this approach is

that invariant substrings such as protocol framing substrings and high-order bytes of

overwritten addresses often occur in all variants of polymorphic malware. Polygraph

[64] proposes three types of syntactic signatures and related automatic signature

generation algorithms. Hamsa [53] shares a similar design principle and signature

scheme with Polygraph, but is faster, more noise-tolerant and attack-resilient. Both

Polygraph and Hamsa require innocuous and suspicious traffic pools for signature

generation, and thus, are vulnerable to training attacks. Perdisci et al. [68] presented

a noise injection attack, in which injecting just one fake anomalous flow per real worm

flow can prevent Polygraph from generating an accurate worm signature. Similarly,

Newsome et al. [65] stated that malicious training can cause problems even when all

of the training data are correctly labeled, and demonstrated that this type of attacks

in general can be effective against both Polygraph and Hamsa. Gundy et al. [32]

developed a polymorphic engine for PHP code and a polymorphic PHP-based worm

that is able to evade Polygraph and Hamsa. Venkataraman et al. [89] presented the

fundamental limits on the accuracy of a class of pattern-extraction algorithms for

signature-generation in an adversarial setting.

More recent research has begun to focus on semantic analysis methods that extract

higher-level meaning from executables[13, 46, 50, 102, 104]. Christodorescu et al.

[13] proposed a semantic-aware malware detection system, which essentially exploits

the uniform behavior exhibited by the variants of the same malware. A program is

classified as malicious if it contains a sequence of instructions exhibiting the behavior

specified by a malware template. Kruegel et al. proposed a polymorphic worm

detection scheme [50] by utilizing the structural information. Based on the facts that

the decryption routines of polymorphic worms are usually executable and their control

16

flow graphs (CFG) are fairly stable across worm mutations, the proposed method

employs the static analysis and comparison of binary's CFG for worm detection.

As another semantic analysis method, MetaAware [104] detects metamorphic worms

by matching call instruction patterns. A pattern usually comprises multiple sub­

patterns, each constituting library and system call instructions with corresponding

parameter setting instructions.

Due to the fundamental roles of control flow and data flow analyses in static

analysis, Moser et al. [60] designed a binary obfuscation scheme based on the concept

of opaque constants. They demonstrated that advanced semantics-based detections

(such as model checking [46]) can be effectively thwarted by hiding key constants

of the control flows using obfuscation transformations. Barak et al. [2] discussed

the theoretical limits of program obfuscation. In particular, they proved that it is

impossible to hide certain families of properties via function-preserving obfuscation.

The concept of mimicry attack has also been applied in dynamic host based in­

trusion detection systems (IDS). In the context of system call monitoring, a mimicry

attack is defined as a sequence of malicious system calls that exploits flaws in the

IDS program model [91], and is thus considered as legitimate. 'Iraditionally, these

attacks are manually constructed (85, 91], but recent research (28, 49, 66] has shown

that they can be automatically developed.

2.3 Background

The idea of mimic functions was first introduced by Peter Wayner [98] as a stegano­

graphic technique. A mimic function transforms given input data into certain output

that assumes the statistical properties of a different type of data, thereby concealing

the true identity of the original data.

17

2.3.1 Regular Mimic Function

The Huffman mimic function [98], referred to as the "regular mimic function," is the

functional inverse of the Huffman coding. The use of a mimic function involves three

phases, digesting (i.e., Huffman tree building), encoding and decoding.

Like Huffman coding, a mimic function requires a Huffman tree to operate. In the

digesting phase, a Huffman tree is constructed based on the frequency of each symbol

appearing in a given piece of mimicry target data. In the encoding phase, the mimic

function applies the Huffman decoding operation on the input data, and produces the

mimicry output by referring to the Huffman tree. In the decoding phase, the mimic

function applies the Huffman encoding operation, referring to the same Huffman tree,

and uncovers the original input data from the mimicry output. In order to produce the

mimicry output with a symbol frequency distribution similar to that of the mimicry

target data, the input data must be random (i.e., follow uniform distribution). To

meet this requirement, the input data can be randomized, such as XORing with a

sequence of random numbers.

However, the regular mimic function suffers from a limitation that the symbol

frequency of the mimicry output is limited to negative powers-of-2, e.g., 0.5, 0.25,

0.125, and so on. There are several techniques to overcome this limitation and we

choose to use the high-order mimic function.

2.3.2 High-order Mimic Function

High-order mimic function differs from regular mimic function mainly in the digest­

ing phase. Instead of building a single Huffman tree, an nth-order mimic function

constructs a collection of Huffman trees for a detailed "profile" of the mimicry target.

18

Symbol Prefix 1 t:::C>:
Symbol Prefix 2 c¢>
Symbol Prefix 3

Frequency Table

SvmboiA Counter

SvmboiB Counter

... . ..

Figure 2.1: The Prefixed Symbol Tables Figure 2.2: The Prefixed Huffman Forest

Specifically, as shown in Figure 2.1, each observed unique symbol prefix of length

n - 1 is associated with a frequency table, which records occurrences of symbols with

the given prefix. At the end of the digesting phase, each table is converted into a

Huffman tree. This results in a forest of Huffman trees, each labeled by its symbol

prefix, as shown in Figure 2.2.

Correspondingly, in the encoding and decoding phases of an nth-order mimic func­

tion, a symbol prefix cache of length n - 1 is maintained, recording the sequence of

symbols that have just been encoded or decoded. For each symbol to be encoded

or decoded, the high-order mimic function first locates the Huffman tree whose label

corresponds to the current symbol prefix, and then performs Huffman decoding and

encoding operations respectively, using the located Huffman tree.

Compared to a single Huffman tree in a regular mimic function, the Huffman forest

in a high-order mimic function contains more detailed symbol frequency distributions

as well as interdependencies among a number of adjacent symbols. As a result,

the output produced by an nth-order mimic function consists of n-grams that are

observed in the mimicry target; and the occurrence of each n-gram is close to that of

the mimicry target.

19

Table 2.1: Mimicry English Text Table 2.2: Mimic Function Runtime Analysis

.. .I don't recommend using gA(t) to Digesting= O(n)
choose the safe. These one-to-one en- Table building Reading a symbol 1
coded with n leaves and punctuation. Prefix lookup 1
The starting every intended to find the Recording frequency 1
same order mimic files. A Method is Input length n
to break the trees by constructing the

Tree conversion Sort c mimics the path down the most even
Construct tree c though, offer no way that is, in this
Number of tables c paper. Figure will not overflow mem-

ory. These produced by truncating let- Encoding / Decoding = 0(n)
ter. This need to handle n-th ordered For each symbol Locate Huffman tree 1
compartment of nonsense words cannot Huffman de{en)coding 1
bear any resemblance to B because ... Input length n

2.3.3 The Power of High-order Mimic Function

Compared to the polymorphic blending attack, the state-of-the-art payload mimicry

technique, the high-order mimic function holds two major advantages.

Structural and semantic mimicry: The output of a high-order mimic func­

tion manifests structural and even semantic similarities to the mimicry target. Table

2.1 lists a sample mimicry text output produced by a 6th-order mimic function, us­

ing Wayner's paper [98] as the mimicry target. Without the concept of "word" or

"grammar," the mimic function manages to produce the paragraphs with correctly

spelled words and semi-sensible sentences. In addition, it also successfully reproduces

the grammatical feature that every sentence starts with a capitalized letter. While

a human reader may eventually realize that the output is mere mimicry, it is very

difficult to differentiate the output from "normal" English text by using statistical

tests, such as byte frequency (spectrum) and entropy. Some of the sentences can even

trick grammar parsers.

Run-time efficiency: While polymorphic blending attack on large n-grams is a

hard problem [26], the high-order mimic function have a linear time computational

20

complexity, as shown in Table 2.2. Let R denote the order of a mimic function,

and M denote the number of possible symbols in a given language. In the digesting

phase, using a hash table for prefix lookup, collecting symbol usages and constructing

symbol frequency tables take linear time. Converting all symbol frequency tables into

Huffman trees takes sub-linear time, with a constant bound1
. And thus the digesting

phase overall runs in linear time. The encoding and decoding phases essentially

consist of a prefix lookup followed by a Huffman decoding or encoding, which are

constant time operations for each input or output symbol. Therefore, the encoding

and decoding phases also run in linear time.

2.3.4 Enhancements to High-order Mimic Function

The high-order mimic function is a powerful evasion technique against statistical

anomaly detection, thanks to its ability to transform any data and reproduce statisti­

cal and structural features of the mimicry target. However, without proper enhance-

ments, the mimic function falls short against semantic analysis detection.

Compared to human languages, binary machine languages (i.e., executables) have

higher density and less structural flexibility. Without the knowledge of instruction

syntax, the mimic function is unable to generate continuous long sequences of legit­

imate instructions. The control flows in the mimicry output are very often inter-

rupted by malformed instructions, and thus fail to reproduce semantic properties of

the mimicry target. We resolve this problem in our proposed mimimorphic engine by

helping the mimic function understand the machine language. We augment the mimic

function with customized assembler / disassembler. The enhanced mimic function is

1The total number of entries in each table is bounded by M and the total number of tables is
bounded by Min(n, RM). In theory, the constant RM can be very large. However, the upper bound
is reached only when the input data is completely random. For meaningful data such as English text
or executable binaries, the actual bound is much lower because the number of possible fixed-length
substrings is limited.

21

Table 2.3: Mimimorphic Terms

Terms Description

Mimicry target The target binaries to be mimicked

Mimicry digest
A high-order instruction "profile" produced by
digesting the mimicry target

Mimicry output The output of the mimic function

Mimicry instance
A fake executable composed from the mimicry output
(contains mal ware encoded by the mimimorphic engine)

aware of instruction syntax, and thus is capable of generating executable instructions

as well as mimicking control flows.

2.4 Mimimorphic Engine Design

The mimimorphic engine consists of four major components: assembler, disassembler,

high-order mimic function, and pseudo-random number generator. In this section, we

describe the function of each component and detail the three operational phases of

the mimimorphic engine: digesting, encoding and decoding. Table 2.3 defines a few

important terms used throughout this section.

2.4.1 Digesting

In the digesting phase, the mimimorphic engine takes a set of binary executables as

the mimicry target, and produces a mimicry digest-a high-order machine language

"profile." Two components, the disassembler and the mimic (digesting) function, are

involved in this phase, as shown in Figure 2.3.

Preparing for the digesting function, the disassembler decodes instructions in the

executable binary streams into Common!nst structures, as shown in Figure 2.4. This

structure is designed to provide a generalized abstraction from platform-specific rna-

22

(Control Flow)
, 10

Prefix 1 ..
Prefix 2

Mimicry Target s- ...
Parameter 1 ~ Type

Parameter2 ~
Length

-,. Content ...
I ...

Figure 2.4: The Commoninst Structure

Dlge>t Function $'~ Frequency Table
f--' Counter

~
Instruction A

Prefix A Counter
Instruction 8 f-- Prefix Type 1

Prefix8 Counter
Prefix Type 2- _j ~-

Mimicry Digest

Parameter Type 1 r-- Frequency Table
Parameter Type 2

~ Param A Counter
...

... Param 8 Counter
~

-··--- . ..:.:: J _'" __ j

Figure 2.3: The Digesting Phase Figure 2.5: The Instruction Digest Table

chine instructions, making the mimimorphic engine easily deployable on any instruc­

tion set architecture. The ID field contains an index to identify each unique instruc-

tion. The mimic function treats this field as a symbol in the machine language. The

prefix fields, not to be confused with the "symbol prefix" of the mimic function, corre­

spond to the fields within an instruction that alter the instruction behaviors, such as

atomic operation and address size override. The parameter fields record instruction

parameters. Each parameter further includes three fields: type name, length, and

content, indicating the type, size and content of a parameter, respectively.

After the disassembly, the digesting function processes the decoded instructions

in a sequential manner. Internal to the digest function, a sequence of most recently

processed instruction IDs, called InstPjx, is maintained, acting as the "symbol prefix"

of the mimic function. For each Commoninst, the digest function first tries to locate

an instruction digest table (IDT) associated with the InstPfx. And if absent, a new

23

table is created. Then, the digest function records the information of the Commoninst

into the IDT. Finally, it appends the current instruction ID to InstPfx before moving

onto the instruction.

The /DTconsists of instruction digest records {!DRs), indexed by the instruction

ID. Each record includes a frequency counter of the instruction, as well as frequency

counters of each type of prefixes and parameters, in the form of nested tables. To

record the information of a Commoninst, we locate the /DR (or create a new one)

with the matching instruction ID and increment its frequency counters and all the

frequency counters corresponding to each of the prefixes and parameters noted in the

Commoninst. Figure 2.5 illustrates the structure of an IDT and its /DRs.

At the end of the digesting phase, each IDT is converted into an instruction

Huffman tree (IHT), based on the frequency counter of each !DR inside the table.

Correspondingly, each !DR is turned into an instruction encoding template (JET} by

converting all the frequency tables associated with the prefixes and parameters into

Huffman trees.

2.4.2 Encoding

Utilizing the mimicry digest, the encoding phase transforms an arbitrary piece of

binary into a sequence of executable instructions that resembles the mimicry target.

Three components of the mimimorphic engine-the pseudo-random number generator

(PRNG), the mimic (encoding) function, and the assembler-are involved in this

phase, as shown in Figure 2.6.

Algorithm 2.1 provides a high level overview of the mimimorphic encoding op­

erations. Similar to the digesting function, the encoding function also maintains an

InstPfx, recording the sequence of the most recently encoded instruction IDs. In the

24

Mimicry
Digest

Input Data

Mimicry
Executable

Figure 2.6: The Encoding Phase

Algorithm 2.1 Mimimorphic Encoding
Bin: Input binary data
Digest: Mimicry digest
RSeed: Pseudo-RNG seed

Initialize InstP lx;
SBin = Randomize(Bin, RSeed);
while SBin is not empty do

I HT = Lookup(Digest, I nstP I x);
JET= TreeWalk(IHT,SBin);
Inst = InstEncode(IET,SBin);
Append Inst to InstCollection;
Update I nstP I x with I nst;

end while
Result= Assemble(InstCollection);

Randomize function, the input data (i.e., malicious binary) is randomized by XORing

with a pseudo-random data stream generated by the PRNG. This randomization is

a dual purpose operation: on one hand, it ensures that the input data satisfies the

requirement of the mimic function (i.e., uniformly distributed}; on the other hand, it

completely erases all the characteristics of the original binary. The TreeWalk function

searches for an JET from the JHT by "walking" down the Huffman tree from the root

node, taking left or right branches according to the (randomized) input bits-this is

essentially a Huffman decoding operation. Then, the InstEncode function constructs

mimicry instructions based on the JET. Each prefix or parameter field in the JET is

associated with a Huffman tree, and thus the generation of a prefix or parameter is

essentially a Huffman decoding operation as well. The constructed mimicry instruc­

tions are stored in the form of Commonlnst structures, which are later converted to

binary machine instructions by the assembler.

Figure 2. 7 shows an example of a 7th-order mimimorphic engine generating an

instruction in a function prologue. First, an JHT is looked up based on the six

25

(Instruction Huffman Tree)

__
(" "T"''" • • L t l ---------•

-- _....__ ':_)_l _ __ .. _.:; ~- ~-- -------------------

Figure 2.7: An Encoding Example

previously-generated instructions. Then the engine searches the tree branches ac­

cording to the input bits, until a leaf node is reached. The leaf node is an JET of

a "MOV" instruction, which contains the information of this instruction used after

this particular prefix in the mimicry target. The encode function then leverages this

information to generate a mimicry "MOV" instruction.

2.4.3 Decoding

The decoding phase is the inverse of the encoding phase, as shown in Figure 2.8.

Based on the same mimicry digest, the decoding phase uncovers the input data from

the mimicry output. There are three components of the mimimorphic engine involved

in this phase: the disassembler, the mimic (decoding) function, and the PRNG.

The high level description of the mimimorphic decoding operations is given in

Algorithm 2.2. Again, the JnstPfx is used to record the most recently decoded in-

struction IDs. A mimicry instance is first disassembled into Commoninst structures,

before being processed sequentially. The NodeLookup function locates the JET in the

JHTwith the matching instruction ID. Meanwhile, it produces a stream of data bits

that corresponds to the branches to take from the root of the Huffman tree to the leaf

26

Mimicry
Executable

Decode

Input Data

Figure 2.8: The Decoding Phase

Algorithm 2.2 Mimimorphic Decoding

Mimicry1n: Mimicry instance
Digest: Mimicry digest
RSeed: Pseudo-RNG seed

Initialize InstPfx;
InstColledion = Disassemble(MimicrYin)i
for each I nst in I nstC olledion do

I HT = Lookup(Digest, I nstP f x);
(I ET, I Data) = N odeLookup(I HT, I nst);
/Data= InstDecode(IET, Inst);
Append I Data to DataRandi
Update InstPfx with Inst;

end for
Result = Derandomize(DataRand, RSeed);

node-this is essentially a Huffman encoding operation. The InstDecode function

further retrieves the data bits encoded in each mimicry instruction by performing

similar Huffman encoding operations for all the prefixes and parameters with their

corresponding Huffman trees in the JET. Finally, the Derandomize function uncovers

the original data by XORing the decoded data with a pseudo-random data stream,

which are generated by the PRNG with the same seed used in the encoding phase.

Figure 2.9 shows an example of a 7th-order mimimorphic engine decoding the

instruction produced in the previous encoding example. First, an JHT is located

based on the six previously-generated instructions. Then the engine looks up the

leaf node JET that corresponds to the current instruction to be decoded, in this

example, the "MOV" instruction. The path from the JHT root to this leaf node is

then converted to data bits. The similar operations are performed for each of the

prefixes and parameters of the "MOV" instruction, using the corresponding Huffman

trees in the JET and producing a stream of data bits.

27

(Instruction Huffman Tree)

... ...
........ 14
lw1loo1ol

Figure 2.9: An Decoding Example

2.4.4 Design Issues

We now discuss a few important design issues in the digesting and encoding phases,

which affect the quality of mimicry.

Handling of embedded data in digest binaries: In the digesting phase,

the mimicry target binaries are first disassembled into Commonlnst structures before

digesting. However, in most legitimate executable binaries, there are a small but non-

negligible amount of embedded data, which mainly consist of constants and jump

address tables. Simply ignoring these embedded data might cause the statistical

properties of the mimicry output to deviate from those of the mimicry target, resulting

in the degradation of mimicry quality. We resolve this problem by masquerading

embedded data as special one-byte-no-parameter "instructions" and digesting them

along with other real instructions.

Selecting a good random source: Recall that, in the encoding phase, a regular

mimic function requires input data to be uniformly distributed, so as to produce the

mimicry output with the statistical properties approximating those of the mimicry

target. Correspondingly, a high-order mimic function also requires the input data to

be randomized on high-order. In our mimimorphic engine design, we select MT19937

28

PRNG [57], which claims to have equidistribution in 623 dimensions. Other PRNGs

that can pass high dimensional distribution tests could be used as well.

Ensure valid control flow generation: Although the mimimorphic engine

ensures valid instruction generation, it does not guarantee to produce valid control

flows. This is because branch/ call instructions use byte offset to redirect control flows.

However, the lengths of x86 instructions are not fixed. And in addition, when the

mimimorphic engine produces a branch/ call instruction, there is no prior knowledge

of subsequent instruction to be generated. As a result, a byte offset could point to

the middle of a following instruction, invalidating the control flow. We resolve this

problem by performing control flow correction on the intermediate data after the

encoding phase. Instead of outputting the binary as soon as each instruction is gen­

erated, we keep all the Commoninst structures in a linked list. Then, for each branch

and call instruction, we inspect whether its referring offset aligns to an instruction,

and make corrections if necessary. We have verified the effectiveness of the solution

by performing control flow analysis and basic block identification [50] on the mimicry

output with and without control flow correction. We have observed that the number

of valid basic blocks increases by nearly seven times with control flow correction.

2.5 Implementation

We have implemented a prototype of the mimimorphic engine on the Intel x86 ar­

chitecture. While the current implementation works on the Windows XP, its core

component is OS-independent and can be easily ported to Unix variants. In the

following, we briefly describe some non-trivial implementation details.

First, a mimicry target is required for the mimimorphic engine to perform trans­

formations. We randomly select 100 executable files from the system32 folder of

29

the Windows XP, and extract their "text" sections to form a representative set of

"normal" executables. System executables and libraries make good candidates of the

mimicry target, because they exist on the majority of victim hosts, and they are also

commonly delivered over the Internet {i.e., in forms of security patches).

Second, based on our observation of the basic block size of the mimicry target,

we set the order of mimic functions to 7-8. Considering the unique feature of mimi­

morphism, we attempt to generate mimicked control flows that can be used to evade

advanced semantic analysis detection. Because control flows are formed by basic

blocks, the success of mimicking basic blocks is essential to the generation of mimicry

control flows. We profile the basic block size of our selected mimicry target executable

files, and observe that 89% of the executable files have the average basic block size

less than or equal to eight instructions.

Third, we use a hash table to provide fast prefix lookup of IHT. Although the

number of possible "symbol prefix" grows exponentially as the order of the mimic

function increases, the number of observed unique prefixes is bounded by the size of

input. With a relatively large hash table {22 bits}, we are able to achieve reasonably

low collision rate. In our experiments, the utilization rates of the hash table are

below 20% and 25% for 7th-order and 8th-order mimic functions, respectively. For

both mimic functions, 85% of entries are collision free, and over 99% of entries have

less than or equal to one collision.

2.6 Evaluation

We use 7th-order and 8th-order mimic functions in the mimimorphic engine {M7 and

M8 for short). An 83KB executable file is used as a hypothetical malware program,

on which we apply mimimorphic transformations. For each M7 and Ms, we generate

30

100 instances of the mimicry output, and each instance uses a different seed value

for input data randomization. We evaluate the effectiveness of mimicry from two

detection aspects: statistical test and semantic analysis test.

Note that, whether the executable file is a "real" malware or not is irrelevant to

our evaluation. This is because (1) as stated in Section 2.4.2, the input randomization

in the encoding phase has completely erased all the characteristics of the input data,

thereby any input data would yield equivalent output; and (2) the detections we

apply in our experiments are generic anomaly and similarity tests, instead of specific

malware detections (such as commercial malware/virus scanners).

2.6.1 Statistical Tests

We run our mimimorphic output, M7 and M8 files, against statistical tests, namely the

Kolmogorov-Smirnov and byte entropy tests. The Kolmogorov-Smirnov test is a gen­

eral purpose statistical test frequently used in steganalysis-the analysis of stegano­

graphic techniques, whereas the byte entropy test is proposed for detecting packed or

encrypted malware [54]. Although the Kolmogorov-Smirnov test is more powerful, it

can only determine if a sample is anomalous, whereas the byte entropy can determine

if a sample is, with high probability, a compressed or encrypted file.

The Kolmogorov-Smirnov test evaluates how much two samples (or a sample and

a distribution) differ by measuring the maximum distance between two empirical

distribution functions: KSTEST =max I Sl(x)- S2(x) I, where 81 and s2 are the

empirical distribution functions of the two samples. This test is distribution free­

in other words, the test statistic is not dependent on a specific distribution, and

thus, is very general in applicability. For our experiments, we perform Kolmogorov­

Smirnov test between samples of either mimicry or legitimate files and a collection of

31

Mean
Legitimate 0.074
M1 0.109
Ms 0.093

Std. Dev.
0.045
0.007
0.006 0

M•, ./M7
I ~. ~ . ' .
' -'

K-SScore

Table 2.4: Kolmogorov-Smirnov Results Figure 2.10: Kolmogorov-Smirnov Results

legitimate files. If the test statistic is low, the sample is classified as normal, otherwise

it is classified as suspicious.

The mean and standard deviation of the Kolmogorov-Smirnov test scores are listed

in Table 2.4. Although the test scores of the mimicry files are higher on average, the

majority of these test scores fall within one standard deviation of the legitimate

mean, as shown in Figure 2.102 . For the legitimate files, the mean score is 0.074

and the standard deviation is 0.045. For M7 and M8 files, the mean scores are 0.109

and 0.093, respectively. Therefore, the Kolmogorov-Smirnov test is unable to reliably

differentiate mimicry files from legitimate files. The standard deviation of the mimicry

files is very low compared to that of the legitimate files. This is mainly due to the size

of the mimicry files. M7 and M8 files are approximately 2.4MB and 3.3MB, whereas

the legitimate files range from lKB to 0.5MB. As smaller files are statistically more

likely to vary from the expected value, the variance of the mimicry files, whose sizes

are larger on average, is very small.

The byte entropy detects compressed or encrypted data by measuring the ran­

domness of the distribution of bytes: entropy(X) =- 2: P(x)logP(x), where X is a
X

byte sample and P(x) is the probability P(X = x). For our experiments, we measure

the byte entropy of different test samples, either mimicry or legitimate files. If the

2 This figure is for illustration purpose only, and is not drawn to scale.

32

Mean Std. Dev.
Legitimate 6.353 0.258

M1 6.545 0.021

Ms 6.528 0.021

Table 2.5: Byte Entropy Results

0

' I
I
I
I
I
I
I
I
I
I

I I)II

r 8 : Byte Entropy
Score

Figure 2.11: Byte Entropy Results

entropy is high, then the sample is suspected as compressed or encrypted malware,

which may be further examined by unpacking via emulation or other dynamic anal­

ysis. However, if the entropy is low, i.e., in the range of typical executables, then the

sample is classified as uncompressed and unencrypted.

The mean and standard deviation of the byte entropy test scores are listed in

Table 2.5. For the legitimate files, the mean score is 6.353 and the standard deviation

is 0.258. For M7 and M8 , the mean scores are 6.545 and 6.528, respectively. Like

the Kolmogorov-Smirnov results, the standard deviation of the mimicry files is very

low, again due to their file sizes. In comparison to those of legitimate files, the test

scores of M 7 and M 8 are slightly higher on average, but fall well within one standard

deviation of the legitimate mean, as shown in Figure 2.113 . Based on these results,

the byte entropy test is unable to differentiate mimicry files from legitimate files.

Moreover, because packed and encrypted executables are identified by their high byte

entropy scores (54), and thus M7 and M 8 are also successful in disguising their packed

content as normal executables.

3This figure is for illustration purpose only, and is not drawn to scale.

33

ESX
OS: FuncPtr2
EAX

IIIV
NEG
SB8

Figure 2.12: A Sample of M1 Control
Flow Graph

18x 10
4

>< M7
16 ---Fitting

+ M8
14 -Fitli

30 40 50 60 70 80 90 100
Number of Instances

Figure 2.13: Bad Fingerprints in Collec­
tions of M7 and Ms Instances

2.6.2 Semantic Analysis Test

We use M7 and M8 to evaluate mimimorphic attacks against semantic analysis de­

tection, particularly, the detection based on control flow fingerprinting [50]. This de-

tection technique analyzes the control flows of binaries, and generates "fingerprints"

for those control flows. To detect polymorphic malware, the system compares the

fingerprints for suspicious network traffic against the fingerprints of known malware

instances. If a sufficient number of fingerprints match, the detection system asserts

that the traffic contains malware.

Mirnirnorphism attacks the control flow fingerprinting detection by introducing a

large number of mimicked control flows resembling those of legitimate binaries. The

detection system generates a number of fingerprints from a database of malware, i.e.,

M7 and M8 instances. A fingerprint is defined as "good" if it matches only malware

files, but if the fingerprint matches both malware and legitimate files, it is considered

as "bad." Figure 2.12 presents an example of "mimicry control flow graph" in an

34

M1 Ms
Mean Std. Dev. Max. Min. Mean Std. Dev. Max. Min.

Bad fprts. 1856.46 372.5 3321 1057 11407.99 912.42 14216 9606

Matched files 72.93 14.53 92 44 81.37 4.06 91 70

Table 2.6: Bad Fingerprints for M 7 and M8 Instances

M7 instance. Except for the underlined function addresses, the instruction sequence

matches that of a system library file. As a result, the fingerprint generated from

this segment of code is "bad." When the majority of fingerprints generated by the

detection system are bad, it would suffer high false positives.

As a basic test, we first measure fingerprints that are common in the original

hypothetical mal ware program and the M 7 / M 8 instances. We observe that only one

file from each set of instances, M 7 and M 8 , has one or more common fingerprints

with the hypothetical malware. The M 7 file shares three common fingerprints, while

the M8 file shares only one. Thus, overall M7 and M8 are successful in erasing the

signatures from the original malware. We then proceed to measure the number of

bad fingerprints produced from M 7 and M8 instances, and the number of good and

bad fingerprints shared by all M 7 and M8 instances.

Table 2.6 presents the results of fingerprint comparisons in terms of mean, stan­

dard deviation, maximum and minimum counts between the legitimate files and

M7 f M8 files, respectively. The "bad fingerprints" row shows the number of bad

fingerprints. The "matched files" row shows the number of legitimate files that share

one or more fingerprints with a mimicry file. For all rows, larger numbers indicate

that mimicry attacks are more successful.

On average an M7 mimicry file contains 1856.46 bad fingerprints, and shares one

or more bad fingerprints with 72.93% of the legitimate files. The most successful

M 7 mimicry instance shares one or more fingerprints with 92 legitimate files, while

35

3500

3000

J!l2500
c

12000
u: 1500
"C

c! 1000

500

~ ~ ~ ~ 100 00 ~ .a ~ ~ 100
Number ol Instances Number ol Instances

Figure 2.14: Shared Bad Fingerprints in Collections of M7 and M 8 Instances

the least successful instance reproduces fingerprints in only 44 legitimate files. On

average, an M 8 mimicry file contains 11407.99 bad fingerprints, and shares one or

more fingerprints with 81.37% of the legitimate files. The most successful M 8 mimicry

instance shares fingerprints with 91legitimate files, while the least successful instance

reproduces fingerprints in only 70 legitimate files.

Figure 2.13 illustrates the total number of bad fingerprints contained in a collection

of N (l :::; N :::; 100) M 7 and M 8 files. It highlights the mimimorphic engine's

capability to mimic fingerprints from the legitimate files. The dashed and solid lines

are curve fittings of the M 7 and M8 data points, respectively. We can see that for

both M7 and M8 files, as the number of instances increases, the total number of bad

fingerprints increases, following a polynomial distribution.

Results in Table 2.6 and Figure 2.13 indicate that both M7 and M8 are successful in

mimicking control flows of the mimicry target binaries. An M7 or M 8 mimimorphic

malware instance contains thousands to tens of thousands of bad fingerprints. As

a result, the high false positive rates make it impractical to use the control flow

fingerprints of a mimimorphic malware instance for detecting the other instances.

With greater efforts, a number of mimimorphic mal ware instances can be collected

and analyzed, and their shared fingerprints can be extracted. However, our results

36

Shared fprnts. Bad fprnts. Good fprnts.

M1 161 18 143

Ms 339 321 18

Table 2.7: Shared/Good/Bad Fingerprints of All M7 and M8 Instances

show that such an approach can only achieve limited improvements on detecting

mimimorphic malware. Figure 2.14 presents the results of the fingerprint comparisons

between the legitimate files and a collection of N instances (2 :5 N :5 100) of M 7

and M8 files, respectively. The line signifies the number of bad fingerprints. While

the bad fingerprint counts for N = 2 decrease dramatically compared to the results

in Table 2.6, the decrease slows down and the bad fingerprints stabilize at a non-zero

value. More specifically, when N = 100, there are 18 bad fingerprints for M 7 files,

and 321 bad fingerprints for M 8 files.

While the above two figures indicate very positive results for both M 7 and M8 , the

number of shared fingerprints among 100 mimicry files presented in Table 2. 7 gives

us some surprises. When N = 100, there are 161 fingerprints shared by all M7 files,

but only 18 match legitimate files. This implies that the M7 mimimorphic engine

generates 143 fingerprints that can be used to identify the mimimorphic instances!

However, the results are much better for M8 files. Whereas there are 339 shared

fingerprints in all M 8 files, 321 of them match legitimate files, leaving only 18 addi­

tional fingerprints. The polymorphic instances of a malware normally have tens to

hundreds of shared fingerprints [50]. Thus, even with 100 instances of M 8 mimimor­

phic malware, there are still comparable amount of bad signatures mixed with the

good signatures of the malware. Therefore, even given a large number of identified

instances, M 8 mimimorphic malware can still maintain enough bad fingerprints to

render the control flow fingerprints unusable.

37

2. 7 Discussion

In this section we first present an interesting phenomenon observed in our evaluations.

Then we discuss several issues related to the real world applications of Mimimorphism.

2. 7.1 Artifact Generation

Table 2. 7 shows an interesting phenomenon that the mimimorphic engine produces

shared fingerprints in all instances that do not belong to any legitimate file. This

phenomenon is caused by digesting data with limited order mimic functions.

When the mimic function digests two sequences of symbols that share a common

subsequence with interdependencies longer than the order of the mimic function,

the interdependencies will be partially merged. And thus the mimicry transforma­

tion may produce erroneous symbol sequences that mix and match the two original

symbol sequences. For an intuitive example, the 6th-order English mimic function

sometimes generates erratic words, such as "operationale" and "instructural", which

are the combinations of the words "operational" and "rationale" , and "instruction"

and "structural", respectively. Because the the number of such long symbol sequences

are very limited, the mimic function tends to reproduce the same erratic words persis­

tently. This problematic phenomenon can be greatly reduced by increasing the order

of the mimic function, as demonstrated by the M8 files. Back to the previous ex­

ample, a 7th-order English mimic function does not produce the word "instructural",

because "instruction" and "structural" do not have any common 7-grams.

2. 7.2 Robustness

Mimimorphism is robust against a range of static analysis detection methods, such

as automatic n-gram signature generation, and certain types of semantic analysis

38

techniques. An Nth-order mimimorphic engine digests the mimicry target binaries in

units of N adjacent instructions, and thus its mimicry output consists of series of N

consecutive instructions observed from the mimicry target. As a result, the mimicry

output could evade any n-byte-gram detection (n ~ N x b, where b is the instruction

length in bytes). Based on our observation, the average length of Intel x86 instructions

in a program lies between 2.1-2.8 byte. Thus, in theory, a 16-gram or higher byte test

would be needed to reliably generate signatures for an M8 mimimorphic malware.

Semantic analysis techniques, which make decision based on short-range semantic

similarities [104], are also vulnerable to mimimorphic attacks, due to the large number

of randomly generated control flows that are similar to legitimate binaries.

The mimimorphic engine in our current design has limited ability to mimic program­

level syntactic and semantic characteristics, such as function prologue, epilogue, and

boundaries. We manually inspected an M8 file, and found that about 45% of "func­

tions" miss function prologue or epilogue sequence, and some relative jumps go across

function boundaries. While it is possible to identify our mimimorphic instances lever­

aging these anomalies in program-level properties, we do not consider it a reliable

detection approach. This is because the common program-level properties exist only

by convention, and there are many legitimate programs that deviate from the norm,

especially copyright protected executables that employ non-conventional protection

techniques [21]. Detection malware based on non-conforming of programming con­

ventions would suffer high false positive rates.

2. 7.3 Application Constraints

There are two constraints for applying mimimorphism: memory consumption and

payload inflation. Currently, the M7 and M8 mimimorphic transformations on average

39

consume 600MB and 1.2GB memory, and increase the payload size by 20 and 30 times,

respectively. However, both constraints can be effectively mitigated.

To reduce memory consumption, we suggest implementing an on-demand, disk­

based Huffman forest structure, which loads Huffman trees into memory as needed.

With reasonable sized input for a mimimorphic transformation, only a small portion

of Huffman trees will be traversed (bounded by input size) and thus the memory con­

sumption is significantly reduced. To limit the payload size increase, we suggest ap­

plying compression to the input data before randomization, which could decrease the

mimicry output size by up to 30% [17, 18]. Because the size inflation of mimimorphic

transformation only occurs at the encoding phase, after input data randomization,

compressing input data before randomization does not affect the inflation ratio.

2.7.4 Decoder Detection

Like polymorphic malware, mimimorphic malware requires to ship its decoder with

the payload. The decoder needs to be directly executable and thus cannot be trans­

formed into non-executable data. Mimimorphism is not designed to obfuscate the

decoder. However, it does provide improved protection to the decoder binary com­

pared to Polymorphism. The decoder is the common weakness of polymorphic mal­

ware, because its packed payloads have abnormal statistical properties and are not

executable, making the decoder binaries easily extracted and analyzed. In contrast,

mimimorphic payloads are indistinguishable from executable binaries, and thus cor­

rectly identifying the decoder binary for signature extraction becomes a non-trivial

task. Techniques that "blend" the decoder control flow into the mimimorphic pay­

load, side-by-side with hundreds of thousands of fake-but-legit-like mimicry control

flows, can effectively thwarting attempts to extract the decoder statically.

40

2.8 Summary

Automatic malicious binary detection is the first line of defense against malicious

software. To succeed in propagation, malware employ various binary obfuscation

techniques to evade static detection, which real-time malware detection largely relies

on. In this chapter we have presented a novel binary obfuscation technique, called

mimimorphism.

Mimimorphism transforms a binary executable into a mimicry executable, with

statistical and semantic characteristics highly similar to those of the mimicry tar­

get. Exploiting mimimorphism, malware can successfully evade a range of statistical

anomaly detections, automatic substring signature generation, as well as some state­

of-the-art semantic analysis techniques.

We have implemented a prototype mimimorphic engine on the Intel x86 plat­

form. Our experimental results validate its efficacy in evading statistical anomaly

detection-the byte frequency distribution test and entropy test-and a semantic

analysis technique-the control flow fingerprinting. The mimimorphic binaries pro­

duced by the mimimorphic engine are indistinguishable from benign executables in

the byte frequency distribution test and entropy test. And for control flow finger­

printing, the mimimorphic binaries are found to contain a large number of fingerprints

that match legitimate binaries, leading to high detection false positives or false nega­

tives. Moreover, even subjected to harder tests by training the detection system with

a large number of mimicry executables for common fingerprints extraction, the mimi­

morphic engine can still introduce a significant quantity of benign-program-matching

fingerprints, and thereby cause difficulties in accurate detections.

41

Vulnerability in Server Power Management

Power management has become increasingly important for server systems. Numerous

techniques have been proposed and developed to optimize server power consumption

and achieve energy proportional computing. However, the security perspective of

server power management has not yet been studied. In this chapter, we investigate

energy attacks, a new type of malicious exploits on server systems. Targeted solely

at abusing server power consumption, energy attacks exhibit very different attacking

behaviors and cause very different victim symptoms from conventional cyberspace

attacks. First, we unveil that today's server systems with improved power saving

technologies are more vulnerable to energy attacks. Then, we demonstrate a realistic

energy attack on a standalone server system in three steps: (1) by profiling energy

cost of an open Web service under different operation conditions, we identify the

vulnerabilities that subject a server to energy attacks; (2) exploiting the discovered

attack vectors, we design an energy attack that can be launched anonymously from

remote; and (3) we execute the attack and measure the extent of its damage in a

systematic manner. Finally, we highlight the challenges in defending against energy

attacks, and propose energy-aware programming, an effective defense scheme, to meet

the challenges and evaluate its effectiveness.

42

3.1 Motivation

Power management is one of the critical issues for server systems nowadays. To

date energy cost has become a major factor in the total cost of ownership (TCO)

of large-scale server clusters [4, 34]. According to EPA [87], more than 100 billion

kilowatt hours, representing a $7.4 billion annual cost, are estimated to be consumed

by data centers in U.S. by 2011. As the prices of hardware components keep dropping,

while their performance continuously improve, the proportion of energy cost in overall

expense of server systems tends to grow even larger [4, 34].

Previous research on server power management mainly focus on reducing power

consumption while maintaining acceptable quality of service. Numerous techniques

have been proposed to improve energy efficiency in a variety of aspects, from low-level

hardware features such as processor Dynamic Voltage and Frequency Scaling (DVFS)

[23, 37] and hard disk spin-down [11, 33], to high-level system-wise management

schemes such as cluster load provisioning [12, 71] and virtual machine consolidation

[62]. While these power management advancements have significantly improved power

savings1 , they have also opened up spaces for energy misuse. However, the security

aspect of server system power management has not yet been paid attention to.

In this chapter, we investigate energy attacks, a new type of malicious exploits

on server systems. Stealthily launched from remote by anonymous attackers, energy

attacks increase the power consumption of a server system non-proportionally to

its effective workload. Energy attacks are distinct from conventional cyber-space

attacks in three interrelated aspects: objectives, attacking behaviors, and victim

symptoms. First, energy attacks aim solely at abusing power consumption. They

do not attempt to disrupt the normal service operations of the victim servers, nor

1 For example, our study shows that a mainstream server in idleness consumes less than half of
the energy consumed in full utilization.

43

to acquire sensitive information from the victim servers. Second, energy attacks

are mounted in a stealthy manner, and they deliver damages over a relatively long

period of time. An attacker's network flow is indistinguishable from those of the

normal clients, in terms of traffic patterns or data fingerprints. Third, energy attacks

manifest on victim servers only as increased energy usage, and no other induced

anomalies such as significant performance degradation.

Although no immediately observable damages ensue, the consequences of energy

attacks are serious. A successfully launched energy attack can cause a victim system

to waste a large amount of energy, which in turn becomes waste heat, resulting

in significantly increased power and cooling expense, shortened hardware lifespan,

reduced reliability, and even permanent hardware failure. Current power management

and security mechanisms provide virtually no defense against energy attacks.

To demonstrate the feasibility of launching an energy attack, we perform a step­

by-step design and execution of a realistic energy attack on a Wikipedia mirror server.

First, we profile the power consumption of the victim Web server under different page

serving conditions, and identify a condition that triggers high energy consumption

We then proceed to design an energy attack technique, achieving stealthiness by

leveraging knowledge of human Web browsing behaviors. Finally, we evaluate our

design by executing the attack and systematically measure the power consumption

increases of the victim server under different load conditions.

3.2 Background

In this section, we first discuss the impact of energy proportional computing on a

server system and present power measurements on our own server systems. Then, we

describe the threat of energy attacks exposed on today's server systems.

44

3.2.1 Power Distribution

The power consumption in a server is mainly attributed to two sources, system com-

ponent powering and cooling, with the latter heavily dependent on the former. Server

system components mainly fall into the following categories: power supply, mother­

board (chipset), processor, memory, and disk storage.

The power supply is responsible for transforming high voltage electricity input

from a power outlet to a proper form of electricity (e.g., 5V, 12V DC) for all other

server components. Although the power supply does not directly participate in service

processing, it consumes a portion of input power due to conversion loss. The state­

of-the-art power supplies guarantee over 90% efficiency at normal nominal loads (i.e.,

20%- 100% of rated output) [88].

The motherboard and chipset provide the basic interconnection for all other sys­

tem components. Modern server system chipset has nominal TDP2 of 25 to 35W.

Processors are usually the component that is capable of consuming the most of power

per unit. A typical server processor's TDP is rated at 65 to 130W, and a server is

usually equipped with one to four processors. Memory, typical Fully-Buffered DRAM

(FBDIMM) for servers, has per-unit TDP of approximately 12W [41]. A server sys­

tem usually has four to eight memory modules installed, which add up the overall

memory power consumption to 48 to 96W.

The disk storage for a server system usually consists of multiple hard drives.

The power consumption of a hard drive is mainly determined by its disk rotation

speed: 7,200 and 10,000 RPM (Rotations Per Minute) drives on average consume

8W power while idling and 12W during operation (79], and 15,000 RPM drives on

average consume 12W idle and 16W during operation [80].

2Thermal Design Power, a reference number of the typical amount of power a processor or chipset
draws during full utilization, which is usually lower than its peak power consumption.

45

3.2.2 Energy Proportionality

Energy proportional computing (5] is an important concept in today's server systems.

It aims to address the increasing energy concern and demand for power saving by

making servers consume energy proportional to its workload. This goal is normally

achieved by conditionally trading off performance for power savings.

Processors are the primary targets for power optimization, because of their high

maximum power consumption (hundreds of watts per unit). Nowadays, the majority

of server-class CPUs have employed power saving techniques that are already used

in desktop and mobile processors, such as DVFS, multiple power states with reduced

performance, and even power-down of idle cores. Motherboard and chipset feature the

shutdown of unused circuitry, and memory chips also have several standby states with

reduced power for no read/write cycles. Hard drives can only save a small portion of

energy at idleness, due to their power demanding internal mechanical parts (spinning

platters). However, they have another power saving mechanism called "spin-down" ,

which shuts down the motor and thereby cutting down the majority of the power

consumption, at a high (latency) cost of resuming service.

The ACPI (Advanced Configuration and Power Interface) specifications (36] are

introduced to unify the power management of various types of devices in computer

systems and provide well defined power management interfaces for both hardware

and software. Within the specifications, multiple performance states are defined for

a computer component. Each performance state corresponds to a specification of the

expected performance and power consumption. At least one state is well defined:

a full power state corresponds to the maximum performance. Depending on device

type and manufacturing technology, additional number of lower states with reduced

performance can be defined.

46

3~ ,,~====~--------------~~~

System A System B
3001

CPU
2 x Xeon 5130 2 x Xeon 5520
Dual Core Quad Core

250

Memory
4 X 1GB 6 X 1GB
DDR2 FBDIMM DDR3FBDIMM

HDD
4 X 7200RPM 6 X 7200RPM
SATA SATA

so

o+---
IDlE CPU CPU+HDO

Table 3.1: Server System Configurations Figure 3.1: System Power Consumptions

Although modern operating systems are all capable of utilizing the ACPI to con-

serve energy under light load or in idleness, previous generations of server systems

(such as our System A below) are not very energy proportional. This is because

performance and security used to be the primary concerns for server systems, and

thus the underlying hardware provides little or no support of additional performance

states with reduced power consumption. However, as energy concerns weigh increas-

ingly heavily, today's server systems have been becoming more energy proportional.

3.2.3 Real Server Measurements

We perform a small measurement study on system power consumption, using two

server systems with different generations of hardware configurations, which are listed

in Table 3.1. System A was bought in 2006 and System B was bought in mid-2009. We

believe that both servers are representative of the mainstream system configurations

at the time of purchase.

We measure the whole system power consumption in three different load scenarios:

completely idle (IDLE), processors being fully utilized (CPU), and processors and

hard drives being fully utilized (CPU+HDD). The "CPU" workload is generated by

running multiple instances of a classic CPU benchmark program "linpack", and the

number of instances corresponds to the number of logic cores. The "CPU+HDD"

47

workload is generated by running the "CPU" workload with the highest nice value

and, at the same time, writing a large volume of data to the hard drives using the dd

utility. The power consumption data is collected using a "Watts up? .Net" digital

power meter [97], which is capable of measuring power usage with accuracy of ±1.5%,

at a time granularity of one second. The average power consumption of each scenario

is obtained from a one minute long measurement, collecting 60 data points.

Two observations can be made from our measurement results shown in Figure

3.1: first, in high utilization scenarios System B (the newer server) consumes slightly

more power than System A; second, and more interestingly, in the IDLE scenario,

the power consumption of System B is significantly less than that of System A.

While the first observation can be explained by System B having increased overall

computation power than System A, the second observation presents us the direct

proof that newer server system is becoming more energy proportional than previous

generations. With higher computation power and improved energy proportionality,

one can expect System B to yield more energy saving than System A under the same

workload. However, we make an additional, alarming observation when we look at

the advancements in energy proportional computing from a security perspective.

3.2.4 Threat of Energy Attacks

The improved energy proportionality has significantly changed the power profile of

today's server systems. For example, our measurement data in Figure 3.1 shows that

compared to IDLE, the CPU+HDD power consumption of System A increases by

only 35%, while that of System B increases by 134%. The larger power consumption

increase of System B indicates that it has a wider dynamic power range than System

A. In other words, the power consumption of System B (the energy proportional

48

server) is more alterable than that of System A (the non-energy proportional server).

And the increased power consumption alterability represents a new threat to server

systems. The increased power consumption alterability represents a new threat to

server systems. The power management mechanism of a server can be attacked by

maliciously crafted workloads that target at consuming disproportional amount of

energy, rendering the power saving ineffective, and resulting in significant energy

wastage of the victim server.

Alarmingly, we realize that the threat of energy attacks is in fact an exploitable

vulnerability because currently there is no effective defense against it. Existing power

management schemes mainly focus on improving energy efficiency under normal op­

erating conditions with benign workload, and thus they do not provide any defense

against energy attacks. Moreover, most server systems do no have an efficient mecha­

nism to measure power consumption, and thus could not even detect energy attacks,

let alone defend against them.

3.2.5 Feature of Energy Attacks

Energy attacks on server systems target at exploiting the aforementioned power man­

agement vulnerability, and increasing a victim server's power consumption dispro­

portional to its effective workload. Compared to other cyber-attacks, the damage

of increased power consumption is delivered in an accumulative fashion over a rela­

tively long period of time. As a result, energy attacks must meet two stealthiness

requirements-low network-level signature and low performance degradation.

First, the attack should not exhibit traffic anomalies or have unique traffic pat­

terns, since network traffic is often monitored for security purposes. Second, the

attack should cause minimal performance impact on the victim server, because un-

49

usual performance degradation is a very visible sign that the server is under attack.

The first requirement precludes high service request rate attacks, due to their obvious

traffic anomalies. The malicious requests in an energy attack need to be sent at low

to normal rate, and hence should be crafted to ensure a high per-request energy cost.

In order to fulfill the second requirement, energy attacks must be adaptive to the

workload condition of the victim server. Because the victim hosts an open service,

its normal workload tends to vary significantly in time (e.g., correlated to the diurnal

and weekly cycles). Inflicting a fixed malicious workload on the victim may either

result in performance anomaly during high-load periods, or fail to incur the maximum

damage during low-load or idle periods.

Note that energy attacks on server systems belong to a new attack class, which

is very different from DoS (Denial of Service) attacks [42, 75, 92] in terms of their

purpose, methodology and effects. Energy attacks aim to stealthily abuse a victim

server's power consumption, and try hard to avoid causing any tangible service ir­

regularities. In contrast, DoS attacks target at complete disruption of the victim's

service, leveraging relatively simple attack strategies such as request flooding.

Moreover, because old generations of server systems are not energy proportional,

to date energy has never been a target for DoS attacks mounted on server systems.

And consequently, DoS attacks have mixed energy effects. In other words, not all

DoS attacks result in increased power consumption of the victim server, and some

could even lead to power consumption decrease. As an intuitive example, a TCP SYN

flooding DoS attack exhausts the victim server's socket resource, and thus prevents

the victim from receiving normal service requests. This attack causes the major

components (e.g., CPUs and hard drives) of the victim serve to become idle, and

hence significantly reduces its power consumption.

50

3.3 Energy Attack on Server Systems

In this section, we demonstrate the feasibility of launching an energy attack. First,

we describe the scenario selection. We then design a realistic energy attack against an

open Web server as a case study, covering the attack vector discovery, exploitation,

and detection avoidance.

3.3.1 Scenario Selection

A great variety of tactics can be used to mount energy targeted attacks against

server systems. For example, if attackers obtain administrator privilege on a victim

system, they can deliberately mis-configure drivers and/ or firmware, e.g., over-clock

processor and memory, to operate the hardware components out-of-specs. Even with

the privilege of a normal user, attackers can still easily increase the power consumption

by running badly behaving programs such as a tight dead loop. However, the above­

mentioned scenarios are not the focus of our study, because they are generally difficult

to implement from remote (e.g., requiring privileged or physical access to the system).

We are interested in more commonly encountered scenarios, in which energy at­

tacks can be launched without any special privileges. We assume that (1) the victim

server runs an open service, which accepts service requests from the Internet; (2) the

attackers have no physical access to the victim server; (3) the attackers only have

equivalent privileges of "anonymous users" on the victim server (for example, they

cannot change system configurations or execute arbitrary code); and (4) there are

no exploitable security vulnerabilities on the victim system to escalate the attackers'

privileges. In other words, the attackers communicate with the victim server using

the same method as legitimate users, and the major variable they can manipulate is

the server's workload, by crafting and submitting malicious service requests.

51

Thanks to the generic setting of attack environment, we believe that our scenarios

are applicable to a wide range of servers, particularly, public Web services such as

news, blogs, forums, public data services including file and image sharing sites, and

search engines.

3.3.2 Case Study: Wikipedia Mirror Server

We perform a case study of designing an energy attack on an open Web server. We

use System B (i.e., the newer, energy-proportional server) as the victim, running a

Wikipedia service with setup detailed in Section 3.4.1. We choose Wikipedia mirror

as our attack target because it is a freely available, content-rich Web service-a

representative of real world production-use open Web services.

3.3.2.1 Identifying an Attack Vector

The Wikipedia mirror is powered by Media Wiki, a large-scale content management

system. The contents of all Media Wiki pages are stored in a marked up format

different from standard HTML, and pages are dynamically generated when they are

requested. Two levels of caching, "object cache" and memory cache, help to optimize

the performance.

MediaWiki stores the dynamically generated HTML contents in an "object cache"­

a database table. When a page is requested repeatedly, the HTML content is retrieved

directly from the object cache without being repeatedly generated. A cached HTML

page expires either after a period of inactivity or the associated page content has been

modified. In addition to the object cache, the MySQL database speeds up operations

by storing a portion of frequently queried table entries, as well as table search indices

and query results in a memory, employing a modified LRU replacement algorithm.

52

190 2~,---------------------------~

180

~
170

! 160

i 150
0

140 J
c.

130 L 0

174.98 - ---FuUyCached NoMemcadle No Objtaclle Fully !:ached NoMemCache

(a) Power Consumption vs. Caching Scenarios (b) Response Time vs. Caching Scenarios

Figure 3.2: Power Consumption and Response Time vs. Caching Scenarios

We profile the power consumption and service latency characteristics of the two

caching mechanisms on the target server, using the "Watts up? .Net" digital power

meter. Figures 3.2(a) and 3.2(b) show the average power usage and average response

time for serving page requests from a single client in three different caching scenarios:

pages being fully cached (in both memory and object cache), pages only in object

cache, and pages not being cached. The power consumption averages are obtained

from a one minute long measurement, collecting 60 data points; the response time

averages are derived from the observed server response time during the power mea-

surement, and the number of samples vary depending on the request servicing delay.

The lower bound of Y-axis in Figure 3.2(a) is set to 130 watts, the system idleness

power consumption. Thus, the columns in the figure represent the additional power

consumption caused by the service requests.

From this measurement, we can observe that compared to fully cached requests,

requests with memory cache misses incur 3% power increase and 129% processing

time increase, and requests with object cache misses incur 12.7% power increase and

840% processing time increase. Because energy is defined as the product of power

and time, the effect of cache misses on energy consumption increase is multiplicative.

The high energy cost rendered by cache misses forms an effective energy attack vector

to our Wikipedia mirror server.

53

3.3.2.2 Exploiting the Attack Vector

Our next step is devising a method to exploit the discovered attack vector, that

is, to generate requests that can cause cache misses, especially object cache misses.

We examine previous studies in Web browsing behaviors. According to Barford and

Crovella [3], Web page accesses on a Web server follow Zipf distribution, i.e. access

frequency of a page correlates to its rank, and most accesses concentrate on a small

number of pages while a large number of pages are rarely accessed. It is clear that the

caching mechanisms in our Web server work well in handling such an access pattern

because they are designed to optimize for similar access patterns. However, this

knowledge also hints at a practical cache attack scheme. To generate page requests

with high probability of cache miss, we may access pages in patterns following a very

different distribution from Zipf. For the ease of study and implementation, we choose

a uniform random page access pattern to exploit our attack vector.

3.3.2.3 Detection Avoidance

The selected attack vector enables us to increase the victim's energy consumption

without sending a large amount of requests. To avoid generating abnormal traf­

fic patterns, we model the attacking request rate after "normal" Web clients. The

study by Barford and Crovella [3] also shows that Web browsing exhibits an "active­

inactive" behavioral pattern. During the active period, a client submits requests in

a bursty manner, which is attributed to the browser downloading multiple resources

(images, scripts, etc.) linked to a document. During the inactive period, the client

pauses sending requests, presumably because of the user reading the page content.

The length of the inactive period follows Pareto distribution.

54

For our experiments, we simplify the user behavior by "condensing" the active

period into a single request, and only model the inactive period for request inter­

arrival time. This is because all Wikipedia pages are text-oriented and structurally­

alike. The client behaviors in all the active periods would be very similar.

In addition to traffic shaping, we also need to adaptively adjust the injection of

malicious requests based on the workload of the victim server. This is achieved by

associating the victim server's workload with the response time. During the attack,

we monitor the response time, with which we can infer the server's workload, and

adjust the amount of malicious requests accordingly.

3.4 Attack Evaluation

In this section, we first describe the experimental setup. Then we present the detailed

preparation and measurement results of the energy attack. And finally we assess the

achievable damage of the energy attack.

3.4.1 Configuration and Setup

We set up a Wikipedia mirror server on System B using the classical LAMP combina­

tion (Linux, Apache, MySQL, and PHP). The database is imported from a Wikipedia

dump containing 9,053, 725 page entries. With a number of tests, we find that the

server is capable of caching about 10,000 pages in memory. Therefore, we randomly

pick 50,000 pages for use in our experiment.

We simulate client requests using a custom program running on a desktop com­

puter. The client program simulates multiple clients each running in a separate

thread. The "normal" clients are configured to access selected pages following Zipf

distribution with a= 1, and the request interarrival time follows Pareto distribution

55

270 .,------------------,

250

- 230" I 210

1 190 •

2. 170

150 '

130 .

Number of Olents

(a) Power Consumption vs. Workload

w m 30 ~ so ~ m ~ 90 ~ ~ ~

Number of Olents

(b) Response Time vs. Workload

Figure 3.3: Power Consumption and Response Time Profiles of Victim Server

with k = 1 and a = 1.5. The "malicious" clients are configured to access selected

pages with the same request interarrival time distribution as the "normal" clients,

but in a uniform random manner.

3.4.2 Workload-Response Time Profile

Before launching the attack, we first profile the victim server and establish the cor­

relation between its workload and response time, as shown in Figure 3.3(b). Each

data point is the average of 250 samples of service response time obtained under the

corresponding workload. The error bar represents the standard deviation of response

time. For light and moderate workloads (up to 50 clients), the server's response time

increases quite slowly. When the workload increases beyond 60%, or 60 clients, there­

sponse time starts to rise significantly. With workloads in which the number of active

clients is beyond 100, the server starts to show symptoms of being overloaded-all

clients experience intermittent short burst of request failures in the form of "HTTP

500" errors. Therefore, we determine that the server is capable of stably supporting

up to 100 normal clients. Figure 3.3(a) shows the correlation between stable workload

and system power consumption, from which we can see that the server system power

consumption is indeed proportional to its workload.

56

100% 100%

90!(, -w- Power Increase ,

!: 80% --Latency Increase
-- -- -----·- -----·-

90% [~~::;~~:::·1 g 80'llo
81 70% ..
~ 60%.
.:

81 70% :
b 60%
.5

~ 50%

s 40%
~
~ 30%

i 20%
a..

~ 50%

! 40%

.. 30%

l 20%

10% 10%

0% 0%
5 10 15 5 10 15 20 25 30 35

Number of Malicious Clients Number of Malicious Olents

(a) 100 Normal Clients (b) 50 Normal Clients

100%

90% : -w-Power Increase

g 80'llo , -Latency Increase f
- f·

iK 70% z
b 60%
.5

~ 50%

B 40%
!!
~ 30% ..
l 20% ''

10%

0%
s ro 15 w B 30 ~ ~ ~ ~ ~ oo ~

Number of Malicious Clients

(c) 10 Normal Clients

Figure 3.4: Effects of Attack Under Selective Benign Workload

3.4.3 Attack Measurements

We use server-side power consumption and client-side perceived response latency to

measure the effects of the energy attack. We conduct the experiments using different

server workloads, which range from 10 to 100 normal clients with the increment of

ten clients. For each workload, we inject energy attack traffic by adding a number of

malicious clients. Due to the large volume of data, we only present the results corre-

sponding to 100, 50, and 10 normal clients and depict them in Figures 3.4(a), 3.4(b),

and 3.4(c), respectively. These figures show the increases in power consumption and

response latency caused by the introduction of malicious workloads.

At 100% of the full load, the response latency of the victim server is very sensitive

to the addition of malicious workloads. The malicious workload of ten malicious

57

50% ----- SO'lfo

45% ~--

~L--
(35% 1--- - .. -

1 =~ l /

i
10'lfo

45%

40%

ill
I!
~
~
I=
!I

I
15% :

O'lfo

Normal Oients 10 30 20 10

(a) Power Consumption Increases {b) Response Time Increases

Figure 3.5: Collective Effects of Attack Under Different Benign Workload

clients increases the response latency by 7.6%, and the workload of 15 malicious

clients increases the response latency by 50.2%. The power consumption, however,

does not increase with the response latency, as the server is already fully loaded. At

50% of the full load,with 20 malicious clients, the attack results in 20.9% of extra

power being consumed while only incurs 7.1% increase in response latency. However,

with 30 or more malicious clients, the response latency increase surpasses the power

consumption increase. At 10% of the full load,the energy increase caused by the

attack becomes very evident. With 40 malicious clients, the victim server's power

consumption increases by 39.0%, while the response latency only increases by 7.4%.

3.4.4 Damage Assessment

Our measurement results show that, at any stable workload, energy attacks will cause

increased power consumption on the victim server. The more malicious clients, the

larger the power increase. However, a larger number of malicious clients also results

tangible performance degradation. Figure 3.5(a) and 3.5(b) presents the collective

results of power consumption and service response time increases for all ten different

58

Table 3.2: Percentage of Power Increases due to Attack

Utilization 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Power Increase 39.0% 42.3% 36.3% 31.6% 21.7% 14.8% 11.6% 9.0% 11.3% 6.2%

workloads with varying numbers of malicious clients. Note that samples with response

time increment larger than 50% are omitted due to their unimportance.

To guarantee the success of an energy attack, low attack profile takes prece-

dence over the power consumption increment. Therefore, the number of malicious

clients needs to be limited to avoid significant response time impact. We refer to the

workload-response time profile for a reasonable threshold. The standard deviation

of response time at stable workloads varies between 12.3% and 21.1% of the measured

values. We thus use the smallest percentage, 12.3%, as the upper limit of response

time increases. With the chosen constraint, we determine the maximum power con-

sumption achievable by the attacks for each workload, and present them in Table

3.2. We observe that the power impact of the energy attack is inversely correlated

to the benign workload of the victim-an idle server suffers significant extra power

consumptions, while a busy server only incurs small power consumption increases.

To assess the nominal damage of this energy attack to a server, we refer to the

study of typical server workloads. Barroso and Holzle [5] observe that most servers

have average utilization between 10% and 50%. Correspondingly, under such utiliza­

tion, our energy attack can result in 21.7% - 42.3% power consumption increase.

3.5 Defending Against Energy Attacks

The high potential damage of the energy attacks calls for an effective defense. In this

section, we first discuss the difficulties in defending against energy attacks. Then we

present our solution to meet the challenges, and validate its effectiveness.

59

3.5.1 Defense Challenges

To defend against energy attacks, it is necessary to differentiate malicious users from

benign users, by the amount of energy consumed in serving their requests. Unfortu­

nately, although the power consumption of the whole system can be measured in a

coarse time granularity, today's servers are unable to provide fine-grained power con­

sumption measurement due to the lack of hardware support. As a result, currently it

is not possible to measure and account for the actual power consumption of servicing

each individual request. And consequently, it is a very challenging task to devise an

effective and generalized protection mechanism against energy attacks.

One may be tempted to suggest detecting an energy attack by other metrics in

place of fine-grained power instrumentation. For example, the energy attack used in

our case study can be uncovered by detecting abnormal page visit patterns, instead

of referring to power consumption measurements. However, this naive solution suffers

in terms of soundness and completeness. First, the cause-and-effect relationships are

not definitive, and thus detecting an energy attack by other metrics may lead to high

false positives. For instance, our case study exploits an abnormal page visit pattern.

But not all page visit patterns that deviate from the norm result in energy attacks.

Second, energy attacks could exploit a great variety of alternative attack vectors, and

render the monitoring system ineffective. Unlike buffer overflow or code injection

vulnerabilities, the energy security issue is rooted deep in the server system's design,

and it can manifest itself as very different, unrelated attack vectors. We discuss two

alternative attack vectors in Section 3.6.1, and the exploitation of each attack vector

requires a separate metric to discover.

Compared to the aforementioned "side-metric" monitoring strategy, a more holis­

tic approach is to build the defense system based on fine-grained power consumption

60

information, and then derive the needed information by measuring hardware perfor­

mance metrics. Neugebauer and McAuley [63] suggest using performance counter

data such as CPU cycles, disk operations, and screen pixels to approximate power

consumption for laptops and mobile devices. Buennemeyer et al. [8] present a battery­

sensing intrusion protection system for mobile computers, which correlates device

power consumption with Wi-Fi and Bluetooth communication activities. Kim et al.

[44] propose a power-aware malware detection framework by collecting application

power consumption signatures. While this approach achieves good generalization, it

suffers low accuracy on server systems. Designed for personal use, mobile devices run

few applications concurrently. In contrast, server systems are designed to process a

large number of requests from multiple users in parallel. As a result, performance

counter readings of independent request-serving processes can be heavily coupled (es­

pecially at fine granularity) and inaccurate for power approximation. For example,

on a multi-processor system, processes competing for shared resources, such as the

memory bus and PCI devices, can lead to heavy interferences of each other's cycle

count readings. For another example, modern hard drives can intelligently reorder the

sequence of operations to improve efficiency. However, this optimization can cause

the operation latency disproportional to the complexity of a data request.

3.5.2 Energy-Aware Programming

The lack of hardware support makes fine-grained power measurement on today's

server systems unachievable, while the parallel processing nature of request servicing

renders low-level counter-based power approximation inaccurate. To work around

these limitations and enable the design of an effective and generalized defense system,

we take an application-oriented approach and propose energy-aware programming.

61

(1) (2)

Figure 3.6: Example Component Flow Chart

The key idea of energy-aware programming is to capture the power consumption

of individual request servicing in the form of application code execution, and enable

an application to differentiate power consumption of service requests. Energy-aware

programming infers power consumption information by leveraging high-level appli­

cation context. Thus, this technique is much less prone to interferences than those

low-level counter-based power approximation techniques.

3.5.2.1 Power Consumption Characterization

In order to create an energy-aware application, application developers need to char­

acterize the power consumption of the components in their applications, and embed

such information into the program code. This can be accomplished in three steps.

The first step is the analysis and collection of conditionally invoked components.

As shown by the two example flow charts in Figure 3.6, components C, G and Hare

conditionally invoked while all others are mandatory. The rationale behind this design

is that the mandatory executed code contributes to the baseline power consumption

for all request services, but the conditionally invoked code is responsible for the

dynamic power consumption, which can increase dramatically for servicing power­

extensive requests.

The second step is to characterize the power consumptions of component collec­

tion {C1, C2, ••• , Cn}· This can be done using basic profiling techniques. Given a

fixed time interval t and a specific number of invocations r, each component Ci is

62

invoked r times in t seconds, and the average system power consumption Psysi is

measured. The effective power consumption ~ corresponding to the component Ci is

then derived by contrasting Psysi with the system idle power consumption ~dle· The

power consumption readings do not have to be very precise, because (1) in absence

of fine-grained hardware support, it can be difficult to obtain accurate power con­

sumption readings; and (2) the goal of this profiling is to differentiate components by

their power consumption, and then use this information to infer the system dynamic

power consumption state, as well as the nature of future workload.

The final step is to annotate the power information in the application. This is

fulfilled by embedding the component power consumption table and inserting power

counters into the program. For each component Ci, a counter Ii is assigned, and each

invocation of the component results in an increment of its associated counter.

3.5.2.2 Power State Inference

With embedded power information in an application, the dynamic power consumption

can be inferred by computing P = E(Pi · fl.Ii), referring to the embedded component

power consumption table and the increments of power counters. This calculation

applies to the entire system as well as individual request servicing. In other words,

the dynamic power consumption of the whole system at any given interval can be

calculated by collecting the power counter increments during that interval; and the

dynamic power consumption for servicing a specific request can be calculated by using

the power counter increments caused by servicing this request. Therefore, an energy­

aware application can self-monitor its power states at coarse-grained and fine-grained

levels, and thereby is capable of detecting energy attacks, identifying attackers, and

reacting accordingly.

63

~
(a) Measure Normal Power Consumption (b) System-wide Power Attack Detection

Figure 3. 7: System Power Measurement and Attack Detection

llll,,lllzl ... llllnl ¢
l P, I P, I ··· I Pn I

Oient Power History

Oient 1 Average P-

Figure 3.8: Maintaining Client Power History for Defensive Throttling

3.5.2.3 Defense System Design

With the help of energy-aware programming, we design a simple and effective defense

system to shield applications from energy attacks. The system is composed of three

components, attack detection, power history maintenance, and defensive reaction.

The first component is responsible for detecting energy attacks on the server sys­

tem. Before an energy-aware application is deployed, we first subject it to benign

workloads, and record the system's normal Power, PNormal, as shown in Figure 3.7(a).

After the application has been deployed, the attack detection component monitors

the Power of the entire system, and compares it with PNormal· As shown in Figure

3.7(b), when the system power consumption surges significantly above the normal

value, it asserts that the system is under an energy attack.

The second component is used for maintaining client power history records. Illus-

trated in Figure 3.8, for each communicating client, its average power consumption

for request servicing is maintained. During an energy attack, these records are used

64

by the defensive reaction component as a reference to classify malicious clients. To

scale with the client population growth, if necessary, individual clients' power history

records can be aggregated on a per-subnet or per-domain basis.

The third component is designed for providing defensive reactions when an energy

attack is detected. It sorts the power history records, and identifies the clients on top

of the sorted list as malicious, because they represent the major sources of increased

power consumption. It then applies defensive operations to these clients to reduce

their energy impacts. For example, throttling down or blocking their request servicing

for a period of time, or until the energy attack is stopped. The choices of defensive

reactions are flexible, and customizable according to the tolerance of false positives.

Thanks to energy-aware programming, our defense system can uncover the stealth­

iness of malicious energy attack clients, and thus prevent potential evasion attempts.

An attacker may utilize a large number of compromised machines (such as a botnet)

and make each client very low profile. However, the attacking clients can still be iden­

tified and reacted upon by our defense system. This is because the service requests

from each malicious client, although low in intensity, still consist of a high percentage

of power-consuming service requests.

Although determined attackers might evade our defense system by lowering the

concentration of malicious requests, and thus making a malicious client's power con­

sumption comparable to that of a benign client. However, doing so would also sig­

nificantly reduce the effectiveness of the energy attack, and require the attacker to

exploit a much larger number of compromised clients and to generate much higher

traffic volume to achieve the same effect. Such a practice would degrade an energy

attack to a regular DDoS (Distributed DoS) attack, which can be defended by vari­

ous previously proposed work [42, 75, 92). The discussion of defending against DDoS

attacks is beyond the scope of this chapter.

65

Figure 3.9: Media Wiki Flow Chart

3.5.3 Defense Experiment

E..nergy Constramt
rtm•shold bceeded

Time (Seconds)

-10 Normal Client

.__50 Normal Olent

-100 Normal Olent

Figure 3.10: Defense Measurement Results

To validate the effectiveness of our defense scheme, we have implemented a prototype

defense system in our Wikipedia mirror server. In the following, we first briefly

describe the implementation and then present the experimental results.

According to our profile measurements in Section 3.2, an object cache miss in page

request servicing incurs high power consumption. We thus analyze the Media Wiki

page request handling routine, and present its abstract flow chart in Figure 3.9.

The main difference between object cache hit and miss lies in the invocation of the

"Parser" component, which performs a processor intensive operation that dynamically

generates HTML content from the Wiki style mark up text. Because the execution of

the parser component is major source of additional power consumption, we can build

an effective defense against energy attacks by protecting this single component.

We augment Media Wiki with "energy-awareness" by counting the parser invo­

cations. Since there is only one power-extensive component, we simply omit power

profiling, and assign 1.0 as this component's symbolic dynamic power consumption

(Power for short). That is, if the parser is invoked while serving a page, the ap-

66

plication's Power is 1.0; otherwise, the Power is 0.0 . Effectively, the Power can be

expressed as the parser invocation ratio.

The storage and computation overhead of the defense system is minor. For each

client, a 12-byte power history record is used to maintain the client's identity, number

of page visits, and its cumulative Power. For each request servicing, a hash table

look-up is performed to retrieve the client's power history record, and then several

arithmetic operations are performed to update the record. Overall, the overhead is

negligible compared to the storage and computations required to serve a Wikipedia

page.

We first test our defense system's ability to differentiate benign and malicious

clients, as well as collecting the system's normal Power for defense purposes. When

we subject the server to benign requests, we observe that the system Power stays

around 0.04-Q.05. However, when we inflict malicious requests on the server, the

system Power is increased to 0.6-0.8. We heuristically set the system normal Power to

0.3, and set the protection threshold to be 30% parser invocations with 128 accesses.

Therefore, when the victim server's system wide Power exceeds 0.3, users will be

throttled down if they have over 128 recorded accesses, and have triggered the page

parser invocation over 30% of the time.

We then configure and activate our defense system online. We measure the actual

power consumption increases of the victim server under the same energy attack, and

present the results in Figure 3.10. We use the same server workloads in Section 3.4.

For 10 normal clients (i.e., low workload), the increase of server power consumption

reaches about 50% at the beginning of attack. However, the attacker is unable to

sustain the high power consumption increase. The parser invocation ratio quickly

exceeds the threshold of our defense system, and the attacker's service requests are

discarded afterwards. Correspondingly, the power consumption increase of the server

67

is reduced to 19%. We can observe similar effects for 50 and 100 normal clients-our

defense lowers the power consumption increments from 21% to 4%, and from 6% to

near zero, respectively. Meanwhile, page accesses from normal clients at all workloads

are served without interruption.

3.6 Discussion

In this section, we first describe two other possible energy attack vectors, then discuss

the applicability and scope of energy attacks, and finally discuss the limitation of

energy-aware programming and the possibility of hardware-based mitigation.

3.6.1 Attack Variations

In addition to using cache miss as an attack vector, energy attacks can also be

launched by exploiting other energy related vulnerabilities. For example, a file de­

positing server running an unmodified Linux kernel and allows users to control the

names for stored files (such as a public FTP server) is vulnerable to energy attacks.

The attacker can exploit a well known *nix kernel file name resolution vulnerability,

and launch a low-rate algorithmic complexity attack [10, 15], which could significantly

increase the victim server's processor utilization. Because a file depositing service is

storage and network bandwidth bound, a well-controlled energy attack can avoid

generating any throughput anomalies.

Besides the processors, other components with large dynamic power range can

also be exploited by energy attacks. For example, hard drives normally consume 12

to 16 watts during operation, but their power consumption can be reduced to under

one watt by spin-down the platters during long period of idleness. As a result, an

energy attack on hard drives can be mounted by performing sleep deprivation attack

68

[56, 72] to prevent expected spin-down. Although the additional energy cost of a

single attacked hard drive seems to be insignificant, the damage can accumulate to

a significant amount when the energy attack targets at a decent sized storage server

with 10 to 20 installed hard drives.

3.6.2 Attack Applicability

We have thoroughly investigated the proposed energy attack against a standalone

server system. We use the case of single standalone server as the first step to study

energy attack, because it is relatively easy to perform a clear analysis and repeatable

evaluations. However, the attack vectors on a standalone server are not applicable

to other hosting configurations, such as clustered servers and load balanced server

farm. For example, our proposed energy attack on our Wikipedia mirror server is not

effective on the actual Wikipedia website, which employs load balanced server clusters

and heavy proxy caching techniques. In order to launch energy attack against a service

configured in multi-server setup, one needs to discover and exploit new attack vectors.

Nevertheless, we believe energy attacks also pose serious threats to large scaled

systems. For example, in a cloud hosting environment [24], competing cloud vendors

may use energy attack as a powerful weapon to increase the operation cost of their

opponents, making the attackers' service rates more attractive. To extend the scope

of this work, we plan to study the interactions of workload and power consumption of

multi-server systems, discover viable attack vectors, and devise defending techniques.

3.6.3 Limitation of Defense

We acknowledge that our defense strategy places the nontrivial duty of power profiling

and energy accounting onto the application developers. However, because energy-

69

aware programming is currently the most effective holistic defense approach, we argue

that its additional complexity is an acceptable trade-off for better security.

For more scalable and accurate solutions, we advocate enabling fine-grained power

measurement at the hardware and operating system level, and make energy consump­

tion information as accessible as the performance data. For example, the processor

can include an "energy counter" similar to performance counters, and account the

amount of energy consumed by a particular thread in given time period, based on the

amount and variety of circuitry being activated.

3.7 Related Work

As energy cost of server systems takes a significant proportion of IT expenditures,

research on power management techniques for server systems has been very active

in recent years. Bianchini and Rajamony [6] perform a survey of power and energy

research for server systems. Elnozahy et al. [23] present two power management

mechanisms-dynamic voltage scaling (DVS) and request hatching- to reduce energy

consumption in Web servers. Horvath et al. [37) explore the benefits of using DVS in

multi-stage service pipelines for power management in server farms. Felter et al. [25)

study power shifting, which reduces peak power with minimal performance impact

by dynamically reallocating power to performance critical components. Meisner et

al. [59J design a system called Powernap, which can reduce server idle power by

rapidly transitioning the entire system between a high-performance active state and

a near-zero power idle state.

Barroso and Holzle [5] present the concept of energy-proportional computing.

They call for improvements in the energy usage profile of every server system compo­

nent, particularly the memory and disk subsystems to achieve energy proportionality.

70

Barroso and Holzle also point out that server systems may not benefit as much as

the mobile systems from the energy-efficiency schemes targeting mobile devices, due

to the distinct behavior of server workloads. And to make the entire server system

energy-efficient, energy proportionality must be included in the design objectives for

each component.

Energy management in server clusters has also been extensively studied. Chase

et al. [12] design a resource management system called Muse with a primary focus

on energy for large server clusters. Muse promotes energy efficiency of server clusters

by balancing the cost of resources against the achieved benefit. Pinheiro et al. [71]

propose a load concentration technique that can dynamically distribute the load and

set some hardware resources in low-power modes to conserve energy. Elnozahy et al.

[22] evaluate different combinations of cluster reconfiguration and dynamic voltage

scaling. Rajamani and Lefurgy [74] investigate the key factors in the system-workload

context that affect energy saving policies in server clusters. Heath et al. [35] study the

energy conservation in heterogeneous server clusters using a model-based cooperative

Web server. Fan et al. [24] present the aggregate power usage characteristics of

several large-scale workloads from a data center over a period of six months and find

that the opportunities for power and energy savings at the cluster-level are greater

than at the rack-level.

Different from the research on power management in server systems that mainly

focus on energy conservation, the security issue of power and energy has gained much

attention in mobile computing community, because the power of battery is a critical

and scarce resource for mobile devices. Dagon et al. [16] categorize a number of

security problems caused by mobile malware and pointed out that battery exhaustion,

a type of denial-of-service (DoS) attacks, is a serious threat to mobile computing.

Martin et al. [56] present three types of battery depletion attacks. Racic et al. [73]

71

demonstrate that the attack on mobile phones' battery can be stealthily launched by

exploiting the vulnerability of cellular service MMS (Multimedia Messaging Service)

and that the attack can drain the power of batteries up to 22 times faster.

A number of research efforts have been spent in detecting and preventing attacks

on battery power of mobile devices. Martin et al. [56] propose a power-secure archi­

tecture, which employs multi-level authentication and energy signatures, to counter

power attacks. Buennemeyer et al. [8] present a battery-sensing intrusion protection

system for mobile computers that correlates device power consumption with Wi-Fi

and bluetooth communication activities. Kim et al. (44] propose a power-aware

malware detection framework that can detect previously unknown energy-depletion

attacks by collecting power consumption information of applications and comparing

their power signatures with the signatures of normal applications.

3.8 Summary

Server systems have become more power efficient and energy proportional as power

management technologies advance. However, the security aspect of power manage­

ment has not yet been studied. In this chapter, we investigated the potential vulner­

abilities in server power management.

First, we exposed the threat of energy attacks by measuring the power consump­

tion of real server systems. Then, we designed and evaluated an energy abusing attack

on server systems. In particular, we validated the threat of energy attacks on an open

Web server running Wikipedia mirror service. By profiling power consumption of the

target server under different operation conditions, we realized a viable energy attack

vector. We conducted a series of experiments, in which energy attacks with varying

attack intensities were carefully mounted to avoid incurring tangible degradation of

72

server performance. Our experimental results show that the proposed energy attack

can incur significant increase of power consumption on the victim server. Finally,

we presented an application-oriented defense approach to work around the current

limitations of the hardware, and effectively protect a server against energy attacks.

73

I 4 Chapter ---------------------'

Vulnerability in Virtualizated Public Cloud

Privacy and information security in general are major concerns that impede enterprise

adaptation of shared or public cloud computing. Specifically, the concern of virtual

machine (VM) physical co-residency stems from the threat that hostile tenants can

leverage various forms of side channels (such as cache covert channels) to exfiltrate

sensitive information of victims on the same physical system. However, on virtual-

ized x86 systems, covert channel attacks have not yet proven to be practical, and

thus the threat is widely considered a "potential risk". In this chapter, we present

a novel covert channel attack that is capable of high-bandwidth and reliable data

transmission in the cloud. We first study the application of existing cache channel

techniques in a virtualized environment, and uncover their major insufficiency and

difficulties. We then overcome these obstacles by (1) redesigning a pure timing-based

data transmission scheme, and (2) exploiting the memory bus as a high-bandwidth

covert channel medium. We further design and implement a robust communication

protocol, and demonstrate realistic covert channel attacks on various virtualized x86

systems. Our experimental results show that covert channels do pose serious threats

to information security in the cloud. Finally, we discuss our insights on covert channel

mitigation in virtualized environments.

74

4.1 Motivation

As x86 virtualization technologies mature and being widely deployed, utility based

cloud computing services are becoming increasingly attractive for enterprises. Cloud

vendors today are known to utilize virtualization heavily for consolidating workload

and reducing management and operation cost. However, due to the relinquished

control from the data owner, data in the cloud is more susceptible to leakage by

operator errors or theft attacks. Cloud vendors and users battle data leakage with

network isolation (such as VLAN and VPN), encryption, traffic filtering, and intrusion

detection. Despite the efforts being spend on information safeguarding, there remains

potential risks of data leakage, namely the covert channels.

Covert channels exploit imperfections in the isolation of shared resources between

two unrelated entities, and enable communications between them via unintended

channels, bypassing mandatory auditing and access controls placed on standard com-

munication channels. Previous research has shown that on a non-virtualized system,

covert channels can be constructed using a variety of shared media [9, 52, 67, 78, 90].

However, to date there is no known practical exploit of covert channels on virtualized

x86 systems.

Exposing cloud computing to the threat of covert channel attacks, Ristenpart

et al. [77] have implemented an L2 cache channel in Amazon EC2 [77], achieving

a bandwidth of 0.2 bps (bits-per-second), far less than the one bps "acceptable"

threshold suggested by the Trusted Computer System Evaluation Criteria (TCSEC,

a.k.a. the "Orange Book") [19]. A subsequent measurement study of cache covert

channels (101] has achieved slightly improved speeds-a theoretical channel capacity

of 1. 77 bps1 . Given such low reported channel capacities from previous research, it

1This value is derived from results presented in the original paper-a bandwidth of 3.20 bps
with an error rate of 9.28%, by assuming a binary symmetric channel.

75

is widely believed that covert channel attacks could only do very limited harm in

the cloud environment. Coupled with the fact that the cloud vendors impose non­

trivial extra service charges for providing physical isolation, one might be tempted to

disregard the concerns of covert channels as only precautionary, and choose the lower

cost solutions.

In this chapter, we show that the threat of covert channels in the cloud is real

and practical. We first study existing cache covert channel techniques and their ap­

plications in a virtualized environment. We reveal that these techniques are rendered

ineffective by virtualization, due to three major insufficiency and difficulties, namely,

addressing uncertainty, scheduling uncertainty, and cache physical limitations. We

tackle the addressing and scheduling uncertainty problems by designing a pure timing­

based data transmission scheme featuring relaxed dependencies on precise cache line

addressing and scheduling patterns. Then, we overcome the cache physical limitations

by discovering a high-bandwidth memory bus covert channel, exploiting the atomic

instructions and their induced cache-memory bus interactions on x86 platforms. Un­

like cache channels, which are limited to a physical processor or a silicon package, the

memory bus channel works system-wide, across physical processors, making it a very

powerful channel for cross-VM covert data transmission.

We further demonstrate the real world exploitability of the memory bus covert

channel by designing a robust data transmission protocol and launching realistic at­

tacks on our testbed server as well as in the Amazon EC2 cloud. We observe that

the memory bus covert channel can achieve (1) a bandwidth of over 700 bps with

extremely low error rate in a laboratory setup, and (2) a real world transmission

rate of over 100 bps in the Amazon EC2 cloud. Our experimental results show that,

contrary to previous research and common beliefs, covert channels can achieve high

bandwidth and reliable transmission on today's x86 virtualization platforms.

76

4.2 Related Work

Covert channel is a well known type of security attack in multi-user computer systems.

A covert channel is formed by a pair of colluding parties, with the sender operates a

shared resource in ways that allow the receiver to make distinguishable observations

of the same resource, thereby conveying information in a stealthy manner.

Originated in 1972 by Lampson (52], the threats of covert channels are prevalently

present [9, 19, 58, 67, 78, 81, 82, 90, 95] in systems with shared resources. Lampson

[52] described a covert channel leveraging the file system locking mechanism, with

which the locking states of a shared file are used to transport information (i.e. storage

channel). Van Vleck [90] discussed a covert channel based on the memory paging

mechanisms of the Multics operating systems. The data are covertly transmitted

by the presence or absence of memory pages in public libraries, which is inferred

by the paging performances (i.e. timing channel). Rowland [78] and Cabuk et al.

[9] explored construction of covert channels over legitimate communication channels,

exploiting the network protocols. Shah et al. uncovered covert channels in wireless

network channels [81] and input devices [82].

Cache-based covert channels have attracted more attention in recent studies.

Compared to other covert channel media, the processor cache is more attractive for

exploitation, because its high operation speed could yield high channel bandwidth,

and the low level placement in the system hierarchy can bypass many high level

isolation mechanisms.

Percival [67] introduced a technique to construct inter-process high bandwidth

covert channels using the L1 and L2 caches, and demonstrated a cryptographic key

leakage attack through the L1 cache side channel. Wang and Lee [95] deepened the

study of processor cache covert channels, and pointed out that the insufficiency of

77

software isolation in virtualization could lead to cache-based cross-VM covert channel

attacks. Ristenpart et al. [77] further exposed cloud computing to covert channel

attacks by demonstrating the feasibility of launching VM co-residency attacks, and

creating an L2 cache covert channel in the Amazon EC2 cloud. Xu et al. [101]

conducted a follow up measurement study on L2 cache covert channels in a virtualized

environment. Based on their measurement results, Xu et al. concluded that the harm

of data exfiltration from cache covert channels is quite limited due to low achievable

channel capacity.

In response to the discovery of cache covert channel attacks, a series of architec­

tural solutions have been proposed to limit cache channels, including RPcache [95],

PLcache [47], and Newcache (96]. RPcache and Newcache employ randomization to

prevent data transmission by establishing a location-based coding scheme. PLcache,

in contrast, is based on enforcing resource isolation by cache partitioning. However,

a drawback of hardware-based solutions is their high adaptation cost and latency.

Offering immediately deployable protection, HomeAlone [105] proposes to proac­

tively detect the co-residence of unfriendly VMs. Leveraging the knowledge of ex­

isting cache covert channel techniques [67, 77], HomeAlone detects the presence of

a malicious VM by acting like a covert channel receiver and observing cache timing

anomalies caused by another receiver's activities.

The industry took a more pragmatic approach to mitigating covert channel threats.

The Amazon EC2 cloud provides a featured service called dedicated instances [1],

which ensures VMs belonging to each tenant of this service do not share physical

hardware with any other cloud tenants' VMs. This service effectively eliminates vari­

ous covert channels induced by the shared platform hardware, including cache covert

channel. However, in order to enjoy this service, the cloud users have to pay a signifi­

cant price premium. As of the time of writing (March, 2012), each dedicated instance

78

incurs a 23.5% higher per-hour cost than regular usage. In addition, there is a $10

fee per hour/user/region. Effectively, for a user of 20 small instances, the overall cost

of using dedicated instances is 6.12 times more than that of using regular instances.

Of historical interest, the study of covert channels in virtualized systems is far from

a brand new research topic-legacy research that pioneered this field dates back over

30 years. During the development of the VAX security kernel, a significant amount

of effort has been paid to limit covert channels within the Virtual Machine Monitor

(VMM). Hu [38, 39] and Gray [30, 31] have published a series of follow up research on

mitigating cache channels and bus contention channels, using timing noise injection

and lattice scheduling techniques. However, this research field has lost its momentum

until recently, probably due to the cancellation of the VAX security kernel project,

as well as the lack of ubiquity of virtualized systems in the past.

4.3 Struggles of the Classic Cache Channels

Existing cache covert channels (namely, the classic cache channels) employ variants

of Percival's technique, which uses a hybrid timing and storage scheme to transmit

information over a shared processor cache, as described in Algorithm 4.1.

On non-virtualized hyper-threaded systems, the classic cache channels work very

well, achieving transmission rates as high as hundreds of kilobytes per second [67).

However, when applied in today's virtualized environments, the achievable rates drop

drastically, to only low single-digit bits per second [77, 101]. The multiple orders of

magnitude reduction in channel capacity clearly indicates that the classic cache chan­

nel techniques are no longer suitable for cross-VM data transmission. Specifically, the

data transmission scheme of a classic cache channel suffers three major obstacles­

addressing uncertainty, scheduling uncertainty, and cache physical limitation.

79

Algorithm 4.1 Classic Cache Channel Protocol

Cache(N]: A shared processor cache, conceptually divided into N regions;
Each cache region can be put in one of two states, cached or flushed.

Dsend[N], D&ct~[N]: N bit data to transmit and receive, respectively.

Sender Operations:

(Wait for receiver to initialize the cache)

for i := 0 to N - 1 do
if Dsend[i) = 1 then

{Put Cache(i) into the flushed state}
Access memory maps to Cache[i);

end if
end for

(Wait for receiver to read the cache)

4.3.1 Addressing Uncertainty

Receiver Operations:

for i := 0 to N - 1 do
{Put Cache(i) into the cached state}
Access memory maps to Cache[iJ;

end for

(Wait for sender to prepare the cache)

for i := 0 to N - 1 do
Timed access memory maps to Cache[iJ;
{Detect the state of Cache[i) by latency}
if AccessTime > Threshold then

Dnecv[iJ := 1; {Cache(i] is flushed}
else

Dnecv[iJ := 0; {Cache(iJ is cached}
end if

end for

Classic cache channels modulate data by the states of cache regions, and hence a key

factor affecting channel bandwidth is the number of regions a cache being divided.

From information theory's perspective, a specific cache region pattern is equivalent

to a transmitted symbol. And the number of regions in a cache thus corresponds to

the number of symbols in the alphabet set. The higher symbol count in an alphabet

set, the more information can be passed per symbol.

On hyper-threaded single processor systems, for which classic cache channels are

originally designed, the sender and receiver are executed on the same processor core,

80

Process A Process B

(a)

' --- -::::::: \

i---~-~~:~ .. (/ .:::::::::::
.. ~--\--?--f..J

~~H~-~// L2 Cache \, \ -::::::::::::

(VIPT I PIPT) \ .::::::::-·
l!-llliiiiiii....,_--l_....,j

Process A Physical

Address
{b)

Physical
Address

Process B

Figure 4.1: Memory Address to Cache Line Mappings for 11 and 12 Caches

using the 11 cache as the transmission medium. Due to its small capacity, the L1

cache has a special property that its storage is addressed purely by virtual memory

addresses, a technique called VIVT (virtually indexed, virtually tagged). With a

VIVT cache, two processes can impact the same set of associative cache lines by

performing memory operations with respect to the same virtual addresses in their

address spaces, as illustrated in Figure 4.1(a). This property enables processes to

precisely control the status of the cache lines, and thus allows for the L1 cache to be

finely divided, such as 32 regions in Percival's cache channel [67].

However, on today's production virtualization systems, hyper-threading is com­

monly disabled for security reasons (i.e., eliminating hyper-threading induced covert

channels). Therefore, the sender and receiver could only communicate by interleaving

their executions. Since the 11 cache is completely flushed at context switches, only

those higher level caches (e.g., the 12 cache) whose contents are preserved across a

context switch can be leveraged for classic cache channel transmission. Unlike the 11

cache, the storage in these higher level caches is not addressed purely by virtual mem­

ory addresses, but either by physical memory addresses {PIPT, physically indexed,

physically tagged), or by a mixture of virtual and physical memory addresses {VIPT,

virtually indexed, physically tagged). With physical memory addresses involved in

81

Table 4.1: Experimental System Configurations

System A System B
CPU Core2 Q8400, 2.66GHz, 2 * Xeon E5520, 2.26GHz,

Caches: (size, set-associativity) Caches: (size, set-associativity)
L1D - 32KB, S-way L1D - 32KB, S-way
L2 - 2MB, 8-way L2- 256KB, 8-way

L3 - 8MB, 16-way
Memory DDR2 DIMM, 1621MHz DDR3 FBDIMM, 2153MHz

Table 4.2: Cache Latencies vs. Access Pattern Lengths

System A (L2 Associative Set Size= 256KB)
Accesses 1-6/7 8-24/32/64 More than 64
Latency 8 cycles (const.) 8 cycles/access 48 cycles/ access

System B (L2 Associative Set Size= 32KB)
Accesses 1-18 19-64 More than 96
Latency 4 cycles (const.) 2 cycles/ access 33 cycles/ access

cache line addressing, given only knowledge of its virtual address space, a process

cannot be completely certain of the cache line a memory access would affect due to

address translation.

We demonstrate the phenomenon of addressing uncertainty by conducting exper­

iments on two systems with configurations shown in Table 4.1. We first calculate the

associative block sizes of the L2 caches by dividing the total cache capacities over their

corresponding set-associativity counts. Then we measure the latencies of a repeating

sequence of random memory accesses2
, with each access spaced multiple associative

blocks apart. The repeating sequence length starts at one, and is incremented by one

for each measurement.

As shown in in Table 4.2, when the repeating sequence size is small (i.e., the first

data column), the access latencies on both systems are small constants, due to the

2The randomness is introduced to avoid the interference of hardware prefetching.

82

---- C':::::::: -------l/ :::--- ' ---

I ' \ =::>-----

I ==:.::;

1/

\ -R~ 1""'-......... ~._ ~
' ' I - :

' ' '
/ L2 Cache \ . .,' _..., ~~~

(VIPT I PIPT) \ ,\ i

......__ '----.._.. --.....__ '1----!!~-1

Process A Guest Host
Physical

I
Physical

Address Address

VM 1 I

Host Guest Process B
Physical Physical
Address Address

VM 2

Figure 4.2: Memory Address to L2 Cache Line Mapping with Virtualization

caching effect of the L 1 data cache3 • As the repeating sequence size grows larger

(i.e., the second data column), the access latencies begin to increase at slow rates,

evidencing that the L2 cache addressing involves physical memory addresses. With a

VIVT cache, one would expect that the access latency begins to increase sharply, since

all memory accesses would collide onto the same associative set of cache lines and

induce a thrashing-like behavior. However, with physical address involved in cache

addressing, the memory accesses tend to spread over more than one set of cache lines

because physical memory tends to be less continuous than virtual memory. As a

result, the memory accesses continue to be cached by the L2 cache while missing the

Ll cache. Finally, when the repeating sequence length grows beyond a threshold (i.e.,

the last data column), even the L2 cache runs out of associative cache lines. Thus,

the memory accesses begin to hit the memory or higher level caches, and the latencies

increase at significantly higher rates.

Server virtualization has further complicated the addressing uncertainty by adding

another layer of indirection to memory addressing. As illustrated in Figure 4.2, the

3System B could sustain minimum access latency for up to 18 random accesses, possibly because
of a more adaptive (online-learning) prefetch algorithm implemented in newer processors.

83

"physical memory" of a guest VM is still virtualized, and access to it must be further

translated. As a result, it is very difficult, if not impossible, for a process in a guest

VM (especially for a full virtualization VM) to discover the actual physical memory

addresses of a memory region. Due to the addressing uncertainty, for classic covert

channels on virtualized systems, the number of cache regions is reduced to a minimum

of only two [77, 101].

4.3.2 Scheduling Uncertainty

Classic cache channel data transmission depends on a cache pattern "round-trip"­

the receiver completely resets the cache and correctly passes it to the sender; and

the sender completely prepares the cache pattern and correctly passes it back to

the receiver. Therefore, to successfully transmit one cache pattern, the sender and

receiver must be strictly round-robin scheduled.

However, without special scheduling arrangements (i.e., collusion) from the hyper­

visor, such idealistic scheduling rarely happens. On production virtualized systems,

the physical processors are usually oversubscribed in order to increase utilization. In

other words, each physical processing core serves more than one virtual processor

from different VMs. As a result, there exist many scheduling patterns that prevent

successful cache pattern "round-trip", as listed in Table 4.3.

Xu et al. [101] have clearly illustrated the problem of scheduling uncertainty in

two of their measurements. First, in a laboratory setup, the error rate of their covert

channel increases from near 1% to 2Q-30% after adding a non-participating VM with

moderate workload. Second, in the Amazon EC2 cloud, they have discovered that

only 10.5% of the cache measurements at the receiver side are valid (correctness not

considered), due to the hypervisor's less-than-ideal scheduling.

84

Scheduling Pattern Failure

The receiver is de-scheduled before it finishes re- Channel not cleared for send
setting the cache.

The receiver finishes resetting the cache, but an- Channel invalidated for send
other unrelated VM is scheduled to run immedi-
ately after.

The sender is de-scheduled before it finishes Sending incomplete
preparing the cache.

The sender finished preparing the cache, and an- Symbol destroyed
other unrelated VM is scheduled to run immedi-
ately after.

The receiver is de-scheduled before it finishes read- Receiving incomplete
ing the cache.

The sender and receiver are executed in parallel, Channel operation collision
on processor cores that share the L2 cache.

Table 4.3: Various Invalid Scheduling Patterns

4.3.3 Cache Physical Limitation

Besides the two uncertainties, classic cache channels also face an insurmountable

limitation-the necessity of a shared and stable cache.

If the sender and receiver of classic cache channels are executed on processor cores

that do not share any cache, obviously no communication could be established. On a

multi-processor system, it is quite common to have processor cores that do not share

any cache, since there is usually no shared cache between different physical processors.

And sometimes even processor cores residing on the same physical processor do not

share cache, such as an Intel Core2 Quad processor in System A, which contains two

dual-core silicon packages with no shared cache in between.

Even if the sender and receiver could share cache, external interferences can make

the cache unstable. Modern multi-core processors often include a large last-level cache

(LLC) shared between all processor cores. To facilitate a simpler cache coherence

protocol, the LLC usually employs an inclusive principle, which requires that all

85

data contained in the lower level caches must also exist in the LLC. Thus, any non­

participating processes executing on those processor cores that share the LLC with

the sender and receiver can interfere with the communication by indirectly evicting

the data in the cache used for the covert channel. The more cores on a processor, the

higher the interference.

4.4 Covert Channel in the Hyper-Space

Virtualization induced changes to cache operations and process scheduling render the

data transmission scheme of classic cache channels obsolete. First, the effectiveness of

data modulation is severely reduced by addressing uncertainty. Second, the critical

procedures of signal generation, delivery, and detection are frequently interrupted

by less-than-ideal scheduling patterns. And finally, the fundamental requirement of

stably shared cache tends to be invalidated.

In this section we present our techniques to tackle the existing difficulties, and de­

velop a high-bandwidth, reliable covert channel on virtualized x86 systems. We first

describe our redesigned, pure timing-based data transmission scheme, which over­

comes the negative effects of addressing and scheduling uncertainties by a simplified

design. After that, we detail our findings of a powerful covert channel medium, ex­

ploiting the atomic instructions and their induced cache-memory bus interactions on

x86 platforms. And finally, we specify our designs of a high error-tolerance transmis­

sion protocol for cross-VM covert channels.

4.4.1 Redesigning Data Transmission

We first question the reasoning behind using cache state patterns for data modulation.

Originally Percival [67] designed this transmission scheme mainly for the use of cryp-

86

Algorithm 4.2 Timing-based Cache Channel Protocol
CLines: Several sets of associative cache lines picked by both the sender and the rec­

eiver; These cache lines can be put in one of two states, cached or flushed.
Dsend[N], DReceive[NJ: N bit data to transmit and receive, respectively.

Sender Operations:

for i := 0 to N - 1 do
if Dsend[i] = 1 then

for an amount of time do
{Put CLines into the flushed state}
Access memory maps to CLines;

end for
else

{Leave CLines in the cached state}
Sleep of an amount of time;

end if
end for

Receiver Operations:

for i := 0 to N - 1 do
for an amount of time do

Timed access memory maps to CLines;
end for
{Detect the state of CLines by latency}
if Mean(Acc.Time) >Threshold then

DReceive[i] := 1; {CLines is flushed}
else

DReceive[i] := 0; {CLines is cached}
end if

end for

tographic key stealing on a hyper-threaded processor. In this specific usage context,

the critical information of memory access patterns are reflected by the states of cache

regions. Therefore, cache region-based data modulation is an important source of in-

formation. However, in a virtualized environment, the regions of the cache no longer

carry useful information due to addressing uncertainty, making cache region-based

data modulation a great source of interference.

We therefore redesign a data transmission scheme for the virtualized environment.

By removing cache region-based encoding, data is modulated by the state of cache

lines over time, resulting in a pure timing-based transmission protocol, as described

in Algorithm 4.2.

Besides removing cache region-based data modulation, the new transmission scheme

also features a significant change in the scheduling requirement, i.e., signal genera­

tion and detection are performed instantaneously, instead of being interleaved. In

other words, data are transmitted while the sender and receiver run in parallel. This

requirement is more lenient than strict round-robin scheduling, especially with the

87

3SO

300
";;' 250 .5.

~ 200
II

! 1SO
"' § 100
c

so
0

0 so 100 1SO 200

Sequential Samples Over Time (ps)

Figure 4.3: Timing-based Cache Channel Bandwidth Test

trend of increasing number of cores on a physical processor, making two VMs more

likely to run in parallel than interleaved.

We conduct a simple raw bandwidth estimation experiment to demonstrate the

effectiveness of the new cache covert channel. In this experiment, interleaved bits of

zeros and ones are transmitted, and the raw bandwidth of the channel can thus be

estimated by manually counting the number of bits transmitted over a period of time.

We build the cache covert channel on an Intel Core2 system with two processor

cores sharing a 2 MB 8-way set-associative L2 cache. Using a simple profiling test,

accessing a random4 sequence of memory addresses separated by multiples of 256KB,

we observe that these memory addresses can be mapped to up to 64 cache lines.

Therefore, we select CLines as a set of 64 cache lines mapped by memory addresses

following the pattern M +X · 256K, where M is a small constant and X is a random

positive integer. The sender puts these cache lines into the flushed state by accessing

a sequence of CLines-mapping memory addresses. The receiver times the access

latency of another sequence of CLines-mapping memory addresses. The length of

the receivers access sequence should be smaller than, but not too far away from the

cache line set size, for example, 48.

4The randomness is introduced to avoid the interference of hardware prefetching.

88

As shown in Figure 4.3, the x-value of each sample point is the observed memory

access latency by the receiver, and the trend line is created by plotting the moving

average of two samples. According to the measurement results, 39 bits can be trans­

mitted over a period of 200 micro-seconds, yielding a raw bandwidth of over 190.4

kilobits per second, about five orders of magnitude higher than the previously studied

cross-VM cache covert channels.

Having resolved the negative effects of addressing and scheduling uncertainties

and achieved a high raw bandwidth, our new cache channel, however, still performs

poorly on a system with non-participating workloads. We discover that a stable

communication channel could not be established, due to the frequent migration of

virtual processors across physical processor cores, which is also observed by Xu et

al. [101]. The outgrowth of this behavior is that the sender and receiver frequently

reside on processor cores that do not share any cache, making our cache channel run

into the insurmountable physical limitation just like the classic cache channels.

4.4.2 (Re)Discovering the Memory Bus Channel

The prevalence of virtual processor core migration handicaps cache channels in cross­

VM covert communication. In order to reliably establish covert channels across pro­

cessor cores that do not share any cache, a commonly shared and exploitable resource

is needed as the communication medium. And the memory bus comes into our sight

as we extend our scope beyond the processor cache.

4.4.2.1 Background

Interconnecting the processors and the system main memory, the memory bus is

responsible for delivering data between these components. Because contentions on

89

the memory bus results in a system-wide observable effect of increased memory access

latency, a covert channel can be created by programmatically triggering contention

on the memory bus. Such a covert channel is called a bus-contention channel.

The bus contention channels have long been studied as a potential security threat

for virtual machines on the VAX VMM, on which a number of techniques have been

developed (30, 31, 38] to effectively mitigate this threat. However, the x86 platforms

we use today are significantly different from the VAX systems, and we suspect similar

exploits can be found by probing previously unexplored techniques. Unsurprisingly,

by carefully examining the memory related operations of the x86 platform, we have

discovered a bus-contention exploit using atomic instructions with exotic operands.

Atomic instructions are special x86 memory manipulation instructions, designed

to facilitate multi-processor synchronization, such as implementing mutexes and se­

maphores -the fundamental building blocks for parallel computation. Memory op­

erations performed by atomic instructions (namely, atomic memory operations) are

guaranteed to complete uninterrupted, because accesses to the affected memory re­

gions by other processors or devices are temporarily blocked from execution.

4.4.2.2 Analysis

Atomic memory operations, by their design, generate system-wide observable con­

tentions in the target memory regions they operate on. And this particular feature

of atomic memory operations caught our attention. Ideally, contention generated by

an atomic memory operation is well bounded, and is only evident when the affected

memory region is accessed in parallel. Thus, atomic memory operations are not ex­

ploitable for cross-VM covert channels, because VMs normally do not implicitly share

physical memory. However, we have found out that the hardware implementations

of atomic memory operations do not match the idealistic specification, and memory

90

contentions caused by atomic memory operations could propagate much further than

one might have expected.

Early generations (before Pentium Pro) of x86 processors implement atomic mem­

ory operations by using bus lock, a dedicated hardware signal that provides exclusive

access of the memory bus to the device who asserts it. While providing a very

convenient means to implement atomic memory operations, the sledgehammer-like

approach of locking the memory bus results in system-wide memory contention. In

addition to being exploitable for covert channels, the bus-locking implementation of

atomic memory operations also causes performance and scalability problems.

Modern generations (before Intel Nehalem and AMD K8/K10) of x86 processors

improve the implementation of atomic memory operations by significantly reducing

the likelihood of memory bus locking. In particular, when an atomic operation is

performed on a memory region that can be entirely cached by a cache line, which

is a very common case, the corresponding cache line is locked, instead of asserting

the memory bus lock [40]. However, on these platforms, atomic memory operations

can still be exploited for covert channels, because the triggering conditions for bus­

locking are not eliminated. Specifically, when atomic operations are performed on

memory regions with an exotic5 configuration-unaligned addresses that span two

cache lines, atomicity cannot be ensured by cache line locking, and bus lock signals

are thus asserted.

Remarkable architecture evolutions have taken place in the latest generations (In­

tel Nehalem and AMD K8/K10) of x86 processors, one of which is the removal of the

shared memory bus. On these platforms, instead of having a unified central memory

storage for the entire system, the main memory is divided into several pieces, each

5The word "exotic" here only means that it is very rare to encounter such an unaligned memory
access in modern programs, due to automatic data field alignments by the compilers. However,
manually generating such an access pattern is very easy.

91

assigned to a processor as its local storage. While each processor has direct access

to its local memory, it can also access memory assigned to other processors via a

high-speed inter-processor link. This non-uniform memory access (NUMA) design

eliminates the bottleneck of a single shared memory bus, and greatly improves pro­

cessor and memory scalability. As a side effect, the removal of the shared memory bus

has seemingly invalidated memory bus covert channel techniques at their foundation.

Interestingly, however, the atomic memory operation exploit continues to work on the

newer platforms, and the reason for this requires a bit more in-depth explanation.

On the latest x86 platforms, normal atomic memory operations (i.e., operating

on memory regions that can be cached by a single cache line) are handled by the

cache line locking mechanism similar to that of the previous generation processors.

However, for exotic atomic memory operations (i.e., operating on cache-line-crossing

memory regions), because there is no shared memory bus to lock, the atomicity is

achieved by a set of much more complex operations: all processors must coordinate

and completely flush in-flight memory transactions that are previously issued. In

a sense, exotic atomic memory operations are handled on the newer platform by

"emulating" the bus locking behavior of the older platforms. As a result, the effect of

memory access delay is still observable, despite the absence of a shared memory bus.

4.4.2.3 Verification

With the memory bus exploit, we can easily build a memory bus covert channel by

adapting our timing-based cache transmission scheme with minor modifications, as

shown in Algorithm 4.3.

Compared with Algorithm 4.2, there are only two differences in the memory bus

channel protocol. First, we substitute the set of cache lines (CLines) with the memory

bus as the transmission medium. Similar to the cache lines, the memory bus can also

92

Algorithm 4.3 Timing-based Memory Bus Channel Protocol
MEzotic: An exotic configuration of a memory region that spans two cache lines.
Dsend[N], DRecv[N]: N bit data to transmit and receive, respectively.

Sender Operations:

for i := 0 to N - 1 do
if Dsend(i] = 1 then

for an amount of time do
{Make memory bus contended}
Atomic operation with MExotici

end for
else

{Leave memory bus contention-free}
Sleep of an amount of time;

end if
end for

Receiver Operations:

for i := 0 to N - 1 do
for an amount of time do

Timed uncached memory access;
end for
{Detect memory bus state by latency}
if Mean(Acc.Time) >Threshold then

D Recv (i] := 1; {Bus is contended}
else

D Recv (i] := 0; {Bus is contention-free}
end if

end for

be put in two states, contended and contention-free, depending on whether exotic

atomic memory operations are performed. Second, instead of trying to evict contents

of the selected cache lines, the sender changes the memory bus status by performing

exotic atomic memory operations. And correspondingly, the receiver must make

uncached memory accesses to detect contentions.

We demonstrate the effectiveness of the memory bus channel by performing band-

width estimation experiments, similar to the one in Section 4.4.1, on two systems

running different generations of platforms, hypervisors and guest VMs. Specifically,

the first system uses an older shared memory bus platform and runs Hyper-V with

Windows guest VMs, while the second system utilizes the newer platform without a

shared memory bus and runs Xen with Linux guest VMs. Shown in Figures 4.4, the x­

value of each sample point is the observed memory access latency by the receiver, and

the trend lines are created by plotting the moving average of two samples. According

to the measurement results, on both systems, 39 bits can be transmitted over a period

of 1 millisecond, yielding a raw bandwidth of over 38 kilobits per second. Although

an order of magnitude lower in bandwidth than our cache channel, the memory bus

93

3000 4000 I
. ·-----·- -·--------·-···--·----- --1

. 3500 • • 2500
7i' 7i' 3000
..5. 2000 ..5.
~ ~ 2500
j 1500 ~ 2000
!I
"' "' 1500

J 1000 ;
~ 1000 .

I 500
500

I

0 0
0 200 400 600 800 1000 0 200 400 600 800 1000

Sequential Samples Overnme bas) Sequential Samples Over Time (JIS)

(a) System A, Hyper-V, Windows Guests (b) System B, Xen, Linux Guests

Figure 4.4: Timing-based Memory Bus Channel Bandwidth Tests

channel enjoys its unique advantage of working across different physical processors.

Notably, the same covert channel implementation works on both systems, regardless

of the guest operating systems, hypervisors, and hardware platform generations.

4.4.3 Enabling Reliable Communication

We have demonstrated that the memory bus channel is capable of achieving high

speed data transmission on virtualized systems. However, the preliminary protocol

described in Algorithm 4.3 is prone to errors and failures in a realistic environment,

because the memory bus is a very noise channel, especially on virtualized systems

running many non-participating workloads.

Figure 4.5 presents a realistic memory bus channel sample, taken using a pair

of physically co-resident VMs in the Amazon EC2 cloud. From this figure, we can

observe that both the "contention free" and "contended" signals are subject to fre­

quent interferences. The "contention free" signals are intermittently disrupted by

workloads of other non-participating VMs, causing the memory access latency to

moderately raise above the baseline. In contrast, the "contended" signals experi­

ence much heavier interferences, which originate from two sources: scheduling and

94

3000

2500
iii'
.5.. 2000
~

~ 1500

j 1000

500

0
160 170

--2 per. Mov. Avg. (Contention Free)

--- 2 per. Mov. Avg. (Contended)

180 190 200
Sequential5amples Over nme (ms)

Figure 4.5: Memory Bus Channel Quality Sample on EC2

210

non-participating workloads. The scheduling interference is responsible for the pe-

riodic drop of memory access latency. In particular, context switches temporarily

de-schedule the sender process from execution, and thereby briefly relieving memory

bus contention. The non-participating workloads executed in parallel with the sender

process worsen memory bus contention and cause the spikes in the figure, while non-

participating workloads executed concurrently with the sender process reduce memory

bus contention, and result in the dips in the figure. All these interferences can degrade

the signal quality in the channel, and make what the receiver observes different from

what the sender intends to generate, which leads to bit-flip errors.

Besides the observable interferences shown in Figure 4.5, there are also unobserv-

able interferences, i.e., the scheduling interferences to the receiver, which can cause

an entirely different phenomenon. When the receiver is de-scheduled from execution,

there is no observer in the channel, and thus all data being sent is lost. And to make

matters worse, the receiver could not determine the amount of information being

lost, because the sender may also be de-scheduled during that time. As a result, the

receiver suffers from random erasure errors.

95

We summarize three important issues need to be addressed by the communication

protocol in order to ensure reliable cross-VM communication: receiving confirmation,

clock synchronization, and error correction.

1. Receiving Confirmation

The random erasure errors can make the transmitted data very discontinuous,

significantly reducing its usefulness. To alleviate this problem, the sender needs

to be aware of whether the data it sent out has been received.

We avoid using send-and-acknowledge, a commonly employed mechanism

for solving this problem, because this mechanism requires the receiver to ac­

tively send data back to the sender, reversing the roles of sending and receiving,

and subjects the acknowledgment sender (i.e., the data receiver} to the same

problem. Instead, we leverage the system-wide effect of memory bus contention

to achieve simultaneous data transmission and receiving confirmation. In par­

ticular, the receiver signifies its presence to the sender by generating increased

memory access latencies on the sender side.

The corresponding changes to the data transmission protocol include:

(a) Instead of making uncached memory accesses, the receiver performs exotic

atomic memory operations, just like the sender transmitting a one bit.

(b) Instead of sleeping when transmitting a zero bit, the sender performs un­

cached memory accesses. In addition, the sender always measures its mem­

ory access times.

(c) While the receiver is in execution, the sender should always observe high

memory access latencies; otherwise, the sender can assume the data has

been partially lost, and retry at a later time.

96

2. Clock Synchronization

Because the sender and receiver belong to two independent VMs, scheduling

differences between them tend to make the data transmission and detection pro­

cedures de-synchronized, which can cause a significant problem to pure timing­

based data modulation. We overcome clock de-synchronization by using self­

clocking coding-a commonly used technique in telecommunications. Specifi­

cally, we choose to transmit data bits using differential Manchester encoding, a

standard network coding scheme (99].

3. Error Correction

Even with self-clocking coding, bit-flip errors are expected to be common.

Similar to resolving the receiving confirmation problem, we again avoid using

acknowledgment-based mechanisms. Assuming only a one-way communication

channel, we resolve the error correction problems by applying forward error cor­

rection (FEC) to the original data, before applying self-clocking coding. More

specifically, we use the Reed-Solomon coding (76], a widely applied block FEC

code with strong multi-bit error correction performance.

In addition, we strengthen the communication protocol's resilience to clock drifting

and scheduling interruption by employing data framing. We break the data into

segments of fixed-length bits, and frame each segment with a start-and-stop pattern.

The benefits of data framing are twofold. First, when the sender detects transmission

interruption, instead of retransmitting the whole piece of data, only the affected data

frame is retried. Second, some data will inevitably be lost during transmission. With

data framing, the receiver can easily localize the erasure errors and handle them well

through the Reed-Solomon coding.

The finalized protocol with all the improvements is presented in Algorithm 4.4.

97

Algorithm 4.4 Reliable Timing-based Memory Bus Channel Protocol
ME:cotics, ME:coticR: Exotic memory regions for the sender and the receiver, respectively.
DsentJ, DRe=: Data to transmit and receive, respectively.

Sender Prepares Dsend by:
{DMsendO: Segmented encoded data to send}

RSsend := ReedSolomonEncode(Dsend);
F DsendO := Break RSsend into segments;
DMsendO := DiHManchesterEncode(FDsendO);

Receiver Recovers D Recv by:
{ D M Recv []: Segmented encoded data received}

F D Recv [] : = DiffManchester Decode(D MRecv []);
RS Recv := Concatenate F D Recv [];
DRecv := ReedSolomonDecode(RSRecv)i

Sending Encoded Data in a Frame: Receiving Encoded Data in a Frame:
{Data: A segment of encoded data to send} {Data: A segment of encoded data to receive}
{FrmHead, FrmFoot: Unique bit patterns Wait for frame header;
signifying start and end of frame, respectively} Result:= RecvBits(Data);

Result := SendBits(FrmH ead); if Result is Aborted then
if Result is not Aborted then return Retry;

Result := SendBits(Data); end if
if Result is not Aborted then Result:= Match frame footer;

{Ignore error in sending footer} if Result is not Matched then
SendBits(FrmFoot); {Clock synchronization error, discard Data}
return Succeed; return Erased;

end if else
end if
return Retry;

Sending a Block of Bits:

{Block: A block of bits to send}
{Baset, Baseo: Mean contention-free access
time for sending bit 1 and 0, respectively}

for each Bit in Block do
if Bit = 1 then

for an amount of time do
Timed atomic operation with 'NfExoticSi

end for
Latency:= Mean(AccessTime)- Base1;

else
for an amount of time do

Timed uncached memory access;
end for
Latency:= Mean(AccessTime)- Baseo;

end if
if Latency < Threshold then

{Receiver not running, abort}
return Aborted;

end if
end for
return Succeed;

return Succeed;
end if

Receiving a Block of Bits:

{Block: a block of bits to receive}

for each Bit in Block do
for an amount of time do

Timed atomic operation with MExoticRi
end for
{Detect the state of memory by latency}
if Mean(AccessTime) >Threshold then

Bit := 1; {Bus is contended}
else

Bit := 0; {Bus is contention-free}
end if
{Detect sender de-schedule}
if too many consecutive 0 or 1 bits then

{Sender not running}
Sleep for some time;
{Sleep makes sender abort, then we abort}

return Aborted;
end if

end for
return Succeed;

98

4.5 Evaluation

We evaluate the exploitability of memory bus covert channels by implementing the

reliable Cross-VM communication protocol, and demonstrate covert channel attacks

on our in-house testbed server, as well as on the Amazon EC2 cloud.

4.5.1 In-house Experiments

We launch covert channel attacks on system B, a state-of-the-art virtualization server

(configurations listed in Table 4.1). The experimental setup is simple and realistic.

We create two Linux VMs, namely VM-1 and VM-2, each with a single virtual pro­

cessor and 512 MB of memory. The covert channel sender runs as an unprivileged

user program on VM-1, while the covert channel receiver runs on VM-2, also as an

unprivileged user program.

We first conduct a quick profiling to determine suitable parameters for the com­

munication protocol. We find that a data frame size of 32 bits (including an 8 bit

preamble), and an error correction strength of 4 parity symbols (bytes) per 4 data

bytes works well on the experimental system. Effectively, each data frame consists

of 8 bits of preamble, 12 bits of data, and 12 bits of parity, yielding a transmission

efficiency of 37.5%. In order to minimize the impact of burst errors, such as multiple

frame losses, we group 48 data and parity bytes, and randomly distribute them across

16 data frames using a linear congruential generator (LCG).

We then assess the capacity (i.e., bandwidth and error rate) of the covert chan­

nel by performing a series of data transmissions using these parameters. For each

transmission, a one kilobyte data block is sent from the sender to the receiver. With

50 repeated transmissions, we observe a stable transmission rate of 781.6 ± 13.6 bps.

Data errors are observed, but at a very low rate of 0.27%.

99

896 25%

i 768 ~ • ----1 . 4<:: • -+-lVM I
20% " I e --_ -&-2VMs

~
-- .. '- -m

B640 \
~ 15%

I

= \
-o -4VMs I

g 512 I -+-lVM \ '"o a: _,._ 8VMs I
t ..

:; I -e-2VMs
\ ~ 10% I

t

\ ... I 0 ! 384 "' c -o -4VMs \ I /

~ \ 5% " 256 ~ _,._ SVMs
\ " 1,

\ • = =112::7« I ---128 0% !!!. --
Idle ll l2/l3 Memory Idle l1 l2/l3 Memory

Workload Type WOrkload Type

Figure 4.6: Effects of Non-participating Workload on Bandwidth and Error Rate

We further evaluate the impact of covert channel performance by interfering work­

load, in particular, the workload on the memory sub-system, from non-participating

VMs ("other VMs" for short). We define four levels of interferences, idle, Ll, L2/L3,

and Memory, listed in ascending order by the weight of impact to the memory sub­

system. The idle interference is generated by spawning other VMs and leaving them

idle. The Ll interference is generated by running in the other VMs a program with

a tight infinite loop, which only stresses the processor Ll cache due to the very small

amount of memory involved in execution. Both L2/L3 and Memory interferences are

generated by running cache bench [61], a processor cache and memory benchmarking

utility: for the L2/L3 interference, the amount of memory access is limited to the size

of the processor L3 cache; and for the Memory interference, the amount of memory

access is set to be slightly larger than the size of the processor L3 cache.

As shown in Figure 4.6, we measure the bandwidth and error rate of the covert

channel when it is subjected each level of interferences generated by up to eight non­

participating VMs. We observe that the covert channel is very resilient to idle, Ll,

and L2/L3 interferences. More specifically, while these interferences do exert nega­

tive impacts on the covert channel (i.e., decreased bandwidths and increased error

rates), the effects are minimal-except for the moderate decrease of bandwidth with

100

eight VMs running L2/L3 workload, the bandwidth and error rate reductions in all

other cases are negligible. The robustness against cache-based interferences is well

expected, since the processor cache is not used as a medium for this covert channel.

However, when subjected to Memory interferences, the covert channel performances

degrades significantly with more than four VMs running non-participating workload.

Especially, with eight VMs, no data could be transmitted without error. This dra­

matic reduction of performance is also well expected, because the memory benchmark

program inflicts extreme workload on the memory bus, and thereby rendering this

medium unusable for the covert channel. Because normal applications would rarely

generate such an intense memory workload for an extended period of time, the mem­

ory bus covert channel is still practical in the real world.

4.5.2 Amazon EC2 Experiments

We prepare the Amazon EC2 experiments by spawning physically co-hosted Linux

VMs. Thanks to the operational experiences presented in [77, 101), using only two

accounts, we successfully uncover two pairs of physically co-hosted VMs (micro in­

stances) in four groups of 40 VMs (i.e. each group consists of 20 VMs spawned by

each account). Information disclosed in /proc/cpuinfo shows that these servers use

the shared-memory-bus platform, one generation older than our testbed system B.

Similar to our in-house experiments, we first conduct a quick profiling to determine

the suitable protocol parameters for the EC2 system. Compared to our in-house

system profiles, memory bus channels on Amazon EC2 VMs have a higher tendency

of clock de-synchronization. We compensate for this deficiency by reducing the data

frame size to 24 bits. The error correction strength of 4 parity symbols per 4 data

bytes still works well. And the overall transmission efficiency thus becomes 33.3%.

101

500 30%

450
;

•Bandwidth -· Error Rate ·
'ift' 400 25%
Q, :e 350 -
~ 20% II

:.! 300 -
15% ~ c: 250 r

~
200 ~ .!!!

E '"
"' 150 ,. 10%
c:

~ 100 r 5%
50

0 0%
Best Degraded Noisy

Figure 4. 7: Memory Bus Channel Capacities of EC2

We again perform a series of data transmissions and measure the bandwidth and

error rates. Our initial results are astonishingly good. A transmission rate of 343.5 ±

66.1 bps is achieved, with error rate of 0.39%. However, as we continue to repeat the

measurements, we observe an interesting phenomenon. As illustrated in Figure 4. 7,

three distinct channel performances are observed through our experiment. The best

performance is achieved during the initial 12-15 transmissions. After that, for the

next 5-8 transmissions, the performance degrades. The bandwidth slightly reduces,

and the error rate slightly increases. Finally, for the rest of the transmissions, the

performance becomes very bad. While the bandwidth is still comparable to that of

the best performance, the error rate becomes unacceptably high.

By repeating this experiment, we uncover that the three-staged behavior can be

repeatedly observed after leaving both VMs idle for a long period of time (e.g., one

hour). Therefore, we believe that the cause of this behavior can be explained by

scheduler preemption [100] as discussed in [101]. During the initial transmissions, the

virtual processors of VMs at both the sender and receiver sides have high scheduling

priorities, and thus they are very likely to be executed in parallel, resulting in a very

high channel performance. Then, the sender VM's virtual processor consumes all its

scheduling credits and is throttled back by the Xen scheduler, causing the channel

102

300

~ 250
:1 i 200

s 150

1 100
c:
~ so

0
400 500

Credits
I
1 Depleted

600 700 800

Transfer Progress (Bytes)

Credits
:Replenished

I
I

900 1000

Figure 4.8: Reliable Transmission with Adaptive Rates

performance to degrade. Soon after that, the receiver VM's virtual processor also uses

up its scheduling credits. Since both the sender and receiver are throttled back, their

communication is heavily interrupted. This "offensive" scheduling pattern subjects

the communication channel to heavy random erasure beyond the correction capability

of the FEC.

Fortunately, our communication protocol is designed to handle very unreliable

channels. We adapt to the scheduler preemption by tuning two parameters to be

more "defensive". First, we increase the ratio of parity bits to 4 parity symbols per 2

data bytes. Although reducing transmission efficiency by 11.1 %, the error correction

capability of our FEC is increased by 33.3%. Second, we reduce the transmission

symbol rate by about 20%. By lengthening the duration of the receiving confirmation,

we effectively increase the probability of discovering scheduling interruptions. After

the parameter adjustment, we can achieve a transmission rate of 107.9 ± 39.9 bps,

with an error rate of 0.75%, even under scheduler preemption.

Figure 4.8 shows the adjusted communication protocol in action. During the

first period of preemption-free scheduling, the transmission rate can be as high as

250 bps. However, when preemption starts, the sender responds to frequent trans-

mission failures with increased retries, allowing the receiver continue to receive and

103

decode data without uncorrectable error. And correspondingly, the transmission rate

drops to below 50 bps. Finally, when the harsh scheduling condition is alleviated,

the transmission rate is automatically restored. The capability of adaptively adjust­

ing transmission rates to channel conditions, evidences the versatility of our reliable

communication protocol.

4.6 Discussion

In this section, we first reassess the threat of covert channel attacks based on our

experimental results. Then, we discuss possible means to mitigate the covert channel

attacks in virtualized environments.

4.6.1 Damage Assessment

Due to their very low channel capacities [77, 101], previous studies conclude that

covert channels can only cause very limited harms in a virtualized environment. How­

ever, the experimental results of our covert channel lead us to a different conclusion

that covert channels indeed pose realistic and significant threats to information secu­

rity in the cloud.

With over 100 bits-per-second high speed and reliable transmission, covert channel

attacks can be applied to a wide range of mass-data theft attacks. For example, a

hundred byte credit card data entry can be silently stolen in less than 30 seconds; a

thousand byte private key file can be secretly transmitted under 3 minutes. Working

continuously, over 1 MB of data, equivalent to tens of thousands of credit card entries

or hundreds of private key files, can be trafficked every 24 hours. In addition to high

channel capacity, memory bus covert channel has two other intriguing properties:

104

1. Stealthiness: Because processor cache is not used as channel medium, memory

bus covert channel incurs negligible impact on cache performance, making it

transparent to cache based covert channel detections, such as HomeAlone [105).

2. "Future proof": Our in-house experiment shows that even on a platform that

is one generation ahead of Amazon EC2's systems, memory bus covert channel

continues to perform very well.

4.6.2 Mitigation Techniques

Realistic threat of covert channel attacks calls for effective and practical counter­

measures. We discuss several plausible mitigation approaches from three different

perspectives-tenants, cloud providers, and device manufactures.

4.6.2.1 Tenant Mitigation

Mitigating covert channels on the tenant side enjoys the advantages of trust and

deployment flexibility. With the implementation of mitigation techniques inside ten­

ant owned VMs, the tenant has the confidence of covert channel security, regardless

whether the cloud provider addresses this issue.

However, due to the lack of lower level (hypervisor and/or hardware) support,

the available options are very limited, and the best choice is performance anomaly

detection. Because memory bus covert channels result in observable memory perfor­

mance degradation, an approach similar to that of HomeAlone [105] may be taken. In

particular, the defender continuously monitors memory access latencies, and asserts

alarms if significant anomalies are detected. However, since memory accesses incur

much higher cost and non-determinism than cache probing, this approach may suffer

from high performance overhead and high false positive rate.

105

4.6.2.2 Cloud Provider Mitigation

Compared to their tenants, cloud providers are much more resourceful. They control

not only the hypervisor and hardware platform on a single system, but also the entire

network and systems in a data center. As a result, cloud providers can tackle covert

channels through either preventative or detective countermeasures.

The preventative approaches, e.g., the dedicated instances service provided by the

Amazon EC2 cloud [1], thwart covert channel attacks by eliminating the exploiting

factors of covert channels. While the significant extra service charge of the dedicated

instances service reduces its attractiveness, the "no-sharing" guarantee may be too

strong for covert channel mitigation. We envision a low cost alternative solution that

allows tenants to share system resources in a controlled and deterministic manner.

For example, the cloud provider may define a policy that each server might be shared

by up to two tenants, and each tenant could only have a predetermined neighbor. Al­

though this solution does not eliminate covert channels, it makes attacking arbitrary

tenants in the cloud very difficult.

In addition to preventative countermeasures, cloud providers can easily take the

detective approach by implementing low overhead detection mechanisms, because of

their convenient access to the hypervisor and platform hardware. For both cache

and memory bus covert channels, being able to generate observable performance

anomalies is the key to their success in data transmission. However, modern pro­

cessors have provided a comprehensive set of mechanisms to monitor and discover

performance anomalies with very low overhead. Instead of actively probing cache or

accessing memory, cloud providers can leverage the hypervisor to infer the presence

of covert channels, by keeping track of the increment rates of the cache miss counters

or memory bus lock counters [40]. Moreover, when suspicious activities are detected,

106

cloud providers can gracefully resolve the potential threat by migrating suspicious

VMs onto physically isolated servers. Without penalizing either the suspect or the

potential victims, the negative effects of false positives are minimized.

4.6.2.3 Device Manufacture Mitigation

The defense approaches of both tenant and cloud providers are only secondary in

comparison to mitigation by the device manufactures, because the root causes of the

covert channels are imperfect isolation of the hardware resources.

The countermeasures at the device manufacture side are mainly preventative,

and they come in various forms of resource isolation improvements. For example,

instead of handling exotic atomic memory operations in hardware and causing system­

wide performance degradation, the processor may be redesigned to trap these rare

situations for the operating systems or hypervisors to handle, without disrupting

the entire system. A more general solution is to tag all resource requests from guest

VMs, enabling the hardware to differentiate requests by their owner VMs, and thereby

limiting the scope of any performance impact.

4.7 Summary

Covert channel attacks in the cloud have been proposed and studied. However, the

threats of covert channels tend to be down-played or disregarded, due to the low

achievable channel capacities reported by previous research. In this chapter, we pre­

sented a novel construction of high-bandwidth and reliable cross-VM covert channels

on the virtualized x86 platform.

By studying existing cache channel techniques, we uncovered their application

insufficiency and limitations in a virtualized environment. We then resolved these

107

obstacles by designing a pure timing-based data transmission scheme, and discover­

ing the bus locking mechanism as a powerful covert channel medium. Leveraging the

memory bus covert channel, we further designed a robust data transmission protocol,

and demonstrated the real-world exploitability of our covert channel by launching at­

tacks on our testbed system and in the Amazon EC2 cloud. Our experimental results

show that, contrary to previous research and common beliefs, covert channel attacks

in a virtualized environment can achieve high bandwidth and reliable transmission.

As a result, covert channels pose formidable threats to information security in the

cloud, and they must be carefully analyzed and mitigated.

108

Conclusion

Vulnerability research is essential to the protection of computer system security. In

particular, the discovery of a new vulnerability on a system represents a strategic

vantage point that both the malicious attackers and security providers strive to hold.

This dissertation presented the research and discovery of new vulnerabilities in the

design and deployment of complex systems, which pose higher security hazard com­

pared to the more commonly seen implementation-caused vulnerabilities.

Three types of computer systems have been studied-automatic malicious binary

detection systems, server power management systems, and server virtualization sys­

tems. Although very different from each other, these systems play important roles in

our everyday life, from personal computing to the information technology infrastruc­

ture. By uncovering vulnerability with potentials of serious consequences from each

type of systems, this dissertation revealed the prevalence of security vulnerabilities,

and demonstrated effective approaches to tackle them.

The following sections first summarize the contribution to knowledge of these

studies, and then discuss the outlook of the future security research.

109

5.1 Contribution to Knowledge

Automatic malicious binary detection systems are critical for the defense against

malware, preventing its fast spreading and protecting computer systems from its ex­

ploitation. We studied and identified a design flaw in commonly seen design patterns

of automatic malicious binary detection systems, leveraging the weaknesses of static

analysis against obfuscation evasion attacks. Inspired by a steganographic technique,

we designed and implemented a novel binary obfuscation technique, mimimorphism,

which enables malware to evade a wide range of static analysis detections. Mimi­

morphism transforms a binary executable into a mimicry executable, with statistical

and semantic characteristics highly similar to those of the mimicry target.

Power management plays a central role in server system power saving. Recent

industrial progresses in energy proportional computing have significantly improved

server system energy efficiency. However, we discovered that the significant changes of

power profile on server systems are not matched with comparable modifications in the

security considerations, leaving the server systems vulnerable to energy abuses. We

demonstrated a realistic energy attack on a standalone web server system. Leveraging

the knowledge of Web request servicing energy profile as well as human Web browsing

behaviors, we designed a stealthy energy attack that significantly increases the power

consumption of victim servers under typical workloads. We further proposed an

application-oriented defense approach that works around the hardware limitations

and effectively protects victim servers against energy attacks.

Server virtualization technologies are heavily deployed in data centers today, pro­

viding the benefit of workload consolidation and simplified resource management.

However, the co-hosting of VMs introduces covert channel attack vulnerabilities in

shared computing utilities, such as public clouds. We presented a novel covert channel

110

attack that achieved orders-of-magnitude higher bandwidth than previous research.

Based on our in-depth study of x86 processor cache and memory architecture, we

designed a pure timing based covert channel, exploiting the shared memory bus to

transmit information across physical processors. We also implemented a robust data

transmission protocol which ensures over 99% reliability in data transmission in realis­

tic environments. In addition, we contributed our insights on mitigating of cross-VM

covert channel attacks in virtualized systems.

5.2 Future Research

Computer system security is not a static term. While the cyberspace warfare be­

tween malicious attackers and security defenders is ever-lasting, their battle fields, in

time, shift from one target to another, following the dynamic trends of industrial and

personal computing.

There is no "silver bullet" for general computer system security protection, be­

cause each type of system has its own complexity and uniqueness, as exemplified by

the studies presented in this dissertation. And the best practice to ensure security,

as alluded in the introduction chapter of this dissertation, is thus to be ahead of the

attackers-study the emerging systems, discover and mitigate their vulnerabilities

before they fall into the offensive parties' hands. In the following, we discuss two

promised fields for the future security research.

5.2.1 Data Center and Cloud Computing

As the trend of industrial computing quickly shifts toward high consolidation and

rapid scaling, research on privacy and security in data center and cloud computing

has been gathering momentum.

111

Covert channel attacks pose realistic and severe privacy threats on virtualized

platforms, as shown in Chapter 4 of this dissertation. And thus providing practical

and effective safeguard for their tenants becomes critical for cloud vendors, because

ensuring covert channel security gives them a clear edge over their competitors. Ex­

isting solutions, such as Amazon Dedicated Instances, are quite limited in terms

of affordability and level of protection. However, there is a wide range of alterna­

tive avenues waiting to be explored. For an example, a time-slotted deterministic

VM placement algorithm can be developed. Instead of completely eliminating covert

channel attacks, this approach makes it very difficult to launch such attacks against

a specific victim VM, while enables better resource pooling and thereby lowering

tenant costs. For another example, a processor modification can be implemented,

which enables dynamic hardware resource partitioning. While incurring high cost in

hardware upgrades, this approach results in a cloud provider and tenant transparent

countermeasure, and lowers the performance penalties and overall cost.

Besides privacy concerns, data center and cloud are also facing other security

challenges. Driven by the ever-increasing bandwidth and computation demands, the

network and computing equipments in data centers are expanding in quantity and

variety. On one hand, the massive types and amount of hardware deployed in a data

center call for scalable solutions to discover, diagnose and even automatically mitigate

security problems. On the other hand, the constant evolution of data center networks

and equipments demands solutions to monitor and maintain the data center security

in a flexible manner.

Moreover, as the industry adapts to cloud computing, software and service providers

strive to migrate existing applications to the cloud. Techniques and guidelines to assist

developers and administrators to develop and deploy cloud applications in a secure,

scalable and seamless fashion are highly desired.

112

5.2.2 Mobile System Security

The never before seen popularity of smart phones brings personal computing into a

new chapter. Portable computing devices and high-speed cellular networks provide us

with great convenience of location-free information access and communication. How­

ever, just like any other technologies, the double-edged sword of mobile computing

exposes us to new risks and threats.

Functioning as personal information central, smart phones gather and harbor a

rich set of data about its owner, from online activities to social interactions, and to

physical identities, and even to financial information. As a result, these information

"gold mines" are on the trend of superseding personal computers and becoming prime

targets for cyber attacks. However, the security of smart phones is no stronger than

that of personal computers. In particular, to facilitate rich and customizable func­

tionalities, smart phone designs incorporate user programmable applications, called

"apps". And this design choice makes smart phones vulnerable to malicious software,

just like personal computers. Adding insult to injury, due to the limited computation

power and energy reserve, hosting client-side malware protections on smart phones

is impractical or highly undesirable, making malware protection on a mobile system

particularly challenging.

Currently some device manufactures employ manual vetting to screen untrusted,

potentially malicious "apps" . However, the number of new "apps" increases by thou­

sands daily and is still on the rise, making manual vetting impractical in the near

future. An alternative solution is to host automated "app" vetting on the service

provider side, harvesting vast amount of computation power and energy reserves from

the data center and cloud. However, provider-side malware detections are performed

without real life usage context and thus may suffer degraded accuracy. In addi-

113

tion, malware writers can craft targeted evasion techniques, such as device emulation

and/ or human user detection. Future security solutions for mobile system should

bridge the provider-side and device-side malware defenses, allowing these techniques

to complement their weaknesses, and thereby achieve robust and efficient protec­

tion.

114

References

[1 J Amazon Web Services. Amazon EC2 dedicated instances. http: I I aws. amazon.

com/dedicated-instances/.

(2] B. Barak, 0. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and

K. Yang. On the (im)possibility of obfuscating programs. In Proceedings of the

21st Annual International Cryptology Conference (CRYPTO}, August 2001.

[3] P. Barford and M. Crovella. Generating representative web workloads for net­

work and server performance evaluation. In Proceedings of the 1998 ACM

SIGMETRICS joint international conference on Measurement and modeling of

computer systems, pages 151-160, 1998.

[4] L. A. Barroso. The price of performance. ACM Queue, 3(7):48-53, September

2005.

[5] L.A. Barroso and U. Holzle. The case for energy-proportional computing. IEEE

Computer, 40(12):33-37, Dec. 2007.

[6] R. Bianchini and R. Rajamony. Power and energy management for server sys­

tems. IEEE Computer, 37(11):68-74, Nov. 2004.

[7] C. Bryan-Low. Cybercrime costs mount in U.K. http://online.wsj.com/

article/SB10001424052748703561604576150353058208060.html.

(8] T. K. Buennemeyer, M. Gora, R. C. Marchany, and J. G. Tront. Battery ex­

haustion attack detection with small handheld mobile computers. In Proceed­

ings of the IEEE International Conference on Portable Information Devices

(PORTABLE}, 2007.

[9] S. Cabuk, C. E. Brodley, and C. Shields. IP covert timing channels: design

115

and detection. In Proceedings of the 11th A CM conference on Computer and

communications security (CCS'04}, pages 178-187, 2004.

[10] X. Cai, Y. Gui, and R. Johnson. Exploiting unix file-system races via algo­

rithmic complexity attacks. In Proceedings of the 30th IEEE Symposium on

Security and Privacy, May 2009.

[11] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving disk energy in net­

work servers. In Proceedings of the 17th annual international conference on

Supercomputing (ICS}, pages 86-97, 2003.

[12] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle.

Managing energy and server resources in hosting centers. In Proceedings of the

18th ACM symposium on operating systems principles (SOSP}, pages 103-116,

2001.

[13] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics­

aware malware detection. In Proceedings of the 2005 IEEE Symposium on

Security and Privacy (S&P}, May 2005.

[14] J. R. Crandall, Z. Su, S. F. Wu, and F. T. Chong. On deriving unknown

vulnerabilities from zero-day polymorphic and metamorphic worm exploits. In

Proceedings of the 12th ACM Conference on Computer and Communications

Security (CCS}, pages 235-248, 2005.

[15] S. A. Crosby and D. S. Wallach. Denial of service via algorithmic complexity

attacks. In Proceedings of the 12th conference on USENIX Security Symposium,

2003.

[16] D. Dagon, T. Martin, and T. Starner. Mobile phones as computing devices:

The viruses are coming! IEEE Pervasive Computing, 3(4):11-15, Oct.-Dec.

2004.

[17] S. Debray. Code compression. In Proceedings of the 7th International Sympo­

sium on Practical Aspects of Declarative Languages, 2005.

[18] S. Debray and W. Evans. Profile-guided code compression. In Proceedings of

SIGPLAN '02 Conference on Programming Language Design and Implementa­

tion (PLDI'02}, pages 95-105, 2002.

116

[19) Department of Defense. TCSEC: Trusted computer system evaluation criteria.

Technical Report 5200.28-STD, U.S. Department of Defense, Dec 1985.

[20) T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk. Polymorphic

shellcode engine using spectrum analysis. Phrack Issue Ox3d, 2003.

[21) T. E. Dube, B. D. Birrer, R. A. Raines, R. 0. Baldwin, B. E. Mullins, R. W.

Bennington, and C. E. Reuter. Hindering reverse engineering: Thinking outside

the box. IEEE Security and Privacy, 6(2):58-65, 2008.

[22) M. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server clusters. In

Proceedings of the 2nd Workshop on Power-Aware Computing Systems, pages

179-196, 2002.

[23) M. Elnozahy, M. Kistler, and R. Rajamony. Energy conservation policies for

web servers. In Proceedings of the 4th conference on USENIX Symposium on

Internet Technologies and Systems {USITS}, 2003.

[24) X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse­

sized computer. In Proceedings of the 34th annual international symposium on

Computer architecture {ISCA), pages 13-23, 2007.

[25) W. Felter, K. Rajamani, T. Keller, and C. Rusu. A performance-conserving

approach for reducing peak power consumption in server systems. In Proceedings

of the 19th annual international conference on Supercomputing {ICS}, pages

293-302, 2005.

[26) P. Fogla and W. Lee. Evading network anomaly detection systems: formal

reasoning and practical techniques. In Proceedings of the 13th A C M conference

on Computer and communications security (CCS), pages 59-68, 2006.

[27) P. Fogla, M. Sharif, R. Perdisci, 0. Kolesnikov, and W. Lee. Polymorphic

blending attacks. In Proceedings of the 15th USENIX Security Symposium,

July 2006.

[28) J. Giffin, S. Jha, and B. Miller. Automated discovery of mimicry attacks. In

Proceedings of the 9th International Symposium on Recent Advances in Intru­

sion Detection {RAID), 2006.

117

[29] D. Goldman. Cybercrime: A secret underground economy. http: I /money.

cnn.com/2009/09/16/technology/cybercrime/index.htm.

[30] J. W. Gray III. On introducing noise into the bus-contention channel. In

Proceedings of the 1993 IEEE Symposium on Security and Privacy (S&P'93},

pages 9Q-, 1993.

[31] J. W. Gray III. Countermeasures and tradeoff's for a class of covert timing

channels. Technical report, Hong Kong University of Science and Technology,

1994.

[32] M. V. Gundy, D. Balzarotti, and G. Vigna. Catch me, if you can: Evading

network signatures with web-based polymorphic worms. In Proceedings of 1st

USENIX Workshop on Offensive Technologies, August 2007.

[33] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke. DRPM:

Dynamic speed control for power management in server class disks. In Pro­

ceedings of the 30th annual international symposium on Computer architecture

{ISCA), pages 169-182, 2003.

[34] J. Hamilton. Where does the power go and what to do about it? In Pro­

ceedings of the USENIX Workshop on Power Aware Computing and Systems

(HotPower}, December 2008.

[35] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini. Energy conser­

vation in heterogeneous server clusters. In Proceedings of the tenth ACM SIG­

p LAN symposium on Principles and practice of parallel programming {P PoP P),

pages 186-195, 2005.

[36] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Advanced configura­

tion and power interface. http: I /www. acpi. info.

[37] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu. Dynamic voltage scaling

in multitier web servers with end-to-end delay control. IEEE Trans. Comput.,

56(4):444-458, 2007.

[38] W. Hu. Reducing timing charmers with fuzzy time. Proceedings of the 1991

IEEE Symposium on Security and Privacy {S&P'91}, page 8, 1991.

118

http://money
http://www.acpi.info

[39) W. Hu. Lattice scheduling and covert channels. In Proceedings of the IEEE

Computer Society Symposium on Research in Security and Privacy, 1992, pages

52 -61, may 1992.

[40) Intel. The Intel 64 and IA-32 architectures software developer's manual.

http://www.intel.com/products/processor/manuals/.

[41) Intel. Intel 6400/6402 Advanced Memory Buffer: Thermal/Mechanical Design

Guide, December 2006.

[42) S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-Sale: Surviving orga­

nized DDoS attacks that mimic flash crowds. In Proceedings of the 2nd USENIX

Symposium on Networked Systems Design and Implementation (NSDI), May

2005.

[43) M. Khafir. Trident polymorphic engine. http: I /vx. net lux. org/lib/vx. php?

id=et06.

[44) H. Kim, J. Smith, and K. G. Shin. Detecting energy-greedy anomalies and

mobile malware variants. In Proceedings of the 6th international conference

on Mobile systems, applications, and services (MobiSys), pages 239-252, June

2008.

[45] H.-A. Kim and B. Karp. Autograph: Toward automated, distributed worm

signature detection. In Proceedings of 13th USENIX Security Symposium, 2004.

[46) J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Detecting malicious

code by model checking. In Proceedings of the 2nd International Conference

Detection of Intrusions and Malware, and Vulnerability Assessment {DIMVA),

pages 174-187, July 2005.

[47] J. Kong, 0. Aciicmez, J.-P. Seifert, and H. Zhou. Hardware-software integrated

approaches to defend against software cache-based side channel attacks. In

Proceedings of the 15th IEEE International Symposium on High Performance

Computer Architecture 2009 (HPCA '09), pages 393-404, feb. 2009.

[48) C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion detection sig­

natures using honeypots. In Proceedings of 2nd Workshop on Hot Topics in

Networks (Hotnets-/1), 2003.

119

http://www.intel.com/products/processor/manuals/
http://vx.netlux.org/lib/vx.php

(49] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating

mimicry attacks using static binary analysis. In Proceedings of the 14th USENIX

Security Symposium, 2005.

[50] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic

worm detection using structural information of executables. In Proceedings of

the 8th International Symposium on Recent Advances in Intrusion Detection

(RAID}, September 2005.

[51] C. Kruegel, W. K. Robertson, F. Valeur, and G. Vigna. Static disassembly of

obfuscated binaries. In Proceedings of the 13th USENIX Security Symposium,

2004.

[52] B. W. Lampson. A note on the confinement problem. Commun. ACM, 16:613-

615, October 1973.

[53] Z. Li, M. Sanghi, B. Chavez, Y. Chen, and M.-Y. Kao. Hamsa: Fast signature

generation for zero-day polymorphic worms with provable attack resilience. In

Proceedings of the 2006 IEEE Symposium on Security and Privacy {S&P}, May

2006.

[54] R. Lyda and J. Hamrock. Using entropy analysis to find encrypted and packed

malware. IEEE Security and Privacy, 5(2):4Q-45, 2007.

[55] S. Macaulay. Admmutate: Polymorphic shellcode engine. http: I /www. ktwo.

ca/security.html.

[56] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami. Denial-of-service attacks

on battery-powered mobile computers. In Proceedings of the 2nd IEEE Inter­

national Conference on Pervasive Computing and Communications {PerCom),

2004.

[57] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM Transactions

on Modeling and Computer Simulation (TOMACS}, 8(1):3-30, 1998.

[58] F. G. G. Meade. A guide to understanding covert channel analysis of trusted

systems. Manual NCSC-TG-030, U.S. National Computer Security Center, Nov

1993.

120

http://www.ktwo

[59] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: eliminating server idle

power. In Proceedings of the 14th ACM ASPLOS, pages 205-216, March 2009.

[60] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware

detection. In Proceedings of the 23rd Annual Computer Security Applications

Conference (ACSAC}, pages 421-430, 2007.

[61] P. J. Mucci, K. London, and P. J. Mucci. The CacheBench report. Technical

report, Nichols Research Corporation, 1998.

[62] R. Nathuji and K. Schwan. VirtualPower: coordinated power management

in virtualized enterprise systems. In Proceedings of the 21st ACM SIGOPS

symposium on Operating Systems Principles (SOSP), pages 265-278, 2007.

[63] R. Neugebauer and D. McAuley. Energy is just another resource: Energy ac­

counting and energy pricing in the nemesis os. In Proceedings of the 8th Work­

shop on Hot Topics in Operating Systems (HOTOS), 2001.

[64] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating

signatures for polymorphic worms. In Proceedings of the 2005 IEEE Symposium

on Security and Privacy (S&P }, May 2005.

[65] J. Newsome, B. Karp, and D. X. Song. Paragraph: Thwarting signature learning

by training maliciously. In Proceedings of the 9th International Symposium on

Recent Advanced in Intrusion Detection {RAID), September 2006.

[66] C. Parampalli, R. Sekar, and R. Johnson. A practical mimicry attack against

powerful system-call monitors. In Proceedings of the 2001 ACM Symposium on

Information, Computer and Communications Security (ASIACCS'01), 2007.

[67] C. Percival. Cache missing for fun and profit. In Proceedings of the BSDCan

2005, 2005.

[68] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif. Misleading worm

signature generators using deliberate noise injection. In Proceedings of the 2006

IEEE Symposium on Security and Privacy (S&P), May 2006.

[69] R. Perdisci, G. Gu, and W. Lee. Using an ensemble of one-class SVM classifiers

to harden payload-based anomaly detection systems. In Proceedings of the Sixth

International Conference on Data Mining, pages 488-498, 2006.

121

[70] F. Perriot, P. Ferrie, and P. Szor. Striking similarities: Win32/Simile. http: I I
securityresponse.symantec.com/avcenter/reference/simile.pdf.

[71] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Dynamic cluster re­

configuration for power and performance, pages 75-93. Kluwer Academic Pub­

lishers, Norwell, MA, USA, 2003.

[72] M. Pirretti, S. Zhu, V. Narayanan, P. Mcdaniel, and M. K. The sleep deprivation

attack in sensor networks: analysis and methods of defense. In Proceedings of

the ICA DSN 2005, 2005.

[73] B. R. Racic, D. Ma, and H. Chen. Exploiting MMS vulnerabilities to stealthily

exhaust mobile phone's battery. In Proceedings of the 2nd International Con­

ference on Security and Privacy in Communication Networks (SecureComm},

pages 1-10, September 2006.

[74] K. Rajamani and C. Lefurgy. On evaluating request-distribution schemes for

saving energy in server clusters. In Proceedings of the 2003 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), pages

111-122, 2003.

[75] S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly. DDoS-resilient schedul­

ing to counter application layer attacks under imperfect detection. In Proceed­

ings of the 25th IEEE Conference on Computer Communications {INFOCOM),

Apr. 2006.

[76] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal

of the Society for Industrial and Applied Mathematics, 8(2):30Q-304, 1960.

[77] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of

my cloud: exploring information leakage in third-party compute clouds. In

Proceedings of the 16th ACM conference on Computer and communications

security (CCS'09}, pages 199--212, 2009.

[78] C. H. Rowland. Covert channels in the TCP /IP protocol suite. First Monday,

2, 1997.

[79] Seagate. Barracuda es.2 data sheet. http: I /www. seagate. com/docs/pdf/

datasheet/disc/ds_barracuda_es_2.pdf.

122

[80] Seagate. Cheetah 15k.6 data sheet. http: I /vww. seagate. com/docs/pdf/

datasheet/disc/ds_cheetah_15k_6.pdf.

[81] G. Shah and M. Blaze. Covert channels through external interference. In Pro­

ceedings of the 3rd USENIX conference on Offensive technologies, WOOT'09,

pages 3-3, Berkeley, CA, USA, 2009. USENIX Association.

[82] G. Shah, A. Molina, and M. Blaze. Keyboards and covert channels. In Pro­

ceedings of the 15th conference on USENIX Security Symposium, Berkeley, CA,

USA, 2006. USENIX Association.

[83] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprint­

ing. In Proceedings of the 6th ACM/USENIX Symposium on Operating System

Design and Implementation (OSDI}, December 2004.

[84] P. Szor. The Art of Computer Virus Research and Defense. Symantec Press,

2005.

[85] K. M. C. Tan, K. S. Killourhy, and R. A. Maxion. Undermining an anomaly­

based intrusion detection system using common exploits. In Proceedings of

the 5th International Symposium on Recent Advances in Intrusion Detection

(RAID), 2002.

[86] Y. Tang and S. Chen. Defending against internet worms: a signature-based

approach. In Proceedings of the 24th INFOCOM, March 2005.

[87] U.S. Environmental Protection Agency. Report to congress on server and data

center energy efficiency, 2007.

[88] U.S. Environmental Protection Agency. The ENERGY STAR version 5.0 spec­

ification for computers, 2008.

[89] S. Venkataraman, A. Blum, and D. Song. Limits of learning-based signature

generation with adversaries. In Proceedings of the 15th Annual Network and

Distributed Systems Security Symposium (NDSS), February 2008.

[90] T. V. Vleck. Timing channels. Poster session, IEEE TCSP conference, May

1990.

123

[91] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection

systems. In Proceedings of the 9th ACM conference on Computer and commu­

nications security (CCS}, pages 255-264, 2002.

[92] H. Wang, C. Jin, and K. G. Shin. Defense against spoofed ip traffic using

hop-count filtering. IEEE/ACM Transactions on Networking, 15(1), Feb. 2007.

[93] K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A content anomaly detector

resistant to mimicry attack. In Proceedings of the 9th International Symposium

on Recent Advanced in Intrusion Detection (RAID), September 2006.

[94] K. Wang and S. Stolfo. Anomalous payload-based network intrusion detec­

tion. In Proceedings of the 7th International Symposium on Recent Advances in

Intrusion Detection (RAID), September 2004.

[95] Z. Wang and R. B. Lee. Covert and side channels due to processor architecture.

In Proceedings of the 22nd Annual Computer Security Applications Conference,

pages 4 73-482, 2006.

[96] Z. Wang and R. B. Lee. A novel cache architecture with enhanced performance

and security. In Proceedings of the 41st annual IEEE/ACM International Sym­

posium on Microarchitecture (MICR0'41}, pages 83-93, 2008.

[97] Watts up? Watts up? .Net digital power meter. https: I /www. wattsupmeters.

com/secure/products.php?pn=O.

[98] P. Wayner. Mimic functions. Cryptologia, 16(3):193-214, July 1992.

[99] J. Winkler and J. Munn. Standards and architecture for token-ring local area

networks. In Proceedings of 1986 ACM Fall joint computer conference, ACM

'86, pages 479-488, 1986.

[100] XenSource. Xen credit scheduler. http: //wiki. xensource. com/xenwiki/

CreditScheduler.

[101] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting.

An exploration of L2 cache covert channels in virtualized environments. In

Proceedings of the 3rd ACM workshop on Cloud computing security workshop

(CCSW'11}, pages 29-40, 2011.

124

[102] V. Yegneswaran, J. T. Giffin, P. Harford, and S. Jha. An architecture for

generating semantics-aware signatures. In Proceedings of the 14th USENIX

Security Symposium, 2005.

[103] ZOmbie. Automated reverse engineering: Mistfall engine. http: I /vx.netlux.

org/lib/vzo21.html.

(104] Q. Zhang and D. S. Reeves. MetaAware: Identifying metamorphic malware.

In Proceedings of the 23rd Annual Computer Security Applications Conference

{ACSAC), pages 411-420, 2007.

[105] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. HomeAlone: Co-residency

detection in the cloud via side-channel analysis. In Proceedings of the 32nd

IEEE Symposium on Security and Privacy {S&P'11), May 2011.

125

VITA

Zhenyu Wu was born in Chengdu, Sichuan, China, on August 3, 1982, the son of
Jian Wu and An Yang. Graduated from High School attached to Sichuan Normal
University in Chengdu, Sichuan, China, he entered Denison University in Ohio, USA
in August 2001, where he received the degrees of Bachelor of Science in Computer
Science, and Bachelor of Arts in Physics, in May 2005. He proceeded with graduate
studies in the Department of Computer Science at the College of William and Mary
in Virginia, in August 2005. He received a Master of Science degree in Computer
Science from the College of William and Mary in Virginia, in May 2007.

This dissertation was defended on April13, 2012 at the College of William and Mary
in Virginia.

126

	Discovering New Vulnerabilities in Computer Systems
	Recommended Citation

	tmp.1539734415.pdf.po2EB

