374 research outputs found

    In-system Jitter Measurement Based on Blind Oversampling Data Recovery

    Get PDF
    The paper describes a novel method for simple estimation of jitter contained in a received digital signal. The main objective of our research was to enable a non-invasive measurement of data link properties during a regular data transmission. To evaluate the signal quality we estimate amount of jitter contained in the received signal by utilizing internal signals of a data recovery circuit. The method is a pure digital algorithm suitable for implementation in any digital integrated circuit (ASIC or FPGA). It is based on a blind-oversampling data recovery circuit which is used in some receivers instead of a traditional PLL-based clock and data recovery (CDR) circuit. Combination of the described jitter measurement block and the data recovery block forms a very efficient input part of the digital receiver. In such configuration it is able to simultaneously perform both data communication (data recovery) and signal quality estimation (jitter measurement). The jitter measurement portion of the receiver requires no special connection of the received data signal. Thus the measured signal is not influenced by the measurement circuitry at all. To verify the method we performed a measurement on a laboratory free-space optics link. Results of the measurement are satisfactory and can be used for on-line channel analysis

    A high speed serializer/deserializer design

    Get PDF
    A Serializer/Deserializer (SerDes) is a circuit that converts parallel data into a serial stream and vice versa. It helps solve clock/data skew problems, simplifies data transmission, lowers the power consumption and reduces the chip cost. The goal of this project was to solve the challenges in high speed SerDes design, which included the low jitter design, wide bandwidth design and low power design. A quarter-rate multiplexer/demultiplexer (MUX/DEMUX) was implemented. This quarter-rate structure decreases the required clock frequency from one half to one quarter of the data rate. It is shown that this significantly relaxes the design of the VCO at high speed and achieves lower power consumption. A novel multi-phase LC-ring oscillator was developed to supply a low noise clock to the SerDes. This proposed VCO combined an LC-tank with a ring structure to achieve both wide tuning range (11%) and low phase noise (-110dBc/Hz at 1MHz offset). With this structure, a data rate of 36 Gb/s was realized with a measured peak-to-peak jitter of 10ps using 0.18microm SiGe BiCMOS technology. The power consumption is 3.6W with 3.4V power supply voltage. At a 60 Gb/s data rate the simulated peak-to-peak jitter was 4.8ps using 65nm CMOS technology. The power consumption is 92mW with 2V power supply voltage. A time-to-digital (TDC) calibration circuit was designed to compensate for the phase mismatches among the multiple phases of the PLL clock using a three dimensional fully depleted silicon on insulator (3D FDSOI) CMOS process. The 3D process separated the analog PLL portion from the digital calibration portion into different tiers. This eliminated the noise coupling through the common substrate in the 2D process. Mismatches caused by the vertical tier-to-tier interconnections and the temperature influence in the 3D process were attenuated by the proposed calibration circuit. The design strategy and circuits developed from this dissertation provide significant benefit to both wired and wireless applications

    ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ ๊ธฐ๋ฐ˜ ๊ธฐ์ค€ ์ฃผํŒŒ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ํด๋ก ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์› ํšŒ๋กœ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .In this thesis, a design of a high-speed, power-efficient, wide-range clock and data recovery (CDR) without a reference clock is proposed. A frequency acquisition scheme using a stochastic frequency detector (SFD) based on the Alexander phase detector (PD) is utilized for the referenceless operation. Pat-tern histogram analysis is presented to analyze the frequency acquisition behavior of the SFD and verified by simulation. Based on the information obtained by pattern histogram analysis, SFD using autocovariance is proposed. With a direct-proportional path and a digital integral path, the proposed referenceless CDR achieves frequency lock at all measurable conditions, and the measured frequency acquisition time is within 7ฮผs. The prototype chip has been fabricated in a 40-nm CMOS process and occupies an active area of 0.032 mm2. The proposed referenceless CDR achieves the BER of less than 10-12 at 32 Gb/s and exhibits an energy efficiency of 1.15 pJ/b at 32 Gb/s with a 1.0 V supply.๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๊ณ ์†, ์ €์ „๋ ฅ, ๊ด‘๋Œ€์—ญ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ์˜ ์„ค๊ณ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๋™์ž‘์„ ์œ„ํ•ด์„œ ์•Œ๋ ‰์‚ฐ๋” ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์— ๊ธฐ๋ฐ˜ํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ํš๋“ ๋ฐฉ์‹์ด ์‚ฌ์šฉ๋œ๋‹ค. ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ์˜ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์–‘์ƒ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค. ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„์„ ํ†ตํ•ด ์–ป์€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ž๊ธฐ๊ณต๋ถ„์‚ฐ์„ ์ด์šฉํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ง์ ‘ ๋น„๋ก€ ๊ฒฝ๋กœ์™€ ๋””์ง€ํ„ธ ์ ๋ถ„ ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” ๋ชจ๋“  ์ธก์ • ๊ฐ€๋Šฅํ•œ ์กฐ๊ฑด์—์„œ ์ฃผํŒŒ์ˆ˜ ์ž ๊ธˆ์„ ๋‹ฌ์„ฑํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ•˜์˜€๊ณ , ๋ชจ๋“  ๊ฒฝ์šฐ์—์„œ ์ธก์ •๋œ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์‹œ๊ฐ„์€ 7ฮผs ์ด๋‚ด์ด๋‹ค. 40-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์€ 0.032 mm2์˜ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” 32 Gb/s์˜ ์†๋„์—์„œ ๋น„ํŠธ์—๋Ÿฌ์œจ 10-12 ์ดํ•˜๋กœ ๋™์ž‘ํ•˜์˜€๊ณ , ์—๋„ˆ์ง€ ํšจ์œจ์€ 32Gb/s์˜ ์†๋„์—์„œ 1.0V ๊ณต๊ธ‰์ „์••์„ ์‚ฌ์šฉํ•˜์—ฌ 1.15 pJ/b์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 13 CHAPTER 2 BACKGROUNDS 14 2.1 CLOCKING ARCHITECTURES IN SERIAL LINK INTERFACE 14 2.2 GENERAL CONSIDERATIONS FOR CLOCK AND DATA RECOVERY 24 2.2.1 OVERVIEW 24 2.2.2 JITTER 26 2.2.3 CDR JITTER CHARACTERISTICS 33 2.3 CDR ARCHITECTURES 39 2.3.1 PLL-BASED CDR โ€“ WITH EXTERNAL REFERENCE CLOCK 39 2.3.2 DLL/PI-BASED CDR 44 2.3.3 PLL-BASED CDR โ€“ WITHOUT EXTERNAL REFERENCE CLOCK 47 2.4 FREQUENCY ACQUISITION SCHEME 50 2.4.1 TYPICAL FREQUENCY DETECTORS 50 2.4.1.1 DIGITAL QUADRICORRELATOR FREQUENCY DETECTOR 50 2.4.1.2 ROTATIONAL FREQUENCY DETECTOR 54 2.4.2 PRIOR WORKS 56 CHAPTER 3 DESIGN OF THE REFERENCELESS CDR USING SFD 58 3.1 OVERVIEW 58 3.2 PROPOSED FREQUENCY DETECTOR 62 3.2.1 MOTIVATION 62 3.2.2 PATTERN HISTOGRAM ANALYSIS 68 3.2.3 INTRODUCTION OF AUTOCOVARIANCE TO STOCHASTIC FREQUENCY DETECTOR 75 3.3 CIRCUIT IMPLEMENTATION 83 3.3.1 IMPLEMENTATION OF THE PROPOSED REFERENCELESS CDR 83 3.3.2 CONTINUOUS-TIME LINEAR EQUALIZER (CTLE) 85 3.3.3 DIGITALLY-CONTROLLED OSCILLATOR (DCO) 87 3.4 MEASUREMENT RESULTS 89 CHAPTER 4 CONCLUSION 99 APPENDIX A DETAILED FREQUENCY ACQUISITION WAVEFORMS OF THE PROPOSED SFD 100 BIBLIOGRAPHY 108 ์ดˆ ๋ก 122๋ฐ•

    A 1.8-pJ/b, 12.5-25-Gb/s wide range all-digital clock and data recovery circuit

    Get PDF
    Recently, there has been a strong drive to replace established analog circuits for multi-gigabit clock and data recovery (CDR) by more digital solutions. We focused on phase locked loop-based all-digital CDR (AD-CDR) techniques which contain a digital loop filter (DLF) and a digital controlled oscillator (DCO) and pushed the digital integration up to a level where our DLF is entirely synthesized. To enable this, we found that extensive subsampling can be used to decrease the speed of the DLF while maintaining a good operation. Additionally, an Inverse Alexander phase detector and a 5.5-bit resolution DCO complete the AD-CDR architecture. As a result of the low complexity and digital architecture, the AD-CDR occupies a compact active chip area of 0.050 mm(2) and consumes only 46 mW at 25 Gb/s. This is the smallest area and the lowest power consumption compared with the state-of-the-art. In addition, our implementation is highly tunable due to the synthesized logic, and supports a wide operating range (12.5-25 Gb/s), which is a significantly larger range compared with the previous work. Finally, thanks to our digital architecture, the power dissipation decreases linearly while moving to the lower speeds of our operating range. This is in contrast with the most prior work, making our design truly adaptive

    ์ตœ์ ์— ๊ฐ€๊นŒ์šด ํƒ€์ด๋ฐ ์ ์‘์„ ์œ„ํ•ด ์น˜์šฐ์นœ ๋ฐ์ดํ„ฐ ๋ ˆ๋ฒจ๊ณผ ๋ˆˆ ๊ฒฝ์‚ฌ ๋””ํ…ํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ์ตœ๋Œ€ ๋ˆˆํฌ๊ธฐ์ถ”์  ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ์ •๋•๊ท .์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ตœ์†Œ-๋น„ํŠธ ๋น„ํŠธ ์—๋Ÿฌ์œจ (BER)์— ๋Œ€ํ•œ ์ตœ๋Œ€ ๋ˆˆํฌ๊ธฐ ์ถ”์  CDR (MET-CDR)์˜ ์„ค๊ณ„๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ œ์•ˆ ๋œ CDR ์€ ์ตœ์ ์˜ ์ƒ˜ํ”Œ๋ง ๋‹จ๊ณ„๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ๋ฐ˜๋ณต ์ ˆ์ฐจ๋ฅผ ๊ฐ€์ง„ BER ์นด์šดํ„ฐ ๋˜๋Š” ์•„์ด ๋ชจ๋‹ˆํ„ฐ๊ฐ€ ํ•„ ์š”ํ•˜์ง€ ์•Š๋‹ค. ์—๋Ÿฌ ์ƒ˜ํ”Œ๋Ÿฌ ์ถœ๋ ฅ์— ๊ฐ€์ค‘์น˜๋ฅผ ๋‘์–ด ๋”ํ•˜์—ฌ ์–ป์€ ์น˜์šฐ์นœ ๋ฐ ์ดํ„ฐ ๋ ˆ๋ฒจ (biased dLev) ์€ ์‚ฌ์ „ ์ปค์„œ ISI(pre-cursor ISI) ์˜ ์ •๋ณด๋„ ๊ณ ๋ คํ•œ ๋ˆˆ ๋†’์ด ์ •๋ณด๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ๋ธํƒ€ T ๋งŒํผ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๋ฅผ ๋‘” ์ง€์ ์—์„œ ์ž‘๋™ ํ•˜๋Š” ๋‘ ์ƒ˜ํ”Œ๋Ÿฌ๋Š” ํ˜„์žฌ ๋ˆˆ ๋†’์ด์™€ ๋ˆˆ ๊ธฐ์šธ๊ธฐ์˜ ๊ทน์„ฑ์„ ๊ฐ์ง€ํ•˜๊ณ , ์ด ์ •๋ณด ๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” CDR ์€ ๋ˆˆ ๊ธฐ์šธ๊ธฐ๊ฐ€ 0 ์ด๋˜๋Š” ์ตœ๋Œ€ ๋ˆˆ ๋†’์ด๋กœ ์ˆ˜๋ ดํ•œ ๋‹ค. ์ธก์ • ๊ฒฐ๊ณผ๋Š” ์ตœ๋Œ€ ๋ˆˆ ๋†’์ด์™€ ์ตœ์†Œ BER ์˜ ์ƒ˜ํ”Œ๋ง ์œ„์น˜๊ฐ€ ์ž˜ ์ผ์น˜ ํ•จ ์„ ๋ณด์—ฌ์ค€๋‹ค. 28nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋œ ์ˆ˜์‹ ๊ธฐ ์นฉ์€ 23.5dB ์˜ ์ฑ„๋„ ์†์‹ค์ด ์žˆ๋Š” ์ƒํƒœ์—์„œ 26Gb/s ์—์„œ ๋™์ž‘ ๊ฐ€๋Šฅํ•˜๋‹ค. 0.25UI ์˜ ์•„์ด ์˜คํ”„๋‹ ์„ ๊ฐ€์ง€๋ฉฐ, 87mW ์˜ ํŒŒ์›Œ๋ฅผ ์†Œ๋น„ํ•œ๋‹ค.In this thesis, design of a maximum-eye-tracking CDR (MET-CDR) for minimum bit error rate (BER) is proposed. The proposed CDR does not require a BER coun-ter or an eye-opening monitor with any iterative procedure to find the near-optimal sampling phase. The biased data-level obtained from the weighted sum of error sampler outputs, UP and DN, extracts the actual eye height information in the presence of pre-cursor ISI. Two samplers operating on two slightly different tim-ings detect the current eye height and the polarity of the eye slope so that the CDR tracks the maximum eye height where the slope becomes zero. Measured results show that the sampling phase of the maximum eye height and that of the mini-mum BER match well. A prototype receiver fabricated in 28 nm CMOS process operates at 26 Gb/s with an eye-opening of 0.25 UI and consumes 87 mW while equalizing 23.5 dB of loss at 13 GHz.ABSTRACT I CONTENTS II LIST OF FIGURES IV LIST OF TABLES VIII CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 4 CHAPTER 2 BACKGROUNDS 5 2.1 RECEIVER FRONT-END 5 2.1.1 CHANNEL 7 2.1.2 EQUALIZER 17 2.1.3 CDR 32 2.2 PRIOR ARTS ON CLOCK RECOVERY 39 2.2.1 BB-CDR 39 2.2.2 BER-BASED CDR 41 2.2.3 EOM-BASED CDR 44 2.3 CONCEPT OF THE PROPOSED CDR 47 CHAPTER 3 MAXIMUM-EYE-TRACKING CDR WITH BIASED DATA-LEVEL AND EYE SLOPE DETECTOR 49 3.1 OVERVIEW 49 3.2 DESIGN OF MET-CDR 50 3.2.1 EYE HEIGHT INFORMATION FROM BIASED DATA-LEVEL 50 3.2.2 EYE SLOPE DETECTOR AND ADAPTATION ALGORITHM 60 3.2.3 ARCHITECTURE AND IMPLEMENTATION 67 3.2.4 VERIFICATION OF THE ALGORITHM 71 3.2.5 ANALYSIS ON THE BIASED DATA-LEVEL 76 3.3 EXPANSION OF MET-CDR TO PAM4 SIGNALING 84 3.3.1 MET-CDR WITH PAM4 84 3.3.2 CONSIDERATIONS FOR PAM4 87 CHAPTER 4 MEASUREMENT RESULTS 89 CHAPTER 5 CONCLUSION 99 APPENDIX A MATLAB CODE FOR SIMULATING RECEIVER WITH MET-CDR 100 BIBLIOGRAPHY 105 ์ดˆ ๋ก 113Docto

    A 40-Gb/s Quarter-Rate SerDes Transmitter and Receiver Chipset in 65-nm CMOS

    Get PDF
    This paper presents a 40-Gb/s transmitter (TX) and receiver (RX) chipset for chip-to-chip communications in a 65-nm CMOS process. The TX implements a quarter-rate multi-multiplexer (MUX)-based four-tap feed-forward equalizer (FFE), where a charge-sharing-effect elimination technique is introduced into the 4:1 MUX to optimize its jitter performance and power efficiency. The RX employs a two-stage continuous-time linear equalizer as the analog front end and integrates a low-cost sign-based zero-forcing engine relying on edge-data correlation to automatically adjust the tap weights of the TX-FFE. By embedding low-pass filters with an adaptively adjusting bandwidth into the data-sampling path and adopting high-linearity compensating phase interpolators, the clock data recovery achieves both high jitter tolerance and low jitter generation. The fabricated TX and RX chipset delivers 40-Gb/s PRBS data at BER 16-dB loss at half-baud frequency, while consuming a total power of 370 mW

    Synchronous subnanosecond clock and data recovery for optically switched data centres using clock phase caching

    Get PDF
    The rapid growth in the amount of data being transferred within data centres, combined with the slowdown in Mooreโ€™s Law, creates challenges for the future scalability of electronically switched data-centre networks. Optical switches could offer a future-proof alternative, and photonic integration platforms have been demonstrated with nanosecond-scale optical switching times. End-to-end switching time is, however, currently limited by the clock and data recovery time, which typically takes microseconds, removing the benefits of nanosecond optical switching. Here we show that a clock phase caching technique can provide clock and data recovery times of under 625 ps (16 symbols at 25.6 Gb sโˆ’1). Our approach uses the measurement and storage of clock phase values in a synchronized network to simplify clock and data recovery versus conventional asynchronous approaches. We demonstrate the capabilities of our technique using a real-time prototype with commercial transceivers and validate its resilience against temperature variation and clock jitter

    ์ตœ์  ์œ„์ƒ ๊ฒ€์ถœ ํšŒ๋กœ๋ฅผ ์ด์šฉํ•œ ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์› ํšŒ๋กœ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 8. ๊น€์žฌํ•˜.Bang-bang phase detectors are widely used for today's high-speed communication circuits such as phase-locked loops (PLLs), delay-locked loops (DLLs) and clock-and-data recovery loops (CDRs) because it is simple, fast, accurate and amenable to digital implementations. However, its hard nonlinearity poses difficulties in design and analyses of the bang-bang controlled timing loops. Especially, dithering in bang-bang controlled CDRs sets conflicting requirements on the phase adjustment resolution as one tries to maximize the tracking bandwidth and minimize jitter. A fine phase step is helpful to minimize the dithering, but it requires circuits with finer resolution that consumes large power and area. In this background, this dissertation introduces an optimal phase detection technique that can minimize the effect of dithering without requiring fine phase resolution. A novel phase interval detector that looks for a phase interval enclosing the desired lock point is shown to find the optimal phase that minimizes the timing error without dithering. A digitally-controlled, phase-interpolating DLL-based CDR fabricated in 65nm CMOS demonstrates that it can achieve small area of 0.026mm^2 and low jitter of 41mUIp-p with a coarse phase adjustment step of 0.11UI, while dissipating only 8.4mW at 5Gbps. For the theoretic basis, various analysis techniques to understand bang-bang controlled timing loops are also presented. The proposed techniques are explained for both linearized loop and non-linear one, and applied to the evaluation of the proposed phase detection technique.1 Introduction 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Contribution and Organization . . . . . . . . . . . . . . . . . 6 2 Pseudo-Linear Analysis of Bang-Bang Controlled Loops 9 2.1 Model of a Second-Order, Bang-Bang Controlled Timing Loop . . . 9 2.2 Necessary Condition for the Pseudo-Linear Analysis . . . . . . . . . 12 2.3 Derivation of Necessity Condition for the Pseudo-Linear Analysis . . 17 2.4 A Linearized Model of the Bang-Bang Phase Detector . . . . . . . . 18 2.5 Linearized Gain of a Bang-Bang Phase Detector for Jitter Transfer and Jitter Generation Analyses . . . . . . . . . . . . . . . . . . . . . 21 2.6 Jitter Transfer and Jitter Generation Analyses . . . . . . . . . . . . 29 2.7 Linearized Gains of a Bang-bang Phase Detector for Jitter Tolerance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.8 Jitter Tolerance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Nonlinear Analysis of Bang-Bang Controlled Loops 48 3.1 Transient Analysis of Bang-Bang Controlled Timing Loops . . . . . 48 3.2 Phase-portrait Analysis of Bang-Bang Controlled Timing Loops . . . 51 3.3 Markov-chain Analysis of Bang-Bang Controlled Timing Loops . . . 53 3.4 Analysis of Clock-and-Data Recovery Circuits . . . . . . . . . . . . . 57 3.4.1 Prediction of Bit-Error Rate . . . . . . . . . . . . . . . . . . 57 3.4.2 Eect of Transition Density . . . . . . . . . . . . . . . . . . . 58 3.4.3 Eect of Decimation . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.4 Analysis of Oversampling Phase Detectors . . . . . . . . . . . 66 4 Design of Ditherless Clock and Data Recovery Circuit 75 4.1 Optimal Phase Detection . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Analysis of the CDR with Phase Interval Detection . . . . . . . . . . 84 4.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Sampling Receiver . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.2 Phase Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.4.3 Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 Phase Locked-Loop . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4.5 Phase Interpolator . . . . . . . . . . . . . . . . . . . . . . . . 99 4.5 Built-In Self-Test Circuit for Jitter Tolerance Measurement . . . . . 102 4.6 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5 Conclusion 114 References 116Docto
    • โ€ฆ
    corecore