최적 위상 검출 회로를 이용한 클럭 및 데이터 복원 회로에 관한 연구

Abstract

학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. 김재하.Bang-bang phase detectors are widely used for today's high-speed communication circuits such as phase-locked loops (PLLs), delay-locked loops (DLLs) and clock-and-data recovery loops (CDRs) because it is simple, fast, accurate and amenable to digital implementations. However, its hard nonlinearity poses difficulties in design and analyses of the bang-bang controlled timing loops. Especially, dithering in bang-bang controlled CDRs sets conflicting requirements on the phase adjustment resolution as one tries to maximize the tracking bandwidth and minimize jitter. A fine phase step is helpful to minimize the dithering, but it requires circuits with finer resolution that consumes large power and area. In this background, this dissertation introduces an optimal phase detection technique that can minimize the effect of dithering without requiring fine phase resolution. A novel phase interval detector that looks for a phase interval enclosing the desired lock point is shown to find the optimal phase that minimizes the timing error without dithering. A digitally-controlled, phase-interpolating DLL-based CDR fabricated in 65nm CMOS demonstrates that it can achieve small area of 0.026mm^2 and low jitter of 41mUIp-p with a coarse phase adjustment step of 0.11UI, while dissipating only 8.4mW at 5Gbps. For the theoretic basis, various analysis techniques to understand bang-bang controlled timing loops are also presented. The proposed techniques are explained for both linearized loop and non-linear one, and applied to the evaluation of the proposed phase detection technique.1 Introduction 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Contribution and Organization . . . . . . . . . . . . . . . . . 6 2 Pseudo-Linear Analysis of Bang-Bang Controlled Loops 9 2.1 Model of a Second-Order, Bang-Bang Controlled Timing Loop . . . 9 2.2 Necessary Condition for the Pseudo-Linear Analysis . . . . . . . . . 12 2.3 Derivation of Necessity Condition for the Pseudo-Linear Analysis . . 17 2.4 A Linearized Model of the Bang-Bang Phase Detector . . . . . . . . 18 2.5 Linearized Gain of a Bang-Bang Phase Detector for Jitter Transfer and Jitter Generation Analyses . . . . . . . . . . . . . . . . . . . . . 21 2.6 Jitter Transfer and Jitter Generation Analyses . . . . . . . . . . . . 29 2.7 Linearized Gains of a Bang-bang Phase Detector for Jitter Tolerance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.8 Jitter Tolerance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Nonlinear Analysis of Bang-Bang Controlled Loops 48 3.1 Transient Analysis of Bang-Bang Controlled Timing Loops . . . . . 48 3.2 Phase-portrait Analysis of Bang-Bang Controlled Timing Loops . . . 51 3.3 Markov-chain Analysis of Bang-Bang Controlled Timing Loops . . . 53 3.4 Analysis of Clock-and-Data Recovery Circuits . . . . . . . . . . . . . 57 3.4.1 Prediction of Bit-Error Rate . . . . . . . . . . . . . . . . . . 57 3.4.2 Eect of Transition Density . . . . . . . . . . . . . . . . . . . 58 3.4.3 Eect of Decimation . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.4 Analysis of Oversampling Phase Detectors . . . . . . . . . . . 66 4 Design of Ditherless Clock and Data Recovery Circuit 75 4.1 Optimal Phase Detection . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Analysis of the CDR with Phase Interval Detection . . . . . . . . . . 84 4.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.1 Sampling Receiver . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4.2 Phase Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.4.3 Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 Phase Locked-Loop . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4.5 Phase Interpolator . . . . . . . . . . . . . . . . . . . . . . . . 99 4.5 Built-In Self-Test Circuit for Jitter Tolerance Measurement . . . . . 102 4.6 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5 Conclusion 114 References 116Docto

    Similar works