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Abstract

Bang-bang phase detectors are widely used for today’s high-speed communica-

tion circuits such as phase-locked loops (PLLs), delay-locked loops (DLLs) and clock-

and-data recovery loops (CDRs) because it is simple, fast, accurate and amenable

to digital implementations. However, its hard nonlinearity poses difficulties in de-

sign and analyses of the bang-bang controlled timing loops. Especially, dithering in

bang-bang controlled CDRs sets conflicting requirements on the phase adjustment

resolution as one tries to maximize the tracking bandwidth and minimize jitter. A

fine phase step is helpful to minimize the dithering, but it requires circuits with

finer resolution that consumes large power and area. In this background, this dis-

sertation introduces an optimal phase detection technique that can minimize the

effect of dithering without requiring fine phase resolution. A novel phase interval

detector that looks for a phase interval enclosing the desired lock point is shown

to find the optimal phase that minimizes the timing error without dithering. A

digitally-controlled, phase-interpolating DLL-based CDR fabricated in 65nm CMOS

demonstrates that it can achieve small area of 0.026mm2 and low jitter of 41mUIp-

p with a coarse phase adjustment step of 0.11UI, while dissipating only 8.4mW at

5Gbps. For the theoretic basis, various analysis techniques to understand bang-bang

controlled timing loops are also presented. The proposed techniques are explained

for both linearized loop and non-linear one, and applied to the evaluation of the

proposed phase detection technique.

Keywords: Bang-bang control, dither, ditherless, clock-and-data recovery

Student Number: 2010-30218
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Chapter 1

Introduction

1.1 Motivations

Many timing loops in today’s high-speed communication circuits, such as phase/delay-

locked loops (PLL/DLLs) and clock-and-data recovery loops (CDRs), use binary,

also known as bang-bang phase detection since their circuit implementations are

simple, fast, accurate and amenable to digital implementations. The BBPD com-

pares the phases between the reference input and the feedback clock and tells only

about the polarity of the phase error. As it does not measure the magnitude of the

phase error, it is suitable for simple implementation and high-speed operation. In

addition, it is accurate because most of them measures the phase error based upon

the sampled inputs. This characteristic is important for the CDRs, as their purpose

is to find the optimal sampling phase for the sampling receivers.

However, its hard nonlinearity poses some difficulties in design and analyses of

the BBPD. First, traditional linear analysis including the concepts of loop band-

width and phase margin cannot be applied directly. Secondly, the quantization

noise generated from the BBPD affects the output clock jitter. Thirdly, its loop

characteristic changes according to the amount of noise in the input stream. For

example, it will be shown that the noise filtering bandwidth gets narrower when the

input stream includes larger random noise. Lastly, the bang-bang controlled system

does not converge to one stable point but wanders around there, which is called

1



Figure 1.1: (a) Circuit diagram of Alexander phase detector and (b) its timing
diagram for ideal/lead/lag cases.

dithering.

As an example, the Alexander PD [1], the most well known implementation of

BBPD is shown in Fig. 1.1. It is basically a 2x oversampling phase detector where

two samples - data sample and edge sample - are made per one bit to measure

the phase difference between the sampling clock and the center of the bit duration.

The outputs of upper two flip-flops (D0 and D1) are data samples, whereas the

final output of the lower branch (E) is the edge sample that contains the phase

information. Assuming that the ideal data sampling point is the center of the bit

duration, it detects the relative position of the bit boundary from the edge sampling

clock. When the bit boundary is prior to the edge sampling clock, it means that the

sampling clock is lagging and vice versa. For example, if D0 and E have different

values, it means that the sampling phase leads, and UP signal is asserted. Likewise,

when E and D1 have different values DN signal is asserted.

In response to the polarity of the phase error measured by BBPD, the bang-bang

controlled loop can only make a fixed amount of adjustment, no matter how large

or small the phase error is. A typical BB controlled loop consists of a BBPD, a

2



loop filter and a clock generator as shown in Fig. 1.2. If the transfer function of

the loop filter is GLF (s) = Aprop +Aintegral/s and the gain of the clock generator is

Kclkgen, the phase change of the sampling clock per each decision cannot be less than

AintegralKclkgenTref where Tref is the interval between consecutive phase detections.

This gives rise to a range of phenomena that are unique to bang-bang controlled

loops. For instance, even when the CDR clock phase is far from the desired posi-

tion, the bang-bang CDR can advance its phase only in fixed steps and the phase

transient exhibits a linear slewing behavior rather than an exponentially converging

one. Simply put, bang-bang controlled loops can have a vastly different response to

the input depending on its magnitude, which is not a phenomenon found in linear

controlled loops.

One of the most important characteristic of bang-bang controlled loop is its

dithering behavior. When the feedback phase is in proximity to the lock position,

the loop keeps moving its phase by the same fixed amount every cycle and the

phase displays an alternating phase which is called dithering. Assuming there is no

frequency offset between the input bit stream and the sampling clock, the output

phase alternates between two phases as shown in Fig. 1.3 (a). Dual-loop DLLs [2]

or blind oversampling architectures [3] operating in synchronous or meso-chronous

configuration fall in this category. In the aforementioned example, the dithering

amount will be (Aprop + Aintegral)KclkgenTref assuming less than one Tref of loop

delay. On the other hand, in a system that has small frequency difference between

the transmitter and the receiver, the relative position of the reference phase drifts

over time, and the loop must track the phase drift. For example, the average output

phase of conventional charge-pump PLL-based CDRs [4] gradually decreases while

3



Figure 1.2: Bang-bang controlled timing loop.

alternating up and down as shown in Fig. 1.3 (b). Assuming that the control volt-

age of the VCO due to the integral path and proportional path are V0 and Vprop,

respectively, the control voltage is V0 + Vprop when the BBPD decides UP, while it

is V0 when the BBPD decides DN. Therefore, the output phase decreases by

∆φ =
1

KV COVO
− 1

KV CO(V0 + Vprop)
(1.1)

per each alternation cycle of UP and DOWN where KV CO is the gain of the VCO.

The otput phase keeps decreasing until it crosses φREF − φBB and generates two

consecutive UPs.

The effect of dithering increases when the system has a long loop delay between

phase detection and output phase adjustment [5]. If the loop delay is Nd update

cycles, it takes Nd cycles for the decision to be reflected to the output, which results

in dithering with the magnitude of 2(Nd + 1) cycles, and duration of 4(Nd + 1)Tref .

As the dithering is the dominant factor of deterministic jitter in most of bang-

bang controlled systems, careful analyses and design efforts are necessary to minimize

its effect. For the CDRs, the increased deterministic jitter can cause the reduction of

sampling timing margin, and hence the increased bit-error rate (BER). Considering

that the bit error rate under gaussian random noise increases exponentially as the

sampling margin decreases, securing the sampling timing margin is important for

the CDRs, especially for the ones adopted in high-speed I/Os.

4



Figure 1.3: Dithering behavior of (a) the systems with quantized selectable phases
and (b) the systems with infinite resolution of phases.

A fine phase step is helpful to minimize the dithering, but it requires circuits with

finer resolution that consumes large power and area. Fig. 1.4 shows inverter-based

phase interpolators with interpolating ratios of 1/2, 1/3 and 1/4. As the minimum

achievable inverter size is limited, the area of the interpolator increases quadratically

with the phase resolution. At the same time, the power consumption increases

linearly assuming that only the inverters contributing the selected output are turned

on, but it usually increases faster than linear because the parasitic capacitances of

unused inverters contribute to the loading of the buffers. For example, the gate

capacitances on φi node increases from 3Cinv to 10Cinv while the interpolating ratio

changes from 1/2 to 1/4. The tradeoff between the CDR’s tracking bandwidth and

dithering magnitude also hinders the use of fine phase resolution. As the bang-bang

controlled loops tracks the input phase with a fixed amount per each update cycle,

a fine phase resolution can cause slower tracking bandwidth.

With this background, this dissertation proposes a novel phase detection tech-

nique that can eliminate the dithering. The increased sampling timing margin at-

tained from the proposed technique enables the system to adopt coarse phase reso-

lution, and achieves small area and low-power operation. Moreover, various analysis

techniques to predict the performance of the bang-bang controlled systems are pro-

5



Figure 1.4: Implementation of inverter-based phase interpolators with interpolating
ratios of 1/2, 1/3 and 1/4.

posed and applied to the evaluation of the suggested phase detection technique.

1.2 Thesis Contribution and Organization

This dissertation proposes a ditherless CDR and its analysis techniques that can be

applied to wide range of bang-bang controlled timing circuits.

Previous efforts to analyze the behavior of bang-bang controlled loops can be

largely classified into two categories: the ones that analyze the loop directly as a

nonlinear system and the ones that model the system as an equivalent linear sys-

tem. Without the presence of random noise, nonlinear behaviors such as the afore-

mentioned dithering and slewing determine the majority of the loop’s steady-state

characteristics, including the clock jitter and loop’s tracking bandwidth. Hence, in

this case, the system is best modeled as a nonlinear one. On the other hand, with

sufficient noise present in the system, a bang-bang controlled system can be modeled

effectively as a linear one in a stochastic sense.
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This dissertation presents analysis techniques applicable to bang-bang controlled

CDRs for both linearized loop and non-linear one. Recently, various techniques

were reported to analyze bang-bang controlled PLLs, but there was still no solution

to predict the detailed shape of the JTOL curve of CDRs including the effect of

additional random or deterministic jitter. On the contrary, the analysis techniques

proposed in this dissertation can accurately predict the behavior of CDRs including

various design parameters such as transition density, random noise, decimation and

dead-zone width.

Chapter 2 describes an accurate, yet analytical method to predict the key charac-

teristics of a bang-bang controlled timing loop: namely, the jitter transfer (JTRAN),

jitter generation (JG), and jitter tolerance (JTOL). The analysis basically derives

a linearized model of the system, where the bang-bang phase detector is modeled

as a set of two linearized gain elements and an additive white noise source. This

phase detector (PD) model is by far the most extensive one in literature, which can

correctly estimate the effects of random jitter, transition density, and finite loop

latency on the loop characteristics. The described pseudo-linear analysis assumes

the presence of random jitter at the PD input and the minimum jitter necessary to

keep the linear model valid is derived, based on a describing function analysis and

Nyquist stability analysis. The presented analysis re-confirms the findings of prior

theories and provides theoretical basis to the prior empirically-drawn equations, such

as those for the quantization noise power and the gain reduction in presence of a

finite loop delay.

Chapter 3 explains various analysis techniques to analyze the bang-bang con-

trolled loop when it is not linearized. Especially, Markov-chain model analysis pre-
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viously applied to the analysis of all-digital PLLs [6] are extended to include various

design factors of CDRs such as loop delay, transition density, deadzone width and

decimation. While explanation, it shows that the optimal deadzone width is a half

of minimum phase resolution in the respect of low BER and high bandwidth, which

gives the theoretic basis of the proposed phase interval detector.

Based upon the aforementioned analyses, Chapter 4 introduces a novel phase

interval detector that looks for a phase interval enclosing the desired lock point

to find the optimal phase that minimizing the timing error without dithering. A

digitally-controlled, phase-interpolating DLL-based CDR fabricated in 65nm CMOS

demonstrates that it can achieve low jitter of 41-mUIpp with a coarse phase adjust-

ment step of 0.11-UI, while dissipating only 8.4mW at 5Gbps. Measurement results

verifies that the loop does not dither unless there are two sampling phases that give

similar results. In addition, an on-chip measurement technique for characterizing

the jitter tolerance (JTOL) of high-speed receivers is presented. The proposed tech-

nique emulates the SJ in the off-chip input data stream with a SJ in the on-chip

recovered clock of the clock-and-data recovery loop (CDR), allowing an ordinary

transmitter to be used as the input source.
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Chapter 2

Pseudo-Linear Analysis of

Bang-Bang Controlled Loops

BBPD’s strongly nonlinear transfer characteristic hinders the use of long-established

design insights and practices of linear PLL/DLLs. This chapter presents an analysis

technique that derives the equivalent linear model of a bang-bang controlled timing

loop so that its key characteristics, such as jitter generation (JG), jitter transfer

(JTRAN) and jitter tolerance (JTOL), can be accurately predicted and the design

trade-offs among those characteristics can be reasoned based on the familiar linear

system theories.

2.1 Model of a Second-Order, Bang-Bang Controlled

Timing Loop

Before delving into the proposed analyses, this section defines the analytical model

of a second-order, bang-bang controlled loop and its associated design parameters.

Fig. 2.1 shows the discrete-time model of the second-order, bang-bang controlled

PLL whose loop filter is made of two control paths: a proportional control path

that updates the VCO phase by φbb (rad) and an integral control path that updates

the VCO frequency by φbb/ (τNTref ) (rad/s) upon the detection of the phase error

polarity at each update cycle (Tref ). The loop filter can be implemented either

as analog circuits (e.g., a charge pump followed by a series-RC filter) or as digital
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Figure 2.1: A discrete-time model of a second-order, bang-bang controlled PLL with
normalized loop parameters.

logic (e.g., a scaler, an accumulator and a summer). Higher-order control terms

in the loop filter can be ignored for simplicity, unless the intra-cycle behavior is

concerned [7].

We model the bang-bang phase detector (BBPD) as a slicer that provides the

discrete output levels of +1, -1, and 0 each indicating that the output phase is ‘late’,

‘early’ or ‘neutral (in case of no transition)’, respectively according to the following

equation:

u(t) =


sgn (φe (t)) if there is transition

0 otherwise

The VCO is basically modeled as a phase accumulator that accrues all the phase

shifts requested by the loop filter in the past. The phase shift includes both the

proportional phase shift φbb and the phase shift resulting from the error in the

integral control’s frequency.

Note that we added a delay element z−(Nd+1) in the loop filter, modeling the

raw latency of Nd update cycles around the loop. The additional one cycle delay

reflects the inherent delay of a discrete-time, sampled-data system. In other words, a
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Figure 2.2: General model of non-linear feedback system.

discrete-time system cannot detect a change in a signal until it samples that change

at the next cycle. It should be noted that including the loop delay in the PLL model

is essential in describing the unique behavior of a bang-bang controlled PLL, such

as dithering [5], slewing (i.e. slope overloading) [8] and pull-in force inversion [9].

Apart from the BBPD, which is modeled as the slicer, the rest of the system

is linear. The discrete-time transfer function G(z), from the slicer output u to the

output clock phase φout, can be expressed as:

G(z) =
φbb
τN
· 1 + τN (1− z−1)

(1− z−1)2
z−(Nd+1) (2.1)

Often, it is more convenient to use a continuous-time version of G(z). An approx-

imate continuous-time transfer function can be obtained by substituting e−sTref ≈

1 − sTref for z−1, assuming that the frequency of interest is much lower than the

Nyquist frequency (i.e., one half of the BBPD update frequency),

G(s) =
φbb

τNT 2
ref

1 + τNTrefs

s2
e−sTref (Nd+1) (2.2)

where Tref is the update period of the loop.

The model presented here can be applied to a wide class of bang-bang controlled

timing circuits other than the second-order PLL-based CDRs, including semi-digital
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dual-loop DLLs [2], blind oversampling CDRs [3] and phase-rotating PLLs [10].

Some timing circuits are first-order loops in nature without the integral control

paths, in which case the integral time constant τN in our model can be set to an

infinite value.

2.2 Necessary Condition for the Pseudo-Linear Analy-

sis

A bang-bang controlled system can be modeled as an equivalent linear system when

sufficient noise is present in the system. This section derives the minimum noise

necessary for our pseudo-linear analysis to be valid.

In a strict sense, dithering implies that the system is unstable and occurs when

the feedback loop satisfies the following conditions: (1) large enough gain and (2)

long enough delay. For instance, if we model the bang-bang controlled loop in

Fig. 2.1(b) as a feedback loop as shown in Fig. 2.2, consisting of a linearized gain

N(A) that corresponds to the nonlinear BBPD and G(s) that models the rest of the

system, the closed-loop transfer function H(s) of the system from input to output

can be written as:

H(s) =
N(A) ·G(s)

1 +N(A) ·G(s)
. (2.3)

With G(s) including the loop delay component e−sTref (Nd+1), as in Eq. (2.2), this

system may become unstable and exhibit limit-cycle behavior when the denominator

1 +N(A) ·G(s) is equal to zero [11]. In other words, dithering can occur when there

exist an amplitude A and a frequency s = jω that satisfy

G(s) = − 1

N(A)
(2.4)
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(a) (b)

Figure 2.3: (a) Describing function N(A) vs. A as a function of the input noise, and
(b) effective input-to-output transfer of a BBPD as a function of noise.

We denoted the linearized gain of the BBPD N(A) as a function of the input

amplitude A. One way to derive the approximate linear gain of a nonlinear element

as a function of the input signal amplitude A is the describing function analysis [11].

Assuming that the nonlinear BBPD receives a sinusoidal input with amplitude A

and the frequency ω, the linearized gain is derived as the ratio between this input

amplitude A and the amplitude of the corresponding frequency component in the

output signal. One can predict the existence of limit cycles based on this describing

function analysis. If there exist an amplitude A and a frequency s that satisfy

(2.4), then the system is likely to have a limit-cycle behavior with the corresponding

amplitude and frequency. In our case, the BBPD is memoryless and hence its

linearized gain N(A) is a function of amplitude A only.

When there is no noise present at the input of the BBPD, the linearized gain
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N(A) can be derived as in [11]:

N(A) =
4
π

∫ π/2
0 1 · sin(ωt)d(ωt)

A

=
4

πA

(2.5)

The linearized gain N(A) starts from +∞ and decreases toward 0 as the input

amplitude A increases, as shown in Fig. 2.3(a). The expression −1/N(A) will then

change from 0 to −∞ as A changes from 0 to +∞.

The existence of a solution to Eq. (2.4) can be visualized by plotting both sides

of the equation on a Nyquist plot, as shown in Fig. 2.4. This plots the trajectories

of G(s) and −1/N(A) on a complex plane with polar coordinates while sweeping the

frequency s = jω and the amplitude A, respectively. As Fig. 2.4(a) shows, with a

non-zero loop delay, the G(s) curve has a shape that intersects with the negative real

axis. In this case, there exists a value of A that satisfies Eq. (2.4) because −1/N(A)

spans the whole range of negative real values (Fig. 2.4(b)). In other words, the

describing function analysis confirms that a bang-bang controlled loop can exhibit

dithering behavior when the loop has a non-zero delay.

In contrast, when noise is present at the BBPD input, the noise effectively

smoothes out the binary characteristic of the BBPD transfer function and lowers

the linearized gain N(A), as plotted in Fig. 2.3(a). To illustrate this simply, let us

assume that the input noise is uniformly distributed between −∆φL and ∆φL. The

effective input-to-output transfer function of the BBPD, calculated as the average

output in the presence of noise from each given input, changes to the one shown

in Fig. 2.3(b), which can be expressed as a convolution between the original BBPD

transfer function and the noise PDF [12]. Intuitively speaking, for inputs smaller
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(a) (b) (c)

Figure 2.4: Nyquist plot of bang-bang CDR: (a) G(s) with and without loop delay,
(b) G(s) with loop delay and −1/N(a) without noise (intersecting) and (c) G(s)
with loop delay and −1/N(A) with noise (not intersecting).

than the noise magnitude ∆φL, the probabilities of +1 and -1 outputs gradually

change with the input amplitude, implying a linearized response. With this newly-

formed linear region in the BBPD transfer function, the maximum linearized gain

N(A) is at most 1/∆φL, even for the smallest A. It then follows that −1/N(A) will

span a reduced range from −∆φL to −∞.

The above analysis illustrates that sufficient noise in the system can reduce the

span of −1/N(A), as illustrated in Fig. 2.4(c), causing the system to not have a

solution that satisfies Eq. (2.4) and, hence, to exhibit no dithering. In other words,

the bang-bang controlled system is sufficiently linearized by the noise.

Note that a bang-bang controlled loop with a longer loop delay takes more noise

to linearize. With the longer delay, the G(s) curve intersects with the negative real

axis at the lower value (at the higher absolute value) and the larger noise (∆φL) is

required to avoid its crossing with −1/N(A). Without sufficient noise, the output

phase will dither with the larger amplitude because the two curves intersect at the

point that corresponds to the larger A. We will see later that the excessive loop
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delay in a bang-bang controlled timing loop has many adverse effects on the overall

performance metrics. It is desirable to keep the loop delay to the minimum possible

via careful circuit and architecture designs.

From this analysis it follows that to suppress dithering in a bang-bang controlled

loop, the noise in the system must be large enough so that the maximum effective

BBPD gain KPD becomes lower than a certain critical threshold K∗PD. In the pre-

vious analysis, KPD corresponds to the asymptotic value of N(A) as A approaches

0. The threshold K∗PD is determined by the linear part of the feedback system G(s):

K∗PD = −1/Re{G(jω∗)} (2.6)

where ω∗ is the smallest ω that satisfies Im{G(jω)} = 0. It is possible to derive

the expression for K∗PD in terms of the loop parameters using Eq. (2.2), and we can

finally arrive at the necessary condition for the linearized system analysis:

KPD < K∗PD =
π

2

1

φbb(Nd + 1)
(2.7)

The detailed derivation of the critical gain value K∗PD is given in Section 2.3. This

criterion confirms the previous results; namely that it takes the larger noise to

linearize a bang-bang controlled loop when it has a larger gain (φbb) or a longer

delay (Nd) [5]. It should be noted that Eq. (2.7) is the condition to avoid periodic

dithering. The system may still exhibit non-periodic dithering even when KPD is

smaller than K∗PD.
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2.3 Derivation of Necessity Condition for the Pseudo-

Linear Analysis

This section gives the validity of our pseudo-linear analysis within the suggested

KPD range explained in the previous section. By substituting s = jω and using the

Euler’s identity, (2.2) becomes

G(jω) =− φbb
τN

1 + τNTref jω

T 2
refω

2
{cos(ωTref (Nd + 1))

− j sin(ωTref (Nd + 1))}.
(2.8)

Let us define the ratio between the time constant of loop filter and the loop delay κ

as

κ =
τ

td,eff
=

τ

Tref
/
td + Tref
Tref

= τN/(Nd + 1). (2.9)

Then the smallest ω that satisfies Im{G(jω)} = 0, ω∗, is

Im(G(jω∗)) =
−φbb

τNT 2
refω

∗2 {τNTrefω
∗ cos(ω∗Tref (Nd + 1))

− sin(ω∗Tref (Nd + 1))} = 0

τNTrefω
∗ = tan(ω∗Tref (Nd + 1)) (2.10)

Inserting Eq. (2.9) into Eq. (2.10), we obtain

κω∗Tref (Nd + 1) = tan(ω∗Tref (Nd + 1)). (2.11)

Assuming κ >> 1, which is true in most systems,

ω∗Tref (Nd + 1) ≈ π

2

ω∗ =
π

2

1

Tref (Nd + 1)

(2.12)
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Finally, by putting Eq. (2.12) into Eq. (2.6), we obtain

K∗PD =
1

Re{H(ejω
∗Tref )}

=
π

2

1

φbb(Nd + 1)
. (2.13)

2.4 A Linearized Model of the Bang-Bang Phase De-

tector

There have been many efforts to model the bang-bang phase detectors (BBPD) or

equivalent one-bit quantizers as linear elements. These efforts were not limited to

the context of PLLs and CDRs [6, 8, 12–14], but also included data converters [15].

The representative examples of such prior work are summarized in Tab 2.4. Some

of the linear models do not include additive noise sources for modeling quantization

noise [8, 12] or do not model the influence of the input noise profile on the effective

gain value [13]. It is noteworthy that recent studies have analyzed the effects of

quantization noise in so-called, all-digital PLLs, but they may not be easily extended

to CDRs because they either assume low noise conditions [16, 17] or neglect the

influence of the transition density [6,14]. In addition, the methods in prior work for

deriving effective linear gain were either limited to a specific circuit implementation

[8], or based on Markov-chain analysis which does not give a closed-form equation

that can be applied to general problems [6,14,18]. This section presents a generally

applicable linear model for a BBPD that includes all the effects of loop dynamics

such as loop delay, quantization noise and transition density.

Let’s assume that the phase error (i.e., the phase difference between the input

data stream and the recovered clock) consists of two terms. One is the deterministic

phase error term φe,X(t) (e.g., deterministic ISI or sinusoidal jitter) and the other
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Figure 2.5: A general model of BBPD.

is a zero-mean random error term φe,N (t). In expressions:

φe(t) = φe,X(t) + φe,N (t) (2.14)

The deterministic term φe,X(t) is zero when analyzing the jitter transfer or jitter

generation characteristics, assuming a fixed input phase. However, φe,X(t) may take

a sinusoidal waveform when analyzing the jitter tolerance.

The key feature of our pseudo-linear analysis is that it assumes different gains for

components φe,X(t) and φe,N (t). Such a treatment was originally suggested by [15]

for the purpose of analyzing the SNDR of delta-sigma ADCs. Fig. 2.5 illustrates our

linearized model of a BBPD. KPD,X and KPD,N are linearized gains for the input

components φe,X(t) and φe,N (t), respectively, and an independent noise q(t) is added

to the output to model the quantization effects of the BBPD. When sufficient noise

is present in the system and the linearized analysis is valid, the random component

φe,N (t) is mainly the result of the input phase noise and is uncorrelated with the

deterministic term φe,X(t) [14].

The following discussion describes how to decompose the input of the BBPD

φe(t) into the two components φe,X(t) and φe,N (t). Let us denote the nonlinear
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(a) (b)

Figure 2.6: A model of (a) bang-bang PD and (b) CDR for the purpose of jitter
transfer and jitter generation analyses.

mapping of φe(t) into the BBPD output u(t) as N(φe(t)):

u(t) = N(φe(t)) = N(φe,X(t) + φe,N (t)). (2.15)

The instantaneous difference φq(t) between u(t) and the output of linearized

model KPD,Xφe,X(t) + KPD,Nφe,N (t) can be considered as the quantization noise.

For the closest approximation of the BBPD’s behavior, the linearized gains KPD,X

and KPD,N should be set to minimize the power of this quantization noise [15]. The

power of the quantization noise is then expressed as

σ2q = E{[u(t)−KPD,Xφe,X(t)−KPD,Nφe,N (t)]2}, (2.16)

and is minimized when

∂σ2q
∂KPD,X

= 2KPD,XE{φ2e,X(t)} − 2E{φe,X(t)u(t)} = 0

∂σ2q
∂KPD,N

= 2KPD,NE{φ2e,N (t)} − 2E{φe,N (t)u(t)} = 0

(2.17)
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are satisfied. The equations then respectively yield:

KPD,X =
E{φe,X(t)u(t)}
E{φ2e,X(t)}

KPD,N =
E{φe,N (t)u(t)}
E{φ2e,N (t)}

.

(2.18)

It is noteworthy that when Eq. (2.18) is satisfied, the random components of the

input φe,N (t) and the quantization noise q(t) become uncorrelated, because the

expression

E{φe,N (t)q(t)} =E{φe,N (t)u(t)} −KPD,X{φe,N (t)φe,X(t)}

−KPD,N{φ2e,N (t)}
(2.19)

is 0, given that φe,N (t) is independent of φe,X(t) and E{φe,N (t)u(t)} = KPD,N{φ2e,N (t)}

according to Eq. (2.17). This property will be leveraged in the later analyses in this

chapter.

2.5 Linearized Gain of a Bang-Bang Phase Detector for

Jitter Transfer and Jitter Generation Analyses

This section discusses the derivation of the linearized gain for the analyses of the

jitter transfer (JTRAN) and jitter generation (JG) characteristics of a bang-bang

controlled CDR, based on the mentioned linear model.

In the case of JTRAN and JG analyses, the input phase is assumed to be con-

stant, implying that the deterministic component φe,X(t) is a constant value, and

it can be considered as 0 without a loss of generality. Fig. 2.6 shows the analytical

model of the BBPD and the overall CDR. The effective linearized gain KPD for the

random input φe,N (t), which is equal to the phase error input φe(t) in this case, can
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Table 2.1: Comparison of bang-bang controlled PLL/CDR analyses reported in
literature
Ref. Main Contributions Limitations

Walker,
2003 [13]

Analysis of stability, tracking
performance and jitter genera-
tion property of a bang-bang
CDR

The linearized PD gain is fixed
at unity with only the qualita-
tive explanation on the effects of
random noise

Choi, Lee, 2003
[4, 12]

Derivation of the effective lin-
earized gain of a BBPD in the
presence of random noise

Neglects the quantization noise
generated by the BBPD and the
loop dynamics

Dalt, 2006 [6] Derivation of the effective lin-
earized gain of a BBPD in con-
sideration of the loop dynamical
behavior

Neglects loop delay effects;
based on Markov analysis which
is basically an inductive method

Chun, 2008 [18] Extension of [6] that includes
the loop delay effects

Results are derived on a case-
by-case basis

Dalt, 2008 [14] JTRAN and JG analysis based
on the linearized model

Neglects loop delay effects;
quantization noise is derived in
an inductive method

Lee, 2004 [8] JTOL analysis based on non-
linear behavior (slewing and
dithering)

Neglects the effects of random
noise and loop delay. KPD es-
timation is based on a specific
implementation.
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Figure 2.7: Comparison of predicted quantization error power based on our model
(solid line) and the model in [14] (star)

be found by minimizing the power of the quantization error:

E[φ2q ] = E[(u(φe)−KPDφe)
2] (2.20)

yielding

KPD =
E[u(φe)φe]

E[φ2e]
. (2.21)

Assuming that the phase error input φe takes a Gaussian distribution, which

is a reasonable assumption based on the central limit theorem and given that the

recovered phase is the result of multiple integrations, the effective linearized gain of
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the phase detector can be computed as

KPD =

∫∞
−∞ u(φe)φefe(φe)dφe

E[φ2e]

=
2αT

∫∞
0 φefe(φe)dφe

σ2e

=

√
2

π

αT
σe

(2.22)

where fe(φe) is the probability density function (PDF) of the phase error φe and

αT is the transition density of the input data stream which is same with the power

of u(φe) ranging from 0 to 1. Eq. (2.22) implies that the effective gain of a bang-

bang phase detector is inversely proportional to the standard deviation of the phase

error and proportional to the transition density, which is consistent with the earlier

findings in [6, 12].

The power of the quantization error can be computed based on the binary char-

acteristic of the PD’s output. That is, since the phase detector output u(t) can take

+1, -1, or 0, its power is simply equal to the transition density αT ;

E[u2] = E[(KPDφe + φq)
2]

= K2
PDE[φ2e] + E[φ2q ] = αT .

(2.23)

Then, the variance of quantization error σ2q can be calculated as

σ2q = αT −K2
PDσ

2
e = αT −

2

π
α2
T (2.24)

where σ2e is the variance of the phase error φe.

[14] asserted that the standard deviation of the input-referred quantization noise

is approximately equal to three-fourths of the standard deviation of input jitter σφin
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Figure 2.8: Comparison of the effective linear gains of a BBPD described by different
models in the literature (normalized with respect to the bang-bang phase step φbb).

and the linearized gain of the BBPD takes an expression of

KPD ≈
1√

2πσφin
[1 + e

− 1
2
(
φbb
σφin

)2

] (2.25)

when the transition density is 1.0. It follows that the output-referred quantization

error for αT = 1.0 can be expressed as

σ2q = (
3

4
σφin)2K2

PD

≈ 9

32π
[1 + e

− 1
2
(
φbb
σφin

)2

]2.

(2.26)

When σφin � φbb, its approximate value of σ2q becomes 9/8π ≈ 0.358. It is similar

with the result based on (2.24), 1 − 2/π ≈ 0.363. As will be discussed in a later

section, the simulation results for jitter generation characteristics confirm that our

model in Eq. (2.24) is indeed accurate even with arbitrary transition density.
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On the other hand, the variance of phase error σ2e can be calculated from the

loop dynamical equations:

Sφe(ω) =Sφin(ω)
1

|1 +KPDG(ω)|2

+ SφV CO,N (ω)
1

|1 +KPDG(ω)|2

+ Sφq(ω)| G(ω)

1 +KPDG(ω)
|2

(2.27)

where Sφe , Sφin , SφV CO,N and Sφq are the power spectral densities of the phase error,

input random jitter, VCO’s phase noise and BBPD’s quantization error, respectively.

Using Eq. (2.25) and given that the total noise power is equal to the PSD integrated

across the entire frequency range, it follows that

σ2e =

∫ 0.5

−0.5

Sφin(ω) + SφV CO,N (ω)

|1 +KPDG(ω)|2
dω

+

∫ 0.5

−0.5
(αT −

2

π
α2
T )| G(ω)

1 +KPDG(ω)
|2dω.

(2.28)

Eqs. (2.22) and (2.28) provide a basis for computing the effective linearized gain

KPD and the phase error power σ2e when the input phase noise PSD Sφin(ω), the

VCO phase noise PSD SφV CO,N (ω) and the transition density αT are given. With

the two variables and two equations, one can simultaneously solve them to find the

solutions. For example, the solution can be found by finding the intersecting point

of two equations graphically.

Fig. 2.8 compares the numerical values of the BBPD’s linearized gain between

the presented analysis and those in the literature [4, 6, 12, 14]. For instance, one

alternate way of estimating the linearized gain is by computing the convolution

between the BBPD’s ideal input-to-output transfer function and the jitter PDF at
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the PD’s input [4, 12]:

KPD =
∂E[u(t)]

∂∆φin

∣∣∣∣
φin=0

= 2αT f(0) (2.29)

where f(φin) denotes the jitter PDF. In case the input jitter takes a Gaussian dis-

tribution with a standard deviation of σφin , the effective linearized gain can be

expressed as:

KPD = 2αT

(
1√

2πσφin
exp

(
− x2

2σ2φin

))∣∣∣∣∣
x=0

=

√
2

π

αT
σφin

(2.30)

Fig. 2.8 shows that the gain values predicted by [12] agree with our values only

for large enough input jitter conditions. It is because the derivation in [12] ignores

the fact that the BBPD is within a feedback loop and therefore the input phase

can move based on the BBPD’s output. In other words, computing the convolution

itself relies on the assumption that the input phase value and the input jitter are

independent of each other; i.e. the input phase remains at a fixed value while the

BBPD gives +1 or -1 outputs. This is true only when the feedback loop has low

enough bandwidth, which corresponds to the case with large input jitter and hence

low effective PD gain.

On the other hand, our predicted gain values agree better with those according

to Eq. (2.25), which are derived based on a Markov-chain analysis that does take

the feedback dynamics into account [6]. However, the discrepancies still exist for low

jitter conditions, stemming from the different treatments of the quantization noise

observed at the BBPD’s output. While the BBPD model in [6] directly provides

the discrete outputs of -1, 0, and +1, our linearized BBPD model expresses this

discrete nature instead with an additive quantization noise of which power level is
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derived as in Eq. (2.28). The presence of this quantization noise is the reason why

our effective gain values do not keep increasing as the jitter decreases. Nonetheless,

this discrepancy is irrelevant since at these low jitter conditions, the feedback loop

is not sufficiently linearized and its behavior cannot be described accurately by the

presented pseudo-linear analysis anyways.

It is noteworthy that the proposed expression for the effective linearized PD

gain in Eq. (2.18) with two separate loops is valid over a wider range than the

previously used expression in Eq. (2.29). First, Eq. (2.18) reduces to Eq. (2.29) for

infinitesimally small sinusoidal perturbations, for which the detailed derivation is

given in Appendix B. On the other hand, the proposed PD gain expression yields

the more accurate predictions as the sinusoidal perturbation takes a finite, larger

magnitude, as in the case of JTOL analysis. To illustrate this, Fig. 2.9 compares the

pseudo transfer functions of a bangbang PLL measured using various amplitudes of

the input sinusoidal jitter. The pseudo transfer gain at each frequency is measured

by simulating the ratio between the input and output sinusoidal jitter amplitudes.

For small input amplitudes, the transfer functions predicted by both the expressions

Eq. (2.18) and Eq. (2.29) agree well with the simulated results. However, as the

amplitude increases, the proposed PD gain expression Eq. (2.18) yields the better

predictions.

In other words, the presented analysis derives the effective PD gain as the one

that minimizes the quantization error considering the whole input distribution and

therefore provides the better predictions. Especially, our derivation can also be

applied to predicting the JTOL characteristics of the CDR without separately con-

sidering the case of slew-limiting as in [8,13] even when a large-amplitude sinusoidal
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Figure 2.9: Comparison of predicted transfer functions at 10MHz with various am-
plitudes of sinusoidal input using transient simulation, proposed theory, and (2.29).
φbb is 0.005UI, and αT is 1.0.

jitter is applied to the BBPD’s input. The application of the derived effective PD

gain to the JTOL analysis will be described in later sections.

2.6 Jitter Transfer and Jitter Generation Analyses

This section applies the previously derived linearized gain of BBPD to the analyses

of the CDR’s jitter characteristics. The accuracy of the estimation is validated by

comparing with the simulation results with various parameters including input noise

and loop delay.

The power spectral density of the bang-bang CDR/PLL output phase noise can

be derived once the linearized gain KPD and the quantization noise power σ2q are
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computed for the pseudo-linear model in Fig. 2.6(b):

Sφout(ω) =Sφin(ω)| KPDG(ω)

1 +KPDG(ω)
|2

+ SφV CO,N (ω)
1

|1 +KPDG(ω)|2

+ Sφq(ω)| G(ω)

1 +KPDG(ω)
|2

(2.31)

where the first term on the right-hand side in Eq. (2.31) corresponds to the input

phase noise transferred to the output, while the rest corresponds to the phase noise

generated by the internal circuits. Especially, the last term is the contribution of the

BBPD’s quantization noise, which tends to be ignored by the majority of the prior

work [4, 8, 12]. The main advantage of Eq. (2.31) is that it can help one to choose

an optimal set of loop parameters that minimize the output phase noise, given the

noise conditions at the input and the VCO.

To validate our pseudo-linear model, we compare its predicted results with those

of behavioral simulations. Two kinds of behavioral simulation are performed for

jitter transfer analysis: the stochastic AC (SAC) analysis outlined in [23] and the

numerical model based on Fig. 2.1. The plurality of the results improves the fidelity

of our validation.

Fig. 2.10 (a) plots the jitter transfer functions of CDRs for various noise condi-

tions. Gaussian random jitter (RJ) with various standard deviation values (10mUI,

20mUI, 40mUI and 80mUI) is applied to the input while a transition density of 50%,

a loop delay of one update cycle (Nd = 1), and a τN of 1000 are assumed. Default

values are φbb = 20mUI, τN = 1000, σφin = 50mUI, αT = 0.5, and Nd = 1UI. Note

that the predicted jitter transfer functions based on our theory match well with the

simulation results from the stochastic AC analysis and the time-domain simulations.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Comparison of the jitter transfer functions with various (a) σφin , (b)
φbb, (c) τN , (d) αT , and (e) Nd. (f) is the comparison with [6] when αT = 1.0.
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An exception is the case with 10mUI random jitter, in which case the CDR loop

is not fully linearized. For comparisons, the predicted jitter transfer functions by

other theory [6, 12] are plotted in Fig. 2.10(f). As the theory in [6] is for the PLLs,

the comparison is done with 100% of transition density. As expected [12] shows big

difference comparing with other theories as it does not include the loop dynamics.

The proposed theory shows good agreements with the theory in [6]. Its predicted

bandwidth is slightly narrower but the difference is less than 5%. One may find

a reason of the difference from the fact that Eq. (2.25) slightly overestimates the

linearized gain as it limited the number of states for the simplicity [6].

Fig. 2.10(b), (c), (d) and (e) illustrate the effects of various parameters such as

the bang-bang phase step φbb, the normalized proportional-to-integral gain ratio τN ,

the transition density of input data pattern αT and the loop delay Nd on the jitter

transfer function. When the bang-bang phase step or input data transition density

is big, the linearized gain of BBPD and the loop bandwidth increases. When τN

decreases, the zero frequency ωz shifts toward the higher frequency, reducing the

phase margin and possibly resulting a peaking in the transfer function. The loop

delay can cause similar peaking as it adds a phase shift to the open-loop transfer

function.

The effective -3-dB bandwidth of a BB-PLL (ω−3dB) can be calculated once the

effective linearized gain for the BBPD is derived for the given noise/jitter condition.

Since the other parts of the PLL are linear systems, the bandwidth computation is

the same with that of a linear PLL. That is, the -3-dB bandwidth is the frequency

when the closed-loop transfer function H(s) crosses the point -3dB below the DC
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(a) (b)

Figure 2.11: Comparison of the output jitter PSDs (a) in time-accurate behavioral
simulation and (b) the proposed linear model. Simulation parameters are same with
those in Fig. 2.10.

gain value (assumed 1).

∣∣∣∣ KPDG(jω−3dB)

1 +KPDG(jω−3dB)

∣∣∣∣ =
1√
2
. (2.32)

One complication in deriving the closed-form expression for ω−3dB is that the continous-

time model G(s) in Eq. (2.2) bears the term e−sTref (Nd+1) which models the effective

loop latency. Since the phase shift caused by this loop latency can result in potential

instability for linear PLLs as well as limit cycles for bang-bang PLLs, it must be

minimized either by reducing the latency or the loop gain. In fact, if the phase shift

at the bandwidth frequency ω−3dBTref (Nd + 1) is sufficiently small, the exponential

term can be approximated as 1, yielding a simple closed-form expression for ω−3dB:

ω−3dB = KPDφbbTref (2.33)

This equation predicts the -3-dB bandwidth within 10% of error as long as the phase

shift due to the loop latency ω3dBTref (Nd + 1) is less than π/50 radians.
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(a)

(b)

Figure 2.12: A model of bang-bang CDR for the purpose of jitter tolerance (JTOL)
analysis.

As with the jitter generation characteristics of the CDRs, the predicted power

spectral densities (PSD) of the output jitter are compared against the results from

time-accurate behavioral simulations [19]. Fig. 2.11(a) and (b) plot the simulated

and predicted output jitter PSDs for various noise conditions for the transition

density of 50%. Again, the theory and simulation results are in good agreement

with the input random jitter’s standard deviation values of 5 mUIrms, 50 mUIrms

and 100 mUIrms event with non-100% transition density. Note that the simulated

PSD for the 5-mUIrms input jitter shows spurs in multiple positions due to dithering

(i.e., limit cycles) that cannot be modeled by any of the linearized models.

2.7 Linearized Gains of a Bang-bang Phase Detector for

Jitter Tolerance Analysis

Along with the jitter transfer and jitter generation characteristics, the jitter tolerance

(JTOL) is an important metric that describes the maximum tolerable amplitude of
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the sinusoidal jitter which generates less than the target BER.

The work in [8] gave the asymptotes of the JTOL curves based on slewing, but

it revealed a few limitations. First, it did not model the effects of random noise on

the tracking behavior of the loop. Our proposed analysis suggests that the random

noise can cause shift in the JTOL curve both in horizontal and vertical directions.

Second, [8] did not model the effect of loop delays. Without a loop delay, the under-

peaking found in some of the JTOL curves cannot be explained [20]

This section derives the parameters for our linearized BBPD model analysis,

including the effective linearized gains and quantization noise. Once the parameters

are derived, next subsection describes the estimation of JTOL curve including the

high frequency JTOL. We find that there is a good agreement between the predicted

JTOL characteristics and the simulated ones.

As mentioned, in the case of JTOL analysis, the BBPD receives a non-zero,

time-varying deterministic input φe,X(t). Because the jitter tolerance measures the

largest sinusoidal jitter that the CDR can tolerate with the specified BER target, it

is likely that φe,X(t) is a sinusoidal signal. This means that we will be fully utilizing

the two-input linearized BBPD model in Fig. 2.5 with two different linearized gains

KPD,X and KPD,N . Each linearized gain is determined based on Eq. (2.18), which

makes the two inputs φe,X(t) and φe,N (t) uncorrelated with each other.

With proper selection of the two linearized gains that make the two inputs un-

correlated, we can analyze the CDR as two separate feedback loops: one with the

deterministic input φin,sin and the other with the random input φin,N . This is il-

lustrated in Fig. 2.12. Because the deterministic input is a sinusoidal one in this

case, we use the suffix ‘S’ for the corresponding linearized gain (KPD,S). Based on
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Figure 2.13: The confluent hypergeometric functions

superposition principle, the overall output of the CDR is equal to the sum of the

two loops’ outputs.

According to Eq. (2.18), the linearized gains that minimize the quantization error

are

KPD,S =
E{φe,sin(t)u(t)}

E{φ2e,sin}

=
1

σ2e,sin

∫ ∞
−∞

∫ ∞
−∞

φe,sinN(φe,sin + φe,N )

· fN (φe,N )fsin(φe,sin)dφe,sindφe,N

(2.34)

KPD,N =
E{φe,N (t)u(t)}

E{φ2e,N}

=
1

σ2e,N

∫ ∞
−∞

∫ ∞
−∞

φe,NN(φe,sin + φe,N )

· fN (φe,N )fsin(φe,sin)dφe,sindφe,N

(2.35)

where φe,sin and φe,N are the phase errors in the sinusoidal input tracking loop
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and the random input tracking loop, respectively. σ2e,sin and σ2e,N denote their vari-

ances, and fsin(φe,sin) and fN (φe,N ) are their probability density functions (PDFs),

respectively. Assuming that the input phase during the JTOL test follows a sinu-

soidal trajectory with an additive Gaussian noise, PDFs fsin(φe,sin) and fN (φe,N )

can be expressed as:

fN (φe,N ) =
2

σφe,N
√
π
e
−φ2e,N/2σ

2
φe,N (2.36)

fsin(φe,sin) =
1

π
√

(a2in − φ2e,sin)
(2.37)

where ain is the amplitude of the sinusoidal jitter. The closed-form solutions to

Eq. (2.36) and (2.37) are already given in [15]:

KPD,S =

√
2

π
(

1

σe,N
)M(0.5, 2,−ρ2)αT (2.38)

KPD,N =

√
2

π
(

1

σe,N
)M(0.5, 1,−ρ2)αT (2.39)

where ρ is the ratio between standard deviations σe,sin and σe,N , and M(a, b, z) is

the confluent hypergeometric function defined as:

ρ =
σe,sin
σe,N

(2.40)

M(a, b, ρ) =
∞∑
n=0

(a)nρ
n

(b)nn!
(2.41)

where (a)n = a(a+ 1)(a+ 2) · · · (a+n− 1). It is a solution to Kummer’s differential

equation [21]:

z
d2w

dz2
+ (b− z)dw

dz
− aw = 0. (2.42)

Fig. 2.13 plots the values of this M(a, b,−ρ2) function for the two pairs of (a, b) used
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Figure 2.14: The KPD,S versus σe,N when the sum of σe,N and σe,sin is limited to
10.

1. Find initial values for KPD,N and σe,N assuming ρ = 0 (i.e. random jitter
only)

2. Derive initial values for KPD,N , σe,sin and ρ: use KPD,S = KPD,N and Eq.
(2.43).

3. Perform the following iteration:
a. Calculate KPD,S , KPD,N and σq from σe,sin, σe,N and ρ using Eqs. (2.38),
(2.39), (2.46).
b. Calculate ρ, σe,sin and σe,N from KPD,S , KPD,N and σN using Eqs.
(2.40), (2.43) and (2.45)
c. Repeat a-b until the solutions converge.

Figure 2.15: JTOL calculation procedure.

in Eqs. (2.38) and (2.39).

Fig. 2.13 shows that M(a, b,−ρ2) is a decreasing function of ρ, which means

it is also an increasing function of σe,N . It is interesting to note that the inversely

proportional relationship between the PD gain and σe,N is weakened by M(a, b,−ρ2),

but it is still a decreasing function of σe,N as 1/σe,N decreases faster than the rate at
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which M(a, b,−ρ2) increases. However, when the sum of σe,N and σe,sin is limited,

it is no longer a decreasing function of σe,N , as shown in Fig. 2.14. This relationship

will be used for the explanation of the random noise’s effect on JTOL in the next

section.

With zero deterministic input (i.e., σe,sin = 0), Eqs. (2.38) and (2.39) reduce

to Eq. (2.30). On the other hand, as the sinusoidal jitter increases, the sensitivity

of the linearized gains with respect to the random noise diminishes. In this case,

the phase error is dominated by the sinusoidal portion of the input phase and the

random noise has relatively less influence on the linearized gains.

The standard deviation of the phase error in the sinusoidal input tracking loop

σe,sin can be derived from the loop’s transfer function, evaluated at the sinusoidal

jitter frequency ω:

σe,sin =
σin,sin

|1 +KPD,SG(ejωTref )|
. (2.43)

Because the phase error is also a sinusoidal signal, its amplitude ae,sin can be calcu-

lated from its standard deviation:

σ2e,sin = a2e,sin/2. (2.44)

The standard deviation of the phase error in the random input tracking loop σ2e,N

must be calculated by integrating its output power spectral density (PSD) over the

entire frequency:

σ2e,N =

∫ 0.5

−0.5

Sφin,N (ω)

|1 +KPD,NG(ω)|2
dω

+

∫ 0.5

−0.5

Sφvco,N (ω)

|1 +KPD,NG(ω)|2
dω

+

∫ 0.5

−0.5
σ2q |

−G(ω)

1 +KPD,NG(ω)
|2dω.

(2.45)
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Figure 2.16: BER estimation in presence of sinusoidal and random components in
the phase error.

And the quantization error power σ2q can be found by carrying out a similar analysis

with Eq. (2.24):

E[u2] = σ2q +K2
PD,Sσ

2
e,sin +K2

PD,Nσ
2
e,N = αT

σ2q =αT −
2

π
ρ2M2(0.5, 2,−ρ2)α2

T

− 2

π
M2(0.5, 1,−ρ2)α2

T .

(2.46)

In summary, when the CDR’s input phase characteristics are given, such as the

probability distribution of its random component and the amplitude and frequency

of its sinusoidal component, we can determine the parameters for the linearized loops

KPD,S , KPD,N , σe,sin, σe,N , and σq according to Eq. (2.38), (2.39), (2.43), (2.45)

and (2.46). Among them, σe,sin and σe,N describe the sinusoidal and random parts

of the CDR phase error, which can be used to estimate the bit-error rate (BER) of

the CDR.

Unfortunately, the closed-form formulas do not exist for calculating σe,sin and

σe,N . Instead, one should find the solution to the set of equations via iteration,

following the procedure outlined in Fig. 2.15.
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2.8 Jitter Tolerance Analysis

The BER of a CDR can be estimated based on the derived phase error compo-

nents: the amplitude of the sinusoidal component ae,in =
√

2σe,sin and the standard

deviation of the random component σe,N . Our assumption here is that there is a

prescribed timing margin that achieves the target BER. In other words, the BER is

deemed over the limit if the phase error exceeds a certain bound ∆Tmax. Fig. 2.16

illustrates our method of estimating the BER in the presence of sinusoidal and ran-

dom jitters. For instance, if there is no sinusoidal jitter, the worst phase error with

BER of 10−12 is 7σe,N . Whether the CDR meets the target BER can be determined

by checking the following inequality:

ae,sin + k(ρ,BERtarget)σe,N < ∆Tmax (2.47)

where k(ρ,BERtarget) is the multiplication factor of σe,N which generates BERtarget

for a given ρ. Therefore, the JTOL analysis can be carried out by finding the

maximum sinusoidal jitter amplitude ain that satisfies the inequality in Eq. (2.47)

at each frequency point. Note that it is possible to derive a more elaborate estimate

on the BER by combining the statistical distribution of the phase error with that of

the received signal (e.g., eye diagram) [22].

The inequality (2.47) can be simplified to a function of m and σe,N :

σe,N < ∆Tmax/{
√

2ρ+ k(ρ,BERtarget)} (2.48)

where k(ρ,∆Tmax) can be pre-calculated as a function of ρ and BERtarget. Assuming

that the sinusoidal jitter and the random jitter are independent of each other, the

PDF of σe,N + σe,sin can be derived as the convolution between two PDFs in the
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Figure 2.17: k(ρ,BERtarget) when BERtarget is 10−12.

form of (2.36) and (2.37). The singular points of (2.37) at both ends can be avoided

by approximating the PDF with a probability mass function [23]. Fig. 2.17 shows

the calculated results when BERtarget is 10−12. When ρ is small, the random jitter

dominates and the value of k is around 7.13, which corresponds to
√

2 erfc−1(10−12)

as expected. On the other hand, as ρ increases, k decreases as the contribution of

the sinusoidal term increases.

It is convenient to note that Eq. (2.43) which governs σe,sin, hence ae,sin =

√
2σe,sin is the only equation that contains the sinusoidal jitter’s frequency ω, and

the other parameters such as KPD,S and KPD,N do not change with the frequency.

In summary, the JTOL curve can be expressed as:

JTOL(ω) = a∗e,sin(ω)|1 +K∗PD,SG(ejωTref )|

= JTOLHF |1 +K∗PD,SG(ejωTref )|
(2.49)
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where a∗e,sin(ω) is the largest amplitude allowed for the sinusoidal component of

the phase error at the excitation frequency of ω and K∗PD,S is the corresponding

linearized BBPD gain found by the described iteration. Note that the high-frequency

jitter tolerance denoted as JTOLHF is equal to the high-frequency a∗e,sin(ω), because

all the input phase perturbations appear at the input of the BBPD at the frequencies

beyond the tracking bandwidth of the CDR.

Eq. (2.49) implies that the JTOL curve can be computed once the linearized

open-loop transfer function KPD,SG(ejωTref ) is derived. Fig. 2.18 illustrates this

relationship. For instance, the knee point in the JTOL curve corresponds to the

frequency when the open-loop transfer gain is 1 (i.e., the unity-gain frequency ).

Above ω1, JTOL(ω) is constant at JTOLHF = ae,sin and below ω1, it follows

the open-loop transfer gain KPD,SG(ejωTref ), scaled by JTOLHF . For the case of a

second-order BB-CDR, the open-loop transfer has two poles at DC and a zero below

ω1 while the other higher-order poles and zeros are kept above ω1 to guarantee the

stability of the feedback loop. The typical open-loop transfer of a second-order

CDR is depicted in Fig. 2.18(a). The transfer gain initially falls at the slope of -

40dB/decade and switches to the -20dB/decade slope at the zero frequency ωz before

the gain reaches 0dB. As a result, the JTOL curve also exhibits an initial slope of

-40dB/decade and switches to -20dB/decade at ωz before reaching the knee point

at ω1. Fig. 2.18(b) depicts the described asymptotic JTOL curve.

These predictions on the corner frequencies ωz and ω1 are consistent with those

found by [8], which analyzed the JTOL characteristics of a charge-pump-based BB-

CDR based on slewing:

ω′1 = KV COICPR/2 (≈ ω1 = KPDKV COICPR/2π)
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(a) (b)

Figure 2.18: (a) The linearized open-loop transfer function of a second-order BB-
CDR and (b) its asymptotic JTOL curve showing the shift in slope at the zero
frequency (ωz) and the unity-gain frequency (ω1)

ω′z = 0.63π/RC ≈ 1.98 · ωz (2.50)

where ω′z and ω′1 denote the corner frequencies predicted by [8]. It should be noted

that the analysis in [8] did not include the effects of noise, while ours does. The

proposed analysis validates the previous analyses of BB-CDR characteristics and

extends them to include the effects of random noise, transition density and loop

delay.

The predicted JTOL curves based on Eq. (2.49) are compared with the results

from the time-accurate behavioral simulations. Fig. 2.19 (a) and (b) plot the JTOL

curves for different CDRs with different φbb and τN values, respectively. The theo-

retical predictions (in solid lines) slightly overestimates the JTOL, but they are in

good agreement with the simulation results (in dashed lines) with matching corner

frequencies for all the cases. As φbb increases the tracking capability of the loop also
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improves, and ω1 moves toward the higher frequency as shown in Fig. 2.19 (a). On

the other hand, Eq. (2.2) suggests that as τN increases, the zero frequency ωz should

move toward the lower frequency as observed in Fig. 2.19(b), which manifests itself

as a change in the corner frequency at which the slope changes from -40dB/decade

to -20dB/decade.

The effect of random noise on the jitter tolerance characteristic is shown in

Fig. 2.19(c). As eq. (2.48) suggests, the random noise leads directly to a degradation

in the high-frequency JTOL. It is interesting to note that the knee point shifts to a

higher frequency as the random noise increases, whereas the -3dB bandwidth of jitter

transfer decreases. This trend stems from the proportional relationship between the

random noise and the PD gain when σe,N < σe,sin, as shown in Fig. 2.14. When

the target BER is determined, the sum of the sinusoidal error and random error is

limited by Eq. (2.48) and the PD gain and ω1 become proportional to the amount

of random noise.

The result based on [8] is overlayed on Figs. 2.19(a), (b) and (c). As the theory

does not include the effect of input jitter or transition density σφin = 0 and αT = 0.5

are assumed. Default parameters are φbb=2mUI, τN=100, σφin=50mUI, αT=50%,

Nd=0UI, and BERtarget is 10−3 The corner frequencies based on both theories

match with various φbb and τN , but the predicted JTOL based on the proposed

theory is smaller than the one based on [8] even when there is no input noise. The

predicted high-frequency JTOL is 0.5 because it does not include the effect of loop

behavior in this region. It is apparent that the high frequency JTOL should be less

than 0.5 UI in the actual case because the loop does not stays at one state. When

the result based on [8] is shifted so that the high frequency JTOL is same with
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the one predicted by the proposed theory, both theories show good agreements as

depicted in Fig. 2.19 (c).

Figs. 2.19(d) and (e) illustrate the effects of transition density and loop delay

on the jitter tolerance, respectively. Since the linearized gain KPD,S is proportional

to the transition density according to Eq. (2.38), it is expected that the corner

frequency increases along with it.
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(a) (b)

(c) (d)

(e)

Figure 2.19: Comparison of the JTOL curves between the theoretical (solid) and
simulation results (dashed) on BB-CDRs with various range of design parameters:
(a) bang-bang phase step (φbb), (b) normalized time constant of loop filter (τN ), (c)
input rms jiiter (σφin), (d) transition density (αT ) and (e) loop delay (Nd).
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Chapter 3

Nonlinear Analysis of

Bang-Bang Controlled Loops

When there is no sufficient noise to linearize the loop, nonlinear behavior such as

dithering and slewing dominates the loop’s behavior. The difficulty with a non-

linear system model is that there is no single analysis technique that can account

for all nonlinear phenomena. This chapter introduces various non-linear analysis

techniques that have been used for the prediction of bang-bang PLLs, and extends

them to the CDRs. During the explanation, the model and notations described in

chapter 2 will be used.

3.1 Transient Analysis of Bang-Bang Controlled Timing

Loops

Transient simulation is the most versatile way of analyzing the behavior of dynamical

systems. However, they may require an impractically long simulation time in order

to estimate the statistical property of rare events such as the bit-error rate (BER)

of high-speed I/Os. For instance, the confidence interval analysis shows that nearly

4× 1014 bit times would be necessary to estimate a target BER of 10−12 with 10%

accuracy and 95% confidence. Even if the simulator is capable of simulating 10,000

bits per second, it would take almost 1,270 years to collect all these samples.

For the fast analysis, it is possible to compute the statistics directly based on
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analytical methods. For instance, the distribution of a sum of two random variables

can be computed as the convolution between the two probability density functions

(PDFs). There have been many solutions using this approach to estimate the BERs

in high-speed I/O interfaces [22, 24, 25]. However, to simplify the computations,

certain approximations may be made such as ignoring the correlations among noisy

signals. Furthermore, the analytical formulations and approximations are strongly

tied to the assumed transceiver configureation or clocking architecture and a new

set of formulations will be required if the configureation or architecture changes. For

this reason, most tools in this category only take a set of parameter values for the

preconfigured I/O interface as the inputs.

This section introduces an efficient way of simulating the statistical properties

of dynamical systems leveraging the versatility of conventional transient simulation

while improving its efficacy by supplementing the time-domain simulation results

with conditional PDFs. The conditional PDF (CPDF) in our context refers to the

probability distribution of the signal x at the present time n when all the sample

values at prior times x[n− 1], x[n− 2], ... are given:

fX(xi[n] | past xi[·]samples)

= fX(xi[n] | xi[n− 1] = x−1, xi[n− 2] = x−2, ...)

(3.1)

In other words, the simulator calculates all the possible values with their associated

probabilities given the past samples. For example, if the transmitter is transmitting

1, the CPDF of driver output with voltage noise will have distribution around its

high level while conventional time-domain simulator gives only one sample at any

given time. As the CPDF contains richer information than a single time-domain

simulation sample on the signal’s statistics at the present time, it helps to achieve
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Figure 3.1: An example of CBER calculation.

higher accuracy than estimations made with samples only.

Leveraging the rich information of CPDF, various statistics of a random process

such as the mean, PDF, and auto/cross-correlations can be computed based on

the CPDF. The mean and PDF are derived by averaging the conditional ones with

various conditions as follows:

E [x[n]] ≈ 1

N

N∑
i=1

E [xi[n] | past xi[·]samples] (3.2)

fX(x[n]) ≈ 1

N

N∑
i=1

fX(xi[n] | past xi[·]samples) (3.3)

whereN is the total number of samples and xi[n] denotes the i-th sample of the signal

x at the present time n. Similarly, the auto/cross-correlations can be computed as

follows:

RXX(k) = E [x[n] · x[n− k]]

≈ 1

N

N∑
i=1

E [xi[n] | past xi[·]samples] · xi[n− k]

(3.4)

Likewise, the BER can be estimated as the time-average of the conditional BERs

(CBERs). The first thing need to be done for this analysis is to derive the CPDF

50



of the sampled input. In general, it is computed by combining all the CPDFs

of the mutually-independent noises via convolution. Assuming that the effective

voltage noise at the input of the system can be derived, the CPDF has the same

distribution of that noise with its mean at the time-domain sample. Next, the CBER

of the corresponding bit can be computed as the total conditional probability of the

sampled voltage exceeding the decision threshold. Fig. 3.1 shows an example of

CBER calculation. For the input voltage sampled at tn, the CBER is

CBER =

∫ ∞
threshold

fN (x− x(tn))dx (3.5)

where fN is the PDF of the effective voltage noise at the input. Once the CBER at

each sample is calculated, the BER and its confidence interval can be derived from

the mean and variance of measured CBERs, respectively.

This technique was integrated to the event-driven HDL simulator [19], and

applied to measure the BER of a 12.5Gbps serial I/O system consists of driver,

transmitter-side PLL, channel, receiver, and receiver-side clock and data recovery

circuit (CDR). The measurement of BERs less than 10−12 with 10% accuracy and

95% confidence required only 1.6× 107 of symbols, which is 1/(4× 104) times fewer

than the conventional time-domain analysis.

3.2 Phase-portrait Analysis of Bang-Bang Controlled

Timing Loops

For analyzing the deterministic beahviors such as dithering and loop stability, the

phase-portrait, a two-dimensional vector plot of loop variables, has been shown

effective [5, 9]. It draws the direction and amplitude of the state transition at each
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point in a two-dimensional design space. As an example, Fig. 3.2 plots the trajectory

directions of a 2nd order BBPLL in a bidimensional phase plane (φerr, ferr) where

φerr and ferr represents phase error and frequency error, respectively.

From Fig. 3.2 (a), it can be seen that there is a finite region converging to the lock

point at the center. When the phase error is less than a half UI and the frequency

error is small, the phase error and frequency error gradually decrease. However,

they dither around the lock point in a steady state rather than converging to a

single point because the BBPD always tells UP or DOWN. In the state space, the

loop follows a circular trajectory and forms a limit cycle. The bang-bang controlled

loop is regarded to be stable in a wide sense when the loop has a limit cycle.

Outside the convergence region, the loop does not converge to the lock point

but crosses the bit boundary. Even when the phase error is less than a half UI,

the output phase can cross the bit boundary when the frequency error is large as

shown in Fig. 3.2 (a). This phenomenon which is called bit-slipping happens when

the frequency error is bigger than the BBPD’s ‘pull-in range’ which is the range

where the BBPD can pull the loop to the lock point. Most PLLs do not experience

bit-slipping once the loop is stabilized because the dithering radius is quite small

comparing with the region of convergence. However, CDRs can lose data due to the

bit-slipping especially when the loop has large dithering radius and its input has low

transition density. If the input does not have the bit-transition BBPD cannot adjust

the phase and the output phase drifts according to the frequency error as shown in

Fig. 3.2 (b).

To avoid bit-slipping, small limit cycle and high transition density of the input

signal is preferrable. Limit cycle can be reduced by minimizing the loop delay [32]
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(a) (b)

Figure 3.2: Phase-portrait of bang-bang controlled timing loop when the transition
density is (a) 100% and (b) 0%.

or using decimation [33] that will be explained in Section 3.4.3. Other than that,

many of modern high-speed I/Os adopt data coding to ensure a certain level of tran-

sition density [34]. A decimation technique that ensures constant jitter performance

regardless of the transition density will be introduced in Chapter 4.

3.3 Markov-chain Analysis of Bang-Bang Controlled Tim-

ing Loops

To find the statistical characteristics such as jitter distribution, modeling the bang-

bang controlled loop as a Markov chain has been found effective [6, 17]. It models

a system in a quantized state space with predictable transition probability to find

the final distribution. Even though that technique was originally applied to find the

linearized gain of the bang-bang controlled loop, it can help to find the statistical

information of CDRs especially when predicting the bit error rate (BER).

The Markov-chain analysis finds the distribution of output phase in a stochastic
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Figure 3.3: Probability density function of bang-bang controlled loop’s output phase.

Figure 3.4: Asymmetric stabilized phase distribution

sense. Firstly, it quantizes the output phase with φbb of step assuming that the

integral path is negligible comparing with the proportional path. Fig. 3.3 shows the

probability density function (PDF) of output phase where the probability density

at nφbb is qn. Among the quantized phases, we denoted the one at the ideal position

to be 0. From this PDF, the PDF of timing error can be found by convolutioning

it with the PDF of total input-referred random noise, fN (φ). When the PDF of

timing error is not centered around 0, the BBPD generates more UPs or DOWNs

according to the polarity of the bias, and the loop is stabilized when the cummulative

probability density of the timing error under 0 is same with the one over the lock

point.

Next, the transition probability from each output phase is calculated to build a
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transition probability matrix. For example, if the current output phase is φx and

the random noise has fN (φ) of probability density function (PDF), the probability

of UP and DOWN can be calculated by

PUP =

∫ 0

−∞
fN (φ− φx)dφ

=

∫ −φx
−∞

fN (φ)dφ

PDN =

∫ ∞
0

fN (φ− φx)dφ

=

∫ ∞
−φx

fN (φ)dφ.

(3.6)

Likewise, the transition probability from an arbitrary phase iφbb to the next phase

(i+ 1)φbb in a quantized phase domain can be generalized as

G−i = FN (−iφbb)

=

∫ 0

−∞
fN (φ− iφbb)dφ

=

∫ −iφbb
−∞

fN (φ)dφ

(3.7)

where FN is the cummulative distribution function of the total input-referred noise.

Therefore, the transition probability matrix T where its element (i, j) is the proba-
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bility of transition from φi to φj can be defined as

T =



. . .
...

0 G2 0 0 0

1−G1 0 G1 0 0

· · · 0 1−G0 0 G0 0 · · ·

0 0 1−G−1 0 G−1

0 0 0 1−G−2 0

...
. . .


Finally, the stationary probabilities qn can be found by solving a Chapman-

Kolmogorov equation

q = q ·P (3.8)

where q is the row vector

[
· · · q−2 q−1 q0 q1 q2 · · ·

]
. The solution of this

equation can be found by iteration or deduction assuming symmetry of fN around

0 [6]. This equation usually can have multiple of periodic solutions with period of 2.

As we are finding the steady-state solution, the two distributions must be averaged

so that a single steady state distribution can represent the overall state distribution.

During the analysis, the ideal phase was assumed to be φ0, but this is impossi-

ble when the loop has finite number of pre-determined phases. For these systems,

the stabilized phase distribution can be asymmetric as shown in Fig. 3.4. The

steady state can have asymmetric distribution only if the accumulated probabilities

above/under the origin have the same value. Even for the conventional 2nd-order

bang-bang phase lockd loop with symmetric fN , there is another stabilized phase

distribution beside the case where φ0 is at the center of the phase distribution; the
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ideal phase can exist at the middle of two phases. For a complete analysis of the

loop behavior, all the possible cases aforemetioned need to be considered. Especially

when the input and output has small frequency offset, the relative phase of the input

slowly drifts and the phase ditribution slowly changes between Fig. 3.3 and Fig. 3.4.

However, as the phase drift is quite slow assuming small frequency offset, analyz-

ing the extreme two cases in the figure without considering time-varying offset can

guarantee the completeness of that analysis without loss of accuracy.

3.4 Analysis of Clock-and-Data Recovery Circuits

Clock-and-Data recovery (CDR) circuits have different characteristics and evaluation

metrics comparing with PLLs. For example, their input is not a periodic clock but

a random data sequence that has less than 100% of transition density. This section

extends the analyses explained earlier in this chapter to predict the bit-error rate

(BER), the most important metric of CDRs. The analysis includes the effect of

various design parameters such as transient density, decimation and deadzone width.

3.4.1 Prediction of Bit-Error Rate

Comparing with PLLs that give the highest priority to low jitter, CDRs have dif-

ferent metrics for the evaluation. The key criterion for CDRs is the bit-error rate

(BER). As most of I/Os require less than 10−12 of BER, its simulation based on

traditional transient simulation is quite unrealistic. Therefore, the analysis tech-

nique that can efficiently predict the BER is essential for the design of bang-bang

controlled CDRs. For example, the CPDF-based analysis explained in Section 3.1 is

quite useful for the prediction of BER. However, it still needs long simulation time

because it needs to collect multiple samples.
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In this context, the Markov-chain analysis explained in Section 3.3 is time-

efficient to predict the steady-state BER. Once the distribution of output phase,

q is found, the BER can be calculated by accumulating the probability when the

timing error exceeds the bit boundary:

BER =
∞∑

n=−∞
qn (FN (φleft − nφbb) + 1− FN (φright − nφbb)) (3.9)

where φleft and φright represents the positions of left and right bit boundaries, re-

spectively.

For the accurate prediction of CDR’s performance with Markov-chain analysis,

various design parameters such as transition density, decimation length and deadzone

width must be considered when deriving the transition matrix. Following sections

will explain the effect of these parameters.

3.4.2 Effect of Transition Density

The most eminent difference of CDR from PLL is that the CDR input has lower

than 100% of transition density. As the transition density is closely related with the

behavior of bang-bang controlled loops, its effect must be carefully considered when

extending the analysis basically used for the PLLs to the CDRs.

Basically, less than 100% of transition density reduces the number of effective

input samples as the loop cannot detect and adjust the phase without transition

edge in the input signal. Therefore, low transition density leads to narrow loop

bandwidth and poor tracking capability. For the same reason low transition density

incurs phase drift resulting in bit slippling described in Section 3.2. In addition, it

also affects the BER. Detailed explanation will be given later in this section.

The Markov-chain analysis described in Section 3.3 requires modification of the
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transition probability matrix to take the transition density into account:

T =



. . .
...

1− α α ·G2 0 0 0

α · (1−G1) 1− α α ·G1 0 0

· · · 0 α · (1−G0) 1− α α ·G0 0 · · ·

0 0 α · (1−G−1) 1− α α ·G−1

0 0 0 α · (1−G−2) 1− α
...

. . .


where α stands for the transition density ranging from 0 to 1.0. Comparing with

Eq. (3.7), the transition probability to adjacent phases are scaled by α while the

output phase holds current status with 1− α of probability.

Even though the transition density changes the transition probability matrix, it

does not affect the steady-state distribution. It can be easily verified with simple

mathematics as follows. Let’s assume that the origital transition probabilities from A

to B and B to A as GAB and GBA, respectively. Then, the steady state probabilities

of the states, PA and PB must satisfy

PA ·GAB = PB ·GBA. (3.10)

On the other hand, the steady state probability with non-100% transition density

satisfies

α · PA ·GAB = α · PB ·GBA. (3.11)

It can be seen that the probabilities PA and PB satisfies the Eq. (3.10) also satisfies

Eq. (3.11). This result can be explained in a quantitative way. Let’s assume that
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the loop is in a steady state q that satisfies Eq. (3.8) when the transition density

is 100%. If the next bit has bit-transition, the steady state distribution will not

change. On the other hand, if there is no transition in the input, the loop does not

change the current output phase and holds the current phase distribution only when

there is no frequency offset.

Considering that the jitter transfer bandwidth of conventional linear CDR changes

along with the transition density of its input, this is an interesting observation. The

difference comes from the nonlinear characteristics of the system. In a linear system,

random input noise is filtered and shaped by the transfer function of the system.

On the other hand, the results explained in the chapter is showing the jitter caused

by the dithering which is a special behavior of nonlinear system. The small-signal

analysis of pseudo-linear model described in Chapter 2 shows that the jitter transfer

of the bang-bang controlled system does change according to the transition density

of the input. However, in the case when the dithering dominates the random noise,

the jitter distribution of the output is independent of the transition density while

the frequency-domain spectrum can change.

Once the steady-state distribution is found by solving Eq. (3.8) with Eq. (3.4.2),

the expected BER can be derived as was done in Section 3.4.1. It is remarkable that

the BER is related with the transition density even though the transition density

does not affect the steady-state distribution. The BER is scaled by the transition

density (α) as the sampling of neighboring bit does not generate bit-error if the

poliarity of the next bit is same with the current one. Including this effect, Eq. (3.9)
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becomes

BER =
∞∑

n=−∞
α · qn (FN (φleft − nφbb) + 1− FN (φright − nφbb)) . (3.12)

In summary, the BER is proportional to the transition density of the input in steady-

state while the dithering amount does not change.

3.4.3 Effect of Decimation

Many of bang-bang controlled timing loops collect more than one phase information

before making a decision to improve the reliability. Namely, the loop decimates the

BBPD outputs.

The decimation poses two major effects on the loop behavior. First, it reduces

the effective delay and limit cycle. As the decision is made sparsely, effective update

cycle (Tref ) is increased by the decimation ratio, NDEC . Therfore, the loop delay in

update cycle unit (Nd) is scaled down by the same factor. As the dithering amount

is related with the effective loop delay, decimation and short loop delay help to

suppress the dithering.

However, decimation length cannot be set too long because increased update

cycle limits the tracking bandwidth. To maintain high tracking bandwidth even with

decimation the system needs a large phase adjustment step (φbb), which increases the

dithering amount again unless the dithering is completely eliminated. Consequently,

decimation needs to be done carefully considering both the tracking bandwidth and

dithering amount.

Dither can be suppressed also by minimizing the loop delay itself rather than

using decimation. Following this approach, some timing systems exploit feed-forward

paths that directly apply the PD output to the clock generator [32]. As this technique
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(a)

(b)

Figure 3.5: Error probability of gaussian distributed random jitter N(0, σN ) ex-
ceeding the threshold when majority voting algorithm with NDEC of samples are
performed. For the tie of votes, (a) does not decide it to be an error while (b) does.
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does not increase the update cycle, it is commonly used when the system needs a

high loop bandwidth. For example, it is widely used for the BBPLLs which have

clean reference clock because the high bandwidth helps to suppress the effect of the

phase noise generated by a clock generator. Meanwhile, most CDRs have jittered

inputs caused by inter-symbol interference (ISI), crosstalk and power supply noise of

transmitter. Accordingly the high loop bandwidth does not always result in the best

performance. In this reason many CDRs adopt decimation rather than exploiting

feed-forward path.

Secondly, the decimation improves the confidence level of the decision. The

accuracy of statistics can be evaluated using the confidence analysis based on the

central limit theorem. For instance, the true value of E [x[n]] is expected to lie within

the interval [36]:

|E [x[n]]−X| ≤ ρ σX√
NDEC

(3.13)

where X is the sample mean and σ2X is the variance of x[n]. The constant ρ is

determined by the confidence level. For example, ρ is 2 when estimating the 95%

confidence interval. Eq. (3.13) indicates that the accuracy of the estimate improves

with the number of samples, NDEC .

Among various decimation algorithms, majority voting is the most popular one

due to its simplicity. It selects the alternative that has the majority. For example,

if the BBPD decides UP for 5 out of 8 samples, the majority voting loop controller

decides to advance the output phase.

Fig. 3.5 shows the probability that the gaussian distributed random jitterN(0, σN )

exceeding the threshold when majority voting algorithm with various NDEC is ap-

plied where σN is the standard deviation of the random jitter. In other words, it is
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(a)

(b)

Figure 3.6: (a) The error probabilities with majority voting with decimation for
σN=0.1, 0.5 and 1.0 (φbb) and the ones without decimation that gives the same
results. (b) The simulated noise reduction ratio of majority voting decimation.
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plotting ∫ ∞
threshold

NDEC∑
ceil(NDEC/2)

1√
2π
exp(−x

2

2σ
)dx (3.14)

where ceil(·) represents the minimum integer value greater or equal to the input

value. This error probability corresponds to the BER when the threshold is set to

the distance of bit boundary from the sampling position. It can be clearly seen

that the higher decimation ratio reduces the probability of the errors because of the

improved confidence level. One interesting thing is that the trend with even NDEC

is totally different according to the decision of tie. If the loop changes the output

phase when exactly a half of votes were correct while another half was wrong, the

resulting error is smaller comparing even with the decimation of one more bit as

shown in Fig. 3.5(a). On the other hand, if the tie is regarded as an error, the error

probability is higher than the one with the decimation of one less bit as shown in

Fig. 3.5(b). In this thesis, we regard the tie as a correct bit, which corresponds to

the results of Fig. 3.5(a).

It is notable that the improved confidencel level due to the decimation is effec-

tively same with the reduction of random noise. That is, decimation of multiple

samples can have the same level of confidence with the one-time sampling under less

noisy condition.

The noise reduction effect of majority voting can be quantified by finding the

standard deviation of the noise distribution that gives the same error probability.

Fig. 3.6(a) overlays the error probabilites derived with 5-bit decimation over the ones

with no decimation and larger noise that gives similar results. It can be observed

that the noise reduction ratio is around 0.6 for all the cases. Fig. 3.6(b) clearly shows

that the noise reduction ratio is independent of σN . There is a negative relationship

65



Figure 3.7: The comparison between simulated noise reduction ratio and Eq. (3.15).

between the noise reduction ratio and the decimation ratio where the noise reduction

ratios for various decimation lengths are summarized in Fig. 3.7. For example, the

ratio is about 0.7 when NDEC is 3 and decreases to 0.3 when NDEC is 19. The fitted

noise reduction ratio is

fNR =
1

0.94N0.28
DEC + 0.06NDEC

, (3.15)

and the maximum error is 1.71% when NDEC is 5. This fitted equation is useful

when estimating the effect of majority voting.

3.4.4 Analysis of Oversampling Phase Detectors

One problem of BBPD is that the effective PD gain changes along with the distri-

bution of phase error as explained in Chapter 2. As the designers want the PD gain

and the loop bandwidth to be predictable, stable PD gain is desired.
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As a solution to that problem, more than 2× of oversampling phase detectors are

used. Fig. 3.8 shows the transfer curve of oversampling phase detectors with 2∼4

of oversampling ratio. A 2× oversampling phase detector as called as BBPD tells

only the polarity while 4× oversampling phase detectors tell the magnitude in two

quantized levels. For example, the output in the figure has twice bigger magnitude

when the phase error exceeds φ4− ∼ φ4+. With higher oversampling ratios, the

transfer curve approaches to the linear one. Especially when the phase detector

experiences the random noise, the transfer function is smoothed and become linear

in a stochastic sense.

On the other hand, phase detection with odd number of oversampling phases has

an input phase interval with zero gain which is called a dead-zone. If the detected

phase error is inside the deadzone, the phase detector asserts ‘HOLD’, and the

loop does not change the sampling clock phase. For example, the 3× oversampling

phase detector in Fig. 3.8 generates ‘HOLD’ when its input phase is in the deadzone

ranging from φ3− to φ3+.

As the loop holds the current output phase when the desired phase is inside

the deadzone, it can basically eliminate the dithering, but it has some drawbacks.

Firstly, the output phase can wander inside the deadzone, which can increase the

jitter especially when the deadzone is wide. As the loop cannot correct the phase

error in the deadzone, jitter cannot be rejected by the feedback loop. Secondly,

it does not guarantee the ideal output phase. Even when the neighboring phase

is better than the current one, the loop holds the current status only if the phase

error does not cross the boundary of deadzone. Finally, it can result in poor tracking

performance. For the systems with non-zero frequency error between the transmitter
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Figure 3.8: Input-to-output relationships of oversampling phase detectors.

Figure 3.9: The expected BER of the 3× oversampling timing loop with various
width of deadzones.
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and the receiver, the loop must track the phase error. In theses systems, the phase

detector with deadzone acts as a BBPD with the offset as large as a half of the

deadzone width. The reduction of tracking bandwidth can be critical for the systems

with spread-spectrum clock generation as their clock phase changes continuously.

This section explains the effect of deadzone to the loop dynamics of the CDRs.

Especially, the relationship between the deadzone width and BER will be examined.

Even though many of more than 2× oversampling systems aim to linearize the loop

behavior, this section assumes nonlinearized condition that includes small amount

of random noise. Linear analysis of more than 3× oversampling phase detectors can

be done with a similar technique described in Chapter 2.

Basically, the wider deadzone tends to result in lower BER assuming that the loop

is initially locked and there is no frequency offset between the input and the output.

Fig. 3.9 shows the expected BER versus the deadzone width of 3× oversampling

timing loop derived by the Markov-chain analysis in Section 3.3. The results show

that the BER decreases faster than exponential as the deadzone width increases.

This is because the loop with wider deadzone may hold the ideal phase rejecting the

random jitter, once the lock is acquired. As the ideal phase has the largest steady-

state probability, the steady-state distribution gets narrower when the deadzone

width increases.

However, when there is non-zero frequency offset, or the ideal selective phase

changes in time, a wider deadzone does not always results in the better BER.

Fig. 3.10 shows the average phase error and BER measured using the transient

simulation described in Section 3.1. In the figure, the width of dead zone is normal-

ized with φbb and the results with 0 ∼ 2.5 (φbb) of deadzone width are plotted. As
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(a)

(b)

Figure 3.10: Simulated (a) average of phase error and (b) expected BER of a bang-
bang controlled loop. Phase is normalized with the phase adjustment step (φbb).
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can be seen from the figure, the BER has the minimum value when the dead-zone

width is φbb, and increases as the deadzone width deviates from φbb. This result can

be explained with the transient simulation waveform plotted in Fig. 3.11. When the

deadzone width is too small, the probability of phase change increases even when

the current output phase is the best selectable one. In extreme case, if there is no

deadzone, the PD becomes a binary one, and the dithering of the loop degrades

the performance. On the other hand, when the deadzone is too wide, tracking per-

formance is degraded and the resulting phase offset between the input and output

increases the BER.

It is important to note that the BER is minimized when the deadzone width

is same with φbb. This is because the 3× phase detector checks whether the ideal

phase lies in the interval where the selectable gives the minimum phase error or not.

This characteristic will be reexamined and extensively used in Chapter 4.

Meanwhile, the decimation technique explained in Section 3.4.3 can be applied

at the same time with the 3× oversampling. Both of them can act together to reduce

the uncertainty of the random distributed input phase.

Fig. 3.12 (a) shows the expected BER with various deadzone widths and deci-

mation depths derived from Markov-chain analysis. In this analysis the transition

density was assumed to be 100%. As expected, wider deadzone width and longer

decimation length results in lower BER.

With non-100% transition density, it is interesting to see that the same number

of transitions in a decimation results in constant BER divided by the transition

density as shown in Fig. 3.12 (b). For example, the case with 100% of transition

density and 20 bits of decimation depth gives the same results with the one with
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(a)

(b)

(c)

Figure 3.11: Transient response of 3× oversampling timing loop to sinuoidal input
phase where WDZ=0, 1.0, and 2.0 (φbb).
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50% of transition density and 10 bits of decimation depth. It implies that NEFF ,

the multiplication of the transition density and the decimation depth, decides the

distribution of phase error. That is, the distribution and confidence level of phase

error is decided by NEFF .

This is an important characteristic to implement a decimation circuit that assures

stable confidence level independent of the transition density. When the input has

sparse transitions, the decimation depth must be increased to maintin constant

confidence level or BER. An implementation of decimating loop filter that adjusts the

decimation depth according to the transition density will be introduced in Chapter 4.
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(a)

(b)

Figure 3.12: BER with various deadzone widths and decimation depths. (a) assumes
100% of transition density while (b) is measred with various NEFF .
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Chapter 4

Design of Ditherless Clock and

Data Recovery Circuit

Dithering in bang-bang controlled CDRs poses conflicting requirements on the phase

adjustment resolution as one tries to maximize the tracking bandwidth and mini-

mize jitter. This chapter introduces an optimal phase interval detection scheme,

that can retain the advantages of BB-PDs while avoiding the limitations due to

dithering. Eliminating dithering in bang-bang CDRs greatly relaxes the require-

ment on the phase step resolution and save power dissipation. In our prototype

phase-interpolator based CDR, a 41-mUIpp jitter was achievable with a coarse

phase adjustment step of 0.11-UI and only 1-mW dissipated in the phase inter-

polator stages. The improved trade-offs between the tracking bandwidth and jitter

is demonstrated by the CDR’s jitter tolerance characteristics (JTOL), measured by

a digitally-controlled in-situ testing circuit.

4.1 Optimal Phase Detection

Typical bang-bang controlled CDRs exhibit dithering, and the dithering has ad-

verse effects on the CDR’s performance as explained in Chapter 1. For example, it

degrades the sampling timing margin and poses the trade-off between the tracking

bandwidth and jitter. A fine phase step is helpful to minimize the dithering, but

it requires circuits with finer resolution that consumes large power and area. In
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addition, fine resolution also requires narrower confidence interval for prudent deci-

sion, which needs decimation for longer period. This longer decimation weakens the

tracking performance of the CDR along with the small phase adjustment step. In

this background, this section introduces an optimal phase detection technique that

can minimize the effect of dithering without requiring fine phase resolution.

Before explaining the optimal phase detection, let’s find the cause of dithering

in BBPDs to help the understanding of the proposed technique. CDRs with BB-

PDs exhibit dithering because the phase detector compares the clock’s phase with a

single reference point, i.e., the optimal locking point. A problem is that compared

to this single reference point, the clock phase is never correct; it is either too early

or too late. While linear phase detectors detects and corrects the amount of phase

error to drive the loop to the locking point, BBPDs adjusts the output phase with

a fixed amount regardless of the phase error. Therefore, in response to such BB-PD

outputs providing only the polarity information of the phase error, the clock phase

has to be changed every time and in fixed steps, resulting in dithering.

For CDRs that adjust the clock phase in quantized steps, e.g. the phase-

interpolator based DLLs [2] or blind oversampling CDRs [26], such dithering re-

sults in the phase errors larger than the minimum possible, i.e. a half of the step

size. Fig. 4.1 compares the bang-bang phase detection and optimal phase detection

for various phase offsets between the ideal phase and selectable phases. When the

optimal phase is always selected, the maximum phase error can be kept less than

0.5 phase step. On the contrary, the clock phase of bang-bang controlled loop still

dithers even when the lock point is very close to one of the selectable phases, and

the maximum phase error can be as large as a phase step. For example, when the
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(a)

(b)

Figure 4.1: Comparison of BBPD and optimal phase detection in (a) output phase
and (b) maximum phase error.

offset phase is slightly larger than 0 in Fig. 4.1 (a), optimum selectable phase is φ1,

but the bang-bang controlled loop toggles between φ1 and φ2. Fig. 4.2 compares the

output phases of such an optimal CDR and a bang-bang CDR for the case with a

sinusoidal input phase. It can be seen that the output phase of the optimal CDR

is always within one half of the phase step from the input and changes only in the

direction of the input change while BBPD has one full UI of phase error at maximum

and its output phase repeatedly goes in the opposite direction of the input phase.

Such an optimal CDR can be realized with a phase interval detector (PID), which

looks for the phase interval that encloses the desired lock point, rather than looking

for a non-existent, selectable phase that is exactly equal to the lock point. Once
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Figure 4.2: Response of bang-bang controlled system without loop delay to sinusoidal
input phase and its comparison with the optimal phase.
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Figure 4.3: Optimal phase selection with phase interval detection technique.

the optimal phase interval is found, then the best selectable phase that minimizes

the quantization error is at the mid-point of the interval. With this phase interval

detector, the CDR can always select the optimal phase and need not dither.

The proposed phase interval detection is for CDRs that adjusts the phase in

quantized steps, or equivalently, that select one from a set of a finite number of

available phases [2, 26, 27]. It aims to select the phase that is closest to the desired

lock point and thus minimizes the phase quantization error.

The phase interval detection is basically performed by a pair of bang-bang phase

detectors, each sampling at the mid-point between the current phase (φi) and one

of its adjacent phases (φi−1 or φi+1), as depicted in Fig. 4.3. If the desired lock

point is located later than the earlier sampling phase (φA) and earlier than the later

sampling phase (φB), it can be deduced that the lock point is within the interval

spanned by the two sampling points. Then, the selectable phase (φi) which is at the

middle of the interval is the optimal phase that minimizes the error.

With an odd number of selectable phases spanning one unit-interval (UI), those

sampling phases (φA and φB) need not be generated separately, as illustrated in

Fig. 4.4 for the case with 9 phases. To measure timing, the BB-PDs sample at the
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Figure 4.4: Phase relationship of phase interval detection.

vicinity of the data transition edge, which is nominally 0.5-UI spaced from the data

sampling position. With an odd number of phases, the 0.5-UI shifted versions of φA

and φB coincide with the available phases, in this case, φ5 and φ6, respectively. If

the data sampling phase is not a half UI spaced from the data transition edge, the

number of phases does not need to be odd. For example, [31] intentionally shifts

the sampling point prior to the center of the bit symbol to reduce the pre-cursor of

the inter-symbol interference. In this case, the number of selectable phase can be

chosen freely.

The implementation of the proposed technique is basically same with the 3x

oversampling phase detectors where the deadzone width is a half of phase step.

It has been already shown in Chapter 3 that the optimal width of deadzone that

generates the least bit-error is a half of the phase step. That result matches with

the concept of the phase interval detection technique, and assures the strength of

the proposed technique.
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4.2 Proposed Architecture

A prototype 5-Gb/s CDR with the described phase interval detection is organized

as shown in Fig. 4.5. It is basically a phase-interpolator based, infinite-range delay-

locked loop (DLL) [2]. A phase-locked loop (PLL) generates a set of 6 phases of

2.5-GHz half-rate clocks and each of the phase interpolating stages can synthesize

a phase in-between in 3 steps, providing total of 18 selectable phases over one clock

period, or 9 phases over 1-UI. Each receiver slice in this half-rate CDR consists of

one data sampler, two edge samplers, and one additional sampler for on-chip eye

monitoring and margin measurements (described later). With two slices, the CDR

has total of 8 samplers and 4 differential phase interpolating stages.

Note that the phase resolution of the CDR is considerably low at 9 phases per

UI, compared to 64 128 phases/UI in most other implementations [2, 28]. Such a

coarse resolution is possible because the proposed phase interval detector eliminates

dithering. With the minimum device width dictated by the design rules and lin-

earity/mismatch requirements, the power and area of a phase interpolator increase

super-linearly with the number of interpolation steps [28]. Therefore, the coarse

phase resolution of our CDR is expected to bring 4∼6 times reduction in both the

power and area consumption in the phase interpolators. Also, the coarse phase step

is advantageous in improving the tracking bandwidth of the CDR. In other words,

eliminating dithering in digitally-controlled CDRs can greatly alleviate the trade-

off between the jitter and tracking bandwidth, enabling designers to improve one

without degrading the other.

However, with a coarse phase step, the penalty of making a wrong move is high

and each phase adjustment must be made prudently. To reduce the sensitivity
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Figure 4.5: Overall architecture of the prototype CDR with phase interval detector
(PID).
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to noises as well as to loop latency effects [5], the timing error decision is made

only after collecting sufficient distribution information of the PD output samples.

For each data transition, the set of two BB-PDs provides one of three possible

outputs indicating: both of the sampling phases (φA and φB) being late (UP), both

being early (DOWN), and one being late and the other being early (HOLD). The

occurrences of each output value are individually counted until one of the occurrence

counts reaches 16 (either the count in one of the slices reaching 16 or those in both

slices reaching 8).

Once the sufficient counts of UP, DOWN, and HOLD incidents are collected, the

digital loop filter finally makes a decision and adjusts the sampling phase based on

the accumulated counts (NUP , NDN , and NHD, respectively). The decision algo-

rithm for the phase adjustment is slightly different from the conventional majority

voting algorithm. Comparing with the majority voting algorithm that finds the

most possible candidate, the proposed algorithm checks whether the change of out-

put phase would reduce the sampling timing error or not. For example, let’s assume

that the the counted information tells NUP = 4, NHD = 4 and NDN = 7. Even

though the DN has the most votes, the decision must be ’HD’. If the loop filter de-

cides DN and lags the sampling clock phase, the next decision will be UP and return

to the previous state because the counted NUP will be 8 while NHD is less than 7.

In this reason, the CDR advances the phase to an earlier position when more than

half of the outputs are UP’s (NUP > NHD +NDN ). Likewise, if the majority of the

outputs are DOWN’s (NDN > NHD+NUP ), the CDR moves the phase to a later

position. On the other hand, if none of the above conditions is true, the current

phase position is considered the optimum and no adjustment is made.
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It should be noted that a similar phase detection scheme was reported for bang-

bang controlled PLLs [4, 29] but did not possess the advantages described in this

thesis. The key distinction stems from the fact that bang-bang PLLs adjust the

frequency in quantized steps, not the phase. With a deadzone introduced by a pair

of BB-PDs, any drift in phase would increase the jitter by at least the dead-zone

width. To circumvent this, the deadzone had to be made narrower than the width of

the underlying jitter distribution [29], or adjustable [4]. Hence, the required phase

resolution was still high. On the other hand, the proposed phase interval detector

can eliminate dithering without any penalty in jitter due to phase drifting and coarse

phase steps.

Also, one can find some similarities of this CDR with the blind oversampling

CDRs using phase picking [26, 27]. Blind oversampling CDRs sample the incoming

signal at all available phase positions and find the phase interval that bears the

most data transitions within a specified time window. They also typically use an

odd number of phases (3 or 5). Despite this similarity, the advantage of our CDR is

that the number of phases can be increased without incurring the hardware cost of

sampling at all the phases and processing their outputs to make timing decisions.

4.3 Analysis of the CDR with Phase Interval Detection

As stated in previous section, using coarse phase resolutions helps to reduce area and

power consumption only if its performance such as jitter and tracking bandwidth

satisfies the specification of its application. The target of the prototype CDR is Uni-

versal Serial BUS (USB) 3.0 [50], and its jitter tolerance requirement is depicted in

Fig. 4.6. It requires the sampling timing margin larger than 0.17UIpp or 0.085UIpeak
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Figure 4.6: Jitter tolerance requirements of USB 3.0.

at 4.9MHz. Assuming 0.35UIpp of deterministic jitter (φDJ) and gaussian random

jitter with 0.015UI of standard deviation (σRJ), the timing margin of the proposed

CDR satisfying less than 10−12 of BER is

TM = 0.5− φDJ − 7σRJ − φdither(rad) (4.1)

where φdither stands for the maximum phase error due to the dithering. As the

proposed phase interval detection technique guarantees less than a half phase ad-

justment step of phase error, φdither can be expressed as 0.5/N where N represents

the number of selectable phases in a UI. When N is 9 as is in the prototype CDR,

the timing margin is 0.164UI, about twice of the required timing margin.

Fig. 4.7 (a) compares the simulated JTOL curves of proposed CDR and con-

ventional bang-bang controlled loop for two different input jitter conditions; σRJ =

0.1φbb and 0.5φbb. The BER target is 10−12 and the statistical simulation technique

described in Section 3.1 was used. Other than the phase detection technique, every-

thing including the decimation depth and input bit stream is same for both circuits.

The benefit of proposed technique can be clearly seen when σRJ is 0.1φbb. The high-
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frequency JTOL is at least 4 times lager and the tracking bandwidth is 2∼3 times

larger than the conventional one. The improvement of JTOL is larger than 0.5φbb

because the possibility of BBPD’s phase change to the opposite direction of the

input increases exponentially as the random jitter increases. With the continuously

changing input phase, one output change in the opposite direction is critical as the

phase error will get bigger by the next phase adjustment time. On the other hand,

the benefit is hard to see when the random noise is small. In this case, additional

0.5φbb of timing margin attained from optimal phase detection does not affect the

BER significantly, and the improvement of JTOL is only 0.5φbb or 0.056UI in the

figure.

It can be argued that the BBPD with 2× finer phase resolution could show similar

performance with the proposed one as the additional phase margin attained by the

proposed technique is 0.5φbb, but its performance is actually worse than the proposed

one. Firstly, it needs 4× larger area and more than 2× larger power consumption.

Next, 2× finer phase resolution requires 2× narrower confidence interval, which needs

4× longer decimation length. 2× finer phase resolution and 4× longer decimation

length will result in 8× slower tracking bandwidth barring other effects such as

dither reduction due to finer phase resolution. Fig. 4.7 (b) compares the JTOL of the

proposed CDR and the conventional BBPD-based CDRs with various decimation

lengths and phase resolutions. Even though the conventional BBPD-based CDR

consumes larger area and power, its performance is worse than the proposed one

due to the inferior confidence level of the decision. The conventional one with 2×

finer phase resolution and 4× longer decimation length shows better performance

around 10MHz, but it definitely has slower tracking bandwidth.
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(a)

(b)

Figure 4.7: Simulated jitter tolerance comparing BBPD and PID with (a) different
noise conditions, (b) various decimation lengths and phase resolutions. The ‘Noise’
in the figure represents the standard deviation of the input jitter in φbb unit.
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(a)

(b)

Figure 4.8: Simulated output jitter vs. input jitter for BBPD and PID (a) when the
ideal phase coincides with a selectable phase and (b) when the ideal phase is at the
middle of two adjacent selectable phases. The phases are normalized with the phase
adjustment step (φbb).
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Figure 4.9: The sampling receiver with signal summation and offset calibration
capability.

The proposed CDR also has superior jitter performance comparing with the

conventional one. Fig. 4.8 shows the steady-state output jitter for various input

jitter conditions derived using the Markov-chain analysis described in Section 3.3.

For the complete analysis, two extreme cases, when the phase offset between the

ideal phase and the selectable phase is 0 or 0.5φbb, are tested. As expected, the

proposed CDR keeps the output jitter less than 0.5φbb while the conventional one

generates 0.5φbb 1.0φbb of output jitter under small input jitter conditions. The

output jitters of both circuits increase along with the increase of input jitter, but

the proposed one always generates less jitter comparing with the conventional one.

4.4 Circuit Implementation

4.4.1 Sampling Receiver

Fig. 4.9 shows the circuit schematic of the regenerative latch that also performs signal

summation without dissipating static current. The circuit is basically a StrongARM
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latch with multiple input pairs connected in parallel. There are four input pairs.

First, the main input pair (in+, in-) samples the incoming data signal. Second, the

first feedback input pair (fb1+, fb1-) receives the data output of the alternative-

phase regenerative latch and subtracts it from the incoming signal to cancel the

first post-cursor ISI, realizing a 1-tap direct-feedback FIR DFE. Third, the second

feedback input pair (fb2+, fb2-) receives the output of the shared single-pole IIR

DFE filter and subtracts it to cancel the trailing post-cursor ISIs. Lastly, the final

input pair (os+, os-) receives a binary signal that determines the polarity of the

offset voltage to be compensated. Since the input pairs of (fb1+, fb1-) and (os+,

os-) receive the binary signals from the other regenerative latch and external digital

control, respectively, their analog weights are adjusted by the gate bias voltages of

the current-starving devices, connected in series with the input pair devices. These

gate bias voltages are digitally controlled via 4-bit resistor-ladder digital-to-analog

converters (DACs).

When the clock (clk) rises, the current steered by each of the input pairs ac-

cording to its respective differential input discharges the internal nodes (X and X’)

of the comparator. The individual currents from the input pairs are linearly added

and hence the comparator makes the final decision based on the sum of the input

differences. Therefore, the signal summation can be done at much lower costs in

power and speed than the current-mode summation stage in Fig. 4.9.

It is noteworthy that even though the parallel input pairs increase the capacitance

(C) on the internal nodes X/X’, the total discharging current (I) also increases,

keeping the sampling aperture of the comparator roughly the same. In addition,

the regeneration bandwidth and power dissipation are largely determined by the
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Figure 4.10: A half-rate phase interval detector with retiming circuit.

capacitance on the nodes Y/Y’, which is weakly dependent on the number of input

pairs [47].

4.4.2 Phase Detector

Phase detector investigates the oversampled data to find the interval where the input

data has the transition. Fig. 4.10 shows a half-rate phase interval detector of the

proposed CDR. In includes a retiming circuit prior to the XOR gates that compares

the sampled values. As the sampled data have different sampling timings, they need

to be aligned before comparison. For example, even-phase edge samples (EDGEL0

and EDGER0) are re-sampled with DCLK for twice, which leads to about 1.75

cycles of delay.

This phase detector needs more than one bit duration of timing adjustment

capability for the equalization. The prototype CDR is used for a low-power decision-
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feedback equalizing (DFE) receiver front-end [35]. The receiver achieves a high

energy efficiency by the combination of a direct-feedback finite-impulse-response

(FIR) DFE, an infinite-impulse-response (IIR) DFE, and a clock-and-data recovery

(CDR) circuit with adjustable timing offsets as shown in Fig. 4.11. In this receiver

the timing-critical first post-cursor ISI tap is cancelled by a direct-feedback finite-

impulse-response (FIR) DFE, and an infinite-impulse-response (IIR) filter is utilized

to subtract the remaining post-cursor ISIs. The pre-cursor ISIs are suppressed by

passive inductors added in series with the termination resistors and by shifting the

data sampling phase from its nominal position, removing the CTLE and limiting

amplifier stages. To achieve this, the prototype CDR has the capability of shifting

the data sampling timing according to the digital control bits.

The long timing gap between the shifted data sample and edge samples are

aligned by changing the delay of data samples appropriately according to the ‘dly’

signal. When the equalizer changes the data sampling timing to reduce the pre-

cursor, the data samples are generated earlier than the normal case. As can be seen

from Fig. 4.12 (a), the timing margin of the flip-flop for normal operation (dly=0)

is

TMARGIN = TCQ − THOLD. (4.2)

where TCQ and THOLD represents the clock-to-Q delay and hold timie of the flip-flop.

On the other hand, when dly=1, the timing margin described in Eq. (4.2) be-

comes negative as shown in Fig. 4.12 (b). To resolve this timing issue, data samples

are delayed by additional a half UI, and the timing margin becomes

TMARGIN = 0.5Tref + TCQ − THOLD −∆Tsample. (4.3)
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(a)

(b)

Figure 4.11: Equalization technique applied to the prototype system.
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(a)

(b)

Figure 4.12: Timing diagram of phase interval detector’s operation when (a) dly=L
and (b) dly=H.
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Figure 4.13: Block diagram of the digital loop filter.

where Tsample is the amount of data sampling timing shift caused by the equalizer.

4.4.3 Digital Loop Filter

A digital loop filter following the phase detector decides the phase direction and gen-

erates appropriate control code for the phase interpolators. It consists of transition

counters, decision logic, jitter generator and an encoder as described in Fig. 4.13.

When the transition counter counts sufficient number of transition edges, the rising

edge of CLKDLF is asserted, and the decision logic compares the counted UP, DN

and HD to make the decision. The digital loop filter includes a jitter generator that

is used for the on-chip jitter tolerance measurement where it adds intentional phase

error to stress the loop. The encoder combines the outputs of the decision logic and

the jitter generator, and controls 8-bit codes for each of the 4 phase interpolators

that sample data center, two edges, and eye monitoring position, respectively.

The transition counter ensures the confident decision by adjusting the interval of
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phase control change. It asserts the rising edge of CLKDLF when one of the number

of UP, DN or HD reaches more than 16 samples. As discussed in 3.4.3, decimation

reduces the effective amount of random noise and ensures prudent decision. For the

simplicity of the implementation, a set of 4-bit counters count BBPD’s even-phase

output and odd-phase output separately. The number of samples are considered to

be sufficient when one of the counter output exceeds 16 or both even and odd phase

output exceeds 8. When sufficient information is collected, that is when the output

of the transition counter asserts carry out, decision is made and appropriate control

bits are generated. For the operation of the digital loop filter, a clock signal with a

fixed frequency is unnecessary, because the carry out signal is used as the clock for

the following logic blocks. As the duty of the carry out bit can be too narrow for

the fully synthesized logic blocks, a pulse extension block ensures at least 8Tref of

high duration for CLKDLF .

Proposed decimation technique based on sufficient information helps to ensure

robust operation over change of transition density. Fig. 4.14 shows the jitter his-

tograms of a conventional CDR that has a fixed decimation frequency experiencing

two different transition densities. When the transition density drops from 100%

to 25%, the effective information in a decimation period gets sparse and the con-

fidence level gets worse. Therefore, it can be clearly seen that the case with 25%

of transition density generates larger jitter comparing with the one with 100% of

transition density. On the contrary, the proposed decimation technique collects a

fixed number of effective information before making a decision. Namely, it makes

decision with a fixed number of transition edges. As it counts the phase detections

made upon each transition edge, the decimation period of the prototype CDR is
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Figure 4.14: Jitter histogram of conventional CDR’s output with transition density
of 100% and 30%.

automatically adjusted according to the transition density of the input. As can be

seen from Fig. 4.15, the proposed CDR shows constant output jitter regardless of

the transition density of the input.

On the other hand, the CDR includes a digital jitter generator to inject the

ramp or step jitter on the recovered clock phase for the in-situ JTOL measurement.

The ramping phase is generated by adding a periodic step signal to the digital loop

filter output. For instance, the jitter generator applies a step change of φSTEP to

the digital loop filter output every N cycles of the controller clock. As a result, the

phase detector (PD) will experience a linear-ramping feedback clock phase of which

slope is equal to

∆φERR
∆t

=
φSTEP
NTCTRL

(4.4)

where TCTRL and φSTEP are the period of the controller clock and the minimum

phase resolution of the phase interpolator, respectively. In this implementation,

the magnitude of each injection is fixed at the unit phase adjustment step size of
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Figure 4.15: Jitter histogram of proposed CDR’s output with transition density of
90% and 30%.

the phase interpolator, φbb, and the effective tracking bandwidth is set by the time

interval of the phase injection, N . Detailed measurement steps will be explained

later in 4.5.

4.4.4 Phase Locked-Loop

For the clock generation, the prototype system includes a type-II integer-N PLL

that generates 2.5GH 6 clock phases from 125MHz clock. It consists of PFD, charge

pump, capacitive loop filter, voltage regulated ring VCO and a frequency divider as

shown in Fig. 4.16. PFD converts the frequency and phase error to the width of its

output pulse, and the charge pump charges or discharges the loop filter according

to the PFD output. The capacitive loop filter consists of three capacitors where two

small capacitors connected by a cross switch serve as a proportional path while a

large capacitor works as an integral path. The proportional path similar with the

one introduced in [48] is reset every reference cycle by flipping one of the two small
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Figure 4.16: The 6-phase frequency synthesizing phase locked loop used for the
prototype CDR.

capacitors. Therefore, the effective resistance becomes

Reff =
Tref
C

. (4.5)

As the effective resistance changes in proportion to Tref , the loop bandwidth

is adaptively scaled with the input frequency [7]. Lastly, the supply regulated ring

oscillator generates 6 clock phases that are used for the interpolators to achieve 1/9

UI of phase resolution. The regulator includes the feed-forward path that increases

the power supply noise rejection bandwidth [49]. The reglated voltage (VREF ) is also

forwarded to the phase interpolator to improve the linearity of the phase interpolator.

4.4.5 Phase Interpolator

Fig. 4.17 illustrates the circuit implementation of the phase interpolator stage.

Among 6 clock phases generated from the PLL a pair of muxes select two adjacent

clock phases. The selected clock phases are buffered by 6 tri-state buffers where their

outputs are shorted to interpolate between two adjacent phases in 3-step resolution.

The minimum-size inverters are always on while two sets of two 2x sized inverters

99



Figure 4.17: 3x interpolating phase interpolator.

are turned on and off complementarily. Therefore the possible interpolation weights

are 1/6, 3/6, and 5/6 with no redundancy between the control codes [30]. Fig. 4.18

describes the operation of the phase interpolator. When SEL[1:0]=00, all the in-

verters in the CK0 braches are turned on while only one inverer is turned on in the

CK1 branch, and the shorted inverter output crosses the threshold at 1/6 of those

two clock phases. On the other hand, when SEL[1:0]=01, both braches have equal

number of inverters turned on, and the interpolation weight becomes 3/6.

Comparing with the conventional phase interpolators that have redundant phases

when one clock phase has the full weight, it simplifies the control code. For example,

when there is no always-turned on inverer, the code that gives the full strength to

the right branch results in the same output phase regardless of the left branch’s mux

output. Therefore, the control code needs to skip these redundant codes. Moreover,
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Figure 4.18: Timing diagram of phase interval interpolator’s operation.

the skipping of redundant codes needs simultaneous change of mux and inverters.

As it can’t be done at a perfect timing, it can result in glitches or loss of one clock

edge. The proposed phase interpolator does not have this problem as it changes

only one of the inverters or the muxes at each code transition.

To maintain good phase linearity of the interpolators across a wide frequency

range and PVT conditions, the supply voltage of the tri-state buffers is regulated

to the same voltage as that of the inverter-based ring oscillator (VREF ). The phase

linearity of this type of phase interpolators are sensitive to the PVT variations

because it cannot interpolate the clock phase when there is no overlap between two

adjacent clock phases. The regulated supply voltage of the ring VCO is a nice

indicator of the PVT variation as the inverter has the same structre with the one

inside the phase interpolator. Adjusting the supply voltage of the phase interpolator

according to VREF cancelles out the effect of PVT variaion, and helps to maintain

nice phase linearity over wide variations.

Fig. 4.19 compares simulated differential nonlinearity (DNL) of interpolators

with/without voltage regulation. Without voltage regulation, DNL is as high as 0.5

φbb,pp at FF corner. FF corner is the worst condition for the interpolator because
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(a) (b)

Figure 4.19: Process variation of interpolator’s differential nonlinearity (DNL) (a)
without voltage regulation and (b) with regulation.

the transitioning edges of internal signals do not overlap in this corner due to its

short transition time. The improvement of linearity due to the voltage regulation

can be clearly seen in Fig. 4.19 (b) where the maximum DNL is decreased down to

0.2 φbb,pp.

4.5 Built-In Self-Test Circuit for Jitter Tolerance Mea-

surement

A JTOL test is costly both in the test setup and test time because it requires

repetitive measurements of the BER while varying the magnitude and frequency

of the sinusoidal jitter (SJ) being imposed onto the data stream input, running

at multi-Gbps data rate. For instance, each BER measurement takes at least 100

seconds for a 10-Gbps system, in order to collect sufficient samples to estimate the

BER less than 10−12. In addition, the JTOL is typically measured over 20∼50 SJ

frequency points and at each point, multiple BER measurements are required to find
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the SJ magnitude that yields the target BER. As a result, a thorough JTOL test

can take a few hours. Besides, the equipment that can generate multi-Gbps data

streams with variable SJ frequency and magnitude is very expensive.

While many solutions to reduce the testing cost and time of JTOL measurement

have been investigated, most of them focused on the cost-effective ways of generating

the data streams with the desired SJ [37–43]. It implies that additional efforts

beyond just designing the CDR are necessary in order to test the JTOL of the CDR

itself.

This section explains a simple and efficient technique for the CDR to measure

its own JTOL characteristic while operating with an ordinary transmitter.

The on-chip JTOL measurement technique proposed in this dissertation extends

the digitally-controlled receiver-side jitter injection method described in [43] so that

the necessary hardware and testing time are further reduced by separately measuring

the low-frequency and high-frequency JTOL characteristics of the CDR.

The basic idea is to measure the tracking bandwidth and timing margin (i.e., the

high-frequency JTOL) of the CDR in two separate measurements. The JTOL curve

can be divided into two linear segments that represent two key information of the

CDR. The low frequency segment with -20dB/dec of slope represents the required

tracking bandwidth of the CDR, while the horizontal segment at high frequencies

indicate the necessary timing margin of the CDR [44]. Therefore, the JTOL char-

acterization can be effectively substituted by the two measurements measuring the

tracking bandwidth and timing margin.

A similar idea was introduced in [45], where the high-frequency JTOL was es-

timated from the jitter measured by an on-chip jitter measurement circuit and the
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Figure 4.20: An example of the sinusoidal jitter.

low-frequency JTOL was measured by applying an SSC-modulated input to the

CDR and measuring the resulting jitter in the recovered clock. However, the tech-

nique still calls for repetitive measurements at multiple SSC-modulation frequencies

in order to construct the complete JTOL curve of the CDR. In comparison, it will be

shown that the proposed technique can estimate the complete JTOL curve by per-

forming just two measurements without sweeping the SJ frequency. It can greatly

relax the requirement on the necessary hardware and also reduce the testing time.

To measure the low-frequency JTOL, the proposed technique applies a linear

ramp to the recovered clock phase instead of a sinusoid to avoid the need of gener-

ating the sinusoidal waveform. Note that in case of using a SJ with a modulation

frequency of fmod and amplitude of Amod, the SJ has the maximum change rate of:

d

dt
Amodsin(2πfmodt) = 2πfmodAmod (4.6)

as illustrated in Fig. 4.20. Therefore, by applying a linearly-ramping phase that

has the same slope as Eq. (4.6), the effective tracking bandwidth and hence the low

frequency JTOL curve can be estimated. For example, if the CDR tolerates a ramp

phase with a slope of framp, it can be deduced that the JTOL curve at low frequency
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Figure 4.21: Proposed procedure to measure the low-frequency JTOL.

is higher than

Amod(fmod) =
framp

2πfmod
. (4.7)

On the other hand, the high frequency JTOL, or equivalently, the timing margin

of the CDR is measured by applying a periodic step change to the recovered clock

phase. Since the abrupt change of the clock phase cannot be tracked by the CDR

feedback loop, the maximum tolerable step change in the phase indicates the high-

frequency JTOL. For example, if the BER does not exceed the specified rate even

with a 2/9-UI phase step change, one can deduce that the high-frequency JTOL of

the CDR is higher than 2/9 UI.

Fig. 4.21 summarizes the overall procedure of the proposed low-frequency JTOL

measurement. Basically, the procedure finds the steepest ramp slope of the added
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jitter that can be tolerated by the CDR. Once this slope value is found, the low-

frequency JTOL curve can be estimated using Eq. (4.7) without making multiple

measurements at different SJ frequencies. The similar procedure also applies to the

high-frequency JTOL measurement. In that case, the only difference is that it looks

for the largest step magnitude in the clock phase that can be tolerated instead of

the steepest ramp slope.

The proposed JTOL measurement technique greatly saves the testing time by

avoiding the repetitive measurements at multiple SJ frequencies and reduces the

hardware costs by using a simpler jitter pattern (i.e. ramp and step) than a sinusoid.

In other words, the described measurement procedures find the slope and position of

the two JTOL curve lines, each corresponding to the tracking bandwidth and timing

margin, respectively, instead of finding a single JTOL value for each SJ frequency.

It should be noted that the testing time can be further improved if the proposed

technique is combined with some other previously reported techniques. For example,

ref. [46] described an efficient method to find the parameter value that yields the

BER of 10−12 with far fewer samples of 106 bits. Also, ref. [39] described a way

to perform simultaneous JTOL measurements on multiple receivers in parallel, to

speed up the ATE production tests.

4.6 Measurement Results

The described prototype CDR was fabricated in a 65nm LP CMOS technology and

its chip photograph and performance summary are given in Fig. 4.22 and Tab. 4.6,

respectively. The CDR occupies the total area of 0.026mm2, including the equalizing

receivers. The CDR acquires the correct lock and achieves BERs less than 10−12
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Figure 4.22: The die photograph of the prototype CDR with equalizing receiver
fabricated in 65nm CMOS.

while operating at 4.6∼5.6-Gbps and a nominal 1.2V supply. When the supply

voltage is increased to 1.3V, the operating range is extended to 5.4 7.6-Gbps. The

lowest data rate is limited by the level converters that fail to convert the low VCO

clock swing to a full VDD swing when the clock frequency and hence the regulated

VCO supply (VREG) are low. When operating at 5-Gbps, the CDR consumes the

total of 8.4-mW from the 1.2V supply, corresponding to an energy efficiency of 1.7-

pJ/bit. By virtue of the coarse resolution of only 3 steps, the 4 differential phase

interpolating stages consume only 1mW in total.

The jitter histograms of the recovered clock with and without the frequency
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Table 4.1: The Prototype Chip Performance Summary
Technology TSMC 65nm low-power process

Supply Voltage 1.2V

Data Rate
VDD=1.2V 4.6 5.6Gb/s
VDD=1.3V 5.4 7.6Gb/s

Data Pattern PRBS 27 − 1

Jitter Tolerance
at 10MHz 0.14 UI
at 100kHz 10UI

Recovered Clock Jitter
Meso-chronous 0.97psrms, 8.2pspp
Plesio-chronous 2.7psrms, 25.3pspp

Total Area 0.026mm2

Power Efficiency 1.7pJ/bit

offset between the data and the PLL reference clock is shown in Fig. 4.23. Without

a frequency offset (i.e. mesochronous mode), the CDR keeps selecting just one

phase without dithering, and the 2.5-GHz clock output has the jitter of 0.97psrms

and 8.2pspp. With a 100-ppm frequency offset applied (pleisiochronous mode), the

jitter is increased to 2.7psrms and 25.3pspp as the CDR phase shifts through all the

available phases.

Fig. 4.24 shows the CDR’s response to a 1-MHz sinusoidally-changing input

phase, demonstrating that the recovered phase indeed does not dither. The wave-

forms of the final phase detector signals UP and DN indicate that the CDR’s output

phase moves only in the direction of the input change without any wandering, as

typically seen in BB-CDRs.

Fig. 4.25 shows the jitter histograms of the recovered clock as the timing offset

between the data and PLL reference clock is varied. As expected from our analysis,

for most cases, the clock does not exhibit dithering and the histogram has only

one peak. However, when the desired lock point is close to the middle between two

selectable phases, both the neighboring phases are equally optimal and the CDR may
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(a)

(b)

Figure 4.23: Measured jitter of the recovered clock at 5Gbps in (a) meso-chronous
configuration and (b) plesio-chronous configuration.
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Figure 4.24: Output phase and the decision of the loop when 1MHz, 1UIpp of
sinusoidal input phase is applied. The applied data pattern is 27 − 1 PRBS.

alternate between the two. Nonetheless, the worst-case phase quantization error is

still limited to one half of a unit phase step. The estimated worst-case phase error is

26ps, which corresponds to roughly one-half of the phase step (11-ps) plus 4.4-σ of

the random jitter (σ = 3.4psrms). Note that the results in Fig. 4.25 were measured

with a real-time oscilloscope, which tends to give worse jitter characteristics than a

sampling oscilloscope due to its limited time resolution and trigger precision.

With additional samplers in the receiver that sample the data with adjustable

timing and voltage offsets, one can measure the effective eye opening seen by the

receiver by comparing their outputs with those of the data samplers [31]. Fig. 4.26

shows the measured effective eye diagram with the BER target of 10−3 when a 27−1
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Figure 4.25: Jitter histograms and the maximum phase error with various timing
offsets between data and PLL reference clock.

PRBS pattern with 100mVpp,diff swing is applied to the input. The measured eye

opening is 6/9-UI wide and 65-mV tall. The opening is narrower than the one seen

externally, as it includes the effects of the sampling clock jitter and the receiver’s

voltage offset and noise. For instance, the vertical shift in the eye due to a -30mV

input-referred offset can be clearly seen in the figure.

The CDR’s jitter tolerance (JTOL) characteristics were also measured with the

proposed in-situ JTOL measurement technique. Fig. 4.27 compares the JTOL char-

acteristics estimated by the described on-chip method and measured by external

equipments (e.g. BERT). Due to the coarse phase resolution of our CDR, the on-

chip method can only predict the region where the JTOL curve is expected to lie in,

111



Figure 4.26: Measured on-chip eye diagram.

Figure 4.27: Comparison of JTOLs measured with internal and external phase mod-
ulation.
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and the actual JTOL curve measured by the external equipments indeed lies within

this region. The upper and lower bounds of the low-frequency JTOL correspond to

the phase ramps of 1/18 UI/cycle (pass) and 1/27 UI/cycle (fail), respectively. The

high-frequency JTOL is estimated to be at least 1/9 UI, as the CDR can tolerate

an instantaneous change in the phase offset by 1/9 UI without any loss in the BER.
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Chapter 5

Conclusion

To understand and minimize the dithering of bang-bang controlled timing loops,

various analysis techniques and a novel phase interval detector that finds the optimal

phase have been presented.

The pseudo-linear analysis explained in Chapter 2 employs two-input linearized

BBPD model with an additive quantization noise. Various simulation results in-

cluding jitter transfer, jitter generation and jitter tolerance demonstrated that it can

accurately model the effects of the random noises, transition density, and loop delay.

In addition the necessary conditions for this pseudo-linear analysis to be valid are

derived. As long as sufficient noise is present in the system, the design of BB-CDRs

or all-digital PLLs can leverage the design insights with the linear systems. When

compared with the time-accurate simulation results, the proposed analysis provides

more accurate predictions than the previously reported models [8, 12,14,18].

Chapter 3 explained three techniques to analyze the bang-bang controlled loops

without approximating them to a linearized one, and discussed the strength of each

technique. The stochastic transient analysis can be applied to most of non-linear

circuits without any assumption while improving the simulation speed by exploiting

the stochastic information of random noise sources. Phase-portrait analysis has

strength when analyzing locking behavior or bit-slipping. Lastly, Markov chain

model is the most efficient way to find the steady-state bahavior. The stochastic
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analysis technique and Markov chain model were extensively used for the analysis

of phase interval detector in Chapter 4

The phase interval detector, consisting of a pair of bang-bang phase detectors

and an odd number of selectable phases effectively removes dithering in bang-bang

controlled CDRs. As a result, a CDR can achieve low jitter even with a coarse

phase step and save power in the phase adjustment circuits. The prototype CDR

has only 9 selectable phases in a UI and consumes 8.4mW of power where the

interpolators consume only 1mW. The area of the CDR is only 0.026mm2, which is

the smallest one among previously reported ones achieving over 5Gbps of data rate.

Even with corase phase resolution the measured jitter is as low as 0.97psrms without

a frequency offset, which increases to 2.7psrms with a 100-ppm frequency offset. In

the case when the small output clock jitter must be achieved even with more power

and area, increasing the phase resolution of the circuit can be a better solution,

but the proposed phase interval detection technique is efficient when achieving low

power and small area.

A fast and efficient on-chip JTOL measurement technique that does not require

a high-cost pattern generator with a jitter generation capability has been also de-

scribed. The proposed technique measures the tracking bandwidth and timing mar-

gin of the CDR by applying a ramp and step change in the recovered clock phase,

respectively, and achieves a 20× reduction in the testing time. The experimental

results with the prototype CDR and on-chip JTOL measurement circuit fabricated

in a 65nm CMOS demonstrate that the presented technique can estimate the ac-

tual JTOL curve well while requiring only 480µm2 of the additional area, which

corresponds to only 1.8% of the total CDR area.
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초 록

Bang-bang 위상 검출 회로는 단순하면서도 빠르고 정확하며 디지털 구현이 용이

한 특성 때문에 고속 통신용 위상 동기 회로 (Phase-locked loop), 지연 동기 회로

(Delay-locked loop), 클럭 및 데이터 복원 회로 (Clock-and-data recovery loop) 등

에 널리 사용되고 있지만 비선형적인 특성을 가지기 때문에 전체 루프의 설계와 분

석에 어려움이 있다. 특히 디더링은 해상도에 따른 bang-bang CDR의 트랙킹 속

도와 지터 잡음간의 트레이드오프 관계의 원인이 된다. 고해상도의 위상 조절은

디더링을 줄이는데에 효과적이지만 전력 및 면적 소모를 증가시키는 단점이 있다.

이러한 배경에서 이 논문은 고해상도의 회로 없이 디더링 문제를 해결할 수 있는

최적 위상 검출 기술을 제안한다. 제안하는 위상 구간 검출 회로는 이상적인 위상

지점을 포함하는 위상 구간을 찾음으로서 최적 위상을 검출하고 디더링을 제거한

다. 65nm CMOS공정으로 구현된 디지털 방식의 phase-interpolating DLL 기반의

CDR은 0.11UI의 낮은 해상도를 사용하며 0.026mm2의 작은 면적과 41mUIp−p의

저잡음 성능을 보이면서도 5Gbps로 동작시 8.4mW의 저전력을 소모한다. 또한 이

논문은 bang-bang controlled 시스템의 분석을 위한 다양한 기법을 소개한다. 소개

된 기법들은 linearized 루프와 non-linear 루프에 모두 적용 가능하며, 제안된 위상

검출 기법의 특성을 검증에 사용되었다.
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