7,775 research outputs found

    Cost of energy and mutual shadows in a two-axis tracking PV system

    Get PDF
    The performance improvement obtained from the use of trackers in a PV system cannot be separated from the higher requirement of land due to the mutual shadows between generators. Thus, the optimal choice of distances between trackers is a compromise between productivity and land use to minimize the cost of the energy produced by the PV system during its lifetime. This paper develops a method for the estimation and optimization of the cost of energy function. It is built upon a set of equations to model the mutual shadows geometry and a procedure for the optimal choice of the wire cross-section. Several examples illustrate the use of the method with a particular PV system under different conditions of land and equipment costs. This method is implemented using free software available as supplementary material

    Distributed generation on rural electricity networks - a lines company perspective : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Energy Management at Massey University

    Get PDF
    CD held with Reference copyA number of electricity assets used in rural New Zealand yield a very low return on investment. According to the provisions of the Electricity Act 1992, after 01 April 2013, lines companies may terminate supply to any customer to whom they cannot provide electricity lines services profitably. This research was undertaken to assist the policy makers, lines companies, rural investors on the viability of distributed generation in a rural setting from the point of view of the lines company and the investor as well as to provide recommendations to the problem areas. A dynamic distributed generation model was developed to simulate critical distributed generation scenarios relevant to New Zealand, such as diverse metering arrangements, time dependent electricity prices, peak shaving by load control, peak lopping by dispatchable distributed generation and state subsides, which are not addressed in commercial software. Data required to run the model was collected from a small rural North Island sheep and beef farming community situated at the end of a 26km long radial distribution feeder. Additional operational data were also collected from the community on distributed resources such as solar hot water systems. A number of optimum distributed generation combinations involving a range of technologies under different metering arrangements and price signals were identified for the small and the medium investor. The effect of influencing factors, such as state initiatives and technological growth, on the investor and the lines companies were discussed. Recommendations for future implementation in order to integrate distributed generation on to rural networks were also given. Several key research areas were identified and discussed including low cost micro hydro, wind resource assessment, diversification of the use of the induction generators, voltage flicker and dynamic distributed generation techno-economic forecasting tools

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Intermittency and the Value of Renewable Energy

    Get PDF
    A key problem with renewable energy is intermittency. This paper develops a method to quantify the social costs of large-scale renewable energy generation. The method is based on a theoretical model of electricity system operations that allows for endogenous choices of generation capacity investment, reserve operations, and demand-side management. We estimate the model using generator characteristics, solar output, electricity demand, and weather forecasts for an electric utility in southeastern Arizona. The estimated welfare loss associated with a 20% solar photovoltaic mandate is 11% higher than the average cost difference between solar generation and natural gas generation. Unforecastable intermittency yields welfare loss equal to 3% of the average cost of solar. Eliminating a mandate provision requiring a minimum percentage of distributed solar generation increases welfare. With a $21/ton social cost of CO2 this mandate is welfare neutral if solar capacity costs decrease by 65%.

    Wind Energy Management

    Get PDF
    The book "Wind Energy Management" is a required part of pursuing research work in the field of Renewable Energy at most universities. It provides in-depth knowledge to the subject for the beginners and stimulates further interest in the topic. The salient features of this book include: - Strong coverage of key topics - User friendly and accessible presentation to make learning interesting as much as possible - Its approach is explanatory and language is lucid and communicable - Recent research papers are incorporate
    corecore