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ABSTRACT 

A number of electricity assets used in rural New Zealand yield a very low return on 

investment. According to the provisions of the Electricity Act 1992, after 01 April 2013, 

lines companies may terminate supply to any customer to whom they cannot provide 

electricity lines services profitably. 

This research was undertaken to assist the policy makers, lines companies, rural investors 

on the viability of distributed generation in a rural setting from the point of view of the 

lines company and the investor as well as to provide recommendations to the problem 

areas. 

A dynamic distributed generation model was developed to simulate critical distributed 

generation scenarios relevant to New Zealand, such as diverse metering arrangements, time 

dependent electricity prices, peak shaving by load control, peak lopping by dispatchable 

distributed generation and state subsides, which are not addressed in commercial software. 

Data required to run the model was collected from a small rural North Island sheep and 

beef farming community situated at the end of a 26km long radial distribution feeder. 

Additional operational data were also collected from the community on distributed 

resources such as solar hot water systems. 

A number of optimum distributed generation combinations involving a range of 

technologies under different metering arrangements and price signals were identified for 

the small and the medium investor. The effect of influencing factors , such as state 

initiatives and technological growth, on the investor and the lines companies were 

discussed. Recommendations for future implementation in order to integrate distributed 

generation on to rural networks were also given. 

Several key research areas were identified and discussed including low cost micro hydro, 

wind resource assessment, diversification of the use of the induction generators, voltage 

flicker and dynamic distributed generation techno-economic forecasting tools. 
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Executive Summary 

I. INTRODUCTION & BACKGROUND 

Rural electricity supply is often characterised by long distribution lines and higher 

proportion of transformers than in urban areas. The quantity of energy conveyed is 

generally low due to dispersed population densities. In order to realise the required rate 

of return on distribution assets invested in rural areas, lines companies have to charge 

rural customers a higher $/kWh tariff for the electricity lines services. However, to date, 

most lines companies have been providing electricity services to rural customers at 

cross-subsidisecl rates, from urban customers. According to the provisions of the 

Electricity Act 1992, after I April 2013 a lines company can terminate its services to any 

customer to whom they cannot provide electricity lines services profitably. Thereby 

some rural customers face the risk of either having to pay very high line charges or loose 

their electricity supply. 

Although stand alone remote area power systems and mini-grids are an option for rural 

communities who may become affected, staying connected to the grid while making use 

of local energy resources is a preferable option, provided economics allow. This is due 

to several benefits including better utilisation of renewable energy resources, greater 

supply reliability and improved voltage profile. 

This research project was undertaken to provide analysis for policy makers, lines 

companies and rural investors on the viability of distributed generation in a rural setting 

and to provide recommendations concerning problem areas. 

Although several commercial software packages are currently available to study the 

performance and economics of grid connected distributed generation systems, these are 

not capable of critically analysing distributed generation issues relevant to New Zealand. 

In particular such issues as 

• impacts of diverse metering arrangements; 

• time dependent electricity prices; 

• benefits of peak shaving by load control and peak lopping by dispatchable 
distributed generation; and 

• the effect of state subsidies; 
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are not addressed in the commercial software. For this reason, a dynamic distributed 

generation model was developed to simulate the above scenarios. In developing the 

model, an effort was made to include generic distributed generation scenarios that 

would be valid to the whole of New Zealand and not just to a given rural community. 

II. METHODOLOGY 

Data was collected from Totara Valley, which is a small rural North Island sheep and 

beef farming community situated at the end of a 26km long radial distribution feeder and 

used as a case study for several Massey University studies. The primary data collected 

for this research were the community demographic data, electricity supply and 

distribution data, real time load data, solar hot water temperature and flow data, 

photovoltaic data (grid connected), solar irradiation and ambient temperature data. 

Secondary data required for the model was collected from a variety of sources including 

Massey University research studies and publications. 

In order to realize economies of scale, the metering of a single farm was assumed to be 

made through the secondary side of its dedicated transformer. Such metering was 

actually implemented on 3 transformers in the case study community, with a view to 

implement it for commercial purposes at a later point in time. It was observed that each 

transformer dedicated to a single property farm distributes electricity to several 

installation control points such as the farmhouse, cottages, woolshed, freezer shed and 

the workshop. 

Three specific community scenanos were simulated usmg the model for different 

distributed generation (DG) and metering configurations. These were; 

• Individual farm based DG applications 

• Small community based centralised DG applications, and 

• Medium community based centralised DG applications. 

The size of the small and medium communities, in terms of the number of residential 

connections, was 32 and 50 respectively. Three metering configurations were also 

simulated: 
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• net metering, 

• time of use gross import/gross export metering; and 

• separate generation/load metering. 

In addition, in cases where specific demand side responses are made in response to price 

signals from the lines company (e.g. operation of a dispatchable DG unit during critical 

peak periods), it was assumed that there would be a separate, ripple-activated meter to 

determine the firm capacity/energy supplied to the lines company. Although the 

computer model was designed to accommodate peak shaving through customer initiated 

load control as a demand side response, this was not simulated as it was not possible to 

identify loads of significant magnitude within the case study community. 

III. Observations 

Micro-hydro turbine 

The model outputs showed that from a pure economic standpoint of the investor, only 

low cost micro hydro technologies would be economical for individual farm based 

applications. It was also observed for the micro hydro system, as simulated, that net 

metering was marginally more advantageous to the investor than gross import/gross 

export metering because of the steady flow of water (hence energy supply) all year 

round. The relatively low cost micro hydro unit derived its economic advantage through 

a very simplified electro mechanical technology that involves an induction generator and 

a reverse engineered water pump. 

Small wind turbines 

Small wind turbine generators could become acceptable in individual farm based 

applications only if the state subsidies for wind energy projects were provided, the site 

had a wind regime in excess of 7 mis, and the investor also appreciated the social values 

of wind energy investment. For example if a zero interest loan was made available to 

finance a small wind project, a wind turbine generator was installed on an 8 mis site and 

the farm load was net metered, then the farmer would have an incentive to opt for a wind 

turbine of 7 kW rated capacity, rather than a smaller one. 

The simulations indicated that net metering is less attractive than gross import/gross 

export metering from a lines company perspective, but would only become a 

Executive Summary XXl 



commercial threat in the shorter run if the state subsidised wind projects substantially to 

encourage implementation or if the cost of the system was reduced. 

For community scale centralized applications, given a good wind resource availability, 

the economic viability of a small wind turbine was found to be dependent on three broad 

factors; 

• whether the generation 1s separately metered or gross import/gross export 

metered (for payment purposes) 

• state subsidies available and 

• the size of the wind turbine generator. 

The level per kilowatt of state subsidies required for community wind projects was 

found to be considerably less than for individual farm based applications, with larger 

wind projects requiring lower levels of subsidies. For this reason it was observed that, 

with the appropriate level of subsidy, community scale projects would enable larger 

capacity wind projects to be realised. The simulations also indicated that the capacity 

contribution made by wind turbine generators during critical peak periods would of 

value to both lines companies and investors. However due to the intermittent nature of 

the wind resource, the value would be of advantage only if the lines company is facing a 

capacity problem on a more regular basis. 

Diesel generation 

Simulations also suggested that the use of a diesel standby generator for any form of 

demand side response (either to take advantage of time of use tariffs or economic 

incentives provided by line companies for peak lopping) is not economical for individual 

farm based applications. However, simulations showed that peak lopping could become 

economical if low cost technologies are used, such as supplying firm capacity through an 

induction generator being driven by a diesel engine. The induction generator is attractive 

for small applications if a motor and its inter-connecting switchgear (starter, circuit 

breaker etc.) had previously been installed for some other economic activity and could 

be used with minor modifications. 
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The simulations indicated that the use of a diesel generator in excess of 50 kW for peak 

lopping, which is only realisable for community scale applications, is a very viable 

investment option. The larger the installed capacity of the generator the greater the 

return on investment. 

Hybrid systems 

Wind diesel hybrids were found to be more profitable than diesel only provided there is 

some form of state subsidy available for the wind energy component of the project. The 

simulations also showed that if subsidies are too great they would give lines companies 

an opportunity to exploit its monopoly position and reduce the rates they currently pay 

for firm capacity/energy supplied. It was assumed that the lines company would be 

willing to pay a fee as an annuity (i.e. a payment made every year) that is equal to the 

avoided marginal cost of capacity augmentation, after deducting a 10% margin to 

administer the payment scheme. If the 11 kV feeder to the community gets overloaded, it 

was found that a lines company could afford to pay up to $ 120.00 for each kW of 

capacity provided during the network overload periods. 

Other dispatchable generation units 

Simulations also indicated that small scale pumped hydro or a battery (deep cycle 

lead/acid) storage systems of the order of 15~ 18 kW would not be economical to provide 

firm capacity. 

Solar systems 

Application of photovoltaic (PV) systems was found to be uneconomic at current costs 

for PV panels, even though they have already been installed at Totara Valley, though 

this was for convenience rather than to determine an optimum system. 

Analysis of real-time data on the installed solar hot water system suggested that it 

performs well in the summer and autumn (e.g. 27% efficiency in March), but diminishes 

in winter and early spring when the home occupants use their wetback stove for heating. 

The solar hot water system was also not designed to cater for the hot water needs of the 

laundry, which uses a separate electric hot water cylinder. Application and operation of a 

solar hot water system under such circumstances result in poor financial return on 

investment with only two permanent residents. 

Executive Summary xxm 



IV. RECOMMENDATIONS 

In making recommendations on distributed energy related issues, an attempt was made 

to accommodate and reconcile the interests of the three key stakeholders; the investor, 

the lines company and the state. 

A potential investor' s lack of understanding in order to evaluate different distributed 

energy options was identified as the most critical problem. This causes small-scale 

investors to build an extra risk premium which undermines the uptake of DG, because 

distributed energy projects currently do not generate adequate cash flows to cover the 

risks. It is recommended that in addition to advising potential investors on the various 

renewable DG options, they should also be encouraged to select the best renewable 

energy option to suit the relevant circumstances. For this purpose, it is necessary to list 

the key decision variables and illustrate how those affect the decision outcome (i.e. the 

optimum technology combination). In addition to renewables, communities should also 

be advised on possible opportunities to provide firm capacity (or firm energy) to the 

lines company and the technology options available to achieve this. 

The social benefits of rural distributed energy projects is important for rural investors to 

consider to create a utility (satisfaction). This would bring a salutary effect in 

influencing their investment decisions. Any social benefits should be quantified and 

made as objective as possible. 

Establishment of a demonstration community owned, grid connected, distributed 

generation scheme is a strategy that could be implemented to educate the public on the 

benefits of renewable energy. Only well informed citizens would be able to best utilise 

any subsidies in order to maximise personal investment objectives. This in tum would 

serve to meet the state's objective of maximising the uptake of renewables at the lowest 

cost. 

At current costs state subsidies would be vital to maximise the uptake of small-scale grid 

connected renewable DG applications. 
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From a lines company perspective, it is myopic to view DG as inconsequential. Small­

scale renewables. technological growth and regulatory control can cause risk to lines 

companies un less they appreciate the benefits of DG and device plans to manage it. As a 

general ru le. it is recommended that lines companies accommodate small scale DG with 

minimum charge for inter-connection. As DG is introduced to the netv ork. lines 

companies can commence gradua lly removing any cross-subsidies built into rural 

connections so that part of the forego ne revenue owing to rura l DG projects could be 

recovered from rural customers who benefit from DG. It also provides an incentive for 

rural entrepreneurs to undertake distributed energy projects. At a later point in time 

assuming an increase in the uptake of DG and lowering of the technology costs, lines 

companies could introduce inter-connection charges for new DG projects. 

For a lines company fac ing capacity problems. as an alternati ve to capacity 

augmentation, it can pay an annuity to DG owners to provide firm capacity/energy at the 

rate of avoided marginal cost of capacity investment. A lines company could use its 

monopoly position and reduce this annuity over time. depending on other factors such as 

carbon credits or subsid ies for rencwables. A prudent way a lines company could handle 

community scale central ised DG projects would be to stipulate metering systems that do 

not directly affect their revenues and device tariffs. which take into account capacity 

drawn during critical peak periods. 

Low cost micro hydro. diversification of the use of the induction generators, voltage 

flicker on weak distribution networks due to wind turbine generators (and methods of 

minimising it including the possib ility of using wi nd/diesel hybrids), wi nd resource 

assessment (also making wind data available through a geograph ic information system), 

devising accurate DG performance producing and economic forecasting tools were the 

key areas identified as future research areas. 

******* 
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