287 research outputs found

    Design-for-Test of Mixed-Signal Integrated Circuits

    Get PDF

    Programmable CMOS Analog-to-Digital Converter Design and Testability

    Get PDF
    In this work, a programmable second order oversampling CMOS delta-sigma analog-to-digital converter (ADC) design in 0.5µm n-well CMOS processes is presented for integration in sensor nodes for wireless sensor networks. The digital cascaded integrator comb (CIC) decimation filter is designed to operate at three different oversampling ratios of 16, 32 and 64 to give three different resolutions of 9, 12 and 14 bits, respectively which impact the power consumption of the sensor nodes. Since the major part of power consumed in the CIC decimator is by the integrators, an alternate design is introduced by inserting coder circuits and reusing the same integrators for different resolutions and oversampling ratios to reduce power consumption. The measured peak signal-to-noise ratio (SNR) for the designed second order delta-sigma modulator is 75.6dB at an oversampling ratio of 64, 62.3dB at an oversampling ratio of 32 and 45.3dB at an oversampling ratio of 16. The implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ΔIDDQ testing of CMOS data converters is also presented. The BICS uses frequency as the output for fault detection in CUT. A fault is detected when the output frequency deviates more than ±10% from the reference frequency. The output frequencies of the BICS for various model parameters are simulated to check for the effect of process variation on the frequency deviation. A design for on-chip testability of CMOS ADC by linear ramp histogram technique using synchronous counter as register in code detection unit (CDU) is also presented. A brief overview of the histogram technique, the formulae used to calculate the ADC parameters, the design implemented in 0.5µm n-well CMOS process, the results and effectiveness of the design are described. Registers in this design are replaced by 6T-SRAM cells and a hardware optimized on-chip testability of CMOS ADC by linear ramp histogram technique using 6T-SRAM as register in CDU is presented. The on-chip linear ramp histogram technique can be seamlessly combined with ΔIDDQ technique for improved testability, increased fault coverage and reliable operation

    A Low Power Multi-Channel Single Ramp ADC With Up to 3.2 GHz Virtual Clock

    Get PDF
    During the last decade, ADCs using single ramp architecture have been widely used in integrated circuits dedicated to nuclear science applications. These types of converters are actually very well suited for low power, multi-channel applications. Moreover their wide dynamic range and their very good differential non-linearity are perfectly matched to spectroscopy measurement. Unfortunately, their use is limited by their long conversion time, itself limited by their maximum clock frequency. A new architecture is described in this paper. It permits speeding up the conversion time of the traditional ramp ADC structures by a factor of 32 while keeping a low power consumption. Measurement results on a 4-channel, 12-bit prototype using a 3.2 GHz virtual clock are then presented in detail, showing excellent performances of linearity and noise

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Design of adaptive analog filters for magnetic front-end read channels

    Get PDF
    Esta tese estuda o projecto e o comportamento de filtros em tempo contínuo de muito-alta-frequência. A motivação deste trabalho foi a investigação de soluções de filtragem para canais de leitura em sistemas de gravação e reprodução de dados em suporte magnético, com custos e consumo (tamanho total inferior a 1 mm2 e consumo inferior a 1mW/polo), inferiores aos circuitos existentes. Nesse sentido, tal como foi feito neste trabalho, o rápido desenvolvimento das tecnologias de microelectrónica suscitou esforços muito significativos a nível mundial com o objectivo de se investigarem novas técnicas de realização de filtros em circuito integrado monolítico, especialmente em tecnologia CMOS (Complementary Metal Oxide Semiconductor). Apresenta-se um estudo comparativo a diversos níveis hierárquicos do projecto, que conduziu à realização e caracterização de soluções com as características desejadas. Num primeiro nível, este estudo aborda a questão conceptual da gravação e transmissão de sinal bem como a escolha de bons modelos matemáticos para o tratamento da informação e a minimização de erro inerente às aproximações na conformidade aos princípios físicos dos dispositivos caracterizados. O trabalho principal da tese é focado nos níveis hierárquicos da arquitectura do canal de leitura e da realização em circuito integrado do seu bloco principal – o bloco de filtragem. Ao nível da arquitectura do canal de leitura, apresenta-se um estudo alargado sobre as metodologias existentes de adaptação de sinal e recuperação de dados em suporte magnético. Este desígnio aparece no âmbito da proposta de uma solução de baixo custo, baixo consumo, baixa tensão de alimentação e baixa complexidade, alicerçada em tecnologia digital CMOS, para a realização de um sistema DFE (Decision Feedback Equalization) com base na igualização de sinal utilizando filtros integrados analógicos em tempo contínuo. Ao nível do projecto de realização do bloco de filtragem e das técnicas de implementação de filtros e dos seus blocos constituintes em circuito integrado, concluiu-se que a técnica baseada em circuitos de transcondutância e condensadores, também conhecida como filtros gm-C (ou transcondutância-C), é a mais adequada para a realização de filtros adaptativos em muito-alta-frequência. Definiram-se neste nível hierárquico mais baixo, dois subníveis de aprofundamento do estudo no âmbito desta tese, nomeadamente: a pesquisa e análise de estruturas ideais no projecto de filtros recorrendo a representações no espaço de estados; e, o estudo de técnicas de realização em tecnologia digital CMOS de circuitos de transcondutância para a implementação de filtros integrados analógicos em tempo contínuo. Na sequência deste estudo, apresentam-se e comparam-se duas estruturas de filtros no espaço de estados, correspondentes a duas soluções alternativas para a realização de um igualador adaptativo realizado por um filtro contínuo passa-tudo de terceira ordem, para utilização num canal de leitura de dados em suporte magnético. Como parte constituinte destes filtros, apresenta-se uma técnica de realização de circuitos de transcondutância, e de realização de condensadores lineares usando matrizes de transístores MOSFET para processamento de sinal em muito-alta-frequência realizada em circuito integrado usando tecnologia digital CMOS submicrométrica. Apresentam-se métodos de adaptação automática capazes de compensar os erros face aos valores nominais dos componentes, devidos às tolerâncias inerentes ao processo de fabrico, para os quais apresentamos os resultados de simulação e de medição experimental obtidos. Na sequência deste estudo, resultou igualmente a apresentação de um circuito passível de constituir uma solução para o controlo de posicionamento da cabeça de leitura em sistemas de gravação/reprodução de dados em suporte magnético. O bloco proposto é um filtro adaptativo de primeira ordem, com base nos mesmos circuitos de transcondutância e técnicas de igualação propostos e utilizados na implementação do filtro adaptativo de igualação do canal de leitura. Este bloco de filtragem foi projectado e incluído num circuito integrado (Jaguar) de controlo de posicionamento da cabeça de leitura realizado para a empresa ATMEL em Colorado Springs, e incluído num produto comercial em parceria com uma empresa escocesa utilizado em discos rígidos amovíveis.This thesis studies the design and behavior of continuous-time very-high-frequency filters. The motivation of this work was the search for filtering solutions for the readchannel in recording and reproduction of data on magnetic media systems, with costs and consumption (total size less than 1 mm2 and consumption under 1mW/pole), lower than the available circuits. Accordingly, as was done in this work, the rapid development of microelectronics technology raised very significant efforts worldwide in order to investigate new techniques for implementing such filters in monolithic integrated circuit, especially in CMOS technology (Complementary Metal Oxide Semiconductor). We present a comparative study on different hierarchical levels of the project, which led to the realization and characterization of solutions with the desired characteristics. In the first level, this study addresses the conceptual question of recording and transmission of signal and the choice of good mathematical models for the processing of information and minimization of error inherent in the approaches and in accordance with the principles of the characterized physical devices. The main work of this thesis is focused on the hierarchical levels of the architecture of the read channel and the integrated circuit implementation of its main block - the filtering block. At the architecture level of the read channel this work presents a comprehensive study on existing methodologies of adaptation and signal recovery of data on magnetic media. This project appears in the sequence of the proposed solution for a lowcost, low consumption, low voltage, low complexity, using CMOS digital technology for the performance of a DFE (Decision Feedback Equalization) based on the equalization of the signal using integrated analog filters in continuous time. At the project level of implementation of the filtering block and techniques for implementing filters and its building components, it was concluded that the technique based on transconductance circuits and capacitors, also known as gm-C filters is the most appropriate for the implementation of very-high-frequency adaptive filters. We defined in this lower level, two sub-levels of depth study for this thesis, namely: research and analysis of optimal structures for the design of state-space filters, and the study of techniques for the design of transconductance cells in digital CMOS circuits for the implementation of continuous time integrated analog filters. Following this study, we present and compare two filtering structures operating in the space of states, corresponding to two alternatives for achieving a realization of an adaptive equalizer by the use of a continuous-time third order allpass filter, as part of a read-channel for magnetic media devices. As a constituent part of these filters, we present a technique for the realization of transconductance circuits and for the implementation of linear capacitors using arrays of MOSFET transistors for signal processing in very-high-frequency integrated circuits using sub-micrometric CMOS technology. We present methods capable of automatic adjustment and compensation for deviation errors in respect to the nominal values of the components inherent to the tolerances of the fabrication process, for which we present the simulation and experimental measurement results obtained. Also as a result of this study, is the presentation of a circuit that provides a solution for the control of the head positioning on recording/playback systems of data on magnetic media. The proposed block is an adaptive first-order filter, based on the same transconductance circuits and equalization techniques proposed and used in the implementation of the adaptive filter for the equalization of the read channel. This filter was designed and included in an integrated circuit (Jaguar) used to control the positioning of the read-head done for ATMEL company in Colorado Springs, and part of a commercial product used in removable hard drives fabricated in partnership with a Scottish company

    Resource-Constrained Acquisition Circuits for Next Generation Neural Interfaces

    Get PDF
    The development of neural interfaces allowing the acquisition of signals from the cortex of the brain has seen an increasing amount of interest both in academic research as well as in the commercial space due to their ability to aid people with various medical conditions, such as spinal cord injuries, as well as their potential to allow more seamless interactions between people and machines. While it has already been demonstrated that neural implants can allow tetraplegic patients to control robotic arms, thus to an extent returning some motoric function, the current state of the art often involves the use of heavy table-top instruments connected by wires passing through the patient’s skull, thus making the applications impractical and chronically infeasible. Those limitations are leading to the development of the next generation of neural interfaces that will overcome those issues by being minimal in size and completely wireless, thus paving a way to the possibility of their chronic application. Their development however faces several challenges in numerous aspects of engineering due to constraints presented by their minimal size, amount of power available as well as the materials that can be utilised. The aim of this work is to explore some of those challenges and investigate novel circuit techniques that would allow the implementation of acquisition analogue front-ends under the presented constraints. This is facilitated by first giving an overview of the problematic of recording electrodes and their electrical characterisation in terms of their impedance profile and added noise that can be used to guide the design of analogue front-ends. Continuous time (CT) acquisition is then investigated as a promising signal digitisation technique alternative to more conventional methods in terms of its suitability. This is complemented by a description of practical implementations of a CT analogue-to-digital converter (ADC) including a novel technique of clockless stochastic chopping aimed at the suppression of flicker noise that commonly affects the acquisition of low-frequency signals. A compact design is presented, implementing a 450 nW, 5.5 bit ENOB CT ADC, occupying an area of 0.0288 mm2 in a 0.18 μm CMOS technology, making this the smallest presented design in literature to the best of our knowledge. As completely wireless neural implants rely on power delivered through wireless links, their supply voltage is often subject to large high frequency variations as well voltage uncertainty making it necessary to design reference circuits and voltage regulators providing stable reference voltage and supply in the constrained space afforded to them. This results in numerous challenges that are explored and a design of a practical implementation of a reference circuit and voltage regulator is presented. Two designs in a 0.35 μm CMOS technology are presented, showing respectively a measured PSRR of ≈60 dB and ≈53 dB at DC and a worst-case PSRR of ≈42 dB and ≈33 dB with a less than 1% standard deviation in the output reference voltage of 1.2 V while consuming a power of ≈7 μW. Finally, ΣΔ modulators are investigated for their suitability in neural signal acquisition chains, their properties explained and a practical implementation of a ΣΔ DC-coupled neural acquisition circuit presented. This implements a 10-kHz, 40 dB SNDR ΣΔ analogue front-end implemented in a 0.18 μm CMOS technology occupying a compact area of 0.044 μm2 per channel while consuming 31.1 μW per channel.Open Acces

    Fully digital-compatible built-in self-test solutions to linearity testing of embedded mixed-signal functions

    Get PDF
    Mixed-signal circuits, especially analog-to-digital and digital-to-analog converters, are the most widely used circuitry in electronic systems. In the most of the cases, mixed-signal circuits form the interface between the analog and digital worlds and enable the processing and recovering of the real-world information. Performance of mixed-signal circuits, such as linearity and noise, are then critical to any applications. Conventionally, mixed-signal circuits are tested by mixed-signal automatic test equipment (ATE). However, along with the continuous performance improvement, using conventionally methods increases test costs significantly since it takes much more time to test high-performance parts than low-performance ones and mixed-signal ATE testers could be extremely expensive depending on the test precision they provide. Another factor that makes mixed-signal testing more and more challenging is the advance of the integration level. In the popular system-on-chip applications, mixed-signal circuits are deeply embedded in the systems. With less observability and accessibility, conventionally external test methods can not guarantee the precision of the source signals and evaluations. Test performance is then degraded. This work investigates new methods using digital testers incorporated with on-chip, built-in self-test circuits to test the linearity performance of data converters with less test cost and better test performance. Digital testers are cheap to use since they only offer logic signals with direct connections. The analog sourcing and evaluation capabilities have to be absorbed by the on-chip BIST circuits, which, meanwhile, could benefit the test performance with access to the internal circuit nodes. The main challenge of the digital-compatible BIST methods is to implement the BIST circuits with enough high test performance but with low design complexity and cost. High-resolution data converter testing needs much higher-precision analog source signals and evaluation circuits. However, high-precision analog circuits are conventionally hard to design and costly, and their performance is subject to mismatch errors and process variations and cannot be guaranteed without careful testing. On the digital side, BIST circuits usually conduct procedure control and data processing. To make the BIST solution more universal, the control and processing performed by the digital BIST circuits should be simple and not rely on any complex microcontroller and DSP block. Therefore, the major tasks of this dissertation are 1) performance-robust analog BIST circuit design and 2) test procedure development. Analog BIST circuits in this work consist of only low-accuracy analog components, which are usually easy to design and cost effective. The precision is then obtained by applying the so-called deterministic dynamic element matching technique to the low-accuracy analog cells. The test procedure and data processing designed for the BIST system are simple and can be implemented by small logic circuits. In this dissertation, we discuss the proposed BIST solutions to ADC and DAC linearity testing in chapter 3 and chapter 5, respectively. In each case, the structure of the test system, the test procedure, and the theoretical analysis of the test performance are presented. Simulation results are shown to verify the efficacy of the methods. The ADC BIST system is also verified experimentally. In addition, chapter 4 introduces a system-identification based reduced-code testing method for pipeline ADCs. This method is able to reduce test time by more than 95%. And it is compatible with the proposed BIST method discussed in chapter 3

    Analog baseband circuits for WCDMA direct-conversion receivers

    Get PDF
    This thesis describes the design and implementation of analog baseband circuits for low-power single-chip WCDMA direct-conversion receivers. The reference radio system throughout the thesis is UTRA/FDD. The analog baseband circuit consists of two similar channels, which contain analog channel-select filters, programmable-gain amplifiers, and circuits that remove DC offsets. The direct-conversion architecture is described and the UTRA/FDD system characteristics are summarized. The UTRA/FDD specifications define the performance requirement for the whole receiver. Therefore, the specifications for the analog baseband circuit are obtained from the receiver requirements through calculations performed by hand. When the power dissipation of an UTRA/FDD direct-conversion receiver is minimized, the design parameters of an all-pole analog channel-select filter and the following Nyquist rate analog-to-digital converter must be considered simultaneously. In this thesis, it is shown that minimum power consumption is achieved with a fifth-order lowpass filter and a 15.36-MS/s Nyquist rate converter that has a 7- or 8-bit resolution. A fifth-order Chebyshev prototype with a passband ripple of 0.01 dB and a −3-dB frequency of 1.92-MHz is adopted in this thesis. The error-vector-magnitude can be significantly reduced by using a first-order 1.4-MHz allpass filter. The selected filter prototype fulfills all selectivity requirements in the analog domain. In this thesis, all the filter implementations use the opamp-RC technique to achieve insensitivity to parasitic capacitances and a high dynamic range. The adopted technique is analyzed in detail. The effect of the finite opamp unity-gain bandwidth on the filter frequency response can be compensated for by using passive methods. Compensation schemes that also track the process and temperature variations have been developed. The opamp-RC technique enables the implementation of low-voltage filters. The design and simulation results of a 1.5-V 2-MHz lowpass filter are discussed. The developed biasing scheme does not use any additional current to achieve the low-voltage operation, unlike the filter topology published previously elsewhere. Methods for removing DC offsets in UTRA/FDD direct-conversion receivers are presented. The minimum areas for cascaded AC couplings and DC-feedback loops are calculated. The distortion of the frequency response of a lowpass filter caused by a DC-feedback loop connected over the filter is calculated and a method for compensating for the distortion is developed. The time constant of an AC coupling can be increased using time-constant multipliers. This enables the implementation of AC couplings with a small silicon area. Novel time-constant multipliers suitable for systems that have a continuous reception, such as UTRA/FDD, are presented. The proposed time-constant multipliers only require one additional amplifier. In an UTRA/FDD direct-conversion receiver, the reception is continuous. In a low-power receiver, the programmable baseband gain must be changed during reception. This may produce large, slowly decaying transients that degrade the receiver performance. The thesis shows that AC-coupling networks and DC-feedback loops can be used to implement programmable-gain amplifiers, which do not produce significant transients when the gain is altered. The principles of operation, the design, and the practical implementation issues of these amplifiers are discussed. New PGA topologies suitable for continuously receiving systems have been developed. The behavior of these circuits in the presence of strong out-of-channel signals is analyzed. The interface between the downconversion mixers and the analog baseband circuit is discussed. The effect of the interface on the receiver noise figure and the trimming of mixer IIP2 are analyzed. The design and implementation of analog baseband circuits and channel-select filters for UTRA/FDD direct-conversion receivers are discussed in five application cases. The first case presents the analog baseband circuit for a chip-set receiver. A channel-select filter that has an improved dynamic range with a smaller supply current is presented next. The third and fifth application cases describe embedded analog baseband circuits for single-chip receivers. In the fifth case, the dual-mode analog baseband circuit of a quad-mode receiver designed for GSM900, DCS1800, PCS1900, and UTRA/FDD cellular systems is described. A new, highly linear low-power transconductor is presented in the fourth application case. The fourth application case also describes a channel-select filter. The filter achieves +99-dBV out-of-channel IIP2, +45-dBV out-of-channel IIP3 and 23-μVRMS input-referred noise with 2.6-mA current from a 2.7-V supply. In the fifth application case, a corresponding performance is achieved in UTRA/FDD mode. The out-of-channel IIP2 values of approximately +100 dBV achieved in this work are the best reported so far. This is also the case with the figure of merits for the analog channel-select filter and analog baseband circuit described in the fourth and fifth application cases, respectively. For equal power dissipation, bandwidth, and filter order, these circuits achieve approximately 10 dB and 15 dB higher spurious-free dynamic ranges, respectively, when compared to implementations that are published elsewhere and have the second best figure of merits.reviewe

    Analog Compressive Sensing for Multi-Channel Neural Recording: Modeling and Circuit Level Implementation

    Get PDF
    RÉSUMÉ Dans cette thèse, nous présentons la conception d’un implant d’enregistrement neuronal multicanaux avec un échantillonnage compressé mis en oeuvre avec un procédé de fabrication CMOS à 65 nm. La réduction de la technologie a˙ecte à la baisse les paramètres des amplificateurs neuronaux couplés en AC, comme la fréquence de coupure basse, en raison de l’e˙et de canal court des transistors MOS. Nous analysons la fréquence de coupure basse et nous constatons que l’origine de ce problème, dans les technologies avancées, est la diminution de l’impédance d’entrée de l’amplificateur opérationnel de transconductance (OTA) en raison de la fuite d’oxyde de grille à l’entrée des OTA. Nous proposons deux solutions pour réduire la fréquence de coupure basse sans augmenter la valeur des condensateurs de rétroaction de l’étage d’entrée. La première solution est appelée rétroaction positive croisée et la deuxième solution utilise des PMOS à oxyde épais dans la paire de l’entrée di˙érentielle de l’OTA. Il est à noter que pour compresser le signal neuronal, nous utilisons le CS dans le domaine analogique. Pour la réalisation, un intégrateur à capacité commutée est requis. Les paramètres non idéaux de l’OTA utilisé dans cet intégrateur, tels que le gain fini, la bande passante, la vitesse de balayage et le changement rapide de la sortie. Toutes ces imperfections induisent des erreurs et réduisent le rapport signal sur bruit (SNR) total. Nous avons simulé ces imperfections sur Matlab et Simulink pour définir les spécifications de l’OTA requis. Aussi, pour concevoir les circuits analogiques correspondant aux interfaces neuronales requises, tels qu’un amplificateur neuronal, une référence de tension compacte et à faible consommation d’énergie est requise. Nous avons proposé une référence de tension de faible consommation d’énergie sans utiliser le transistor bipolaire parasite de la technologie CMOS pour diminuer la surface de silicium requise. Finalement, nous avons complété l’encodeur de CS et un convertisseur analogique-numérique à approximation successive (SAR ADC) requis pour la chaine d’enregistrement des signaux neuronaux dans ce projet.----------ABSTRACT In this thesis we present the design of a multi-channel neural recording implant with analog compressive sensing (CS) in 65 nm process. Scaling down technology demotes the parameters of AC-coupled neural amplifiers, such as increasing the low-cuto˙ frequency due to the short-channel e˙ects of MOS transistors. We analyze the low-cuto˙ frequency and find that the main reason of this problem in advanced technologies is decreasing the input resistance of the operational transconductance amplifier (OTA) due to the gate oxide static current leakage in the input of the OTA. In advanced technologies, the gate oxide is thin and some electrons can penetrate to the channel and cause DC current leakage. We proposed two solutions to reduce the low-cuto˙ frequency without increasing the value of the feedback capacitors of the front-end neural amplifier. The first solution is called cross-coupled positive feedback, and the second solution is utilizing thick-oxide PMOS transistors in the input di˙erential pair of the OTA. Compress the neural signal, we utilized the CS method in analog domain. For its implementation, a switched-capacitor integrator is required. Non-ideal specifications of OTA of CS integrator such as finite gain, bandwidth, slew rate and output swing induce error and reduce the total signal to noise ratio (SNR). We simulated these non-idealities in Matlab and Simulink and extracted the specification of the required OTA. Also, to design analog circuits such as neural amplifier a low power and compact voltage reference is required. We implemented a low-power band-gap reference without utilizing parasitic bipolar transis-tor to decrease the silicon area. At the end, we completed the CS encoder and successive approximation architecture analog-to-digital converter (SAR ADC)

    Low-Noise Energy-Efficient Sensor Interface Circuits

    Full text link
    Today, the Internet of Things (IoT) refers to a concept of connecting any devices on network where environmental data around us is collected by sensors and shared across platforms. The IoT devices often have small form factors and limited battery capacity; they call for low-power, low-noise sensor interface circuits to achieve high resolution and long battery life. This dissertation focuses on CMOS sensor interface circuit techniques for a MEMS capacitive pressure sensor, thermopile array, and capacitive microphone. Ambient pressure is measured in the form of capacitance. This work propose two capacitance-to-digital converters (CDC): a dual-slope CDC employs an energy efficient charge subtraction and dual comparator scheme; an incremental zoom-in CDC largely reduces oversampling ratio by using 9b zoom-in SAR, significantly improving conversion energy. An infrared gesture recognition system-on-chip is then proposed. A hand emits infrared radiation, and it forms an image on a thermopile array. The signal is amplified by a low-noise instrumentation chopper amplifier, filtered by a low-power 30Hz LPF to remove out-band noise including the chopper frequency and its harmonics, and digitized by an ADC. Finally, a motion history image based DSP analyzes the waveform to detect specific hand gestures. Lastly, a microphone preamplifier represents one key challenge in enabling voice interfaces, which are expected to play a dominant role in future IoT devices. A newly proposed switched-bias preamplifier uses switched-MOSFET to reduce 1/f noise inherently.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137061/1/chaseoh_1.pd
    • …
    corecore