37 research outputs found

    Multi-user MIMO wireless communications

    Get PDF

    Multi-user MIMO wireless communications

    Get PDF
    Mehrantennensysteme sind auf Grund der erhöhten Bandbreiteneffizienz und Leistung eine Schlüsselkomponente von Mobilfunksystemen der Zukunft. Diese ermöglichen das gleichzeitige Senden von mehreren, räumlich getrennten Datenströmen zu verschiedenen Nutzern. Die zentrale Fragestellung in der Praxis ist, ob der ursprünglich vorausgesagte Kapazitätsgewinn in realistischen Szenarios erreicht wird und welche spezifischen Gewinne durch zusätzliche Antennen und das Ausnutzen von Kanalkenntnis am Sender und Empfänger erzielt werden, was andererseits einen Zuwachs an Overhead oder nötiger Rechenleistung bedeutet. In dieser Arbeit werden neue lineare und nicht-lineare MU-MIMO Precoding- Verfahren vorgestellt. Der verfolgte Ansatz zur Bestimmung der Precoding- Matrizen ist allgemein anwendbar und die entstandenen Algorithmen können zur Optimierung von verschiedenen Kriterien mit beliebig vielen Antennen an der Mobilstation eingesetzt werden. Das wurde durch die Berechnung der Precoding- Matrix in zwei Schritten erreicht. Im ersten Schritt wird die Überschneidung der Zeilenräume minimiert, die durch die effektiven Kanalmatrizen verschiedener Nutzer aufgespannt werden. Basierend auf mehreren parallelen Einzelnutzer-MIMO- Kanälen wird im zweiten Schritt die Systemperformanz bezüglich bestimmter Kriterien optimiert. Aus der gängigen Literatur ist bereits bekannt, dass für Nutzer mit nur einer Antenne das MMSE Kriterium beim precoding optimal aber nicht bei Nutzern mit mehreren Antennen. Deshalb werden in dieser Arbeit zwei neue Mehrnutzer MIMO Strategien vorgestellt, die vom MSE Kriterium abgeleitet sind, nämlich sukzessives MMSE und RBD. Bei der sukzessiven Verarbeitung mit einer entsprechenden Anpassung der Sendeleistungsverteilung kann die volle Diversität des Systems ausgeschöpft werden. Die Kapazität nähert sich dabei der maximalen Summenrate des Systems an. Bei gemeinsamer Verarbeitung der MIMO Kanäle wird unabhängig vom Grad der Mehrnutzerinterferenz die maximale Diversität erreicht. Die genannten Techniken setzen entweder eine aktuelle oder eine über einen längeren Zeitraum gemittelte Kanalkenntnis voraus. Aus diesem Grund müssen die Auswirkungen von Kanal-Schätzfehlern und Einflüsse des Transceiver Front-Ends auf die Verfahren näher untersucht werden. Für eine weitergehende Abschätzung der Mehrantennensysteme muss die Performanz des Gesamtsystems untersucht werden, da viele Einflüsse auf die räumliche Signalverarbeitung bei Betrachtung eines einzelnen Links nicht erkennbar sind. Es wurde gezeigt, dass mit MIMO Precoding Strategien ein Vielfaches der Datenrate eines Systems mit nur einer Antenne erzielt werden kann, während der Overhead durch Pilotsymbole und Steuersignale nur geringfügig zunimmt.Multiple-input, multiple-output (MIMO) systems are a key component of future wireless communication systems, because of their promising improvement in terms of performance and bandwidth efficiency. An important research topic is the study of multi-user (MU) MIMO systems. Such systems have the potential to combine the high throughput achievable with MIMO processing with the benefits of space division multiple access (SDMA). The main question from a practical standpoint is whether the initially predicted capacity gains can be obtained in more realistic scenarios and what specific gains result from adding more antennas and overhead or computational power to obtain channel state information (CSI) at the transceivers. In this thesis we introduce new linear and non-linear MU MIMO processing techniques. The approach used for the design of the precoding matrix is general and the resulting algorithms can address several optimization criteria with an arbitrary number of antennas at the user terminals (UTs). This is achieved by designing the precoding matrices in two steps. In the first step we minimize the overlap of the row spaces spanned by the effective channel matrices of different users. In the next step, we optimize the system performance with respect to the specific optimization criterion assuming a set of parallel single-user MIMO channels. As it was previously reported in the literature, minimum mean-squared-error (MMSE) processing is optimum for single-antenna UTs. However, MMSE suffers from a performance loss when users are equipped with more than one antenna. The two MU MIMO processing techniques that result from the two different MSE criteria that are proposed in this thesis are successive MMSE and regularized block diagonalization. By iterating the closed form solution with appropriate power loading we are able to extract the full diversity in the system and empirically approach the maximum sum-rate capacity in case of high multi-user interference. Joint processing of MIMO channels yields maximum diversity regardless of the level of multi-user interference. As these techniques rely on the fact that there is either instantaneous or long- term CSI available at the base station to perform precoding and decoding, it was very important to investigate the influence of the transceiver front-end imperfections and channel estimation errors on their performance. For a comprehensive assessment of multi-antenna techniques, it is mandatory to consider the performance at system level, since many effects of spatial processing are not tractable at the link level. System level investigations have shown that MU MIMO precoding techniques provide several times higher data rates than single-input single-output systems with only slightly increased pilot and control overhead

    Multi-User Visible Light Communication Broadcast Channels With Zero-Forcing Precoding

    Get PDF
    This paper studies zero-forcing (ZF) precoding designs for multi-user multiple-input single-output visible light communication (VLC) broadcast channels. In such broadcast systems, the main challenging issue arises from the presence of multi-user interference (MUI) among non-coordinated users. In order to completely suppress the MUI, ZF precoding, which is originally designed for radio frequency (RF) communications, is adopted. Different from RF counterpart, VLC signal is inherently non-negative and has a limited linear range, which leads to an amplitude constraint on the input data signal. Unlike the average power constraint, obtaining the exact capacity for an amplitude-constrained channel is more cumbersome. In this paper, we first investigate lower and upper bounds on the capacity of an amplitude-constrained Gaussian channel, which are especially tight in the high signal-to-noise regime. Based on the derived bounds, optimal beamformer designs for the max-min fairness sum-rate and the maximum sum-rate problems are formulated as convex optimization problems, which then can be efficiently solved by using standard optimization packages

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of people’s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairments’ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the user’s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmitters’ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receivers’ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the users’ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system

    Advanced signal processing concepts for multi-dimensional communication systems

    Get PDF
    Die weit verbreitete Nutzung von mobilem Internet und intelligenten Anwendungen hat zu einem explosionsartigen Anstieg des mobilen Datenverkehrs geführt. Mit dem Aufstieg von intelligenten Häusern, intelligenten Gebäuden und intelligenten Städten wächst diese Nachfrage ständig, da zukünftige Kommunikationssysteme die Integration mehrerer Netzwerke erfordern, die verschiedene Sektoren, Domänen und Anwendungen bedienen, wie Multimedia, virtuelle oder erweiterte Realität, Machine-to-Machine (M2M) -Kommunikation / Internet of Things (IoT), Automobilanwendungen und vieles mehr. Daher werden die Kommunikationssysteme zukünftig nicht nur eine drahtlose Verbindung über Gbps bereitstellen müssen, sondern auch andere Anforderungen erfüllen müssen, wie z. B. eine niedrige Latenzzeit und eine massive Maschinentyp-Konnektivität, während die Dienstqualität sichergestellt wird. Ohne bedeutende technologische Fortschritte zur Erhöhung der Systemkapazität wird die bestehende Telekommunikationsinfrastruktur diese mehrdimensionalen Anforderungen nicht unterstützen können. Dies stellt eine wichtige Forderung nach geeigneten Wellenformen und Signalverarbeitungslösungen mit verbesserten spektralen Eigenschaften und erhöhter Flexibilität dar. Aus der Spektrumsperspektive werden zukünftige drahtlose Netzwerke erforderlich sein, um mehrere Funkbänder auszunutzen, wie zum Beispiel niedrigere Frequenzbänder (typischerweise mit Frequenzen unter 10 GHz), mm-Wellenbänder (einige hundert GHz höchstens) und THz-Bänder. Viele alternative Technologien wie Optical Wireless Communication (OWC), dynamische Funksysteme und zellulares Radar sollten ebenfalls untersucht werden, um ihr wahres Potenzial abzuschätzen. Insbesondere bietet OWC ein großes, aber noch nicht genutztes optisches Band im sichtbaren Spektrum, das Licht als Mittel zur Informationsübertragung nutzt. Daher können zukünftige Kommunikationssysteme als zusammengesetzte Hybridnetzwerke angesehen werden, die aus einer Anzahl von verschiedenen drahtlosen Netzwerken bestehen, die auf Funk und optischem Zugang basieren. Auf der anderen Seite ist es eine große Herausforderung, fortschrittliche Signalverarbeitungslösungen für mehrere Bereiche von Kommunikationssystemen zu entwickeln. Diese Arbeit trägt zu diesem Ziel bei, indem sie Methoden für die Suche nach effizienten algebraischen Lösungen für verschiedene Anwendungen der digitalen Mehrkanal-Signalverarbeitung demonstriert. Insbesondere tragen wir zu drei verschiedenen Anwendungsgebieten bei, d.h. Wellenformen, optischen drahtlosen Systemen und mehrdimensionaler Signalverarbeitung. Gegenwärtig ist das Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) die weit verbreitete Multitragetechnik für die meisten Kommunikationssysteme. Um jedoch die CP-OFDM-Nachteile in Bezug auf eine schlechte spektrale Eingrenzung, Robustheit in hoch asynchronen Umgebungen und Unflexibilität der Parameterwahl zu überwinden, wurden viele alternative Wellenformen vorgeschlagen. Solche Mehrfachträgerwellenformen umfassen einen Filter bank Multicarrier (FBMC), ein Generalized Frequency Division Multiplexing (GFDM), einen Universal Filter Multicarrier (UFMC) und ein Unique Word Orthogonal Orthogonal Frequency Division Multiplexing (UW-OFDM). Diese neuen Luftschnittstellenschemata verwenden verschiedene Ansätze, um einige der inhärenten Mängel bei CP-OFDM zu überwinden. Einige dieser Wellenformen wurden gut untersucht, während andere sich noch in den Kinderschuhen befinden. Insbesondere die Integration von Multiple-Input-Multiple-Output (MIMO) -Konzepten mit UW-OFDM und UFMC befindet sich noch in einem frühen Forschungsstadium. Daher schlagen wir im ersten Teil dieser Arbeit neuartige lineare und sukzessive Interferenzunterdrückungstechniken für MIMO UW-OFDM-Systeme vor. Das Design dieser Techniken zielt darauf ab, Empfänger mit einer geringen Rechenkomplexität zu erhalten. Ein weiterer Schwerpunkt ist die Anwendbarkeit von Space-Time Block Codes (STBCs) auf UW-OFDM und UFMC-Wellenformen. Zu diesem Zweck stellen wir neue Techniken zusammen mit Detektionsverfahren vor. Wir vergleichen auch die Leistung dieser Wellenformen mit unseren vorgeschlagenen Techniken mit den anderen Wellenformen des Standes der Technik, die in der Literatur vorgeschlagen wurden. Wir zeigen, dass raumzeitblockierte UW-OFDM-Systeme mit den vorgeschlagenen Methoden nicht nur andere Wellenformen signifikant übertreffen, sondern auch zu Empfängern mit geringer Rechnerkomplexität führen. Der zweite Anwendungsbereich umfasst optische Systeme im sichtbaren Band (390-700 nm), die in Plastic Optical Fibers (POFs), Multimode-Fasern oder OWC-Systemen wie der Kommunikation über Visible Light Communication (VLC) verwendet werden können. VLC kann Lösungen für eine Reihe von Anwendungen anbieten, einschließlich drahtloser lokaler, persönlicher und Körperbereichsnetzwerke (WLAN, WPAN und WBANs), Innenlokalisierung und -navigation, Fahrzeugnetze, U-Bahn- und Unterwassernetze und bietet eine Reihe von Datenraten von wenigen Mbps zu 10 Gbps. VLC nutzt voll sichtbare Light Emitting Diodes (LEDs) für den doppelten Zweck der Beleuchtung und Datenkommunikation bei sehr hohen Geschwindigkeiten. Daher verwenden solche Systeme Intensitätsmodulation und Direct Detection (IM / DD), wodurch gefordert wird, dass das Sendesignal reellwertig und positiv sein sollte. Dies impliziert auch, dass die herkömmlichen Wellenformen, die für die Radio Frequency (RF) Kommunikation ausgelegt sind, nicht direkt verwendet werden können. Zum Beispiel muss eine hermetische Symmetrie auf das CP-OFDM angewendet werden, um ein reellwertiges Signal zu erhalten (oft als Discrete Multitone Transmission (DMT) bezeichnet), das im Gegenzug die Bandbreiteneffizienz verringert. Darüber hinaus begrenzt die LED / LED-Treiberkombination die elektrische Bandbreite. Alle diese Faktoren erfordern die Verwendung spektral effizienter Übertragungsverfahren zusammen mit robusten Entzerrungsschemata, um hohe Datenraten zu erzielen. Deshalb schlagen wir im zweiten Teil der Arbeit Übertragungsverfahren vor, die für solche optischen Systeme am besten geeignet sind. Insbesondere demonstrieren wir die Leistung der PAM-Blockübertragung mit Frequenzbereichsausgleich. Wir zeigen, dass dieses Schema nicht nur leistungsstärker ist, sondern auch alle modernen Verfahren wie CP-DMT-Schemata übertrifft. Wir schlagen auch neue UW-DMT-Schemata vor, die vom UW-OFDM-Konzept abgeleitet sind. Diese Schemata zeigen auch ein sehr überlegenes Bitfehlerverhältnis (BER) -Performance gegenüber den herkömmlichen CP-DMT-Schemata. Der dritte Anwendungsbereich konzentriert sich auf mehrdimensionale Signalverarbeitungstechniken. Bei der Verwendung von MIMO, STBCs, Mehrbenutzerverarbeitung und Mehrträgerwellenformen bei der drahtlosen Kommunikation ist das empfangene Signal mehrdimensional und kann eine multilineare Struktur aufweisen. In diesem Zusammenhang können Signalverarbeitungstechniken, die auf einem Tensor-Modell basieren, gleichzeitig von mehreren Formen von Diversität profitieren, um Mehrbenutzer-Signaltrennung / -entzerrung und Kanalschätzung durchzuführen. Dieser Vorteil ist eine direkte Konsequenz der Eigenschaft der wesentlichen Eindeutigkeit, die für matrixbasierte Ansätze nicht verfügbar ist. Tensor-Zerlegung wie die Higher Order Singular Value Decomposition (HOSVD) und die Canonical Polyadic Decomposition (CPD) werden weithin zur Durchführung dieser Aufgaben empfohlen. Die Leistung dieser Techniken wird oft mit zeitraubenden Monte-Carlo-Versuchen bewertet. Im letzten Teil der Arbeit führen wir eine Störungsanalyse erster Ordnung dieser Tensor-Zerlegungsmethoden durch. Insbesondere führen wir eine analytische Performanceanalyse des Semi-algebraischen Frameworks für approximative Canonical polyadic decompositions Simultaneous matrix diagonalizations (SECSI) durch. Das SECSI-Framework ist ein effizientes Werkzeug zur Berechnung der CPD eines rauscharmen Tensor mit niedrigem Rang. Darüber hinaus werden die erhaltenen analytischen Ausdrücke in Bezug auf die Momente zweiter Ordnung des Rauschens formuliert, so dass abgesehen von einem Mittelwert von Null keine Annahmen über die Rauschstatistik erforderlich sind. Wir zeigen, dass die abgeleiteten analytischen Ergebnisse eine ausgezeichnete Übereinstimmung mit den Monte-Carlo-Simulationen zeigen.The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfil other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with improved spectral characteristics and signal processing solutions with an increased flexibility. Moreover, future wireless networks will be required to exploit several frequency bands, such as lower frequency bands (typically with frequencies below 10 GHz), mm-wave bands (few hundred GHz at the most), and THz bands. Many alternative technologies such as optical wireless communication (OWC), dynamic radio systems, and cellular radar should also be investigated to assess their true potential. Especially, OWC offers large but yet unexploited optical band in the visible spectrum that uses light as a means to carry information. Therefore, future communication systems can be seen as composite hybrid networks that consist of a number of different wireless networks based on radio and optical access. On the other hand, it poses a significant challenge to come up with advanced signal processing solutions in multiple areas of communication systems. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. In particular, we contribute to three different scientific fields, i.e., waveforms, optical wireless systems, and multi-dimensional signal processing. Currently, cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) is the widely adopted multicarrier technique for most of the communication systems. However, to overcome the CP-OFDM demerits in terms of poor spectral containment, poor robustness in highly asynchronous environments, and inflexibility of parameter choice, and many alternative waveforms have been proposed. Such multicarrier waveforms include filter bank multicarrier (FBMC), generalized frequency division multiplexing (GFDM), universal filter multicarrier (UFMC), and unique word orthogonal frequency division multiplexing (UW-OFDM). These new air interface schemes take different approaches to overcome some of the inherent deficiencies in CP-OFDM. Some of these waveforms have been well investigated while others are still in its infancy. Specifically, the integration of multiple-input multiple-output (MIMO) concepts with UW-OFDM and UFMC is still at an early stage of research. Therefore, in the first part of this thesis, we propose novel linear and successive interference cancellation techniques for MIMO UW-OFDM systems. The design of these techniques is aimed to result in receivers with a low computational complexity. Another focus area is the applicability of space-time block codes (STBCs) to UW-OFDM and UFMC waveforms. For this purpose, we present novel techniques along with detection procedures. We also compare the performance of these waveforms with our proposed techniques to the other state-of-the-art waveforms that has been proposed in the literature. We demonstrate that space-time block coded UW-OFDM systems with the proposed methods not only outperform other waveforms significantly but also results in receivers with a low computational complexity. The second application area comprises of optical systems in the visible band (390-700 nm) that can be utilized in plastic optical fibers (POFs), multimode fibers or OWC systems such as visible light communication (VLC). VLC can provide solutions for a number of applications including wireless local, personal, and body area networks (WLAN, WPAN, and WBANs), indoor localization and navigation, vehicular networks, underground and underwater networks, offering a range of data rates from a few Mbps to 10 Gbps. VLC takes full advantage of visible light emitting diodes (LEDs) for the dual purpose of illumination and data communications at very high speeds. Because of the incoherent nature of the LED sources, such systems employ intensity modulation and direct detection (IM/DD), thus demanding that the transmit signal should be real-valued and positive. This also implies that the conventional waveforms designed for the radio frequency (RF) communication cannot be directly used. For example, a Hermitian symmetry has to be applied to the CP-OFDM spectrum to obtain a real-valued signal (often referred to as discrete multitone transmission (DMT)) that in return reduces the bandwidth efficiency. Moreover, the LED/LED driver combination limits the electrical bandwidth. All these factors require the use of spectrally efficient transmission schemes along with robust equalization schemes to achieve high data rates. Therefore, in the second part of the thesis, we propose transmission schemes that are best suited for such optical systems. Specifically, we demonstrate the performance of PAM block transmission with frequency domain equalization. We show that this scheme is not only more power efficient but also outperforms all of the state-of-the-art schemes such as CP-DMT schemes. We also propose novel UW-DMT schemes that are derived from the UW-OFDM concept. These schemes also show a much superior bit error ratio (BER) performance over the conventional CP-DMT schemes. The third application area focuses on multi-dimensional signal processing techniques. With the use of MIMO, STBCs, multi-user processing, and multicarrier waveforms in wireless communications, the received signal is multidimensional in nature and may exhibit a multilinear structure. In this context, signal processing techniques based on a tensor model can simultaneously benefit from multiple forms of diversity to perform multi-user signal separation/equalization and channel estimation. This advantage is a direct consequence of the essential uniqueness property that is not available for matrix based approaches. Tensor decompositions such as the higher order singular value decomposition (HOSVD) and the canonical polyadic decomposition (CPD) are widely recommended for performing these tasks. The performance of these techniques is often evaluated using time consuming Monte-Carlo trials. In the last part of the thesis, we perform a first-order perturbation analysis of the truncated HOSVD and the Semi-algebraic framework for approximate Canonical polyadic decompositions via Simultaneous matrix diagonalizations (SECSI). The SECSI framework is an efficient tool for the computation of the approximate CPD of a low-rank noise corrupted tensor. Especially, the SECSI framework shows a much improved performance and comparatively low-complexity as compared to the conventional algorithms such as alternative least squares (ALS). Moreover, it also facilitates the implementation on a parallel hardware architecture. The obtained analytical expressions for both algorithms are formulated in terms of the second-order moments of the noise, such that apart from a zero-mean, no assumptions on the noise statistics are required. We demonstrate that the derived analytical results exhibit an excellent match to the Monte-Carlo simulations

    Advanced equalization and crosstalk suppression for high-speed communication

    Get PDF

    Design and implimentationof Multi-user MIMO precoding algorithms

    Get PDF
    The demand for high-speed communications required by cutting-edge applications has put a strain on the already saturated wireless spectrum. The incorporation of antenna arrays at both ends of the communication link has provided improved spectral efficiency and link reliability to the inherently complex wireless environment, thus allowing for the thriving of high data-rate applications without the cost of extra bandwidth consumption. As a consequence to this, multiple-input multiple-output (MIMO) systems have become the key technology for wideband communication standards both in single-user and multi-user setups. The main difficulty in single-user MIMO systems stems from the signal detection stage at the receiver, whereas multi-user downlink systems struggle with the challenge of enabling non-cooperative signal acquisition at the user terminals. In this respect, precoding techniques perform a pre-equalization stage at the base station so that the signal at each receiver can be interpreted independently and without the knowledge of the overall channel state. Vector precoding (VP) has been recently proposed for non-cooperative signal acquisition in the multi-user broadcast channel. The performance advantage with respect to the more straightforward linear precoding algorithms is the result of an added perturbation vector which enhances the properties of the precoded signal. Nevertheless, the computation of the perturbation signal entails a search for the closest point in an in nite lattice, which is known to be in the class of non-deterministic polynomial-time hard (NP-hard) problems. This thesis addresses the difficulties that stem from the perturbation process in VP systems from both theoretical and practical perspectives. On one hand, the asymptotic performance of VP is analyzed assuming optimal decoding. Since the perturbation process hinders the analytical assessment of the VP performance, lower and upper bounds on the expected data rate are reviewed and proposed. Based on these bounds, VP is compared to linear precoding with respect to the performance after a weighted sum rate optimization, the power resulting from a quality of service (QoS) formulation, and the performance when balancing the user rates. On the other hand, the intricacies of performing an efficient computation of the perturbation vector are analyzed. This study is focused on tree-search techniques that, by means of an strategic node pruning policy, reduce the complexity derived from an exhaustive search and yield a close-to-optimum performance. To that respect, three tree-search algorithms are proposed. The xed-sphere encoder (FSE) features a constant data path and a non-iterative architecture that enable the parallel processing of the set of vector hypotheses and thus, allow for high-data processing rates. The sequential best-node expansion (SBE) algorithm applies a distance control policy to reduce the amount of metric computations performed during the tree traversal. Finally, the low-complexity SBE (LC-SBE) aims at reducing the complexity and latency of the aforementioned algorithm by combining an approximate distance computation model and a novel approach of variable run-time constraints. Furthermore, the hardware implementation of non-recursive tree-search algorithms for the precoding scenario is also addressed in this thesis. More specifically, the hardware architecture design and resource occupation of the FSE and K-Best xed-complexity treesearch techniques are presented. The determination of the ordered sequence of complexvalued nodes, also known as the Schnorr-Euchner enumeration, is required in order to select the nodes to be evaluated during the tree traversal. With the aim of minimizing the hardware resource demand of such a computationally-expensive task, a novel non-sequential and lowcomplexity enumeration algorithm is presented, which enables the independent selection of the nodes within the ordered sequence. The incorporation of the proposed enumeration technique along with a fully-pipelined architecture of the FSE and K-Best approaches, allow for data processing throughputs of up to 5 Gbps in a 4x4 antenna setup.Aplikazio abangoardistek beharrezko duten abiadura handiko komunikazioen eskaerak presio handia ezarri du dagoeneko saturatuta dagoen haririk gabeko espektruan. Komunikazio loturaren bi muturretan antena array-en erabilerak eraginkortasun espektral eta dagarritasun handiagoez hornitu du berez konplexua den haririk gabeko ingurunea, modu honetan banda zabalera gehigarririk gabeko abiadura handiko aplikazioen garapena ahalbidetuz. Honen ondorioz, multiple-input multiple output (MIMO) sistemak banda zabaleko komunikazio estandarren funtsezko teknologia bihurtu dira, erabiltzaile bakarreko ezarpenetan hala nola erabiltzaile anitzeko inguruneetan. Erabiltzaile bakarreko MIMO sistemen zailtasun garrantzitsuena hartzailean ematen den seinalearen detekzio fasean datza. Erabiltzaile anitzeko sistemetan, aldiz, erronka nagusiena datu jasotze ez kooperatiboa bermatzea da. Prekodi kazio teknikek hartzaile bakoitzaren seinalea kanalaren egoera orokorraren ezagutzarik gabe eta modu independiente baten interpretatzea ahalbidetzen dute estazio nagusian seinalearen pre-ekualizazio fase bat inposatuz. Azken aldian, prekodi kazio bektoriala (VP, ingelesez vector precoding) proposatu da erabiltzaile anitzeko igorpen kanalean seinalearen eskuratze ez kooperatiboa ahalbidetzeko. Perturbazio seinale baten erabilerak, prekodi katutako seinalearen ezaugarriak hobetzeaz gain, errendimenduaren hobekuntza nabarmen bat lortzen du prekodi kazio linearreko teknikekiko. Hala ere, perturbazio seinalearen kalkuluak sare in nitu baten puntu hurbilenaren bilaketa suposatzen du. Problema honen ebazpenaren konplexutasuna denbora polinomialean ez deterministikoa dela jakina da. Doktoretza tesi honen helburu nagusia VP sistemetan perturbazio prozesuaren ondorioz ematen diren zailtasun teoriko eta praktikoei irtenbide egoki bat ematea da. Alde batetik, seinale/zarata ratio handiko ingurunetan VP sistemen errendimendua aztertzen da, beti ere deskodetze optimoa ematen dela suposatuz. Perturbazio prozesuak VP sistemen errendimenduaren azterketa analitikoa oztopatzen duenez, data transmisio tasaren hainbat goi eta behe borne proposatu eta berrikusi dira. Borne hauetan oinarrituz, VP eta prekodi kazio linealaren arteko errendimendu desberdintasuna neurtu da hainbat aplikazio ezberdinen eremuan. Konkretuki, kanalaren ahalmen ponderatua, zerbitzu kalitatearen formulazio baten ondorioz esleitzen den seinale potentzia eta erabiltzaileen datu transmisio tasa orekatzean lortzen den errendimenduaren azterketa burutu dira. Beste alde batetik, perturbazio bektorearen kalkulu eraginkorra lortzeko metodoak ere aztertu dira. Analisi hau zuhaitz-bilaketa tekniketan oinarritzen da, non egitura sinple baten bitartez errendimendu ia optimoa lortzen den. Ildo horretan, hiru zuhaitz-bilaketa algoritmo proposatu dira. Alde batetik, Fixed-sphere encoder-aren (FSE) konplexutasun konstateak eta arkitektura ez errekurtsiboak datu prozesaketa abiadura handiak lortzea ahalbidetzen dute. Sequential best-node expansion (SBE) delako algoritmo iteratiboak ordea, distantzia kontrol politika baten bitartez metrika kalkuluen kopurua murriztea lortzen du. Azkenik, low-complexity SBE (LC-SBE) algoritmoak SBE metodoaren latentzia eta konplexutasuna murriztea lortzen du ordezko distantzien kalkuluari eta exekuzio iraupenean ezarritako muga aldakorreko metodo berri bati esker. Honetaz gain, prekodi kazio sistementzako zuhaitz-bilaketa algoritmo ez errekurtsiboen hardware inplementazioa garatu da. Zehazki, konplexutasun nkoko FSE eta K-Best algoritmoen arkitektura diseinua eta hardware baliabideen erabilera landu dira. Balio konplexuko nodoen sekuentzia ordenatua, Schnorr-Euchner zerrendapena bezala ezagutua, funtsezkoa da zuhaitz bilaketan erabiliko diren nodoen aukeraketa egiteko. Prozesu honek beharrezkoak dituen hardware baliabideen eskaera murrizteko, konplexutasun bajuko algoritmo ez sekuentzial bat proposatzen da. Metodo honen bitartez, sekuentzia ordenatuko edozein nodoren aukeraketa independenteki egin ahal da. Proposatutako zerrendapen metodoa eta estruktura fully-pipeline baten bitartez, 5 Gbps-ko datu prozesaketa abiadura lortu daiteke FSE eta K-Best delako algoritmoen inplementazioan.La demanda de comunicaciones de alta velocidad requeridas por las aplicaciones más vanguardistas ha impuesto una presión sobre el actualmente saturado espectro inalámbrico. La incorporación de arrays de antenas en ambos extremos del enlace de comunicación ha proporcionado una mayor e ciencia espectral y abilidad al inherentemente complejo entorno inalámbrico, permitiendo así el desarrollo de aplicaciones de alta velocidad de transmisión sin un consumo adicional de ancho de banda. Consecuentemente, los sistemas multiple-input multiple output (MIMO) se han convertido en la tecnología clave para los estándares de comunicación de banda ancha, tanto en las con guraciones de usuario único como en los entornos multiusuario. La principal di cultad presente en los sistemas MIMO de usuario único reside en la etapa de detección de la señal en el extremo receptor, mientras que los sistemas multiusuario en el canal de bajada se enfrentan al reto de habilitar la adquisición de datos no cooperativa en los terminales receptores. A tal efecto, las técnicas de precodi cación realizan una etapa de pre-ecualización en la estación base de tal manera que la señal en cada receptor se pueda interpretar independientemente y sin el conocimiento del estado general del canal. La precodifi cación vectorial (VP, del inglés vector precoding) se ha propuesto recientemente para la adquisición no cooperativa de la señal en el canal de difusión multiusuario. La principal ventaja de la incorporación de un vector de perturbación es una considerable mejora en el rendimiento con respecto a los métodos de precodi cación lineales. Sin embargo, la adquisición de la señal de perturbación implica la búsqueda del punto más cercano en un reticulado in nito. Este problema se considera de complejidad no determinística en tiempo polinomial o NP-complejo. Esta tesis aborda las di cultades que se derivan del proceso de perturbación en sistemas VP desde una perspectiva tanto teórica como práctica. Por un lado, se analiza el rendimiento de VP asumiendo una decodi cación óptima en escenarios de alta relación señal a ruido. Debido a que el proceso de perturbación di culta la evaluación analítica del rendimiento de los sistemas de VP, se proponen y revisan diversas cotas superiores e inferiores en la tasa esperada de transmisión de estos sistemas. En base a estas cotas, se realiza una comparación de VP con respecto a la precodi cación lineal en el ámbito de la capacidad suma ponderada, la potencia resultante de una formulación de calidad de servicio y el rendimiento obtenido al equilibrar las tasas de transmisión de los usuarios. Por otro lado, se han propuesto nuevos procedimientos para un cómputo e ciente del vector de perturbación. Estos métodos se basan en técnicas de búsqueda en árbol que, por medio de diferentes políticas de podado, reducen la complejidad derivada de una búsqueda exhaustiva y obtienen un rendimiento cercano al óptimo. A este respecto, se proponen tres algoritmos de búsqueda en árbol. El xed-sphere encoder (FSE) cuenta con una complejidad constante y una arquitectura no iterativa, lo que permite el procesamiento paralelo de varios vectores candidatos, lo que a su vez deriva en grandes velocidades de procesamiento de datos. El algoritmo iterativo denominado sequential best-node expansion (SBE) aplica una política de control de distancias para reducir la cantidad de cómputo de métricas realizadas durante la búsqueda en árbol. Por último, el low-complexity SBE (LC-SBE) tiene por objetivo reducir la complejidad y latencia del algoritmo anterior mediante la combinación de un modelo de cálculo aproximado de distancias y una estrategia novedosa de restricción variable del tiempo de ejecución. Adicionalmente, se analiza la implementación en hardware de algoritmos de búsqueda en árbol no iterativos para los escenarios de precodi cación. Más especí camente, se presentan el diseño de la arquitectura y la ocupación de recursos de hardware de las técnicas de complejidad ja FSE y K-Best. La determinación de la secuencia ordenada de nodos de naturaleza compleja, también conocida como la enumeración de Schnorr-Euchner, es vital para seleccionar los nodos evaluados durante la búsqueda en árbol. Con la intención de reducir al mínimo la demanda de recursos de hardware de esta tarea de alta carga computacional, se presenta un novedoso algoritmo no secuencial de baja complejidad que permite la selección independiente de los nodos dentro de la secuencia ordenada. La incorporación de la técnica de enumeración no secuencial junto con la arquitectura fully-pipeline de los algoritmos FSE y K-Best, permite alcanzar velocidades de procesamiento de datos de hasta 5 Gbps para un sistema de 4 antenas receptoras

    Adjustable dynamic range for paper reduction schemes in large-scale MIMO-OFDM systems

    Get PDF
    In a multi-input-multi-output (MIMO) communication system there is a necessity to limit the power that the output antenna amplifiers can deliver. Their signal is a combination of many independent channels, so the demanded amplitude can peak to many times the average value. The orthogonal frequency division multiplexing (OFDM) system causes high peak signals to occur because many subcarrier components are added by an inverse discrete Fourier transformation process at the base station. This causes out-of-band spectral regrowth. If simple clipping of the input signal is used, there will be in-band distortions in the transmitted signals and the bit error rate will increase substantially. This work presents a novel technique that reduces the peak-to-average power ratio (PAPR). It is a combination of two main stages, a variable clipping level and an Adaptive Optimizer that takes advantage of the channel state information sent from all users in the cell. Simulation results show that the proposed method achieves a better overall system performance than that of conventional peak reduction systems in terms of the symbol error rate. As a result, the linear output of the power amplifiers can be minimized with a great saving in cost

    Real-time fault detection in photovoltaic power plants

    Get PDF
    Climatic changes are one of the biggest problems that humanity faces and renewable energies are a big weapon to fight this threat. Solar energy is one of the renewable energy sources in current use and to produce this type of energy there are several solar plants placed across the country. These giant plants are made of many sets of solar panels (called arrays) which are responsible for converting solar energy into electricity. One of the critical aspects of these plants' operation is the early detection of solar panel malfunctions. The current methods in use are expensive and consume a lot of time, meaning that, in some cases, the faults are detected only a year later, causing a huge financial impact on the companies responsible for the plants' operation. To cut these losses and to detect the faults as early as possible, this dissertation presents a real-time system capable of detecting malfunctions in a solar panel array. The node should be placed in the array's junction box and detects if an array has a faulty panel. The faults are detected comparing the array's output (voltage and current) with the output of an artificial neural network that models the array's behaviour using the real-time solar irradiance and temperature values. The neural network uses the measured values to carry out an online learning process, improving the network performance. Due to the plant's extension, a low power wide area network (LORAWAN), is used to send the array status and the data collected to the cloud, where they are processed and presented in a dashboard
    corecore