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Samenvatting

In de afgelopen decennia heeft een reeks van innovaties in de elektrotechniek
de ontwikkeling van verschillende toepassingen versneld, gaande van lokalisatie
aan de hand van satellieten tot slimme apparaten voor mobiele connectiviteit.
Aangezien veel van deze toepassingen een snelle en betrouwbare overdracht van
informatie vereisen, is de communicatietheorie één van de cruciale onderzoeks-
domein om deze technologische vooruitgang mogelijk te maken. We zijn meer
bepaald getuige geweest van een significante groei in de vraag voor bitsnelheid
en bandbreedte. Één techniek om deze communicatie bij hoge snelheid mo-
gelijk te maken is een communicatielink met meerdere ingangen en meerdere
uitgangen (MIMO), waarbij meerdere datastromen tegelijk verzonden worden
in dezelfde frequentieband. In het beste geval is het ontvangen signaal volledig
identiek aan het verzonden signaal, maar verschillende beperkingen limiteren
in de praktijk de kwaliteit van de MIMO informatieoverdracht. Omdat deze
beperkingen prominenter worden bij hogere bitsnelheden, heeft hun beheer aan
belang gewonnen in de communicatietheorie. De volgende beperkingen komen
aan bod in dit proefschrift:

• Een eerste belangrijke beperking van het kanaal is intersymbool inter-
ferentie (ISI), wat veroorzaakt wordt door een frequentieselectief kanaal
karakteristiek. Meer bepaald, de verschillende frequentiecomponenten
van het verzonden signaal ervaren een verschillende kanaalversterking
en/of kanaalfase, waardoor de verzonden pulsen worden uiteen gespreid
in de tijd. Hierdoor interfereren naburige pulsen met elkaar, wat het
moeilijker maakt om de verzonden data te extraheren uit het ontvangen
signaal.

• Een tweede beperking dat eigen is aan MIMO communicatie is over-
spraak. Deze beperking treedt op wanneer het verzonden signaal horend
bij de ene datastroom de data detectie van een andere datastroom ver-
stoort. Men zou overspraak in feite kunnen interpreteren als ISI in de
ruimte.

• Ten derde, elk kanaal heeft in de praktijk last van een ongewenst ruissig-
naal dat het ontvangen signaal verstoort. Deze ruis kan afkomstig zijn
van zowel de omgeving als de elektronica componenten van de ontvanger.
Het ruissignaal is normaal onafhankelijk van de verzonden data.

xvii



xviii SAMENVATTING

De hoofddoelstelling van de ontvanger is om de verzonden data te recon-
strueren op basis van het vervormd ontvangen signaal dat ook ruis bevat.
Optimale detectie in termen van bitfoutkans gebeurt in theorie door de a-
posteriori-kans van de verzonden data voor het ontvangen signaal te maximalis-
eren, wat typisch kan geïmplementeerd worden aan de hand van een maximale
waarschijnlijkheid sequentiedetector. Helaas is de complexiteit van dergeli-
jke detectors in de praktijk vaak onaanvaardbaar groot zodat zijn prestaties
vooral dienen als een theoretische maatstaf. In de literatuur zijn daarom al
verschillende egalisatieschema’s in combinatie met een symbool-per-symbool
detector voorgesteld als alternatief. Deze egalisatieschema’s hebben als doel
om de kanaal beperkingen zo goed mogelijk te compenseren zodat een een-
voudige symbool-per-symbool detector resulteert in suboptimale maar bevredi-
gende prestaties. Dit proefschrift behandelt de volgende egalisatieschema’s: het
lineaire egalisatieschema, het decision-feedback equalization (DFE) egalisati-
eschema, het Tomlinson-Harashima precoding (THP) egalisatieschema en het
partiële responsie signalering (PRS) egalisatieschema. In het lineaire egalisati-
eschema, wordt een lineair filter met beperkte lengte gebruikt aan de zender-
en/of ontvangerszijde om de ISI en de overspraak te verminderen en de ruisver-
sterking te beperken. Het DFE egalisatieschema breidt het lineaire egalisati-
eschema uit door aan de ontvanger een terugkoppelingsfilter toe te voegen dat
inwerkt op de eerder gedetecteerde data symbolen. Dit terugkoppelingsfilter
is echter onderhevig aan foutpropagatie wat wordt vermeden in het THP egal-
isatieschema door het terugkoppelingsfilter te verplaatsen van de ontvangersz-
ijde naar de zenderzijde. Ten slotte laat het PRS egalisatieschema een gecon-
troleerde hoeveelheid interferentie toe in het detectieproces wat de taak van
de egalisatie filters vergemakkelijkt terwijl de eenvoud van de symbool-per-
symbool detector behouden blijft.

De beste egalisatieprestatie wordt bereikt wanneer de kanaalkennis perfect
is. In het bijzonder aan de zenderzijde is deze kanaalkennis helaas vaak niet
perfect in de praktijk. De kanaalkennis kan enerzijds niet accuraat zijn omdat
de ruis de kanaalschatting verstoort en de kanaalkennis kan anderzijds veroud-
erd zijn omdat het kanaal tijdsvariant is. Een egalisatie ontwerp dat rekening
houdt met deze imperfecties noemen we robuust.

In de eerste bijdrage van dit proefschrift worden het lineaire, het DFE en
het THP egalisatieschema onderzocht in de context van een frequentieselectief
MIMO kanaal dat onderhevig is aan kanaalvariabiliteit. Een algoritme om een
algemene objectieve functie te optimaliseren wordt afgeleid en op basis daar-
van worden drie egalisatiestrategieën geformuleerd: (i) de instelbare strategie
waarin alle egalisatieparameters kunnen worden afgestemd op de kanaalschat-
ting, (ii) de vaste strategie waarin alle egalisatieparameters zijn ontworpen op
basis van de kanaalstatistiek en (iii) de hybride strategie dat zowel instelbare
als vaste egalisatieparameters bevat. Daarnaast, worden ook eenvoudigere en
suboptimale methodes voorgesteld om de vaste egalisatieparameters te bepalen.
Vervolgens wordt dit optimalisatie kader met de gemiddelde kwadratische afwi-
jking (GKA) als objectieve functie toegepast op het lineaire, het DFE en het
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THP egalisatieschema. Verder wordt er ook een uitdrukking voor de bitfout-
probabiliteit (BER) opgesteld voor elk van deze egalisatieschema’s, wat toelaat
om de verschillende egalisatiestrategieën te onderzoeken in termen van zowel
GKA als BER. Als voorbeeld wordt een chip-naar-chip verbinding geanaly-
seerd, waarvan verschillende geometrische parameters en verschillende materi-
aaleigenschappen beschouwd worden als Gaussiaanse toevalsgrootheden. Nu-
merieke resultaten bevestigen dat de hybride strategie een goed alternatief met
een lage complexiteit is voor de instelbare strategie, terwijl de degradatie van
de vaste strategie snel stijgt met toenemende kanaalvariabiliteit.

De tweede bijdrage van dit proefschrift is de veralgemening van PRS naar
een frequentieselectief MIMO systeem. In de literatuur is het doel impulsant-
woord (TIR) beperkt tot zuiver temporele of zuiver ruimtelijke componen-
ten. Bovendien, wordt de TIR vaak niet geoptimaliseerd zodat het volle po-
tentieel van PRS niet benut wordt. Dit proefschrift breidt daarom eerst de
PRS precoder uit tot een algemene tijdruimtelijke PRS precoder, wiens TIR
bestaat uit zowel zuiver temporele en zuiver ruimtelijke componenten, alsook
tijdruimtelijke componenten. Tevens worden er drie algoritmes voorgesteld om
de TIR te optimaliseren en wordt er een nauwkeurige benadering van de uit-
drukking voor de BER afgeleid. De prestatie van de algemene PRS precoder
wordt eerst vergeleken met de traditionele volledige responsie signalering in het
geval dat de kanaalkennis perfect is aan zowel de zenderzijde als de ontvanger-
szijde. In dit geval bevestigen numeriek resultaten horend bij een multipath
breedband kanaal de superioriteit van de algemene PRS precoder. Vervol-
gens beschrijft dit proefschrift hoe het ontwerp van de PRS precoder robu-
ust kan gemaakt worden tegen een verouderde kanaalschatting dat ruis bevat.
Numerieke resultaten geven het voordeel van het robuuste ontwerp weer ten
opzichte van het naïeve ontwerp. Ten slotte wordt het ontwerp van de algemene
PRS precoder geschetst in de context van een frequentieselectief MIMO kanaal
dat lijdt aan kanaalvariabiliteit. Meer bepaald impliceren numerieke resultaten
met betrekking tot een chip-naar-chip verbinding dat ook voor het PRS egal-
isatieschema de hybride strategie een alternatief met een lage complexiteit is
voor de instelbare strategie als de kanaalvariabiliteit laag is en/of voldoende
egalisatieparameters instelbaar zijn.
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Summary

During the last decades, a series of innovations in electrical engineering have
accelerated the development of several applications, ranging from localization
by means of satellites to smart devices for mobile connectivity. Since many of
these applications require a fast and reliable transfer of information, the field
of communication theory has been one of the crucial research domains to make
these technological advancements possible. More precisely, we have witnessed
a significant increase in the demand for bit rate and the associated bandwidth.
One technique to provide this high-speed communication is a multiple-input
multiple-output (MIMO) communication link, in which multiple data streams
can be simultaneously transmitted in the same frequency interval. Ideally, the
received signal is completely identical to the transmitted signal, but, in practice,
several impairments limit the quality of the MIMO data transfer. Moreover, as
these impairments are more prominent at higher bit rates, their management
has become of particular importance in the field of communication theory. The
following impairments are considered in this dissertation.

• A first important channel impairment is intersymbol interference (ISI),
which is caused by a frequency-selective channel response. In this case,
the different frequency components of the transmitted signal experience a
different channel gain and/or channel phase, causing a transmitted pulse
to spread out in time. As a result, neighboring pulses interfere with each
other, making it more difficult to extract the transmitted data from the
received signal.

• A second impairment that is specific to MIMO communication is crosstalk
(XT), which arises when the transmitted signal associated with one data
stream interferes with the data recovery of another symbol stream. In
fact, one could interpret this XT as spatial ISI.

• Thirdly, any practical channel is affected by an unwanted noise signal
that disturbs the received signal. This noise could be originated either
from the environment or from the electronics components of the receiver.
Normally, this noise signal is independent of the transmitted data.

The main objective of the receiver is to retrieve the transmitted data from
the noisy and distorted received signal. In theory, optimal detection in terms
of error performance is achieved by maximizing the a posteriori probability

xxi
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of the transmitted data for a given received signal, which can typically be
implemented by means of a maximum-likelihood sequence detector (MLSD).
Unfortunately, the complexity of such a detector is often intolerably large in
practice such that its performance mainly serves as a theoretical benchmark.
As an alternative, different equalization schemes in combination with a symbol-
by-symbol detector have been proposed in the literature. These equalization
schemes aim to handle the channel impairments as good as possible such that
a simple symbol-by-symbol detector results in suboptimal but still adequate
performance. This dissertation discusses the following equalization schemes:
the linear equalization scheme, the decision-feedback equalizer (DFE) equaliza-
tion scheme, the Tomlinson-Harashima precoding (THP) equalization scheme,
and the partial-response signaling (PRS) equalization scheme. In the linear
equalization scheme, a (finite-length) linear filter at the transmitter and/or the
receiver is employed to reduce the ISI and the XT, while limiting the noise
enhancement. The DFE equalization scheme extends the linear equalization
scheme by adding a (finite-length) feedback filter at the receiver that acts on
the previously detected data symbols. However, this feedback filter is prone to
error propagation, which is avoided in the THP equalization scheme by trans-
ferring the feedback filter from the receiver to the transmitter. Finally, the
PRS equalization scheme allows a controlled amount of interference in the de-
tection process, facilitating the tasks of the equalizers, while maintaining the
simplicity of the symbol-by-symbol detector.

The best equalization performance is achieved when the channel state in-
formation (CSI) is perfectly known. Unfortunately, CSI is often imperfect in
practice, especially at the transmitter; the CSI can be inaccurate because the
noise affects the channel estimation, and/or the CSI can be outdated when the
channel is time-variant. An equalizer design that takes these imperfections into
account is called robust.

In the first contribution of this dissertation, the linear, the DFE and the
THP equalization schemes are investigated in the context of a frequency-selective
MIMO channel suffering from channel variability. An algorithm for optimizing
a general objective function over the equalization parameters is derived, based
on which three equalization strategies are formulated: (i) an adjustable strat-
egy, in which all equalization parameters can adapt to the channel estimate;
(ii) a fixed strategy, in which all equalization parameters are designed based on
the channel statistics; and (iii) a hybrid strategy consisting of both adjustable
and fixed equalization parameters. Additionally, less complicated suboptimal
approaches to determine the fixed equalization parameters are presented as
well. Next, taking the mean square error (MSE) as the objective function,
this optimization framework is applied to the linear equalization scheme, the
DFE equalization scheme and the THP equalization scheme. Moreover, an ex-
pression for the bit error rate (BER) for each of these equalization schemes is
derived, allowing to investigate the different equalization strategies in terms of
both MSE and BER. As an example, a chip-to-chip interconnect is analyzed
from which several geometrical and material parameters are considered to be
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Gaussian random variables. Numerical results confirm that the hybrid strategy
is a low-complexity alternative to the adjustable strategy, whereas the degra-
dation of the fixed strategy rapidly grows with increasing channel variability.

The second contribution of this dissertation is the generalization of PRS
to a frequency-selective MIMO system. In the literature, the target impulse
response (TIR) has been limited to temporal-only or spatial-only components.
Moreover, the TIR is most often not optimized such that the full potential of
PRS is not realized. This dissertation, therefore, first extends the PRS pre-
coder to a general spatio-temporal (ST) PRS precoder, whose TIR comprises
not only temporal and spatial components, but also ST components. Moreover,
three different algorithms are proposed to optimize the TIR and an accurate
approximation of the BER expression for the PRS system is derived. The
performance of the general PRS precoder is first compared to traditional full-
response signaling (FRS) in terms of MSE and BER when the CSI is perfect at
both the transmitter and the receiver. In this case, numerical results related
to a multipath wideband channel confirm the superiority of the general PRS
precoder. Next, this dissertation describes how to make the design of the PRS
precoder robust with respect to a noisy and/or outdated channel estimate. Nu-
merical results indicate the benefits of the robust design compared to the naive
design. Finally, the design of the general PRS precoder is outlined in the con-
text of a frequency-selective MIMO channel suffering from channel variability.
More specifically, numerical results pertaining to a chip-to-chip interconnect
imply that also for the PRS equalization scheme the hybrid strategy is a low-
complexity alternative to the adjustable strategy when the channel variability
is small and/or enough equalization parameters are adjustable.
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1
Introduction

1.1 Background and motivation
Today, it is almost impossible to imagine life without the numerous applications
that rely on digital communications, ranging from localization by means of
satellites, to mobile connectivity with smart portable devices, to autonomous
driving, and to live streaming over the internet. In all these applications, vast
amounts of data, mostly in the form of bits, must be reliably and efficiently
transferred from point A to point B across some kind of communication channel.
This transfer is schematically presented in Fig. 1.1. Mathematical modeling
of the data transfer is one of the main topics of the field of communication
theory. This dissertation is confined to digital communication, meaning that
the data to be transmitted consist of digital data, typically a sequence of bits
that can take either the value 0 or 1. The transmitter converts this data
stream into a physical signal, e.g., an electromagnetic wave, and this signal
subsequently travels across the transmission medium, which is also called the
channel. The different types of channels define two groups of communication.
For wireline communication, a conductor physically connects the transmitter
and the receiver, e.g., a cable, whereas no physical connection is present for
wireless communication, e.g., radio waves. The task of the receiver is to recover

Figure 1.1: General structure of a communication system.
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the transmitted digital data sequence from the received signal.
In the early days of communication theory, the main focus lied on single-

input single-output (SISO) communication channels, meaning that the data
input stream, the transmitted signal, and the received signal contain all ex-
actly one signal stream. Due to the demand for higher bit rates and good
quality of service, multiple-input multiple-output (MIMO) communication is
nowadays omnipresent, e.g., massive MIMO in 5G applications. Contrary to
SISO communication, a MIMO channel has multiple inputs and multiple out-
puts such that the input data stream, the transmitted signal and the received
signal consist all of multiple signal streams, allowing to either increase the data
rate (spatial multiplexing), or to lower the error rates (spatial diversity), or to
improve the signal-to-noise (SNR) ratios (beamforming)[1]. In this dissertation,
MIMO communication is employed to increase the data rate by simultaneously
transmitting multiple independent data sequences.

Unfortunately, communication channels are imperfect in practice, as they
not only distort the transmitted signal, but also add a disturbance signal. For
instance, frequency-selective MIMO channels introduce intersymbol interfer-
ence (ISI) and crosstalk (XT) such that there is an overlap at the receiver of
neighboring pulses in both space and time. On the other hand, the additive dis-
turbance signal is often referred to as the noise, which is typically independent
of the transmitted signal. The management of the ISI, the XT, and the noise at
the transmitter and/or the receiver has already been extensively studied in the
literature and several equalization mechanisms have been presented to improve
the communication quality over these imperfect communication channels: THP
at the transmitter is an example of pre-filtering at the transmitter, whereas a
decision-feedback equalizer (DFE) performs post-filtering at the receiver.

In several applications, the channel realizations are not identical to each
other, e.g., due to manufacturing tolerances, but these different channel re-
alizations often still exhibit a moderate to large degree of similarity in their
channel responses. Consequently, to lower the complexity of the equalization
processing, one could benefit from this similarity by considering (part of) the
equalization fixed, i.e., independent of the particular channel realization. Still,
the performance degradation due to the fixed equalization part is expected to be
limited as long as the deviations between the different channel realizations are
sufficiently small. The main objective of the first part of this dissertation is to
propose different equalization strategies that investigate this trade-off between
low complexity and good performance. This dissertation therefore devises an
optimization framework to determine MIMO equalization algorithms that are
robust against this channel variability. This optimization framework is subse-
quently applied to the DFE equalization scheme and the Tomlinson-Harashima
precoding (THP) equalization scheme, with the emphasis on a chip-to-chip in-
terconnect suffering from manufacturing tolerances.

In standard full-response signaling (FRS), the equalization parameters at-
tempt to reduce all ISI and XT as much as possible. On the other hand, partial
response signaling (PRS) allows a controlled amount of residual interference,
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with the aim of facilitating the equalization design and thereby improving the
error performance. Hence, a second objective of this dissertation is to design
a general PRS precoder for a MIMO frequency-selective channel. Unlike the
PRS precoders proposed in the literature, the target impulse response (TIR)
matrix of this precoder contains not only temporal and spatial, but also ST
components. This dissertation considers the optimization of this TIR for three
scenarios of channel knowledge. First, the theoretical case is investigated, in
which the channel is assumed to be perfectly known and available at both
the transmitter and the receiver. Second, the channel is assumed to be suf-
fering from channel variability and the same equalization strategies that are
proposed in the first part of this dissertation are applied to the optimization of
the general PRS precoder. Third, the design of the PRS precoder with perfect
channel state information (CSI) is revised by taking the imperfections of the
channel estimation process into account, yielding a robust design of the TIR.
This channel estimate is commonly acquired by means of pilot symbols, which
experience the following limitations: (i) the noise introduced by the channel
induces an estimation error, which becomes smaller when more pilot symbols
are employed and/or the transmit energy is larger; and (ii) getting the channel
estimate from the receiver to the transmitter requires a return channel with
possibly limited bandwidth. As a result, the CSI at the transmitter (CSIT) is
often inaccurate and/or delayed.

1.2 Outline

This dissertation is outlined as follows.

Chapter 2 first provides an overview of the channel impairments in a general
communication system, after which two classes of channels are discussed: (i) a
MIMO chip-to-chip interconnect and (ii) the multipath wideband channel.
Chapter 3 lists the different approaches that have been presented in the lit-
erature to manage the distortions induced by the communications channel.
Moreover, the mechanisms of the different approaches are illustrated by an
example.
Chapter 4 proposes different equalization strategies to face the performance-
complexity trade-off when the communication channel is stochastic. To this
end, a general iterative optimization algorithm is presented.
Chapter 5 applies the different equalization strategies from Chapter 4 to the
DFE equalization scheme. For all equalization strategies, both the iterative
mean square errror (MSE) minimization of the equalization parameters and
the achieved performance in terms of MSE and bit error rate (BER) are in-
vestigated. Moreover, this chapter also studies two alternative optimization
methods to solve the MSE minimization problem.
Chapter 6 studies the design and the performance of the various equalization
strategies from Chapter 4 for the THP equalization scheme. Additionally, the
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traditional THP equalization scheme is extended with a feedback filter at the
receiver, thereby enhancing the performance of the hybrid strategy.
Chapter 7 introduces the design of a general spatio-temporal (ST) PRS pre-
coder in the case of a frequency-selective MIMO channel. More precisely, three
different iterative algorithms are developed to determine the optimal TIR.
Chapter 8 investigates the design of the PRS equalization scheme from Chap-
ter 7 when the channel estimates are imperfect due to the noise and/or the
latency. This chapter demonstrates that incorporating these imperfection into
the design of the equalization parameters results in significantly better perfor-
mance than naively assuming that the channel estimates are perfect.
Chapter 9 again focuses on the PRS equalization scheme, but assumes that
the channel suffers from channel variability and thus applies the different equal-
ization strategies from Chapter 4 to the PRS equalization scheme.
Chapter 10 summarizes the main conclusions of the obtained results. More-
over, several topics for future research are explored and a list of our publications
is compiled.
Chapter 11 constitutes a collection of several appendices, providing some
supplementary material for the other chapters.



2
Channel models

This chapter’s objective is to describe the various channel models that are em-
ployed in this work. To this end, a general communication system is described
in Section 2.1, in which not only the different imperfections of a communication
channel are listed, but also the complex-valued baseband representation of a
bandpass channel is introduced. Next, Section 2.2 provides some details on
the first channel that is considered: a chip-to-chip interconnect consisting of
four coupled microstrips. The main feature is that this channel is affected by
manufacturing tolerances such that the time-invariant channel response must
be treated as a random variable. Section 2.3 discusses a second channel model,
i.e., the wireless multipath wideband channel, which is an example of a complex-
valued MIMO frequency-selective time-variant channel.

2.1 General communication system

2.1.1 Channel description

Ideally, the output of a communication channel is identical to its input such that
the received signal is equal to the transmitted signal. Unfortunately, perfect
channels do not exist in reality because of the following channel impairments:

• Frequency-selectivity : In the case of a frequency-selective channel, the
different frequency components of the transmitted signal experience a
different channel gain and/or channel phase. Consequently, every pulse
consisting of multiple frequencies in the transmitted signal is spread out
in time, introducing interference between consecutive data symbols. This

5
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interference is called ISI and can be described either by the channel im-
pulse response Hch(u) or by the channel transfer function Hch(f), the
latter being the Fourier transform of the former. This type of interfer-
ence depends only on the causal and the anti-causal data symbols of the
current data stream and is therefore denoted as temporal ISI.

• Crosstalk : Apart from the ISI due to the frequency-selectivity of the
channel, interference can also be originated from other sources, e.g., other
communication systems or another data stream in a MIMO system. This
type of interference is generally called XT. In this work, only the XT
generated by the other data streams in the MIMO system is considered
and can also be derived from the channel impulse response Hch(u) or
from the channel transfer function Hch(f). Moreover, the XT from a
data symbol to the decision variable of another data symbol transmitted
at the same time is called spatial interference, whereas this interference
is called ST interference when both data symbols are transmitted on
different time instants.

• Noise: All practical communication links suffer from some level of unde-
sired interference that is random and independent from any other signal.
This interference is called the noise and is often modeled as an additive
noise source. The noise elements are randomly generated according to
some distribution, whereas the power of the elements and the correlation
between the different elements are defined by the power spectral density.

• Time-variability : Especially in the case of wireless channels, the impulse
response of the channel and thus also the associated frequency response
varies in time. One well-known channel suffering from time-variability is
for example the (frequency-selective) fading channel. Consequently, the
channel impulse response and the channel transfer function are dependent
not only on the delay variable u and the associated frequency variable
f , respectively, but also on the observation instant t, yielding Hch(u, t)
and Hch(f, t). More precisely, Hch(u, t) represents the channel impulse
response perceived by a signal applied at the time instant t − u and
observed at time instant t.

In summary, all these impairments can be captured by the following model of
the MIMO channel:

r(t) =

∫ ∞
−∞

Hch(u, t)s(t− u) du+ n(t), (2.1)

where Hch(u, t) is the NR×NT channel impulse response matrix with NT and
NR denoting the number of channel inputs and the number of channel outputs,
respectively. Moreover, all ISI and XT terms are characterized by the impulse
response Hch(u, t), whereas the noise contribution is defined by the NR × 1
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vector n(t). In general, this noise vector is considered to follow a Gaussian dis-
tribution, which is defined by the mean µn(t) and the autocorrelation function
Rn(u) = E

[
n(t)nT (t+ u)

]
. In practice, the mean µn(t) is often equal to zero,

i.e., µn(t) = 0, and the noise is assumed to be white, meaning that its power
spectral density is constant and equal to N0

2 such that Rn(u) = N0

2 δ(u)INR
.

When the channel response does not changes over time, i.e., when the chan-
nel is time-invariant, the argument t in Hch(u, t) in (2.1) can be dropped.

2.1.2 Complex-valued baseband model

This work considers both baseband transmission and bandpass transmission.
In both cases, the physical signals (transmitted signals, noise, received signals)
and the impulse responses of the physical channels are real-valued.

The main frequency content of the transmitted signal is in an interval
(−B,B) for baseband transmission, whereas for bandpass transmission the
transmitted signal is mainly contained in a frequency interval (−fc−B,−fc +
B) ∪ (fc − B, fc + B), with fc > B. The baseband channel and the band-
pass channel are responsive to the frequencies of the baseband signal and the
bandpass signal, respectively.

However, to be able to describe the bandpass transmission with the same
system model as the low-pass transmission, we represent all bandpass signals
and all bandpass filters by their complex-valued baseband representations. As
for a bandpass signal xBP (t) with center frequency fc and bandwidth B < fc,
the complex-valued baseband signal xLP (t) is defined according to

xLP (t) =
{√

2xBP (t) exp (−j2πfct)
}
B
, (2.2)

where {·}B denotes the filtering by a perfect unit-gain low-pass filter with
bandwidth B. For the impulse response hBP(t) of a bandpass filter, its complex-
valued baseband representation is similarly constructed as in (2.2), but with
the factor

√
2 omitted. Moreover, when the signal sBP (t) is applied to the

filter hBP(t) with the additive noise term nBP (t), the complex-valued baseband
representation rLP (t) of the output rBP (t) can be expressed as

rLP (t) =

∫ +∞

−∞
hLP(u)sLP (t− u) du+ nLP (t), (2.3)

where nLP (t) is the complex-valued baseband representation of nBP (t). Impor-
tantly, when nBP (t) has a constant power spectral density equal to N0

2 , then
nLP (t) has also a constant power spectral density in the interval [−B,B], which
is equal to N0 rather than N0

2 due to the factor
√

2 in (2.2). Of course, the
filter input-output relationship from (2.3) can directly be extended to a time-
varying MIMO bandpass channel. Consequently, when all bandpass signals
and impulse responses are represent by their complex-valued baseband repre-
sentations, the channel model of (2.1) is still valid. The main advantage of
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Figure 2.1: Cross section of chip-to-chip interconnect (not to scale).

employing this complex-valued baseband representation is that the description
of the modulation (baseband-to-bandpass conversion) and the demodulation
(bandpass-to-baseband conversion) can be omitted, allowing to describe band-
pass transmission with the same system model as baseband transmission.

To avoid any ambiguity in the remainder of this work, we specifically clarify
when baseband or bandpass transmission is considered.

2.2 MIMO chip-to-chip interconnect
The principal channel that is discussed in this work is an electrical chip-to-chip
interconnect of 10 cm consisting of four parallel coupled microstrips between
the transmitter and the receiver. The cross section of this interconnect is given
in Fig. 2.1. This chip-to-chip interconnect is characterized by the following set
of geometrical and material parameters:

• Gap between two signal conductors wg

• Width of the signal conductor wc

• Thickness of the signal conductor tc

• Thickness of the dielectric substrate ts

• Conductivity of the signal conductor σc

• Relative permittivity of the dielectric substrate εr

• Loss tangent of the dielectric substrate tanδ

Due to manufacturing tolerances, the different realizations of this interconnect
are not identical, so the listed parameters must be treated as random variables.
As the sum of the gap between two signal conductors wg and the width of
the signal conductor wc is considered to be constant, six parameters in total
vary independently. These independent parameters, gathered in the vector φ,
are treated as independent Gaussian random variables with a mean equal to
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Table 2.1: Nominal values of the geometrical and the material parameters.
Parameter Nominal value

wg 80µm
wc 100µm
tc 35µm
ts 500µm
σc 58MS/m
εr 4

tanδ 0.02

the nominal values of Table 2.1 and a standard deviation σr expressed as a
percentage of the mean. To investigate the impact of the level of variability on
the performance of the different equalization schemes proposed in the Chapters
below, different values for the standard deviation σr, ranging from 1% to 10%,
are considered. For each value of σr, a data set consisting of 1000 channel
realizations is constructed according to the approach outlined in [2, 3, 4], which
is briefly summarized here. First, using polynomial chaos theory, the frequency-
dependent RLGC parameters of the interconnect are represented as truncated
multivariate expansions of the random parameters. Next, for each realization
of the random parameters, the corresponding RLGC parameters are computed
using these polynomial expansions. Finally, the corresponding realizations of
the channel frequency response are obtained from the RLGC parameters using
standard transmission line relations.

To gain a better understanding about both the frequency response of this
chip-to-chip interconnect and the influence of the standard deviation σr, Fig.
2.2 depicts the frequency responses |(Hch(f))1,1| and |(Hch(f))1,2| in the case
of σr = 1% and σr = 10% as a function of the frequency f . More precisely,
all plots present the 10th percentile p10, the 50th percentile p50, and the 90th
percentile p90 of the depicted frequency response. The following observations
can be made:

• Based on the upper plots of Fig. 2.2, one can conclude that the channel
response (Hch(f))1,1 is a low-pass channel such that baseband trans-
mission over this chip-to-chip interconnect is suitable. This low-pass
frequency response can mainly be attributed to the attenuation caused
by the skin effect and the dielectric loss that increases with signal fre-
quency [5]. Moreover,

∣∣∣(Hch(f))2,2

∣∣∣ is verified to exhibit a similar curve
as |(Hch(f))1,1|, whereas (Hch(f))3,3 and (Hch(f))4,4 are identical to
(Hch(f))2,2 and (Hch(f))1,1, respectively, due to the symmetry in the
geometry of this interconnect. To maximize the data rate, one must thus
simultaneously transmit an unique data stream over each of the four mi-
crostrips. Due to the low-pass nature of the channel, larger temporal ISI
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Figure 2.2: Chip-to-chip interconnect: visualization of the 10th percentile p10,
the 50th percentile p50, and the 90th percentile p90 of the frequency responses
|(Hch(f))1,1| (upper plots) and |(Hch(f))1,2| (lower plots) in the case of σr =
1% (left plots) and σr = 10% (right plots) as a function of the frequency f .
The larger variability in the case of σr = 10% mainly manifests itself at larger
frequencies.
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is to be expected when the symbol rate is increased.

• The amount of XT in this chip-to-chip interconnect is characterized by
the non-diagonal elements of Hch(f), i.e., (Hch(f))i,j with i 6= j. XT
in a chip-to-chip interconnect is caused by capacitive and inductive cou-
pling between neighboring signals. Examination of all these frequency
responses demonstrates that they are all nearly identical to each other.
Consequently, Fig. 2.2 presents only the frequency response of one of
them, i.e., (Hch(f))1,2. The plot of |(Hch(f))1,2| indicates that the XT
is more suppressed than the useful signal, but rises when the frequency
increases. As a result, significantly more spatial and ST ISI is present
at larger symbol rates such that the XT energy received can even exceed
the energy of the useful signal at high frequencies [6].

• The amount of variability between the frequency responses of the different
channels is limited when σr = 1%. Indeed, p10, p50, and p90 lie all very
close to each other in the left plots of Fig. 2.2, indicating that most
frequency responses are nearly identical to each other. However, when σr
is increased to 10% in the right plots of Fig. 2.2, more difference between
p10 and p90 is present, especially at large frequencies. Consequently,
the larger the symbol rate, the more the manufacturing tolerances are
expected to (negatively) impact the quality of the communication link.

• In Fig. 2.3, the channel impulse response (Hch(u))1,1 is presented as a
function of u in the case of σr = 3%. More precisely, the 10th percentile
p10, the 50th percentile p50, and the 90th percentile p90 of (Hch(u))1,1 are
depicted. One of the main aspects of all impulse responses (Hch(u))i,j is
that they suffer from reflections due to impedance mismatch at both the
transmitter and the receiver. The amplitude of these reflections gradually
diminishes in time such that the first reflection is the largest and thus
the most important. Fig. 2.3 confirms that this first reflection occurs
approximately 1 ns after the main pulse, inducing a ripple with a period of
approximately 1/1 ns = 1 GHz in the frequency responses of Fig. 2.2. In
fact, this delay of 1 ns is approximately the time Tr required for a signal to
propagate over 20 cm of the interconnect. Since an electromagnetic wave
travels at the speed of light divided by the square root of the effective
relative permittivity of the medium, in which this wave travels, this time
is given by

Tr =
√
εr,I

0.2m
3 · 108 m/s

. (2.4)

In (2.4), εr,I represents the effective dielectric constant of the microstrip
interconnect, which is, for the non-homogeneous medium, between the
permittivity of the air (= 1) and the permittivity of the dielectric (= 4).
Subsequently, substituting εr,I with any value within this range confirms
that the reflection is to be expected after approximately 1 ns.
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Figure 2.3: Chip-to-chip interconnect: visualization of the 10th percentile p10,
the 50th percentile p50, and the 90th percentile p90 of the impulse response
(Hch(u))1,1 in the case of σr = 3% as a function of u. This channel suffers from
reflections with a period of approximately 1 ns.

Although manufacturing tolerances in the production process result in chan-
nel realizations that all (slightly) differ from each other, once in operation,
the channel response of each particular channel is assumed to be constant in
time, because external factors such as temperature only mildly influence the
properties of the microstrip. Consequently, the sets of channel realizations
corresponding to the different values of σr consist all of 1000 time-invariant
channels.

The presented chip-to-chip interconnect above is an example channel of an
electrical interconnect in chip-to-chip communication. In practice, these chip-
to-chip interconnects can be found in processor-to-memory interfaces, and in
the multi-layer backplanes of server/router systems and multi-processor sys-
tems. Recent research indicates that bit rates up to 100 Gb/s are targeted in
the near future [7, 8, 9, 10, 11, 12].

The communication over this chip-to-chip interconnect is investigated in
Chapters 5, 6, and 9.

2.3 Multipath wideband channel

In the wireless multipath channel [13], the moving receiver obtains multiple
copies of the transmitted signal by means of several reflections, each with a
distinct delay, magnitude and phase. Hence, the received pulse is a distorted
version of the transmitted pulse due to the frequency-selective nature of the
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channel. Moreover, the delays, the magnitudes, and the phases of the various
reflections change in time due to the movement of the receiver such that the
channel response also suffers from time-variability.

As the actual channel behavior cannot be exactly predicted, a statistical
model must be employed to characterize the channel. Hence, the MIMO chan-
nel impulse response Hch(u, t) (in complex-valued baseband notation) is as-
sumed to be a zero-mean random process with the autocorrelation function
RHch

(·) defined by

RHch
(u1, u2, t1, t2, i1, i2, j1, j2) = E

[
(Hch(u1, t1))i1,j1 (H∗ch (u2, t2))i2,j2

]
.

(2.5)
Expression (2.5) can be simplified by the following assumptions:

• The channel impulse response from channel input j1 to channel output i1
is assumed to be independent from all other channel impulse responses.
Consequently, the autocorrelation function RHch

(·) from (2.5) is different
from zero only when (i1, j1) = (i2, j2).

• The autocorrelation function RHch
(·) from (2.5) does not depend on the

separate values of t1 and t2, but only on the time difference ∆t between
t2 and t1, i.e., ∆t = t2 − t1. A random process possessing this property
is said to be wide-sense stationary.

• No correlation is present between the different reflections such that the
amplitudes and the phases of the different paths are uncorrelated as well.
As a result, the autocorrelation of the channel disappears when u1 6= u2.
This property is referred to as uncorrelated scattering.

Consequently, the autocorrelation function RHch
(·) can be written as

RHch
(u1, u2, t1, t2, i1, i2, j1, j2) = R̂Hch

(u1,∆t)δ(u1 − u2)δi1−i2δj1−j2 . (2.6)

Next, the correlation R̂Hch
(u,∆t) in (2.6) can be decomposed into two terms,

i.e.,
R̂Hch

(u,∆t) = pd(u)Rt(∆t), (2.7)

due to the assumption that the frequency-selectivity is independent from the
time-selectivity. In (2.7), pd(u) is called the power delay profile, whose area

is normalized to one, i.e.,
+∞∫
−∞

pd(u) du = 1. The Fourier transform of pd(u),

Rf (∆f), is known as the frequency correlation function, from which the coher-
ence bandwidth Bc is determined as the bandwidth over which the magnitude
of Rf (∆f) is more than half its maximum value. The function Rt(∆t) in (2.7)
is called the time correlation function and this function is equal to the inverse
Fourier transform of the Doppler spectrum pD(ν), whose area is again normal-

ized to 1 (
+∞∫
−∞

pD(ν) dν = 1). Additionally, the coherence time Tc is analogously
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defined as the coherence bandwidth, i.e., the interval over which the magnitude
of the time correlation function is at least half its maximum value. This work
considers only the case in which the symbol period is significantly smaller than
the coherence time and the transmitted bandwidth is larger than the coher-
ence bandwidth. Consequently, the MIMO channel is frequency-selective, but
only shows weak time-variant behavior such that the MIMO channel can be
assumed to be quasi-static during the transmission of a block of data symbols.



3
Overview of equalization schemes

This chapter concentrates on the different receiver and transmitter schemes
that have been presented in the literature to handle the interference and the
noise induced by a frequency-selective channel (Chapter 2). To this end, the
general problem is formulated and commented on in Section 3.1 and the basic
principles of various equalization schemes are subsequently presented in Section
3.2. First, the optimal detection in terms of error performance is considered
in Subsection 3.2.1. Due to its large complexity, the resulting optimal receiver
is most often not realizable in practice. Hence, the suboptimal equalization
schemes from Subsections 3.2.2-3.2.5 are more suitable. For instance, the lin-
ear equalization scheme (Subsection 3.2.2) employs linear filters to reduce or
even to completely eliminate the ISI, after which a symbol-by-symbol detector
attempts to recover the original data. In the case of the DFE equalization
scheme from Subsection 3.2.3, a linear feedback filter acting on the previously
detected symbols tries to improve the performance of the linear equalization
scheme. The resulting equalizer is referred to as nonlinear, because of the non-
linear operation involved in the symbol detection. Transferring this feedback
filter from the receiver to the transmitter results in an equalization scheme
called the THP equalization scheme (Subsection 3.2.4). As for PRS in Subsec-
tion 3.2.5, the coefficients of the feedback filter are limited to the set of integers,
such that the symbol-by-symbol detector can directly act on the target response
that possesses a controlled amount of ISI. The idea is that by allowing some ISI
at the detector input, the task of the equalizers simplifies and the performance
therefore improves. Finally, an overview is given of the equalization schemes
that are considered in this dissertation.

To illustrate the different equalization schemes, each equalization scheme is

15
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Figure 3.1: Problem statement: data transmission over a MIMO frequency-
selective communication channel Hch(f).

applied to a random SISO example channel such that its main characteristics
are highlighted. In this chapter, no details are given on how to compute the
optimal equalizers, as this becomes apparent in the chapters below.

For simplicity, this chapter assumes that the channel is time-invariant and
employs the complex-valued baseband notation.

3.1 Problem statement

A general block diagram of the data transfer from the transmitter to the receiver
over a frequency-selective MIMO channel Hch(f) is shown in Fig. 3.1. The data
typically consists of Ndat sequences of data symbols that are simultaneously
applied to the transmitter at a symbol rate 1/T . The task of the transmitter
is to convert this input data sequence into a continuous NT × 1 transmitted
signal s(t). Due to the XT and the frequency-selective nature of the NR ×NT

MIMO channel Hch(f), this transmitted signal is linearly distorted, inducing
ISI in the NR × 1 received signal r(t). Moreover, a noise vector n(t) is added
to the received signal r(t). The task of the receiver is to correctly retrieve the
Ndat original input data sequences from the noisy and linearly distorted signal
r(t). Hence, the optimization problem to be solved essentially amounts to
jointly designing the data conversion at the transmitter and the signal recovery
at the receiver. Below, some fundamental principles of most transmitters and
receivers are given.

At the transmitter, linear digital modulation is often employed to transform
a discrete-time sequence {a(k)}, whose elements are independently drawn from
a finite set, into the continuous-time signal s(t) according to

s(t) =
+∞∑

m=−∞
HTX(t−mT )a(k −m). (3.1)

In (3.1), the transmitted signal s(t) consists of a sum of multiple translated
pulses characterized by the NT × Ndat transmit filter HTX(t). Indeed, the
(i, j)th element of the matrix HTX(t−mT ) represents the contribution of the
mth element of the jth data sequence to the ith element of the transmitted sig-
nal s at time instant t. The most elementary form of linear digital modulation
occurs when all data symbol sequences are independently transmitted using
the same SISO transmit filter hTX(t), meaning that Ndat = NT and only the
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diagonal elements of HTX(t) are nonzero and equal to hTX(t). This diagonal
matrix HTX(t) is denoted by H

(d)
TX(t).

The receiver aims to recover the original data sequence {a(k)} based on
the received signal r(t), which is a noisy and linearly distorted version of the
transmitted signal s(t). The typical structure of a receiver is as follows: first,
a receive filter HRX(f), also called an anti-aliasing filter, selects the desired
frequency interval from r(t), thereby suppressing any unwanted interference
and noise contributions lying outside this frequency interval. Again, the sim-
plest implementation of this receive filter is to filter each channel output in-
dividually with the receive filter hRX(t). Similarly to H

(d)
TX(t), the resulting

diagonal matrix HRX(t) is denoted by H
(d)
RX(t). Next, a sampler, possibly op-

erating at a multiple of the symbol rate, generates a discrete-time version of
the continuous-time and filtered received signal. Finally, a detection algorithm
takes the sampled signal as input and computes the decisions â(k).

To achieve ISI-free communication in the case of a SISO channel, the
Nyquist criterion [14] dictates that the periodic extension with period 1/T
of the overall frequency response, i.e., the cascade of the transmit filter, the
channel, and the receive filter, must be constant and equal to T . This cri-
terion is extended in [15] to MIMO channels. One immediate consequence
of the Nyquist criterion is that the one-sided bandwidth of the transmit and
the receive filter must be at least 1/2T if no ISI is allowed. In practice, the
transmit filter hTX(t) and the receive filter hRX(t) are often chosen to be a
root-raised-cosine (RRC) filter with bandwidth 1/T and a roll-off factor β with
0 ≤ β ≤ 1, as their convolution is a raised-cosine pulse, and thus satisfies the
Nyquist criterion.

In this dissertation, only uncoded transmission is considered. Moreover, the
scope of this dissertation is limited to continuous transmission1, meaning that
only the steady-state performance of an infinite data sequence is investigated.
Alternatively, one could envisage block transmission, in which the data stream
is divided into data blocks that are separately transmitted over the channel.
Examples of commonly employed block-based techniques to manage the ISI are
orthogonal frequency division multiplexing (OFDM) [16] and frequency-domain
equalization [17, 18], which divide a frequency-selective channel in many flat-
fading subchannels. A long enough guard interval or cyclic prefix between
the different blocks must be inserted to avoid interblock interference (IBI).
For long channel responses, however, this long guard interval comes at the
expense of either a decreased throughput or large symbol blocks; long blocks
increase not only the latency, but also the memory requirements. Finally, the
equalization problem to be solved in the case of block transmission is inherently

1In Chapter 8, block transmission is considered, as regular estimates of the channel must
be computed by means of pilot symbols. However, the block length is chosen to be quite
large and time-invariant (at least during one data block) equalization filters are employed to
compensate for the channel impairments. Hence, no block-based techniques to manage the
ISI are employed and as for the design of the equalization filters, the mathematical problem
is identical as in the case of continuous transmission.
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different from the one in the case of continuous transmission, as the former can
be interpreted as a MIMO flat-fading channel [19], in which only XT and no
temporal ISI is present.

3.2 Equalization schemes
This section reviews several equalization schemes and detection algorithms that
have been presented in the literature to handle the ISI and the noise induced
by the frequency-selective (MIMO) channel. First, the optimal detection in
terms of error performance is summarized in Subsection 3.2.1. Its large com-
plexity, however, motivates the usage of computationally less complex symbol-
by-symbol detectors, combined with some kind of equalization. In total, four
equalization schemes are discussed:(i) the linear equalization scheme in Subsec-
tion 3.2.2, (ii) the DFE equalization scheme in Subsection 3.2.3, (iii) the THP
equalization scheme in Subsection 3.2.4, and (iv) the PRS equalization scheme
in Subsection 3.2.5. Finally, Subsection 3.2.6 outlines not only which equal-
ization schemes, but also which channel models are discussed in subsequent
chapters.

The CSI is assumed to be perfectly known at both the transmitter and
the receiver in the brief discussion below, as the emphasis lies on the different
equalization schemes. In practice, this assumption is, especially at the trans-
mitter, not always valid. The designs of the different equalization schemes
can be adopted to take the imperfections of the CSI into account, as will be
demonstrated in subsequent chapters.

3.2.1 Optimal detection
The goal of the receiver is to detect the transmitted sequence {a(k)} based
on the received signal r(t). Due to the noise, completely error-free detection
is impossible. Let us define the error probability as the probability that the
detected sequence differs from the transmitted sequence. The error probabil-
ity is minimized by taking the maximum a posteriori (MAP) decision. This
decision is given by aMAP = arg max

a
p(a|r), where p(a|r) is the posterior prob-

ability of a symbol sequence a, and the maximization is over all allowed data
sequences. Interestingly, Bayes’s theorem states that the posterior probability
can be rewritten as

p(a|r) =
p(r|a)p(a)

p(r)
. (3.2)

Since the probability p(r) is independent of the data symbols, the maximization
of p(a|r) is equivalent to the maximization of p(r|a)p(a). When the prior prob-
ability p(a) is uniform over all data symbol sequences, one could equivalently
maximize the likelihood p(r|a) with respect to a instead of the posterior prob-
ability p(a|r). The corresponding optimal receiver is known as the maximum
likelihood sequence detector (MLSD).
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For both SISO and MIMO communication, the MLSD has been extensively
studied in the literature [20, 21, 22, 23, 24]. The MLSD consists of a filter(bank)
matched to the cascade of the transmit and channel filter, followed by a symbol-
rate sampler and a sequence detection algorithm, of which the Viterbi algorithm
is a well-known example. Considering a filter with impulse response h(t) and
transfer function H(f), the corresponding matched filter has impulse response
h∗(−t) and transfer function H∗(f). It has been shown that the symbol-rate
sampled output of the matched filter(bank) forms a sufficient statistic of r(t).
The noise samples at the output of the matched filter are often correlated.
Therefore, it is convenient to add a whitening filter, which can be computed
by means of spectral factorization. The complete chain of the transmit filter,
the channel filter, the matched filter, the sampler and the whitening filter is
then equivalent to a frequency-selective discrete-time causal channel with white
noise such that the Viterbi algorithm can be applied to its output.

The main problem of the optimal detector is that the complexity of the
Viterbi algorithm is exponential in both the channel memory and the number
of data sequences, hence limiting the practicability of this detector. Therefore,
less computationally complex but suboptimal alternative equalization schemes
are proposed below.

3.2.2 Linear equalization

A more practically feasible alternative to the optimal detector is the linear
equalization scheme, in which one or more linear equalization filters attempt to
reduce or even completely eliminate the ISI induced by the MIMO frequency-
selective channel. Afterwards, a simple symbol-by-symbol detector acts on the
decision variable to recover the transmitted data symbol, by selecting the sym-
bol that has the smallest Euclidean distance to the decision variable. The com-
plexity of this detector is far less than the complexity of a sequence detector.
As the symbol-by-symbol detector ignores the correlation of the noise contri-
butions to the decision variables, only suboptimal performance is achieved.

For a given transmit filter HTX(f) and channel response Hch(f), the op-
timal linear receiver, for symbol-by-symbol detection, is given by the matched
filter, cascaded with an infinite-length symbol-spaced tapped delay line [20, 21,
25], which can either be implemented as an analog filter or as a digital filter
acting on the sampled output of the matched filter. It is of course desirable
to select the coefficients of the tapped delay line such that the probability of a
decision error is as small as possible, but this optimization is hard to implement
as it is highly nonlinear [26, 27, 28]. In the literature, two common techniques
have been proposed as an alternative, in the case of a infinite-length delay line.
First, the zero-forcing (ZF) equalizer eliminates all ISI and XT by ensuring
that the impulse response of the complete system fulfills the Nyquist criterion.
However, this performance measure does not consider the noise, and the error
performance could thus be impaired by an intolerably large noise enhance-
ment. The second performance measure therefore minimizes the MSE between
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the decision variable and the corresponding data symbol. The resulting min-
imum MSE (MMSE) equalizer ensures that the noise enhancement becomes
not too large, at the expense of residual amount of ISI. At small and medium
signal-to-noise ratio (SNR), the MMSE equalizer yields typically better per-
formance than the zero-forcing equalizer. As the SNR approaches infinity, the
MMSE equalizer converges to the zero-forcing equalizer. For each of the two
performance measures, an additional optimization over the transmit filter is
also possible [29, 30, 21].

Although the complexity in the case of the linear equalization scheme is
drastically smaller than in the case of the MLSD receiver, the practical imple-
mentation of the former equalization scheme still requires some alterations to
the optimal linear equalizer:

• As the matched filter(bank) and the symbol-spaced tapped delay line
depend on the channel transfer function, these filters must be adjusted
when the channel response changes. Especially for the continuous-time
matched filter(bank), this adjustment is a difficult task in practice. As
an alternative, the continuous-time matched filter(bank) is set to a fixed
anti-aliasing filter, often matched to the known invariant transmit filter.
In this case, however, the cascade of the fixed anti-aliasing filter with
an adjustable tapped delay line with symbol-spaced coefficients is only
suboptimal, and a high sensitivity to the sampling delay is perceived.
Alternatively, optimal performance and robustness to the sampling delay
can be achieved by considering a fractionally-spaced equalizer, e.g., a
tapped delay line with multiple taps per symbol interval, because the
cascade of a proper fixed anti-aliasing filter and an adjustable fractionally-
spaced tapped delay line can be made equivalent to the cascade of the
matched filter and the symbol-spaced tapped delay line [20, 21].

• The optimal transmit filter also depends on the channel response. Similar
to the receiver, however, a more convenient practical approach is to im-
plement this optimal transmit filter as a cascade of a fractionally-spaced
tapped delay line and a fixed continuous-time transmit filter.

• All results regarding infinite-length tapped delay lines are essentially only
a theoretical optimum, as any practical tapped delay line is restricted to
a finite number of coefficients. When the delay-line has finite length,
the ZF condition cannot always be met; therefore, the MMSE criterion
is commonly used to determine the filter taps. For a given number of
coefficients, the optimal tapped delay line is not simply constructed by
truncating the optimum infinite-length tapped delay line, but by taking
the exact number of coefficients into consideration during the equalizer
design.

In Fig 3.2, the system model of the practical linear equalization scheme is
presented. The fixed continuous-time transmit and continuous-time receive fil-
ter are symbolized by HTX(f) and HRX(f), respectively. In this dissertation,



3.2. EQUALIZATION SCHEMES 21

Figure 3.2: Conceptual block diagram of a practical linear equalization scheme.
The fractionally-spaced equalization filters P(f) and W(f) have both a finite
number of coefficients.

Figure 3.3: Linear equalization scheme applied to the example discrete-time
SISO channel h(k). The 11-tap linear FIR filter w(k) is computed according
to the MMSE criterion, i.e., the MSE between the decision variable and the
transmitted data symbol is minimized, here, at a SNR of 15 dB.

these continuous-time transmit and receive filters are restricted to be diago-
nal, i.e., HTX(f) = H

(d)
TX(f) and HRX(f) = H

(d)
RX(f). The symbol-spaced or

fractionally-spaced finite impulse response (FIR) tapped delay line at the trans-
mitter and at the receiver are denoted as P(f) and W(f), respectively. For
given H

(d)
TX(f) and H

(d)
RX(f), the optimization problem then in fact translates

to computing the optimal value for the coefficients of P(f) and W(f), usu-
ally according to the MMSE criterion [29, 31, 28, 32]. The joint optimization
of the coefficients of P(f) and W(f) is still an open problem and an itera-
tive algorithm is recommended. When either P(f) or W(f) is absent, this
optimization problem drastically simplifies and becomes fairly straightforward
[33, 34] to solve. Still, when both P(f) and W(f) are present, a better perfor-
mance is expected, as the task of equalization is split among the transmitter
and the receiver.

The equalization by means of an 11-tap linear equalizer at the receiver is
presented in Fig. 3.3, which considers a linear and practical FIR equaliza-
tion filter w(k) applied to a random SISO example channel characterized by a
discrete-time response h(k). This response can be interpreted as the sampled
cascade of the transmit filter, the channel filter and the receive filter. The var-
ious impulse responses shown on these figures confirm that the linear equalizer
w(k) removes part of the ISI generated by the channel: using z-transforms, we
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Figure 3.4: Conceptual block diagram of a practical DFE equalization scheme.
Compared to the linear equalization scheme, the feedback filter B(f) now elim-
inates (part of) the causal ISI.

have H(z)W (z) ≈ 1. The linear equalizer w(k) in Fig. 3.3 minimizes the MSE
between the decision variable and the transmitted data symbol.

In the remainder of this dissertation, we refer to this equalization scheme
as the linear equalization scheme.

3.2.3 Decision-feedback equalization

At the cost of only a small increase in complexity, the performance of the
linear equalization scheme can be significantly enhanced by adding a linear
feedback filter B(f) that operates on the previously detected data symbols.
As a result, the equalization structure at the receiver consists of a feedforward
path between the received signal and the decision variable and a feedback path
between the detected data and the decision variable. Because the symbol-by
symbol decision device performs a nonlinear function on its input, the overall
equalization scheme is referred to as nonlinear. Since this nonlinearity greatly
complicates the exact computation of the optimal equalizers, this equalization
scheme is typically designed while assuming that the previously detected sym-
bols are correct. With this assumption, the equalizer design simplifies, as the
relationship between the transmitted data and the input to the decision device
becomes linear.

Similar to the linear equalization scheme, the optimization of the mini-
mum error probability turns out to be relatively complicated [35] such that
the ZF and the MMSE criterion are again more viable options in the case of
infinite-length equalizers. The optimal feedforward equalizer at the receiver
for both criteria has been shown to be equal to the matched filter(bank) fol-
lowed by a tapped delay line [20, 21, 36, 37, 38, 39]. Contrary to the linear
equalization scheme, however, the tapped delay line must only counteract the
anti-causal ISI, because the feedback filter is able to eliminate all causal ISI.
The ZF feedforward equalizer completely removes this anti-causal interference
with the smallest amount of noise-enhancement possible, whereas the MMSE
feedforward equalizer allows some residual anti-causal ISI with the aim of a
lower noise enhancement. In general, less noise enhancement is to be expected
for the DFE equalization scheme than for the linear equalization scheme as the
noise enhancement associated with the reduction of the causal ISI is avoided.
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For a given structure of the receiver, an additional optimization of the transmit
filter HTX(t) has been proposed in [39, 40].

Just as for the the linear equalization scheme, the matched filter and the
infinitely long feedforward and feedback tapped delay lines are not practical
to implement. Therefore, the same modifications to the optimal equalization
scheme as for the linear equalization scheme are proposed. First, the cascade of
the matched filter(bank) and the feedforward tapped delay line is approximated
by the fixed anti-aliasing filter H

(d)
RX(f) followed by a (fractionally-spaced) FIR

feedforward filter W(f). Moreover, the feedback filter B(f) is assumed to
contain only a limited number of feedback taps, which implies that the finite-
length feedback filter can remove only a part of the causal ISI. The resulting
receiver optimized with the MMSE criterion has been previously investigated in
[41, 42, 43]. At the transmitter, the linear filter is implemented as the cascade
of a (fractionally-spaced) FIR filter P(f) followed by a fixed continuous-time
filter H

(d)
TX(f) [44]. Note that the joint optimization of a finite W(f), a finite

P(f), and a finite B(f) is still an open problem. The resulting practical DFE
equalization scheme is schematically depicted in Fig. 3.4.

In this dissertation, the feedback filter is assumed to be strictly causal,
meaning that the output of the feedback filter at the current time instant is a
weighted sum of decisions corresponding to past time instants only. In the case
of MIMO communication, one could, however, perform the symbol-by-symbol
detection of the different data streams successively, and extend this weighted
sum to the decisions associated with the current time instant from the already
detected data streams [41]. Naturally, this extended feedback filter is expected
to yield better performance, especially when the order in which the different
data streams are detected is optimized. For a flat-fading MIMO channel, this
latter approach is known as Bell Laboratories Layered Space-Time (BLAST)
[45]. A minor disadvantage of this feedback filter is that the various decisions
at the current time instant must be made sequentially, such that the different
symbol-by-symbol detectors cannot be implemented in parallel.

To correctly evaluate the error performance of this equalization scheme,
one must consider the effect of error propagation at the receiver. Indeed, when
(part of) the previously detected symbols are erroneous, the associated causal
interference does not disappear and possibly even enlarges. The error propaga-
tion problem can be modeled as a stationary Markov chain. However, exactly
computing the transitions probabilities becomes problematic for feedback fil-
ters with a large number of feedback taps. The easiest method to quantify the
effect of the error propagation on the error performance is therefore either a
Monte Carlo simulation or an upper bound [46].

Fig. 3.5 shows the optimal MMSE equalizer when the DFE equalization
scheme is applied to the same example channel as in Fig. 3.3. Clearly, the
feedback filter eliminates all causal ISI associated with the time delays on which
it is active on the condition that the previously detected data symbols are
correct. Consequently, the design of the feedforward equalizer could neglect
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Figure 3.5: The DFE equalization scheme applied to the example discrete-
time SISO channel h(k). The linear FIR filters w(k) and b(k) are computed
according to the MMSE criterion, i.e., the MSE between the decision variable
and the transmitted data symbol is minimized, here, at a SNR of 15 dB. The
3-tap feedback filter clearly removes all ISI corresponding to the time delays
on which it is active, whereas the 11-tap linear feedforward filter w(k) reduces
the remaining ISI.

Figure 3.6: Conceptual block diagram of a practical THP equalization scheme.
Compared to the DFE equalization scheme, the feedback filter is transferred
from the receiver to the transmitter.

this causal ISI and thus completely focuses on the ISI that is not canceled by
the feedback filter. Hence, compared to the linear equalizer, the task of the
feedforward equalizer facilitates, yielding smaller noise enhancement and in
general improved performance. In z-transform notation, we have H(z)W (z)−
B(z) ≈ 1, or, equivalently, H(z)W (z) ≈ 1 +B(z).

In the remainder of this dissertation, we refer to this equalization scheme
as the DFE equalization scheme.

3.2.4 Tomlinson-Harashima precoding
THP has originally been proposed as an equalization technique at the transmit-
ter to mitigate the causal ISI generated by a frequency-selective SISO channel
[47, 48, 49, 50, 51, 52]. Basically, one can interpret this THP equalization
scheme as the DFE equalization scheme, where the feedback filter is trans-
ferred from the receiver to the transmitter. Consequently, the design principles
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of the DFE equalization scheme can be applied here as well, meaning that
one can again employ either the ZF criterion (for infinite-length tapped delay
lines) or the MMSE criterion (for infinite-length or finite-length delay lines)
to compute the equalization parameters. The main advantage of moving the
feedback filter to the transmitter is that error propagation is avoided, as data
symbols are perfectly known at the transmitter. This feedback filter could,
however, give rise to intolerably large transmit signals. The standard approach
to face this problem is to apply a modulo operation at the transmitter, hence
restricting the magnitude of the transmitted signal. The combination of the
feedback structure at the transmitter with the modulo operator is often referred
to as the THP precoder. At the receiver, the data is recovered by performing
symbol-by-symbol detection in the extended symbol set, which is the periodical
extension of the regular symbol set.

The THP at the transmitter has also some disadvantages. First of all, CSI
must be available at the transmitter, which is not evident in practice as a this
requires a return channel in most applications. Second, the transmitted energy
increases beyond the energy of the regular symbol set, due to the modulo
operator. This is referred to as the power loss. Interestingly, the impact of
this power loss diminishes for larger symbol sets. Thirdly, the average number
of nearest neighbors in the case of THP slightly increases as the symbol-by-
symbol detection is now performed with respect to the extended symbol set
instead of the regular symbol set; the corresponding degradation is referred to
as the modulo loss.

In [53, 54, 55], the THP scheme has been extended to the flat fading MIMO
channel to eliminate (part of) the XT caused by the channel. Similar to
BLAST, the performance of this THP scheme can be improved by optimiz-
ing the order of the different symbol streams [56]. THP has been proposed
for a frequency-selective MIMO channel [34, 56, 57, 58, 59] as well in the case
of both point-to-point and point-to-multipoint transmission. In this case, the
precoder possesses always a causal feedback filter to compensate for all ISI
and XT generated by past data symbols, whereas it is possible to additionally
eliminate the XT generated by simultaneous symbols in already processed data
streams. In this dissertation, only the ISI and XT caused by past symbols are
eliminated by the precoder.

A conceptual block diagram of the THP equalization is presented in Fig. 3.6.
Comparing this block diagram with the block diagram of the DFE equalization,
one can indeed interpret the THP equalization scheme as the DFE equalization
with the feedback filter transferred from the receiver to the transmitter, since,
apart from the feedback filter, the equalization schemes are very similar. The
transmit and the receive filter are assumed to be independent from the specific
channel, and the linear FIR equalizers P(f) and W(f) must tackle the ISI that
is not removed by the feedback filter T(f). Again, the joint optimization of all
filters is still an open problem.

Fig. 3.7 displays the different impulse responses acquired when the THP
equalization scheme with an 11-tap linear filter w(k) and a 3-tap feedback
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Figure 3.7: The THP equalization scheme applied to the example discrete-time
SISO channel h(k). The linear filters w(k) and t(k) are computed according to
the MMSE criterion. The 3-tap feedback filter t(k) and the 11-tap FIR filter
w(k) only slightly differ from the feedback and feedforward filter from the DFE
equalization scheme due to the power loss.

Figure 3.8: Conceptual block diagram of a practical generalized PRS equaliza-
tion scheme. Contrary to the literature, the TIR matrix T contains spatial,
temporal, and ST components.

filter t(k) is applied to the SISO example channel h(k). The similarities of
the obtained w(k) and t(k) to the optimal w(k) and b(k) in the case of the
DFE equalization scheme are apparent, as they only (slightly) differ due to the
power loss induced by the modulo operator. In z-transform notation, we have

1
1+T (z)H(z)W (z) ≈ 1, or, equivalently, H(z)W (z) ≈ 1+T (z), so that T (z) can
be viewed as the feedback filter B(z) from the DFE that is moved from the
receiver to the transmitter.

In the remainder of this dissertation, we refer to this equalization scheme
as the THP equalization scheme.

3.2.5 Partial-response signaling

All equalization schemes considered above aim to considerably reduce the ISI,
such that the decision variable becomes a noisy observation of the transmitted
data symbol; this is referred to as FRS. In the case of PRS [60, 20], the equalizer
aims to produce a noisy version of a specific linear combination of the actual
and some of the previous data symbols, hence allowing a controlled amount of
residual ISI; the coefficients of this linear combination constitute the (finite-
length causal) TIR. For the sake of a concise explanation, we consider SISO
duobinary signaling [61, 62, 63, 64], with the z-transform of the TIR given by
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1 + z−1. Hence, the decision variable u(k) at instant k is a noisy version of
uT(k) = a(k) + a(k − 1). Assuming that a(k) ∈ {−1, 1}, we have uT(k) ∈
{−2, 0, 2}. The receiver then makes a decision ûT(k) by selecting the element
from {−2, 0, 2} which is closest to u(k), after which the symbol decisions â(k)
are obtained from ûT(k) using decision-feedback, i.e., â(k) is the element from
{-1, 1} which is closest to ûT(k)− â(k − 1). The advantage of PRS over FRS
is that a better equalizer performance (in terms of MSE) can be obtained for
a well-selected TIR. Unfortunately, the feedback structure that computes â(k)
from ûT(k) is prone to error propagation. Alternatively, one can transfer this
feedback structure to the transmitter; the resulting structure is known as a
PRS precoder. This PRS precoder has some resemblance with THP, but due
to the integer coefficients of the feedback taps, the precoded data symbols are
independent and uniformly distributed over the original symbol set. Hence, in
contrast to the THP precoder, the PRS precoder does not induce any power
loss.

Interestingly, a relation between PRS and lattice-reduction-aided (LRA)
equalization has been established in [65, 66, 67]. The LRA equalization tech-
nique has been proposed in the context of flat fading MIMO channels, which
induce only spatial XT. More precisely, LRA equalization expresses the channel
matrix H as the product H = HredT of a reduced channel matrix Hred and
an unimodular matrix T. Consequently, the matrices H and Hred generate
the same lattice. The receiver performs linear equalization with respect to the
reduced channel, yielding an equalized channel output which is a noisy version
of the transformed data aT = Ta. Assuming that the components of a belong
to the set {0, 1, ...,M − 1}, the components of aT are integers. The receiver
makes a decision âT by rounding the components of the equalized channel out-
put to the nearest integer. Finally, the decision â is obtained by selecting the
i-th component of â as the element from {0, 1, ...,M − 1} that is closest to the
i-th component of T−1âT . The unimodular matrix T is computed by means
of a lattice reduction algorithm, e.g, the Lenstra-Lenstra-Lovasz (LLL) algo-
rithm [68] or the element-based reduction algorithm [69], typically yielding a
reduced channel matrix that is better conditioned than the original channel
matrix, i.e., closer to being orthogonal. Consequently, compared to equalizing
the original channel matrix, better performance is achieved by equalizing this
reduced channel matrix, for both the ZF and the MMSE criterion. This pro-
cedure has been applied to block transmission over frequency-selective SISO
channels [70] and over frequency-selective MIMO channels [71] and to mitigate
the XT in MIMO OFDM [72]. In this dissertation, the focus lies on continuous
transmission over a frequency-selective MIMO channel with time-invariant fil-
ters such that these block transmission techniques cannot be applied. However,
the proposed MIMO PRS system could be interpreted as a generalization of
the LRA equalization to frequency-selective MIMO channels. s

Although PRS has already been described in the literature for the continu-
ous transmission over the frequency-selective SISO channel and the flat-fading
MIMO channel, no general PRS equalization scheme has been studied for the
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Figure 3.9: The PRS equalization scheme applied to the example discrete-time
SISO channel h(k). The 11-tap linear filter w(k) is computed according to the
MMSE criterion, whereas the TIR t(k) is set to duo-binary. By allowing some
residual interference, the TIR t(k) can be designed to the specific channel,
yielding a possibly lower MSE between the target response and the decision
variable than for the linear equalization scheme with FRS.

frequency-selective MIMO channel, as previous studies confine the TIR either
to temporal-only or spatial-only components. This dissertation therefore pro-
poses a general PRS precoder whose TIR contains both spatial, temporal, and
ST components. The definition of these components is similar to the definition
of spatial, temporal, and ST interference in Subsection 2.1.1, since the TIR
matrix T = [T(0) T(1) · · ·T(LT)] represents in fact the desired residual ISI.
Hence, the desired XT originated from data symbols transmitted at the same
time instant define the spatial components and are characterized by the matrix
T(0). Moreover, all diagonal elements of the matrices {T(m)|m > 0} consti-
tute the temporal components of the TIR, whereas all non-diagonal elements of
the matrices {T(m)|m > 0} specify the desired XT from data symbols trans-
mitted at different time instants. A conceptual block diagram of this general
ST PRS precoder is presented Fig. 3.8. The linear equalizers P?

f and W?
f

again attempt to eliminate any undesired ISI and can be computed by means
of similar techniques as for the equalization schemes above. Remark that the
TIR of the general ST PRS precoder simplifies to a temporal-only TIR when
T(0) = I and T(m) is diagonal and to a spatial-only TIR when T(m) = 0.
Additionally, most contributions in the literature assume that the TIR is given,
and no optimization with respect to the TIR is performed at all, resulting in
an inferior trial-and-error selection of the TIR. One goal of this dissertation
is to propose an algorithm to optimize the TIR for a given frequency-selective
MIMO channel.

The mechanism of PRS is illustrated in Fig. 3.9, which applies duo-binary
precoding to the SISO example channel h(k). Here, the aim of the 11-tap
equalizer w(k) is not to remove most of the ISI, but to ensure that the convo-
lution h ∗w matches the duo-binary target response t(k) = δk + δk−1 as closely
as possible; in z-transform notation, H(z)W (z) ≈ T (z). Interestingly, the cor-
responding MSE between the target response and this convolution turns out
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to be more than 25% smaller than the MSE in the case of FRS for the linear
equalization scheme with an 11-tap equalizer w(k) (Fig. 3.3), proving that al-
lowing a controlled amount of interference can indeed improve the equalization
performance.

In the remainder of this dissertation, we refer to this equalization scheme
as the PRS equalization scheme.

3.2.6 Overview of the investigated equalization schemes
The purpose of this section is to provide an overview of the equalization schemes
investigated in this dissertation. In total, three different types of channel knowl-
edge are considered: (i) in the case of perfect CSI, the channel is perfectly
known at both the transmitter and the receiver; (ii) in practice, this CSI is
often acquired by means of channel estimation, which is never perfect, due to
the noise and the (processing) latency; and (iii) in the case of small to mod-
erate channel variability, different channel realizations could bear significant
resemblance, which can be exploited to lower the complexity by considering
fixed equalization parts, that are not adjusted according to the actual channel
realization. For clarity, Table 3.1 displays which equalization schemes are inves-
tigated in the different chapters for the different types of channel knowledge. As
for the linear equalization scheme, the DFE equalization scheme, and the THP
equalization scheme, the case of perfect CSI and the case of imperfect channel
estimation have already been well documented in the literature. In this disser-
tation, however, these equalization schemes are discussed in more detail in the
case of channel variability in Chapters 5 and 6. The general MIMO PRS pre-
coder for frequency-selective channels has not been previously discussed in the
literature. This dissertation therefore first discusses the generalized PRS equal-
ization scheme when the CSI is perfect in Chapter 7. Subsequently, Chapter
8 and Chapter 9 study the design of the equalization parameters of the gen-
eralized PRS scheme in the case of imperfect channel estimation and in the
case of channel variability, respectively. In all Chapters, the focus lies entirely
on practically realizable filters, i.e., finite-length filters, and all equalization
parameters are designed according to the MMSE criterion.

In this dissertation, the focus lies on spatial multiplexing, meaning that
Ndat is chosen to be as large as possible on the condition that decent (error)
performance is still possible. As only symbol-by-symbol detectors are employed
in this dissertation, one must therefore be able to spatially distinguish each data
substream at the receiver. Hence, to be able to significantly reduce the ISI in
each data stream Ndat is set equal to min (NT, NR). Notably, this is also the
factor by which the capacity of a flat-fading MIMO channel increases compared
to a system with NT = NR = 1 [73].
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Table 3.1: Overview of the investigated equalization schemes.

Equalization scheme Perfect CSI Imperfect
channel estimation

Channel
variability

Linear [29] [74] Chapter 5
DFE [41] [75] Chapter 5
THP [34] [76] Chapter 6

generalized PRS Chapter 7 Chapter 8 Chapter 9



4
Equalization strategies

The main goal of equalization is to counteract or even completely remove the
ISI and the XT generated by the frequency-selective MIMO channel. This
chapter investigates in general how to design all equalization parameters when
the communication channel is time-invariant but stochastic. First, Section 4.1
briefly introduces the concept of adjustable and fixed equalization parameters.
To design these equalization parameters, an optimization framework is subse-
quently provided in Section 4.2. More precisely, a general optimization problem
is proposed, for which an iterative algorithm is developed to determine both
the adjustable and the fixed equalization parameters. Finally, different optimal
and suboptimal equalization strategies are discussed in Section 4.3.

4.1 Adjustable and fixed parameters

In general, the optimal setting for all equalization parameters depends on the
specific channel realization gch such that all equalization parameters are ide-
ally determined for each channel realization gch individually. In the remain-
der of this work, we call these parameters adjustable equalization parameters
as they are adjusted to the channel realization gch. One major drawback of
these adjustable parameters is their potentially intolerably large associated
computational and/or implementational complexity. Alternatively, consider-
ing equalization parameters that remain constant for all channel realizations
could significantly lower this complexity. Especially when the difference be-
tween the various channel realizations is small to moderate, the performance
degradation compared to the adjustable equalization parameters is expected
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to be limited. As these constant equalization parameters do not adjust to the
specific channel realization, we call them fixed equalization parameters in the
remainder of this work. One of the main objectives of this work is to closely
examine the performance-complexity trade-off between the adjustable and the
fixed equalization parameters by investigating several equalization strategies,
in which either all equalization parameters are adjustable, or all equalization
parameters are fixed, or some equalization parameters are adjustable, while
others are fixed.

4.2 Parameter optimization
To compute the best-performing equalization setting, an objective function f0

is optimized with respect to all equalization parameters, possibly subject to a
constraint f1. This objective function is obviously a function of the channel re-
alization gch and all equalization parameters. More specifically, all adjustable
parameters depend on the channel realization gch as well and they are collected
in the vector x(gch), whereas all fixed parameters are collected in the vector
y. The notation f0(x(gch),y,gch) then explicitly highlights all dependencies.
When only adjustable equalization parameters are present, the optimal x?(gch)
can of course be determined by directly optimizing the objective function f0

corresponding to the specific channel realization gch, i.e., f0(x(gch),gch). How-
ever, when fixed equalization parameters are present as well, the average (over
the channel realizations) f̄0 must be optimized instead. Hence, the optimization
problem that must be solved is the following:

(x?(gch),y?) = arg min
x(gch),y

f̄0(x(gch),y)

= arg min
x(gch),y

∫
fGch

(gch)f0(x(gch),y,gch) dgch

subject to f1(x(gch),y) ≤ 0,

(4.1)

where fGch
(gch) denotes the probability density function (PDF) of the stochas-

tic channel Gch. In this dissertation, the constraint f1 is always a transmit
energy constraint, which is not an explicit function of the channel, because
the transmitted energy is affected only by the equalization parts at the trans-
mitter. Moreover, all equalization parameters that are involved in this energy
constraint are generally either all adjustable or all fixed in this work, simpli-
fying the constraint to f1(x(gch)) ≤ 0 or f1(y) ≤ 0, respectively. Presenting
the general optimization problem in (4.1) as a minimization problem is with-
out loss of generality, as the maximization of a function f0 is equivalent to the
minimization of −f0.

For most choices of f0 and f1, two difficulties prevent to easily solve the
joint optimization problem from (4.1):

• First, a closed-form analytical solution is often particularly difficult or
even impossible to derive. Numerical optimization algorithms could al-
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ternatively be employed to search for the global optimum, but minimiza-
tion problem (4.1) is in general a nonconvex optimization problem. This
nonconvexity makes the search for the global optimum considerably more
difficult as multiple local optima and saddle points co-exist such that the
relatively simple convex optimization methods cannot be employed to
solve this optimization problem. To overcome this difficulty in this dis-
sertation, an alternating optimization method is proposed, in which the
optimal adjustable parameters x?(gch) for given fixed parameters y (sub-
problem (i)) and the optimal fixed parameters y? for given adjustable pa-
rameters x(gch) (subproblem (ii)) are alternately determined. For some
partitions of the equalization parameters into adjustable and fixed param-
eters and a right choice for the objective function f0, e.g., MSE between
a target variable and a decision variable, these subproblems become con-
vex optimization problems for which an analytical solution can easily
be derived, whereas for other partitions and/or more complicated objec-
tive functions, another (possibly iterative) algorithm must be proposed
to solve the subproblems. It should be noted that the optimum solu-
tion of these subproblems does not imply that the set of all equalization
parameters converges to the globally optimum solution of (4.1).

• A second difficulty is that the PDF fGch
(gch) is often not available or

hard to determine accurately. The following approximation is therefore
made:∫

fGch
(gch)f0(x(gch),y,gch) dgch≈

1

Nch

∑
gch∈Gch

f0(x(gch),y,gch) (4.2)

= EGch
[f0(x(gch),y,gch)] , (4.3)

where Gch denotes a subset of Nch channel realizations. The set Gch is
called representative when this set sufficiently captures the statistics of
the channel PDF fGch

(·). In practice, one method to construct such a
set is to measure a considerable number Nch of randomly selected inter-
connects. When this subset Gch is representative, e.g., Nch is sufficiently
large, the arithmetic average in (4.2) is nearly identical to the integral on
the left-hand side in (4.2). In (4.3), the shorthanded notation EGch

[·] is
introduced to denote the arithmetic average over the channel realizations
in the subset Gch.

Next, a more detailed description of the alternating optimization algorithm is
provided with the assumption that the transmit energy constraint depends only
on the adjustable equalization parameters. In the first step of each iteration,
the optimal fixed y? is calculated for a given function x(gch) of the channel
realization. As the fixed parameters do not influence the constraint, the optimal
y? can directly be obtained by solving∫

fGch
(gch)Oyf0(x(gch),y,gch) dgch = 0, (4.4)
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which is approximated by∑
gch∈Gch

Oyf0(x(gch),y,gch) = 0. (4.5)

where Oy(·) represents the column vector containing all first-order derivatives
with respect to the different elements of y.

The second step in each iteration is to determine the optimal function
x?(gch) for a given y. To handle the transmit energy constraint, the Lagrangian
Λx is introduced, i.e.,

Λx(x(gch), λ(gch),gch) = f0(x(gch),y,gch) + λ(gch)f1(x(gch)). (4.6)

To find a stationary point of this function, both the gradient OxΛx and the
derivative ∂Λx

∂λ are computed and equated to zero, i.e.,{
Oxf0(x(gch),y,gch) + λ(gch)Oxf1(x(gch)) = 0

f1(x(gch)) = 0
, (4.7)

where, similarly to Oy(·), Ox(·) denotes the column vector consisting of all
first-order derivatives with respect to the different elements of x. The optimal
adjustable parameters x?(gch) for the given parameter vector y are then the
solution to the system from (4.7).

Algorithm 4.1 Description of the iterative optimization algorithm.
1: Initialize x0(gch), i = 1, f̄0,0 = +∞, and ε = 1.
2: while i ≤ Nmax and ε > γmin do
3: Obtain yi by solving (4.5) with xi−1(gch) given.
4: ∀gch ∈ Gch: Obtain xi(gch) by solving (4.7) with yi given.
5: Calculate f̄0,i = 1

Nch

∑
gch∈Gch.

f0(xi(gch),yi,gch).

6: ε =
f̄0,i−1−f̄0,i

f̄0,i−1
.

7: i← i+ 1.

Algorithm 4.1 presents a detailed description of the alternating optimization
algorithm, about which the following comments can be formulated:

• Since the summation in the computation of the optimal fixed equaliza-
tion parameters in (4.5) is restricted to the Nch channel realizations from
the set Gch, only the Nch associated vectors xi−1(gch) must be computed
in the previous iteration. As a result, the optimal adjustable equaliza-
tion parameters must be computed just Nch times per iteration. More-
over, the iterative computation of the optimal fixed parameters could be
performed offline, using a predetermined, representative subset Gch of
channels. During manufacturing or just before operation, the adjustable
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equalization parameters for one specific channel realization gch are then
obtained by solving the system from (4.7) just once. This optimiza-
tion method scales very well in large bulk applications as the iterative
algorithm is always performed using a set of Nch channel realizations,
irrespective of the total number of channel realizations.

• A combination of two common stopping criteria is employed to terminate
the algorithm. First, the iterative algorithm stops when a predefined
number of iterations, Nmax, is reached. Second, the iterative algorithm
ends when the relative decrease in f̄0 is smaller than a particular γmin.
The advantage of this approach is that both the complexity in terms of
iterations and the accuracy can be easily controlled.

• The transmit energy constraint in Algorithm 4.1 is assumed to be depen-
dent only on the adjustable parameters. When this constraint is influ-
enced only by the fixed parameters, however, a similar algorithm can be
proposed. More precisely, the optimal adjustable equalizers are obtained
by equating Oxf0(x(gch),y,gch) to zero, whereas the stationary points
of the following Lagrangian must be determined to find the optimal y for
given x(gch):

Λy(y, λ) = f̄0(y) + λf1(y). (4.8)

4.3 Proposed equalization strategies
In the remainder of this thesis, several equalization schemes are presented to
equalize the frequency-selective MIMO channel. For each of the investigated
equalization schemes, the following strategies are proposed. In terms of per-
formance, the optimal strategy is to adjust all equalization parameters to the
specific channel realization, and we therefore call this strategy the adjustable
strategy. The main disadvantage of this strategy is that accurate CSI must be
available in the computation of the equalization parameters, inducing a pos-
sibly large complexity. Contrary, the strategy inducing the least complexity
is the fixed strategy, in which all equalization parameters depend only on the
channel statistics and not on the channel realization itself, avoiding the need
for accurate CSI. When both adjustable and fixed equalization parameters are
present, the strategy is called the hybrid strategy, which aims to combine low
complexity with good performance. The iterations between the adjustable and
the fixed parameters of course vanish for the adjustable and the fixed strategy,
as all parameters are either adjustable or fixed. The resulting non-iterative
algorithm is not necessarily less complicated, however, as a proper division
between adjustable and fixed parameters in the hybrid strategy often yields
relatively easy-to-solve subproblems compared to the joint optimization of all
parameters in the case of either the adjustable or the fixed strategy.

The division in the hybrid strategy between the adjustable and the fixed
equalization parameters is crucial for its performance and its complexity. This
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dissertation mostly considers the equalization parameters corresponding to the
transmitter as fixed and the equalization parameters related to the receiver as
adjustable. This way, no accurate CSIT is required, making a return chan-
nel or expensive measurements unnecessary and thus significantly lowering the
complexity. When making the division between the adjustable and the fixed
equalization parameters, one must additionally ensure that the constraints in
(4.1) depend solely on either the adjustable or the fixed equalization parameters
as the alternating approach is otherwise not applicable when the constraints
depend on both types of parameters. In the latter case, satisfying the constraint
in the design of the fixed parameters for a given set of adjustable equalizers is
in particular not straightforward.

In the adjustable, the hybrid, and the fixed strategy above, all equaliza-
tion parameters are computed according to Algorithm 4.1 with the purpose of
optimally solving the optimization problem from (4.1). These strategies are
therefore called the optimal adjustable, the optimal hybrid, and the optimal
fixed strategy. Alternatively, some suboptimal approaches can be formulated
as well, where the objective function is simplified compared to (4.1). For ex-
ample, the minimization process described above designs the fixed equalization
parameters by minimizing the statistical average of an objective function, i.e.,
f̄0. Alternatively, one could neglect all channel variations and design the fixed
equalization parameters by minimizing the objective function f0 evaluated for
the average channel ḡch, defined by

ḡch =

∫
gchfGch

(gch) dgch. (4.9)

This approach, referred to as Suboptimal 1, can first be interpreted as applying
the optimization algorithm of the optimal adjustable strategy to the average
channel, after which all fixed equalization parameters are set equal to the ob-
tained parameters. A second interpretation of this suboptimal approach is that
the set Gch contains only the average channel in the computation of the fixed
equalization parameters in Algorithm 4.1, i.e., Gch = {ḡch}. This suboptimal
approach can be applied to both the hybrid and the fixed strategy, yielding
the strategies suboptimal hybrid 1 and suboptimal fixed 1, respectively. A sec-
ond suboptimal approach, referred to as Suboptimal 2, first designs the fixed
equalization parameters under the assumption that the adjustable equalization
parameters are not present in the equalization scheme. Subsequently, the ad-
justable parameters are added to the equalization scheme and are designed to
combat the residual ISI for each channel realization. The key feature of this
suboptimal approach is that no iterations between the fixed and the adjustable
parameters are required.

In summary, Table 4.1 gives an overview of the different considered strate-
gies.
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Table 4.1: Equalization strategies.
Strategy Description

Optimal
Adjustable all parameters are adjustable

Fixed all parameters are fixed

Hybrid both adjustable and fixed
parameters

Suboptimal 1 Hybrid channel variation is neglected in
the computation of y?Fixed

Suboptimal 2 Hybrid adjustable parameters are omitted
in the computation of y?
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5
Stochastic channel: decision feedback

equalization

This chapter investigates the equalization of a frequency-selective MIMO chan-
nel subject to channel variability in the context of continuous data transmis-
sion, i.e., the equalization scheme considered in this chapter consists of a pre-
equalizer at the transmitter and a DFE at the receiver. More precisely, the
pre-equalizer at the transmitter is a linear FIR MIMO filter that is fraction-
ally spaced, meaning that this filter operates at a multiple of the symbol rate.
The DFE at the receiver comprises (i) a linear, fractionally-spaced FIR filter
called the feedforward filter and (ii) a linear symbol-spaced FIR filter called
the feedback filter that operates on the previously detected symbols. Due to
the filtering of the detected symbols, the equalization structure becomes non-
linear, complicating not only the implementation, but also the optimization of
the equalization parameters and the accurate evaluation of the performance
measures. With the omission of the feedback filter, the equalization scheme
is completely linear and less complex, but its performance is generally inferior
to the equalization scheme with the feedback filter. In Section 5.1, the system
models of both equalization schemes are described in more detail.

With a proper set of equalization coefficients and sufficiently long filters, the
equalization scheme presented here should be capable of counteracting most of
the ISI and XT generated by the stochastic frequency-selective MIMO channel,
while limiting the effects of the noise. For this purpose, the optimization proce-
dure presented in Chapter 4 is applied to this equalization scheme. The MSE
between the decision variable and the transmitted data symbols is an excel-
lent choice for the objective function f0(·), because it combines mathematical

39
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simplicity with excellent performance. More specifically, Section 5.2 applies
the different equalization strategies from Chapter 4, i.e., the adjustable, the
hybrid, and the fixed strategy, to obtain the set of equalization coefficients for
this stochastic channel. For optimal performance, all equalization parameters
are adjustable to each individual channel realization (adjustable strategy) and
these adjustable parameters are obtained by minimizing the MSE conditioned
on the specific channel realization gch. On the other hand, a significant re-
duction in complexity can be achieved by considering fixed equalizers that are
independent to the specific channel realization (fixed strategy), as these fixed
equalization parameters are determined by minimizing the MSE averaged over
all channel realizations. Finally, the hybrid strategy has both adjustable and
fixed equalization parameters. In all computations, the assumption of perfect
decision feedback is made for mathematical simplicity. More precisely, this as-
sumption neglects any error propagation in the feedback structure by assuming
that all previous symbols are perfectly detected.

The description of the system model (Section 5.1) and the derivation of
the MMSE equalizer coefficients (Section 5.2) assume bandpass transmission:
the bandpass signals and bandpass filters are represented in complex-valued
baseband notation. As explained in Section 5.3, the results for bandpass trans-
mission are easily converted to apply to baseband transmission.

One of the key performance measures in any practical communication link
is the probability of some type of transmission error. Therefore, Section 5.4
derives the BER and the symbol error rate (SER) expression for the uncoded
pulse amplitude modulation (PAM) baseband transmission over the equalized
MIMO chip-to-chip interconnect presented in Chapter 2. Additionally, sev-
eral techniques are described to accurately numerically evaluate the obtained
expressions.

To quantify and investigate the performance of the different proposed equal-
ization strategies, numerical results are provided in Section 5.5. Both the (av-
erage) MSE and the (average) BER performance of the M-PAM transmission
over the chip-to-chip interconnect described in Chapter 2 are examined in more
detail.

The standard approach to solve the joint optimization of the MSE with
respect to all equalization parameters is to alternately compute an optimal
value of a subset of the parameters with the other parameters given. Section
5.6, however, discusses two alternative optimization methods, i.e., the saddle-
free (SF) Newton method and the improved bidirectional random optimization
(IBRO) method. Additionally, their advantages and disadvantages compared
to the alternating optimization method are investigated by means of numerical
results.

Finally, concluding remarks are given in Section 5.7.
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Figure 5.1: System model of the equalization scheme consisting of a linear
pre-equalizer at the transmitter and a nonlinear DFE at the receiver.

5.1 System model

Fig. 5.1 displays the system model of a L × L MIMO frequency-selective
communication link that is equalized by means of a fractionally-spaced linear
FIR pre-equalizer P at the transmitter and a nonlinear DFE at the receiver.
More specifically, the DFE at the receiver comprises two linear FIR filters: a
fractionally-spaced feedforward filter W and a symbol-spaced feedback filter B
operating on the previously detected symbols â(k −m).

To transfer information over this communication link, a continuous stream
of complex-valued data symbol vectors {a(k)} is applied to the transmitter.
This data stream contains L spatially parallel substreams, each operating at
a symbol rate 1/T . More specifically, the lth stream is denoted by {al(k)},
l = 1, ..., L, where al(k) denotes the lth component of the vector a(k). The data
symbols are spatially and temporally independent, meaning that E[al1(k)al2(m)] =
σ2

aδl1−l2δk−m, where σ2
a equals the average energy of the elements of the symbol

set C. Because the fractionally-spaced pre-equalizer P operates at a multiple
NP of the symbol rate 1/T , the data input vector a(k) is first upsampled by a
factor NP by inserting NP − 1 zeros between all data symbol vectors, yielding
the sequence {aup(kp)}. Next, this upsampled sequence is applied to the linear
pre-equalizer with impulse response P(n) and tap spacing TP = T/NP, yielding
the pre-equalizer’s output x(kp) given by

x(kp) =

L
(2)
P∑

n=−L(1)
P

P(n)aup(kp − n). (5.1)

Since the pre-equalizer is finite in length, only LP matrices P(n) are nonzero,
i.e., P(n) = 0 ∀n /∈ {−L(1)

P , · · · , L(2)
P } with LP = L

(1)
P +L

(2)
P + 1. Next, each of

the L pre-equalizer’s output streams is applied to a real-valued continuous-time
SISO transmit filter with impulse response hTX(u), yielding the transmitted
signal

s(t) =

L
(2)
P∑

n=−L(1)
P

kp

hTX(t− (n+ kp)TP)P(n)aup(kp), (5.2)
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where all symbols from the stream {aup(kp)} are included in the summation
over kp, i.e., kp ranges from −∞ to +∞. To limit the average transmitted
energy per data symbol, a constraint on the pre-equalizer taps ensures that
this average energy does not exceed a predefined value ETX:

E

 T∫
0

‖s(t)‖2 dt

 = σ2
aTr

 L
(2)
P∑

n1,n2=−L(1)
P

PH(n1)(R̃TX)n1,n2P(n2)

 (5.3)

= σ2
aTr

[
PHRTXP

]
(5.4)

≤ LETX, (5.5)

where the (LLP) × L stacked block matrix P comprises all pre-equalizer co-
efficients and is constructed by stacking all nonzero P(n) matrices into one
matrix, i.e.,

P =
[
PH(−L(1)

P ) · · ·PH(L
(2)
P )
]H

(5.6)

and RTX = R̃TX ⊗ IL. Moreover, all elements of the LP ×LP Toeplitz matrix
R̃TX are defined by

(R̃TX)n1,n2
=

+∞∫
−∞

hTX(t)hTX(t− (n1 − n2)TP) dt (5.7)

=

+∞∫
−∞

|HTX(f)|2 exp (j2πf(n1 − n2)TP) df. (5.8)

Subsequently, all components of s(t) propagate over a frequency-selective
MIMO channel suffering from channel variability as described in Chapter 2.
Here, the main aspects of this channel are briefly recapitulated. Due to the
frequency-selective nature and the mutual coupling of the channels, the trans-
mitted signals are spread out in both time and space, producing ST ISI char-
acterized by the channel impulse response matrix Hch(u), which is assumed to
be time-limited. When the channel is stochastic, e.g., due to manufacturing
tolerances, this impulse response Hch(u) should be considered as the outcome
of a random process, resulting in channel realizations that all (slightly) differ
from each other. Furthermore, the transmission over the channel is affected
by an additive Gaussian circular symmetric stationary noise signal n(t) with
zero mean and E[n(t)nH(t+ u)] = N0δ(u)IL. The received signal can thus be
expressed as

r(t) =

+∞∫
−∞

Hch(u)s(t− u) du+ n(t). (5.9)

At the receiver, all L received signal streams are first individually filtered by
an analog SISO receive filter specified by its impulse response hRX(u), typically
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matched to the transmit filter. These filtered signals are subsequently sampled
at instants kwTW + ε, where TW = T/NW denotes the tap spacing of the
fractionally-spaced feedforward filter W with oversampling factor NW. The
sampling delay ε compensates for any delay introduced by H(u), which denotes
the cascade of the transmit filter, the channel filter, and the receive filter. For
simplicity, this sampling delay is identical for all symbol streams. Next, the
sampled signal is multiplied with a scaling factor α to counteract the energy
constraint imposed on the transmitter, yielding a signal y(kw) that can be
decomposed as

y(kw) = α

L
(2)
P∑

n=−L(1)
P

m

H(kwTW + ε− nTP −mT )P(n)a(m) + αnRX(kwTW + ε),

(5.10)
where

nRX(t) =

+∞∫
−∞

hRX(u)n(t− u) du. (5.11)

Subsequently, the receiver reduces the ISI and XT by means of a DFE compris-
ing two linear FIR filters: a fractionally-spaced feedforward filter with impulse
response matrices W(i) and tap spacing TW operating on y(kw) and a symbol-
spaced feedback filter with impulse response matrices B(m) operating on the
previously detected symbols â(k −m). More specifically, the output z(kw) of
the feedforward filter is given by

z(kw) = α

L
(2)
W∑

i=−L(1)
W

L
(2)
P∑

n=−L(1)
P

m

W(i)H((kw − i)TW + ε− nTP −mT )P(n)a(m)

+ α

L
(2)
W∑

i=−L(1)
W

W(i)nRX((kw − i)TW + ε), (5.12)

where the feedforward filter is time-limited as only L(1)
W anti-causal and L

(2)
W

causal response matrices are assumed to be nonzero, i.e., W(i) = 0 ∀i /∈
{−L(1)

W , · · · , L(2)
W }. As for the feedback filter, its output is defined as the signal

o(k), i.e.,
o(k) =

∑
m∈ΦB

B(m)â(k −m). (5.13)

In (5.13), the set ΦB with LB elements contains all active causal delays of the
feedback filter B, i.e., B(m) 6= 0 ∀m ∈ ΦB ⊆ Z+, with Z+ denoting the strictly
positive integers. Moreover, these active delays do not necessarily coincide with
the time-delay indices {1, · · · , LB}, but the only restriction, imposed by causal-
ity, is ΦB(i) ≥ 1 for i = 1, . . . , LB. The decision variable u(k) is consecutively
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constructed by subtracting the output of the feedback filter o(k) from z(kw)
that is downsampled by a factor NW:

u(k) = z(kNW)− o(k). (5.14)

By plugging (5.13) and (5.12) into (5.14) and after some basic manipulations,
u(k) can be written as

u(k) = α

L
(2)
G∑

m=−L(1)
G

WG(m)Pa(k−m)+αWn̄(k)−
∑
m∈ΦB

B(m)â(k−m). (5.15)

In (5.15), the L× (LLW) augmented block matrix W and (LLW)× 1 stacked
vector n̄(k) are obtained by combining all W(i) and all nRX((kw − i)TW + ε)
into one matrix and vector, respectively, i.e.,

W =
[
W(−L(1)

W ) · · ·W(L
(2)
W )
]

(5.16)

and

n̄(k) =
[
nHRX(kT + L

(1)
W TW + ε) · · ·nHRX(kT − L(2)

W TW + ε)
]H

. (5.17)

Moreover, the block matrix G(m) in (5.15) is constructed as

G(m) =


Ȟm(−L(1)

W ,−L(1)
P ) · · · Ȟm(−L(1)

W , L
(2)
P )

...
. . .

...
Ȟm(L

(2)
W ,−L(1)

P ) · · · Ȟm(L
(2)
W , L

(2)
P )

 (5.18)

with Ȟm(i, n) = H(mT − iTW − nTP + ε). With the assumption that the
channel response is time-limited, i.e., H(u) = 0 ∀u /∈ [−L(1)

H T + ε, L
(2)
H T + ε],

the sequence {G(m)} must be finite in time as well. More precisely, the block
matrix G(m) equals the zero matrix when m is not an element of the set
Φ = {−L(1)

G , · · · , L(2)
G }, where

L
(1)
G =

⌊
L

(1)
H +

L
(1)
P

NP
+

L
(1)
W

NW

⌋

L
(2)
G =

⌊
L

(2)
H +

L
(2)
P

NP
+

L
(2)
W

NW

⌋ . (5.19)

Moreover, the total number of elements in the set Φ is denoted by LG, i.e., LG =

L
(1)
G +L

(2)
G +1. To recover the original data a(k), the symbol-by-symbol detector

finally computes the decision â(k), which is constructed by determining the
closest constellation point to each of the elements of u(k), i.e.,

âl(k) = arg min
a∈C
||ul(k)− a||2. ∀l ∈ {1, · · · , L} (5.20)
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Figure 5.2: System model of the equalization scheme consisting of a linear
equalizer at the transmitter and a linear equalizer at the receiver.

5.1.1 Linear equalization scheme

When the feedback filter is absent, an equalization scheme emerges that pos-
sesses a linear fractionally-spaced FIR equalizer at both the transmitter and
the receiver. This equalization scheme is appropriately called the linear equal-
ization scheme and its system model in Fig. 5.2 is comparable to the general
system model from Fig. 5.1. Obviously, the expression for the decision variable
u(k) in the linear equalization scheme is identical to (5.15) with all feedback
taps set to zero, i.e., B(m) = 0 ∀m, yielding

u(k) = α
∑
m∈Φ

WG(m)Pa(k −m) + αWn̄(k). (5.21)

The main motivation to even consider this equalization scheme is its smaller
complexity than the original equalization scheme as the decision feedback filter
does not have to be computed nor have to be implemented.

5.2 MMSE equalization

To compute a suitable set of equalization parameters, this section applies the
optimization procedure from Chapter 4 to the equalization scheme presented
in the section above. As the channel suffers from channel variability, different
equalization strategies are discussed to counteract the ISI and the XT.

In most practical communication systems, some type of error probability,
e.g., BER, is the most important performance measure. Hence, this error prob-
ability is a good candidate for the objective function f0, except that the mini-
mization of such error probabilities is often mathematically challenging, making
more tractable alternatives more suitable. The most commonly adopted ob-
jective function f0 in the optimization of the equalizer coefficients is the MSE,
which is defined here as the average squared difference between the decision
variable u(k) and the input data symbols a(k). The main advantage of the
MSE as the objective function is its combination of mathematical simplicity
and a more than decent (error) performance.

For mathematical simplicity, all previously detected symbols are assumed
to be perfect in the computation of the MSE such that the error propagation
at the receiver is in fact neglected in the design of the equalization parameters.
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Based on (5.15), the error e(k) between u(k) and a(k) can then be written as

e(k) = u(k)− a(k) (5.22)

= α
∑
m∈Φ

(WG(m)P− δ(m)IL) a(k −m)

+ αWn̄(k)−
∑
m∈ΦB

B(m)a(k −m). (5.23)

The normalized MSE conditioned on the MIMO channel gch, denoted by MSEgch

is defined as

MSEgch
,

E
[
‖e(k)‖2

]
E
[
‖a(k)‖2

] =
E
[
‖e(k)‖2

]
Lσ2

a

, (5.24)

where the expectation E [·] is taken over both the data symbols and the noise.
Since the data symbols and the noise are assumed to be uncorrelated, plugging
(5.23) into (5.24) yields

MSEgch
=

1

L

( ∑
m∈ΦN

‖αWG(m)P− δ(m)IL‖2 +
|α|2

σ2
a

Tr
(
WRn̄WH

)
+

∑
m∈ΦB

‖αWG(m)P−B(m)‖2
)
, (5.25)

where ΦN denotes the set of LN = LG−LB time instants, on which the feedback
filter B is not active, i.e., ΦN = Φ \ ΦB, and Rn̄ is the (LLW) × (LLW)
autocorrelation matrix of the noise vector n̄(k), i.e.,

Rn̄ , E
[
n̄(k)n̄H(k)

]
. (5.26)

This autocorrelation matrix is given by

Rn̄ = N0R̃RX ⊗ IL, (5.27)

where R̃RX is obtained by replacing HTX(f) by HRX(f) in (5.8).
Since the frequency-selective MIMO channel is considered to be stochastic

in this chapter, all equalization parameters are computed according to the
optimization method from Chapter 4, which minimizes the objective function
f0 averaged over all channel realizations. In this section, f0 is set equal to
MSEgch

such that the optimal parameters (P?, α?,W?,B?) are obtained by
solving the following optimization problem

(P?, α?,W?,B?) = arg min
P,α,W,B

MSE(P, α,W,B)

subject to σ2
aTr

(
PHRTXP

)
≤ LETX

, (5.28)

where MSE = EGch

[
MSEgch

]
.
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Due to two features of the MSEgch
expression in (5.25), this optimization

problem can be somewhat simplified. First, inspection of (5.25) reveals that
MSEgch

depends on the phase of the product of αW and not on the indi-
vidual phases of α and W, allowing to restrict α to the set of positive real-
valued numbers. Indeed, when the set (P?, |α?| exp(−jθα?),W?,B?) is opti-
mal, the set (P?, |α?| , exp (−jθα?) W?,B?) must be optimal as well because
both sets yield identical MSEgch

. Second, the average transmitted energy per
data symbol induced by the optimal pre-equalizer P? must be equal to the max-
imum LETX, which can easily be verified by contradiction. Indeed, when the
set (P?, α?,W?,B?) is assumed to be optimal with σ2

aTr
(
P?,HRTXP?

)
=

β2LETX with 0 < β < 1, the set
(

P?

β , βα
?,W?,B?

)
produces a smaller

MSEgch
. Consequently, the inequality in the constraint can be replaced by

an equality without loss of optimality.

The optimization method described in Chapter 4 proposes different strate-
gies to determine the equalization parameters in the case of a stochastic chan-
nel, each corresponding to a distinct performance-complexity combination.
Here, these different strategies are briefly discussed, after which the mathe-
matical details of the optimal equalization parameters are provided for each
strategy in the subsections below (Subsections 5.2.1-5.2.5). First, the best-
performing strategy (adjustable strategy, denoted S-A) to solve minimization
problem (5.28) is to allow all equalization parameters to be adjusted to the
specific channel gch. In contrast, the least complexity is induced when all
equalization parameters are identical for all channel realizations (fixed strat-
egy, denoted S-F). Furthermore, the hybrid strategy (denoted S-H) intends to
approximate the performance of strategy S-A with a limited complexity by
considering both adjustable and fixed equalization parameters. More precisely,
the pre-equalizer P and its associated scaling factor α are fixed, whereas W
and B are adjustable. In doing so, no CSIT is required and the subproblems in
Algorithm 4.1 can be solved by means of closed-form expression, significantly
simplifying the implementational and computational complexity. Moreover,
two suboptimal approaches are discussed. In the first suboptimal approach,
the design of the fixed equalization parameters is solely based on the average
channel and thus completely ignores the channel variability (strategies S-Fs1

and S-Hs1). The second suboptimal approach (strategy S-Hs2) acquires the
fixed equalization parameters in the hybrid strategy under the assumption that
all adjustable equalizers are not present, i.e., all coefficients of Wadj and B are
zero except for Wadj(0), which is equal to IL. The different strategies are
summarized in Table 5.1.

Additionally, the special case of the linear equalization scheme is inves-
tigated in Subsection 5.2.6. Finally, the complexity differences between all
strategies are discussed in more detail in Subsection 5.2.7.
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Table 5.1: Overview of the different equalization strategies.

Strategy Notation Adjustable
parameters

Fixed
parameters

Adjustable S-A P, α,W,B /
Fixed S-F / P, α,W,B
Hybrid S-H W,B P, α

Fixed-suboptimal 1 S-Fs1 / P, α,W,B
Hybrid-suboptimal 1 S-Hs1 W,B P, α
Hybrid-suboptimal 2 S-Hs2 P, α,Wfix Wadj,B

5.2.1 Adjustable strategy (S-A)
In this optimal strategy in terms of MSE performance, all equalization pa-
rameters are a function of the specific channel realization gch, implying that
all equalization parameters are collected in the vector x(gch). Consequently,
no iterations are required between the adjustable and the fixed equalization
parameters and the optimal set (P?

a, α
?
a,W

?
a,B

?
a) is acquired by minimizing

MSEgch
for each channel realization gch individually. Unfortunately, the joint

optimization of (5.25) subject to the energy constraint is mathematically quite
challenging and no analytical expression can be easily derived. An iterative al-
gorithm is therefore proposed to find a suitable set of equalization parameters.
More precisely, the optimal B?

a(m) can almost directly be identified as a func-
tion of the other parameters, yielding MSEgch,B

?
a
. Next, MSEgch,B

?
a
is further

reduced by alternately computing the optimal (P?
a, α

?
a) and optimal W?

a for
given W and (P, α), respectively, until a stopping criterion is met.

Closer inspection of (5.25) reveals that the optimal feedback filter B?
a(m)

can be expressed as
B?
a(m) = αWG(m)P (5.29)

for m ∈ ΦB. When (5.29) is plugged into (5.25), the summation over ΦB

completely disappears since the adjustable B?
a eliminates all residual ISI on all

active causal delays of the feedback filter. The resulting MSEgch
is denoted by

MSEgch,B
?
a
and given by

MSEgch,B
?
a

=
1

L

( ∑
m∈ΦN

‖αWG(m)P− δmIL‖2 +
α2

σ2
a

Tr
(
WRn̄WH

))
.

(5.30)
Next, the optimal set (P?

a, α
?
a) is determined for given W by minimizing MSEgch,B

?
a

from (5.30), for which the L × (LLP) matrix G(m) = WG(m) is introduced.
The (LLN) × (LLP) stacked block matrix GN is then constructed by stacking
all G(m) contributing to the sum over ΦN into one matrix, i.e.,

GN =
[
GH (ΦN(1)) · · ·GH (ΦN(LN))

]H
. (5.31)
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The conditional MSEgch,B
?
a
can then be rewritten as

MSEgch,B
?
a

=
1

L
Tr

[
α2PHGHNGNP +

α2

σ2
a

WRn̄WH

−αG(0)P− αPHGH(0) + IL

]
. (5.32)

The minimization of MSEgch,B
?
a
from (5.32) with respect to P and α for a

given W subject to the energy constraint is a specific case of the more general
optimization problem presented in Appendix 11.2. Indeed, the variables G, A1,
A2, and A3 employed in this appendix can readily be identified by comparing
(5.32) with (11.9). Based on Appendix 11.2, the optimal pre-equalizer P?

a and
the optimal scaling factor α?a are given by

P?
a =

1

α?a
D−1
a GH(0) (5.33)

and

α?a =

√
σ2

a

LETX
Tr
(
G(0)D−1

a RTXD−1
a GH(0)

)
(5.34)

with Da = GHNGN + ζaRTX and ζa = Tr(WRn̄W
H)

LETX
. The smallest MSEgch,B

? for
a given W denoted by MSEgch,P

?
a,α

?
a,B

?
a
, is subsequently computed by replacing

P and α in (5.32) by (5.33) and (5.34), respectively, which can be simplified to

MSEgch,P
?
a,α

?
a,B

?
a

=
1

L
Tr
[
IL − G(0)D−1

a GH(0)
]
. (5.35)

The second task in each iteration is to compute the optimal W?
a for a given

set (P, α). Similar to the computation of (P?
a, α

?
a), the (LLW) × L matrix

G(m) = αG(m)P is introduced and the related (LLW) × (LLN) augmented
block matrix GN is constructed according to

GN = [G(ΦN(1)) · · ·G(ΦN(LN))] . (5.36)

By means of these definitions, the conditional MSEgch,B
?
a
for given (P, α) can

be expressed as

MSEgch,B
?
a

=
1

L
Tr

[
WGNGHN WH +

α2

σ2
a

WRn̄WH

−WG(0)− GH(0)WH + IL

]
. (5.37)

Since the optimization of (5.37) over W is not restricted by any constraints,
the optimal W?

a can be found by equating the complex derivative
∂MSEgch,B

?
a

∂W∗

(Appendix 11.1) to zero, yielding

W?
a = GH(0)C−1

a , (5.38)
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where Ca = GNGHN + α2

σ2
a
Rn̄. Subsequently, the lowest MSEgch,B

?
a
for given

(P, α) is obtained by substituting W in (5.37) for W?
a from (5.38), which can

be simplified to

MSEgch,W
?
a,B

?
a

=
1

L
Tr
[
IL − GH(0)C−1

a G(0)
]
. (5.39)

In conclusion, the adjustable strategy S-A iteratively minimizes MSEgch,B
?
a
for

each channel realization gch by alternately computing the optimal (P?
a, α

?
a),

given by (5.33) and (5.34), and the optimal W?
a, defined in (5.38), for given

W and (P, α), respectively, until some stopping criterion is met. In principle,
any matrix can be assigned to the initial feedforward filter W, but the most
reasonable choice is to set the initial W equal to the all-pass filter, i.e., W(i) =
ILδi. As a stopping criterion, the algorithm could terminate when either a
predefined number of iterations is reached, or when the relative decrease in
MSEgch,B

?
a
is smaller than a predetermined threshold. Of course, a combination

of these two stopping criteria is also a possibility.

5.2.2 Fixed strategy (S-F)
The main purpose of this strategy is to significantly lower the complexity by
considering only fixed equalization parameters. Hence, all coefficients of P,
W, and B and the scaling factor α are contained in the vector y in the op-
timization algorithm presented in Algorithm 4.1. As a result, the optimal set(
P?
f , α

?
f ,W

?
f ,B

?
f

)
is determined by minimizing the average MSEgch

, i.e., MSE.
Similar to the minimization of MSEgch

in the adjustable strategy, analytically
solving the joint minimization of MSE subject to the energy constraint is rather
hard. As an alternative, an iterative algorithm that is similar to the iterative
algorithm of the adjustable strategy is proposed. First, the optimal B?

f is
expressed as a function of P, α, and W, yielding MSEB?f

. Next, MSEB?f
is it-

eratively lowered by alternately computing the optimal
(
P?
f , α

?
f

)
and optimal

W?
f for given W and (P, α), respectively, until a stopping criterion is met.
By applying the expectation EGch

[·] to MSEgch
from (5.25), one can readily

determine the optimal B?
f as

B?
f (m) = αWEGch

[G(m)] P (5.40)

for m ∈ ΦB. Contrary to the adjustable strategy, the fixed feedback filter is
unable to eliminate all residual ISI on all active causal delays of the feedback
filter. Indeed, the average MSE evaluated at B?

f is given by

MSEB?f
=

1

L

( ∑
m∈ΦN

EGch

[
‖αWG(m)P− δmIL‖

2
]

+
α2

σ2
a

Tr
(
WRn̄WH

)
+

∑
m∈ΦB

EGch

[
‖αWG(m)P− αWEGch

[G(m)] P‖2
])

. (5.41)
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In each iteration, MSEB?f
is first minimized with respect to (P, α) for given W.

In this regard, the (LLB)× (LLP) stacked block matrix GB is similarly defined
as GN, i.e.,

GB =
[
GH (ΦB(1)) · · ·GH (ΦB(LB))

]H
. (5.42)

The average MSEB?f
can then be rewritten as

MSEB?f
=

1

L
Tr
[
α2PH

(
EGch

[
GHNGN + GHB GB

]
− EGch

[
GHB

]
EGch

[GB]
)

P

+
α2

σ2
a

WRn̄WH − αEGch
[G(0)] P− αPHEGch

[
GH(0)

]
+ IL

]
.

(5.43)

Structurally, MSEB?f
from (5.43) is very similar to MSEgch,B

?
a
from (5.32).

Consequently, the minimization of (5.43) with respect to P and α subject to the
energy constraint is again a specific case of the optimization problem discussed
in Appendix 11.2. The optimal fixed pre-equalizer P?

f and the optimal fixed
scaling factor α?f can therefore be determined as

P?
f =

1

α?f
D−1
f EGch

[
GH(0)

]
(5.44)

and

α?f =

√
σ2

a

LETX
Tr
(
EGch

[G(0)] D−1
f RTXD−1

f EGch

[
GH(0)

])
(5.45)

with Df = EGch

[
GHNGN + GHB GB

]
− EGch

[
GHB

]
EGch

[GB] + ζfRTX and ζf =

Tr(WRn̄W
H)

LETX
. Moreover, the smallest average MSEB?f

for given W is denoted
by MSEP?f ,α

?
f ,B

?
f
and given by

MSEP?f ,α
?
f ,B

?
f

=
1

L
Tr
[
IL − EGch

[G(0)] D−1
f EGch

[
GH(0)

]]
. (5.46)

The second step in each iteration is to derive the optimal fixed W?
f for a given

set (P, α). To derive a neat expression for MSEB?f
as a function of W, the

(LLW)× (LLB) augmented matrix GB is similarly defined as GN, i.e.,

GB = [G(ΦB(1)) · · ·G(ΦB(LB))] (5.47)

such that MSEB?f
can be written as

MSEB?f
=

1

L
Tr
[
W
(
EGch

[
GNGHN + GBGHB

]
− EGch

[GB]EGch

[
GHB
])

WH

+
α2

σ2
a

WRn̄WH −WEGch
[G(0)]− EGch

[
GH(0)

]
WH + IL

]
.

(5.48)
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Next, the optimal fixed W?
f is acquired by equating the complex derivative of

MSEB?f
with respect to W∗ to zero, resulting in

W?
f = EGch

[
GH(0)

]
C−1
f (5.49)

with Cf = EGch

[
GNGHN + GBGHB

]
− EGch

[GB]EGch

[
GHB
]

+ α2

σ2
a
Rn̄. The cor-

responding minimal value of MSEB?f
for given (P, α) can be simplified to

MSEW?
f ,B

?
f

=
1

L
Tr
[
IL − EGch

[
GH(0)

]
C−1
f EGch

[G(0)]
]
. (5.50)

In summary, the structure of the algorithm to determine the fixed equalization
parameters in the fixed strategy is quite similar to the algorithm to obtain
the adjustable equalization parameters in the adjustable strategy such that
the same stopping criteria and initialization of W can be employed. The only
difference between the two algorithms is that in the fixed strategy the average
MSE rather than the conditional MSEgch

is minimized. For this purpose, both
the first-order and the second-order statistics of the channel must be available.

5.2.3 Hybrid strategy (S-H)

This strategy considers both adjustable and fixed equalization parameters.
Most practical is to keep the pre-equalizer P and the scaling factor α fixed
and the filters W and B at the receiver adjustable, because this configuration
does not require any transfer of CSI from the receiver to the transmitter. In
terms of the notations used in Algorithm 4.1, this means that the vector y con-
sists of all coefficients of P and the scaling factor α, whereas the vector x(gch)
contains all coefficients of W and B. The optimization problem from (5.28)
could then be solved by Algorithm 4.1, which must be slightly changed as the
energy constraint depends on the fixed equalization parameters rather than
the adjustable equalization parameters. Just as B?

a, the optimal adjustable
feedback filter B?

h can however directly be written as a function of the other
parameters, i.e.,

B?
h(m) = αWG(m)P (5.51)

for m ∈ ΦB, and the resulting MSEgch,B
?
h
is completely identical to MSEgch,B

?
a
.

Consequently, instead of applying the optimization algorithm from Algorithm
4.1 to f0 = MSEgch

, it is better to apply this algorithm to f0 = MSEgch,B
?
h
,

because this guarantees that the feedback filter is always optimal for given
(P,W, α). Compared to the original approach, the vector y in this alterna-
tive approach does not alter, but the vector x (gch) now comprises only the
coefficients of W.

The first step in the optimization algorithm is to compute the optimal y?i
for given xi−1 (gch), i.e., the optimal (P?

h, α
?
h) for given W (for all channel



5.2. MMSE EQUALIZATION 53

realizations in Gch). The average over the channel realizations of MSEgch,B
?
h
,

MSEB?h
, is therefore expressed as

MSEB?h
=

1

L
Tr

[
α2PHEGch

[
GHNGN

]
P +

α2

σ2
a

EGch

[
WRn̄WH

]
−αEGch

[G(0)] P− αPHEGch

[
GH(0)

]
+ IL

]
. (5.52)

The minimization of (5.52) with respect to P and α subject to the energy
constraint is once more a particular case of the optimization problem discussed
in Appendix 11.2. The optimal P?

h and α?h are thus given by

P?
h =

1

α?h
D−1
h EGch

[
GH(0)

]
(5.53)

and

α?h =

√
σ2

a

LETX
Tr
(
EGch

[G(0)] D−1
h RTXD−1

h EGch

[
GH(0)

])
(5.54)

with Dh = EGch

[
GHNGN

]
+ ζhRTX and ζh =

Tr(EGch [WRn̄W
H ])

LETX
. Furthermore,

evaluating MSEB?h
from (5.52) at the optimal P?

h and α?h yields an optimized
MSEP?h,α

?
h,B

?
h
, which can be expressed as

MSEP?h,α
?
h,B

?
h

=
1

L
Tr
[
IL − EGch

[G(0)] D−1
h EGch

[
GH(0)

]]
. (5.55)

In the second step of the optimization algorithm, the optimal x?i (gch) for given
yi must be determined by minimizing MSEgch,B

?
h
with respect to W for given

(P, α). This subproblem is identical to determining the optimal W?
a in the

adjustable strategy as MSEgch,B
?
h
is equal to MSEgch,B

?
a
. The optimal W?

h and
the minimal MSEgch,W

?
h,B

?
h
are thus respectively given by

W?
h = GH(0)C−1

h (5.56)

and
MSEgch,W

?
h,B

?
h

=
1

L
Tr
[
IL − GH (0) C−1

h G(0)
]

(5.57)

with Ch = GNGHN + α2

σ2
a
Rn̄.

To initialize x0(gch), all initial feedforward filters W are assumed to be
equal to the all-pass filter.

5.2.4 Suboptimal 1 (S-Fs1 and S-Hs1)
A suboptimal approach to determine the fixed equalization parameters in both
the fixed and the hybrid strategy is to ignore all channel variability, i.e., G(m)
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Figure 5.3: Partition of the linear filter W(i) into a fixed filter Wfix(if) and an
adjustable filter Wadj(ia) with LW,fix and LW,adj taps, respectively. The total
number of taps does not change, such that LW = LW,adj + LW,fix − 1.

is assumed to be equal to EGch
[G(m)] . This assumption is equivalent to consid-

ering a channel set Gch with the average channel EGch
[gch] as the only element.

For this specific set Gch, all second order moments transform to a product of
first order moments, e.g., EGch

[GHNGN] becomes EGch

[
GHN

]
EGch

[GN]. As a
result, all terms with GB and GB in Df and Cf , respectively, can be omitted
in the fixed strategy such that the fixed strategy becomes in fact identical to
the adjustable strategy applied to the average channel EGch

[gch]. Moreover,
the fixed equalization parameters of the suboptimal hybrid strategy are cho-
sen to be equal to the corresponding fixed parameters of the suboptimal fixed
strategy.

This suboptimal approach is denoted by S-Fs1 and S-Hs1 for the fixed and
the hybrid strategy, respectively.

5.2.5 Suboptimal 2 (S-Hs2)

Based on the optimization method from [53], a second suboptimal approach
for the hybrid strategy, S-Hs2, is presented here. In this approach, the fixed
equalization parameters are first computed, while completely neglecting the
presence of the adjustable equalizers, i.e., the latter parameters are assumed to
be not present. Afterwards, the adjustable parameters are designed to combat
the residual ISI generated by the cascade of the fixed equalization filters and the
channel gch. To allow for additional design freedom, the linear feedforward filter
W in the equalization scheme of Fig. 5.1 is divided into a fixed linear filter Wfix

and an adjustable linear filter Wadj with LW,fix and LW,adj taps, respectively.
This partitioning is schematically depicted in Fig. 5.3. Consequently, a fixed
linear filter is now present at both the transmitter and the receiver, just as in
[53]. When the fixed Wfix is bypassed, the set of adjustable parameters and the
set of fixed parameters is of course the same as in the other hybrid strategies.

In this strategy, the fixed equalization parameters are determined under
the assumption that the adjustable equalizers are not present. More precisely,
this means that the adjustable feedforward filter Wadj is assumed to equal an
all-pass filter, i.e., Wadj(m) = ILδm, while all coefficients of the adjustable
feedback filter B are assumed to be zero. As a result, determining the fixed
equalization parameters, i.e., P, α, and Wfix, can be achieved by applying the
algorithm of the fixed strategy with W = Wfix and ΦB = ∅. Subsequently, the
adjustable filters Wadj and B are obtained by minimizing MSEgch

for a given
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channel realization gch and a given set (P, α,Wfix). For this minimization,
standard techniques can be employed as the cascade of the channel and the
fixed Wfix can be interpreted as an equivalent channel HWfix

. All details of
the computation of Wadj and B are included in Appendix 11.3.

5.2.6 Linear equalization scheme

In the linear equalization scheme, the feedback filter is absent such that the
optimal (P?,W?, α?) for all strategies are obtained by setting ΦB = ∅ in the
equations above. As a consequence ΦN becomes equal to Φ and GB and GB

are equal to the zero matrix 0.

5.2.7 Complexity considerations

This section compares the complexities of the equalization strategies above with
a focus on the chip-to-chip interconnect affected by manufacturing tolerances.
For any realization of the interconnect, the corresponding channel is considered
essentially time-invariant, but some variability is present among the different
realizations due to manufacturing tolerances.

Adjusting all equalizers to the actual realization gch of the interconnect
could in principle be achieved as part of the manufacturing process, involving
(i) the measurement of the transfer function matrix of the specific interconnect;
(ii) the offline computation of the corresponding equalizer taps; and (iii) setting
the taps on the transmitter/receiver chip accordingly before the interconnect
is put in operation. However, this requires that each produced interconnect
is measured, making the manufacturing very expensive and time-consuming.
The alternative is that the equalizers are adjusted in real-time during opera-
tion, based on channel information which must be estimated at regular intervals
by the receiver and passed to the transmitter. This alternative has the addi-
tional advantage that it adapts to slow variations of the channel (e.g., caused by
temperature). However, this comes at the expense of a higher cost of the trans-
mitter/receiver chip due to the increased implementation complexity (on-chip
channel estimation circuit, channel information return channel from receiver
to transmitter) and a higher computational complexity (e.g., on-chip iterative
coefficient computation).

The high complexity and cost associated with the adjustable equalizer strat-
egy can be avoided to a large extent by having (some of) the equalizers fixed.
The fixed equalizers depend on the channel statistics rather than the actual
realization of the interconnect. These statistics are obtained from the mea-
surement of the individual channel transfer matrices corresponding to a sample
consisting of Nch interconnects; Nch should be large enough to reliably capture
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the statistics of the interconnects, but Nch is typically much smaller than the
total number of interconnects to be produced.

For the fixed and the hybrid equalization strategies, the offline iterative
computation (based on the channel statistics) of the coefficients of the fixed
equalizers has to be executed only once. The resulting fixed coefficients of
each transmitter/receiver chip are set accordingly during the manufacturing
process, irrespective of the actual realization of the interconnect. In the case of
the fixed equalization strategy, no channel estimation nor channel information
return channel needs to be implemented on-chip. As for the hybrid equalization
strategy, on-chip channel estimation is required at the receiver, but the return
channel is redundant, because the pre-equalizer at the transmitter is fixed.
The receiver of the hybrid equalizer must perform on-chip adjustment of the
feedforward equalizer according to the actual channel after the interconnect
has been put in operation, but, unlike the adjustable equalizer strategy, these
on-chip computations do not involve any iterations. In contrast to the fixed
equalizer, the hybrid equalizer is also able to adapt to slow variation of the
channel.

In the context of multi-Gbit/s electrical interconnects, advanced digital sig-
nal processing and high-precision analog-to-digital (A/D) and digital-to-analog
(D/A) converters should be avoided, because of their high power consumption.
Therefore, it is of interest to implement the FIR filters as analog tapped delay
lines [10]. For the hybrid strategy, the on-chip complexity can be substan-
tially reduced by using adaptive equalizers [20, 77] that could be determined
by recursively updating the filter taps of the tapped delay lines by means of a
simple stochastic gradient algorithm, rather than performing channel estima-
tion and computing the feedforward equalizer taps. This way, no high-precision
A/D and D/A converters are needed for the hybrid strategy, and the filter tap
updating requires only low-complexity digital signal processing.

5.3 Baseband transmission

The system model (Section 5.1) and the derivation of the MMSE equalizer
coefficients (Section 5.2) assume bandpass transmission: the bandpass signals
and the bandpass filters are represented in complex-valued baseband notation.

In the case of baseband transmission, the transmitted symbols, the filter
and channel impulse responses and the noise are real-valued instead of complex-
valued. Hence, only minor alterations must be made to convert the results for
bandpass transmission to baseband transmission:

• The Hermitian conjugate(·)H is replaced by the transpose (·)T .

• The channel noise n(t) is zero-mean Gaussian with E[n(t + u)nT (t)] =
N0

2 δ(u)IL

As a result, Rn̄ is obtained by replacing N0 by N0/2 in (5.27).
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In baseband transmission, the elements of the symbol set C are real-valued.
A typical constellation is theM -PAM constellation with the symbol set CM−PAM

given by

CM−PAM = {(−M + 1)∆, (−M + 3)∆, · · · , (−M + 3)∆, (−M + 1)∆}, (5.58)

where ∆ is often chosen to normalize the constellation (σ2
a = 1), i.e.,

∆ =

√
3

M2 − 1
. (5.59)

5.4 SER and BER expression
The probability of some type of error is often one of the key performance
measures in any practical communication link. This section therefore derives
and discusses both the SER and the BER expression for the system model
from Fig. 5.1 in the case of uncoded baseband communication with M -PAM
transmission.

5.4.1 SER expression for M-PAM transmission
The SER corresponding to the lth data symbol stream conditioned on the
channel realization gch, SER(l)

gch
, is defined as the probability that the decision

âl(k) is different from the original data symbol al(k). This decision âl(k) is
based on the lth entry of the decision variable u(k), ul(k). With the assumption
that the previous decisions are correctly detected, ul(k) can be decomposed as

ul(k) = (1 + el)al(k) + isil(k) + wl(k), (5.60)

where e = diag (αWG(0)P)− 1, w(k) = αWn̄(k), and

isi(k) =
∑
m∈ΦN

αWG(m)Pa(k −m)− diag(e + 1)a(k)

+
∑
m∈ΦB

(αWG(m)P−B(m)) a(k −m). (5.61)

For notational convenience, the symbol time index (k) is dropped in the re-
mainder of this section. All data symbols present in isil in (5.60) are collected
in the vector aISI, and this dependence is emphasized by the notation isil(aISI).
Note that the vector aISI has LLG − 1 components. Furthermore, (5.60) illus-
trates that ul can be written as the sum of (i) a useful term (1 + el)al; (ii) an
interference term isil(aISI); and (iii) a Gaussian noise contribution wl with vari-
ance σ2

wl
= α2

(
WRn̄WH

)
l,l
. In this section, all data symbols are assumed to

belong to theM -PAM constellation CM−PAM, which is schematically presented
in Fig. 5.4. At the receiver, the symbol-by-symbol decoder processes each ul
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0

Figure 5.4: Visualization of the normalized M -PAM constellation. All constel-
lation points are symbolized by the dots on the horizontal axis, whereas the
boundaries of the decision areas D(·) are indicated by the vertical lines. The
scaling factor ∆ is chosen such that the average symbol energy is equal to 1.

by mapping it to the closest constellation point, resulting in a decision area
D(·) for each constellation point c. An expression for SER(l)

gch
is then derived

as follows:

SER(l)
gch

= Pr (âl 6= al) (5.62)

= Pr (ul /∈ D (al)) (5.63)

=
1

M

∑
c

EaISI
[P (error|c,aISI)] , (5.64)

where we made use of Pr (al = c) = 1
M , EaISI [·] denotes the expectation over

aISI, and P (error|c,aISI) is defined as

P (error|c,aISI) = Pr ((1 + el) c + isil (aISI) + wl /∈ D (c)) , (5.65)

with aISI denoting a realization of aISI. Since wl has a Gaussian distribution
with zero-mean and variance σ2

wl
, P (error|c,aISI) from (5.65) can easily be

derived. Still, a distinction must be drawn between the outer and the inner
constellation points. As for the outer constellation points, only one decision
boundary is present, whereas the decision areas of the inner constellation points
are bounded by two decision boundaries. First, P (error|c,aISI) for the outer
constellation points, i.e., ±(M − 1)∆, can be derived as

P (error|c,aISI) =

Q
(

∆+isil(aISI)+el(M−1)∆
σwl

)
c = (M − 1)∆

Q
(

∆−isil(aISI)+el(M−1)∆
σwl

)
c = (−M + 1) ∆

, (5.66)

where Q(·) = 1− F(·) with F(·) representing the cumulative distribution func-
tion of the standard normal distribution. On the other hand, all inner con-
stellation points, i.e., (2m + 1)∆ with m ∈ {−M2 + 1, · · · , M2 − 2}, result in a
probability P (error|(2m+ 1)∆,aISI) given by

P (error|(2m+ 1)∆,aISI) = Q

(
∆ + el(2m+ 1)∆ + isil(aISI)

σwl

)
+ Q

(
∆− el(2m+ 1)∆− isil(aISI)

σwl

)
. (5.67)
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Figure 5.5: 4-PAM (upper plot) and 8-PAM (lower plot) constellation with
Gray mapping.

Next, an expression for SER(l)
gch

can be derived by plugging (5.66) and (5.67)
into (5.64). Interestingly, the obtained expression can be simplified by noting
that Pr(aISI = aISI) is equal to Pr(aISI = −aISI) because all data symbols are
independent and equally likely and the constellation is symmetric around zero.
Consequently, SER(l)

gch
can be expressed as

SER(l)
gch

=
2

M

M
2 −1∑

m=−M2 +1

EaISI

[
Q

(
∆ + el(2m+ 1)∆ + isil(aISI)

σwl

)]
. (5.68)

The SER(l)
gch

from (5.68) is a performance measure related to the lth symbol
stream and channel realization gch. From SER(l)

gch
, the average SER, denoted

as SER, is then derived by averaging SER(l)
gch

over all symbol streams and all
channel realizations, i.e.,

SER = EGch

[
1

L

L∑
l=1

SER(l)
gch

]
. (5.69)

When the condition (1 + el) c + isil (aISI) ∈ D (c) holds for all considered
c and aISI, the arguments of the functions Q(·) in (5.66) and (5.67) all take
positive values. When this condition holds for vanishing σwl , the corresponding
SER goes to zero. When the condition does not hold for vanishing σwl , the
corresponding SER converges to a nonzero asymptotic value. This phenomenon
is referred to as an error floor.

5.4.2 BER expression for M-PAM transmission
The BER of the lth symbol stream conditioned on the channel realization gch,
BER(l)

gch
, is defined as the probability that a transmitted bit is erroneously

decoded at the receiver. Unlike SER(l)
gch

, the mapping of the bit sequence on
the data symbols does influence the expression for BER(l)

gch
. Here, the binary

labels associated with the elements from CM−PAM are according to the binary-
reflected Gray mapping, meaning that the binary labels of neighboring symbols
differ at exactly one position. As an example, Fig. 5.5 depicts a possible Gray
mapping for the 4-PAM and the 8-PAM constellation. The derivation of an
expression for BER(l)

gch
is very similar to the derivation of expression (5.64) for
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SER(l)
gch

. However, instead of considering the probability that a received symbol
ul is not an element of the correct decision area D(c) as in (5.65), one must
take a weighted sum over all erroneous symbols ĉ of the probability that the
received symbol is within the incorrect decision area D(ĉ). In this sum, the
weight coefficients are equal to the number of bit differences N 6= between the
bit labels associated with c and ĉ. Hence,

BER(l)
gch

=
1

M

1

log2(M)

∑
c,ĉ∈CM−PAM

c 6=ĉ

N 6= (c, ĉ)EaISI [P (ĉ|c,aISI)] , (5.70)

where
P (ĉ|c,aISI) = Pr ((1 + el) c + isil (aISI) + wl ∈ D (ĉ)) . (5.71)

For largerM , the number of terms in BER(l)
gch

rapidly increases and the number
of bit differences N 6= cannot be described in general, making it hard to further
simplify expression (5.70). In Appendix 11.4, the BER(l)

gch
expression is made

explicit for the 4-PAM and the 8-PAM constellation from Fig. 5.5.
As an alternative, a simple lower bound BER

(l)
gch,LB on BER(l)

gch
is con-

structed by setting N 6= in (5.70) equal to 1 as the bit labels of two data symbols
differ at least at one position. Since∑

ĉ∈CM−PAM

c 6=ĉ

P (ĉ|c,aISI) = P (error|c,aISI), (5.72)

this lower bound is actually equal to the SER(l)
gch

divided by log2(M), i.e,

BER
(l)
gch,MPAM,LB =

SER(l)
gch

log2(M)
. (5.73)

When the SNR is large and (1 + el) c + isil (aISI) ∈ D (c) for all considered c
and aISI, the lower bound from (5.73) is expected to be tight, because decision
errors involving neighboring symbols are far more likely than errors involving
non-neighboring symbols.

Similar to SER, the BER averaged over all symbol streams and channel
realization, i.e., BER, is defined as

BER = EGch

[
1

L

L∑
l=1

BER(l)
gch

]
. (5.74)

5.4.3 Numerical evaluation of the SER and BER expres-
sions

Two important obstacles must be overcome when evaluating the SER in (5.69).



5.4. SER AND BER EXPRESSION 61

• A closed-form expression of the expected value EGch
[·] in (5.69) is al-

most impossible to derive, even when the channel distribution is perfectly
known. A simple alternative that is employed here is to numerically ap-
proximate the expectation EGch

[·] by the arithmetic average over a repre-
sentative subset of Nch channel realizations. When Nch is large enough,
this approach should yield reliable numerical results with satisfactory ac-
curacy.

• A similar problem is encountered in the computation of EaISI [·] in (5.68),
since the distribution of isil(k) does not allow to formulate a simple
closed-form expression for (5.68). To evaluate (5.68), one could sum
over all possible aISI. However, the number of terms in EaISI

[·] is equal
to MLLG−1, which increases exponentially with the channel length, the
equalizer length, and the number of data streams, limiting the practicality
of this approach as excessive computation time would be required.

Instead, several alternatives are presented to evaluate SER(l)
gch

with a controlled
amount of computational complexity.

First of all, the sum over all possible aISI could be approximated by restrict-
ing the expectation to N randomly generated terms. Hence, the corresponding
approximation of (5.68) becomes

SER(l)
gch
≈ 2

MN

M
2 −1∑

m=−M2 +1

N∑
n=1

Q

(
∆ + el(2m+ 1)∆ + isil(aISI,n)

σwl

)
. (5.75)

For large N , a sufficiently accurate estimate of the SER(l)
gch

is achieved even
when N � MLLG−1, yielding a considerably smaller computation time com-
pared to the exact evaluation of the expectation EaISI [·] . Selecting an appropri-
ate N thus involves a trade-off between accuracy and computing power/time.
Averaging this approximation over the symbol streams and the channel real-
izations results in a approximation of SER, which is denoted as SER1.

Second, the problem of the prohibitive computation time can be circum-
vented by computing an upper and a lower bound on SER(l)

gch
with manageable

complexity [78]. To derive these bounds, isil (aISI) is decomposed into two
terms: isi

(1)
l (a

(1)
ISI) and isi

(2)
l (a

(2)
ISI), i.e.,

isil(aISI) =

LLG−1∑
j=1

(disil)j(ãISI)j (5.76)

= isi
(1)
l (a

(1)
ISI) + isi

(2)
l (a

(2)
ISI). (5.77)

In (5.76), disil is a vector containing all the coefficients of isil, i.e., all (αWG(m)P)l,l′
and (αWG(m)P−B(m))l,l′ in equation (5.61), ordered in magnitude from
large to small in descending order. Moreover, ãISI is a vector containing all
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data symbols in the same order. Second, isi
(1)
l in (5.77) represents the inter-

ference caused by the K most dominant symbols corresponding to the first
K elements of the vector ãISI, whereas isi

(2)
l denotes the contribution from

the remaining symbols. All dominant symbols are collected in the vector a
(1)
ISI,

whereas the other symbols are gathered in the vector a
(2)
ISI. As Q (·) is a convex

function for positive arguments, the following property holds:

Q(x+ y) + Q (x− y) ≥ 2Q (x) . (5.78)

when x ≥ |y| ≥ 0. By construction, a
(2)
ISI and −a

(2)
ISI are equally likely and

isi
(2)
l (a

(2)
ISI) = −isi

(2)
l (−a

(2)
ISI) such that the inequality from (5.78) can be applied

to SER(l)
gch

defined in (5.68), when (1 + el) c+isil (aISI) ∈ D (c) for all considered

c and aISI. Indeed, setting σwlx = ∆ + el(2m + 1) + isi
(1)
l (a

(1)
ISI) and σwly =∣∣∣isi(2)

l

(
a

(2)
ISI

)∣∣∣ yields the following lower bound

SER
(l)
gch,LB =

2

M

M
2 −1∑

m=−M2 +1

E
a

(1)
ISI

[
Q

(
∆ + el(2m+ 1)∆ + isi

(1)
l (a

(1)
ISI)

σwl

)]
,

(5.79)
where E

a
(1)
ISI

[·] denotes the expectation over a
(1)
ISI and the assumption is made

that x ≥ 0. In fact, this lower bound corresponds to taking isi
(2)
l (a

(2)
ISI) = 0.

Moreover, the function Q(x+y)+Q (x− y) is an increasing function of y when
x ≥ y ≥ 0 such that a simple upper bound of SER(l)

gch
is given by

SER
(l)
gch,UB =

1

M

M
2 −1∑

m=−M2 +1

E
a

(1)
ISI

[
Q

(
∆ + el(2m+ 1)∆ + isi

(1)
l (a

(1)
ISI) + isi

(2)
l,max

σwl

)

+ Q

(
∆ + el(2m+ 1)∆ + isi

(1)
l (a

(1)
ISI)− isi

(2)
l,max

σwl

)]
, (5.80)

where the variable isi
(2)
l,max denotes the maximum of isi

(2)
l

(
a

(2)
ISI

)
over a

(2)
ISI. This

upper bound corresponds to assuming that isi
(2)
l (a

(2)
ISI) takes the values isi

(2)
l,max

and −isi
(2)
l,max, each with probability 1/2.

Thirdly, another approximation SER2 is also directly developed from the
decomposition of isil (aISI) into the two terms isi

(1)
l

(
a

(1)
ISI

)
and isi

(2)
l

(
a

(2)
ISI

)
in

(5.77). For long equalizer lengths and/or long channel lengths, the second
term typically consists of a sum of numerous relatively small terms such that
the distribution of isi

(2)
l

(
a

(2)
ISI

)
could be approximated by a zero-mean Gaussian

distribution. By means of the definition in (5.76), the variance of isi
(2)
l

(
a

(2)
ISI

)
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can be expressed as

σ2

isi
(2)
l

= E
a

(2)
ISI

[∣∣∣isi(2)
l

(
a

(2)
ISI

)∣∣∣2]. (5.81)

= σ2
a

LLG−1∑
j=K+1

|(disil)j |
2
. (5.82)

Consequently, the contribution of isi
(2)
l could be approximated by an additional

Gaussian noise source, yielding the following approximation of SER(l)
gch

:

SER(l)
gch
≈ 2

M

M
2 −1∑

m=−M2 +1

E
a

(1)
ISI

Q

∆ + el(2m+ 1)∆ + isi
(1)
l (a

(1)
ISI)√

σ2
wl

+ σ2

isi
(2)
l

 . (5.83)

Obviously, the accuracy of this approximation and the bounds in (5.79) and
(5.80) improves with increasing K, and all three converge to SER(l)

gch
when K

is maximum, i.e., LLG − 1, as all interference contributions are then included
in isi

(1)
l (a

(1)
ISI) and none in isi

(2)
l (a

(2)
ISI). However, the larger K, the more terms

in the expectation E
a

(1)
ISI

[·] , and the more complex the evaluation of this expec-

tation becomes. Indeed, this expectation contains MK terms, which rapidly
grows with K, but could also be much smaller than the MLLG−1 terms in
the expectation EaISI

[·] in (5.68). In the selection of K, a trade-off between
accuracy and computational complexity must thus be evaluated.

The SER(l)
gch

in (5.68) is derived with the assumption that all previously
detected symbols are correct. In practice, detection errors, however, do occur
and they could even induce errors in later decisions due to the feedback filter.
This error propagation could significantly impact the error probability such
that numerical simulations to verify this impact are important. Unfortunately,
this error propagation is a complicated process to model [46], and the standard
approach to obtain an accurate SER including the effect of error propagation is
therefore to numerically simulate the transmission of a large number Nprop �
1/SER(l)

gch
of data symbols and count the number of errors made. This approach

is typically computationally more demanding and more time-consuming than
evaluating the SER with perfect feedback, especially for low SER values. Hence,
most numerical results in Section 5.5 are obtained with perfect feedback and
the impact of the error propagation is investigated separately.

To evaluate BER in (5.74), identical problems are encountered as for SER,
and thus similar numerical evaluation methods can be proposed.

5.5 Numerical results and discussion
To investigate the performance of the equalization scheme and of the different
equalization strategies from Section 5.2 and Table 5.1, this section discusses
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numerical results for baseband M -PAM transmission on the MIMO chip-to-
chip interconnect that is affected by manufacturing tolerances and presented in
Chapter 2. For convenience, the definitions of some notations are first repeated
here. The number of causal and anti-causal taps of a filter Y is respectively
defined as L(1)

Y and L(2)
Y , respectively, whereas the total number of filter taps

is given by LY. Moreover the number of feedback taps of the feedback filter is
defined as LB and the corresponding set of active time delays is symbolized by
ΦB. Furthermore, the channel variability is characterized by the variable σr.
Finally, the integer values NW and NP define the tap spacing of the filters W
and P, respectively, whereas the value of ε determines the sampling delay.

In this discussion below, the SNR is defined as the ratio of the transmit
energy per bit, Eb, to the one-sided spectral density of the channel noise, N0,
i.e., SNR = ETX

log2(M)N0
. Moreover, the notation LX = x is employed as the

shorthand notation for L(1)
P = L

(2)
P = L

(1)
W = L

(2)
W = x.

The subsections below cover various aspects of the baseband data trans-
mission over the stochastic chip-to-chip interconnect. First, Subsection 5.5.1
analyzes the relative performance of the different strategies. Second, the feed-
back filter is the focus of the numerical simulations conducted in Subsection
5.5.2, whereas fractionally-spaced equalizers are considered in Subsection 5.5.3.
Next, Subsection 5.5.4 investigates the convergence of the iterative algorithms
corresponding to the different equalization strategies and several conclusions
are extended to a general M -PAM constellation in Subsection 5.5.5. Finally,
the accuracy of the numerical evaluation of the BER is the main topic of Sub-
section 5.5.6.

Unless mentioned otherwise, the following values for the system parameters
are employed: ε = 0, M = 2, NW = 1, and NP = 1. Moreover, most BER
values are obtained by employing an approximation similar to (5.83) with K =
20.

5.5.1 Performance comparison of the different strategies
In Fig. 5.6, the performance of all equalization strategies in terms of MSE and
BER is depicted as a function of σr with LX = 7 and a SNR equal to 25 dB.
Moreover, the impact of the feedback filter is investigated by comparing the
performance achieved by the equalization scheme without the feedback filter,
i.e., ΦB = ∅, in the left plots with the performance of the equalization scheme
with a 16-tap feedback filter, i.e., ΦB = ΦB,16 = {1, · · · , 16}, in the right
plots. Of course, better MSE and BER performance is to be expected with
the feedback filter, but the addition of this feedback filter is also expected to
alter the relative performance of the different strategies. In this regard, the
following observations can be made:

• Unsurprisingly, the fully adjustable strategy S-A yields superior perfor-
mance compared to the other strategies. It even maintains a fairly con-
stant MSE and BER, irrespective of the channel variability σr. Fur-
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Figure 5.6: Performance of all equalization strategies in terms of both 1/MSE
and BER as a function of σr for SNR = 25 dB and LX = 7. In the left plots,
the feedback filter is omitted (ΦB = ∅), whereas a 16-tap feedback filter is
employed in the right plots (ΦB = ΦB,16). Compared to the nearly constant
performance of the adjustable strategy S-A, only a small decline is experienced
by the hybrid strategy S-H, whereas the quality of the fixed strategy S-F rapidly
deteriorates with increasing σr. The addition of an adjustable feedback filter
provides a significant performance gain.
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thermore, activating the feedback filter induces a significant performance
improvement: a gain of approximately 2.5 dB in MSE and a substantial
BER reduction by a factor up to 105, emphasizing the potential of an
adjustable feedback filter.

• A small performance gap between the optimal hybrid strategy S-H and
the adjustable strategy S-A is anticipated for small σr. When sufficient
equalization parameters are adjustable, Fig. 5.6 confirms, however, that
a partially adjustable equalization scheme is a suitable low-complexity
alternative to the fully adjustable equalization scheme, even for larger
σr, as the performance gap between S-H and S-A only slightly grows
with increasing σr. When the feedback filter is present, the performance
difference between the two strategies is even smaller as a relatively larger
part of the equalization parameters is adjustable in the hybrid strategy.

• Especially at large σr, the optimal fixed strategy cannot compete with
the adjustable strategy nor with the optimal hybrid strategy. Since the
fixed strategy does not provide any mechanism to handle the variations
between the channels, its performance rapidly degrades with increasing
σr. Moreover, a fixed feedback filter sometimes even negatively impacts
the BERgch

as it cannot adapt to the highly variable postcursor ISI (Fig.
2.3), thereby increasing (rather than reducing) the peak ISI for some
channel realizations. When these channel realizations are dominant, the
average BER increases.

• The importance of considering the second-order moments in the computa-
tion of the fixed equalization parameters is illustrated by the performance
difference between the suboptimal approaches S-Hs1 and S-Fs1 and their
optimal counterparts S-H and S-F. When the feedback filter is not ac-
tive, this gap in performance slowly grows with increasing σr, but stays
within limits even for large σr. On the other hand, when the feedback
filter is present, the performance degradation is larger, because the full
potential of the feedback filter is not unlocked in the computation of the
fixed parts.

• To fairly compare the suboptimal strategy S-Hs2 to the other strategies,
the number of equalizer taps of the cascade of the fixed feedforward filter
Wfix and the adjustable feedforward filter Wadj is kept at 15 taps, and
divided as follows: L(1)

W,fix = L
(2)
W,fix = 2 and L(1)

W,adj = L
(2)
W,adj = 5. Even

with this large number of adjustable taps, the performance of this sub-
optimal strategy is not satisfactory, emphasizing the positive impact of
considering the adjustable equalization parameters in the design of the
fixed parameters. A more detailed discussion on this suboptimal approach
can be found below (Fig. 5.9).

When the amount of equalization resources, e.g., the length of the filters, is
restricted or expensive, a proper balance between the cost and the performance
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Figure 5.7: Performance of the adjustable and the hybrid strategy in terms
of both 1/MSE and BER as a function of SNR for σr = 3%. Three sets of
equalization parameters are considered: (i) LX = 3 and ΦB = ∅, (ii) LX = 7
and ΦB = ∅, and (iii) LX = 3 and ΦB = ΦB,16. The figure implies that short
linear equalizers accompanied with a feedback filter are preferred to long linear
equalizers without any feedback filter.
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of the equalization is desirable. To evaluate this trade-off, a clear understanding
is required of the impact of the different equalization filters on the performance.
In this regard, Fig. 5.7 presents the performance of the adjustable and the hy-
brid strategy as a function of SNR for σr = 3% and for three equalization
configurations: (i) a configuration with LX = 3, but without any feedback
(ΦB = ∅); (ii) a configuration that adds 16 additional taps to the linear equal-
ization filters, but still without any feedback, i.e., LX = 7 and ΦB = ∅; and
(iii) a configuration with short linear equalization filters, but with a 16-tap
feedback filter, i.e., LX = 3 and ΦB = {1, · · · , 16}. Particularly notable in Fig.
5.7 is the outstanding performance achieved in the third configuration, which
can be contributed to the presence of the feedback filter. Indeed, increasing the
filter length to LX = 7 only considerably lowers the BER floor by a factor of
104, while this floor is completely eliminated when the feedback filter is active,
illustrating that short linear equalizers with a feedback filter are to be preferred
to long linear equalizers without any feedback.

An interesting question is how to choose the filter lengths of P and W
when the total number of equalization taps of their cascade is predefined. For
SNR = 25 dB and σr = 5%, Fig. 5.8 focuses on this issue by presenting the
1/MSE and the BER performance of the adjustable, the hybrid, and the fixed
strategy as a function of LW, while the cascade of P and W consists of 29 taps
in total. In the left plots of Fig. 5.8, the feedback filter is absent (ΦB = ∅),
whereas a 16-tap feedback filter is active in the right plots (ΦB = ΦB,16). The
following observations hold:

• In terms of performance, the adjustable strategy is as expected superior
to the hybrid and the fixed strategy for every LW, irrespective whether
the feedback filter is present or not. More interestingly, a distinct perfor-
mance improvement is perceived when a linear filter is present at both the
transmitter and the receiver compared to when only either P (LW = 0)
or W (LW = 29) is active. One possible explanation for this observation
is that when both P and W are active, the equalization task can be prop-
erly distributed between them such that this additional design freedom
allows to lower the combined negative impact of the energy constraint
and the noise enhancement. Finally, the performance of the adjustable
strategy is fairly constant when both P and W are active, making the ex-
act division of the equalizer taps between the transmitter and the receiver
irrelevant, as long as both linear equalizers are present.

• As for the fixed equalization strategy, the performance is poor and LW

does not seem to positively nor negatively impact it.

• In the hybrid strategy, a complexity-performance trade-off is inherent to
the division of the equalization coefficients between P and W: the larger
LW, the better the performance but the larger the complexity. Indeed,
when the feedback filter is omitted, the hybrid strategy is identical to the
fixed strategy for LW = 0. When LW increases, the performance of the
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Figure 5.8: Performance of the adjustable, the hybrid, and the fixed strategy
in terms of both 1/MSE and BER as a function of LW for SNR = 25 dB
and σr = 5%. While LW varies, the total number of equalizer taps in the
cascade of P and W is always 29. In the left plots, the feedback filter is
omitted (ΦB = ∅), whereas a 16-tap feedback filter is employed in the right
plots (ΦB = ΦB,16). Performance improves when both P and W are present,
while the hybrid strategy performs nearly as good as the adjustable strategy
when LW is sufficiently large.
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Figure 5.9: Performance of strategy S-Hs2 in terms of both 1/MSE and BER as
a function of LW,adj for L

(1)
P = L

(2)
P = 7, SNR = 25 dB, and σr = 3%, while the

total number of taps in W is equal to 15. As a reference, the performances of the
optimal S-A, S-H, and S-F are included as well. In the left plots, the feedback
filter is absent (ΦB = ∅), whereas a 16-tap feedback filter is employed in the
right plots (ΦB = ΦB,16). Strategy S-Hs2 does not attain the performance
levels of the optimal hybrid strategy, even when most of the taps of W are
adjustable.

hybrid strategy gradually improves and converges to the performance of
the adjustable strategy. For instance, when LW ≥ 11, the hybrid strat-
egy results in a MSE and a BER that is smaller than the MSE and BER
achieved in the adjustable strategy with only one 29-tap linear equal-
izer. Consequently, a relatively large number of fixed equalizer taps in
the hybrid strategy does not impede decent performance. Moreover, the
performance difference between the adjustable and the hybrid strategy
diminishes even further when the feedback filter is present.

To explore the influence of the number of adjustable taps LW,adj on the
performance of the suboptimal strategy S-Hs2, Fig. 5.9 shows the 1/MSE and
the BER performance of this strategy as a function of LW,adj (from 0 to 15)
for L(1)

P = L
(2)
P = 7, SNR = 25 dB and σr = 3%, while the total number of

taps of the filter W, i.e., the cascade of Wfix and Wadj, is kept constant to
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15. Similar to Figs. 5.6 and 5.8, the feedback filter is excluded in the left
plots (ΦB = ∅) and a 16-tap is present in the right plots (ΦB = ΦB,16). As
a reference, the performance corresponding to the adjustable, the hybrid, and
the fixed strategy with the same number of equalization parameters is included.
Following observations can be made:

• As for LW,adj = 0, strategy S-Hs2 is completely identical to the optimal
fixed strategy when the feedback is omitted. In the case of ΦB = ΦB,16,
however, the feedback filter is adjustable in the former strategy, whereas
it is fixed in the latter strategy. Nevertheless, S-Hs2 performs worse than
S-F, because the design of the fixed linear filters in S-Hs2 does not consider
the adjustable feedback filter, while the fixed feedback filter is considered
in the design of the fixed linear filters in S-F.

• Irrespective of the number of feedback taps, increasing the number of
variable taps, LW,adj from small to larger values, positively influences the
performance of S-Hs2. However, this suboptimal strategy never closely
approximates the performance levels of the optimal hybrid strategy, even
when LW,adj is relatively large, e.g., more than 0.5 dB loss in MSE when
ΦB = ∅ and more than 1.5 dB loss when ΦB = ΦB,16. One possible ex-
planation is that the iterative computation of the fixed pre-equalizer P in
S-Hs2 is performed with a feedforward filter, which is not only fixed, but
also shorter than the adjustable and longer filter of the optimal hybrid
strategy. Moreover, this iterative computation of P and Wfix totally ne-
glects any feedback in S-Hs2. Consequently, the resulting pre-equalizer P
performs worse than the pre-equalizer P obtained by the optimal hybrid
strategy.

• One exception to the observation above is that the performance of S-Hs2

worsens when all coefficients of W are adjustable (LW = LW,adj). In this
case, the fixed Wfix is not present such that no iterations are involved in
the computation of the fixed P. The presence of the feedforward filter
W and the feedback filter B at the receiver is then in fact completely
ignored in the design of P, yielding poor results.

In the computation of the fixed equalizer(s) in the hybrid and the fixed
strategy, the number of channel realizations, Nch, that are incorporated in the
expectation EGch

[·] is preferably as small as possible to attain low complex-
ity and corresponding fast computation. However, when Nch is too small, the
subset of Nch channel realizations cannot capture the full variability of the
channel, risking unreliable and inferior average performance. This trade-off
between performance and complexity is further illustrated in Fig. 5.10, which
plots the MSE performance as a function of Nch for SNR = 25 dB, σr = 3%,
LX = 7, and ΦB = ∅. For each value of Nch, 200 simulation runs are con-
ducted. In each run, Nch channels are randomly selected from a database of
1000 channel realizations to compute the fixed equalizers. Next, the MSE is
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Figure 5.10: Performance of the hybrid and the fixed strategy in terms of
1/MSE as a function of the number of channel realizations Nch incorporated
in the expectation EGch

[·] for SNR = 25 dB, σr = 3%, LX = 7, and ΦB = ∅.
The performance of both strategies is sensitive to small Nch, while reliable
performance is only to be expected for sufficiently large Nch.

evaluated based on the other 1000 − Nch channel realizations. Fig. 5.10 con-
firms that MSE is sensitive to small Nch, especially in the case of the fixed
strategy. Reliable performance is to be expected only for sufficiently large Nch,
i.e., Nch greater than a certain Nch,min. This threshold Nch,min naturally de-
pends on the channel characteristics, and can be visually determined in Fig.
5.10 as approximately 200.

5.5.2 Feedback filter: a detailed discussion

When the feedback filter B consists of LB taps, deriving the set of LB active
time delays yielding the lowest MSE is an interesting subject to study. Here,
an active time delay m is defined as a causal time delay, on which the feedback
filter is active, i.e., B(m) 6= 0. Because the relationship between the perfor-
mance, e.g., MSE, and the set of active time delays is complicated, analytical
minimization is unfortunately not a viable option. Moreover, numerical evalu-
ation of the performance corresponding to each possible set of LB active time
delays is not practical either, as the number of possible sets is equal to the
number of LB-combinations from a set with L(2)

G elements, i.e.,
(L(2)

G
LB

)
, which

is often impractically large. However, decent to excellent performance is to be
expected when most of the dominant causal ISI components are eliminated by
the feedback filter. In this regard, Fig. 5.11 plots the 1/MSE and the BER
performance of the adjustable, the hybrid, and the fixed strategy for an in-
terconnect with σr = 3% as a function of the SNR with LX = 3. The set of
active time delays and the feedback filter are computed according to one of the
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Figure 5.11: Performance of the adjustable (left), the hybrid (middle), and the
fixed (right) strategy in terms of 1/MSE and BER as a function of SNR for
σr = 3% with LX = 3. In total, four different methods to select the set of active
time delays and to compute the feedback filter are examined. Determining the
set ΦB by keeping only a select number of dominant taps of a long feedback
filter does in general not induce a major performance loss.

following methods:

1. In the first methodM1, all LB feedback taps correspond to the first LB

causal time delays, as traditionally the largest causal ISI occurs close
to the time delay on which the decision is based. In Fig. 5.11, LB is
equal to 16 such that ΦB = ΦB,16. For the chip-to-chip interconnect, this
method is generally not optimal as this communication channel suffers
from reflections, whose ISI is not within the range of this ΦB.

2. The performance of a long equalizer that eliminates all causal ISI is a
lower bound on the performance of a feedback filter with a limited number
of taps. To gain insight into how well the feedback filter with 16-taps
performs compared to a long feedback filter, method M2 extends the
feedback filter fromM1 to LB = 100 taps, i.e., ΦB = {1, · · · , 100} such
that the first reflection is within the range of ΦB.

3. As for the long feedback filter in methodM2, many taps are observed to
be relatively small in magnitude, which is exploited by the third method
M3. In this method, the feedback filter from methodM2 is active only
at the time delays corresponding to the LB = 16 dominant feedback
matrices, which are the 16 matrices with largest ‖B(m)‖2. The resulting
set ΦB,M3 depends on the channel realization in S-A and S-H, but is
identical for all channel realizations in S-F. Compared to M2, both the
number of active time delays and the complexity greatly reduce in M3,
while the performance difference should be relatively small because both
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methods are able to eliminate the largest dominant causal ISI generated
by the direct pulse and the first reflection.

4. Except for the feedback filter, all equalization parameters in methodM3

are specifically designed with the assumption that the feedback filter is
active in the complete range of ΦB = {1, · · · , 100}. However, the feedback
filter is only active in the set ΦB,M3 such that the equalization parameters
are not necessarily optimal. In methodM4, all equalization parameters
are therefore recalculated with ΦB = ΦB,M3

, which should in theory yield
superior performance. The full procedure to compute the equalization
parameters in method M4 is presented in Algorithm 5.1. Interestingly,
full convergence is not required in the computation of (P?, α?,W?,B?)
during the first step of the algorithm, as the relevant information, ΦB,M3 ,
can generally be derived after only a few iterations between (P, α) and
W.

Algorithm 5.1 Computation of the equalization parameters inM4.

1. Compute (P?, α?,W?,B?) with ΦB = {1, · · · , 100}.

2. Determine ΦB,M3
by selecting the LB dominant time delays of B?.

3. Recompute (P?, α?,W?,B?) with ΦB = ΦB,M3 .

As anticipated, Fig. 5.11 confirms that the shorter feedback filter of the first
methodM1 is outperformed by the longer feedback filter of the second method
M2 regardless of the equalization strategy. More interesting is that selecting
only the LB = 16 most dominant taps in method M3 causes only a minor
performance loss compared to M2. Although the equalization parameters in
M3 are not specifically designed for ΦB,M3 , M3 achieves significantly better
performance than M1, because the feedback filter in M3 reduces also the
dominant causal interference of the first reflection. Based on the performance
difference between M4 and M3, one can deduce that a only marginal gain is
obtained by recomputing the equalization coefficients inM4 for the specific set
of time delays ΦB,M3 .

This performance difference between methods M3 and M4 is further in-
vestigated in Fig. 5.12, which plots the 1/MSE and the BER performance of
the adjustable, the hybrid, and the fixed strategy for both these methods as a
function of LB ranging from 1 to 100 with ΦB = {1, · · · , 100}. Other param-
eters such as σr, SNR, and LX are respectively set to 3%, 20 dB, and 3. The
following conclusions can be drawn:

• As forM3, increasing LB implies that additional time delays are added
to the set ΦB,M3 and thus more causal time delays become active. Con-
sequently, MSE must be a decreasing function of LB as all other equal-
ization parameters remain identical. This decrease is confirmed by Fig.
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Figure 5.12: 1/MSE and BER performance of S-A, S-H, and S-F for methods
M3 andM4 as a function of LB with ΦB = {1, · · · , 100}. Moreover, σr, SNR,
and LX are set to 3%, 20 dB, and 3, respectively. MethodM4 clearly outper-
forms methodM3 for small LB, whereas the performance of both methods is
nearly constant and identical for LB > 25.
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Figure 5.13: Comparison of BER achieved by a feedback filter with perfect
feedback and by the realistic feedback filter suffering from error propagation
as a function of SNR for strategies S-A, S-H, and S-F. Moreover, ΦB = ΦB,16

and σr = 5%. The impact of the error propagation is only small to moderate
and fairly constant over the whole SNR range.

5.12, which also reveals that MSE converges fairly quickly to the lowest
value reached at LB = 100. Indeed, MSE at LB = 25 is less than 1%
larger than the MSE at LB = 100. These results depend of course on
the channel, but do illustrate that setting relatively small feedback taps
to zero does not majorly impact the MSE performance. Furthermore, a
similar reasoning holds for the BER performance.

• Recalculating all equalization parameters in method M4 improves the
MSE and the BER performance compared to methodM3, especially for
low LB, which can be explained by the following reasoning. In the design
of P and W inM3, the residual ISI for all m ∈ ΦB \ΦB,M3

is not taken
into account as this ISI is assumed to be neutralized by the feedback filter.
In practice, only the ISI for m ∈ ΦB,M3 is eliminated and when LB is
too small not all dominant ISI is neutralized, inducing a considerable
degradation to the MSE performance. In M4 however, all residual ISI
for all m ∈ ΦB \ΦB,M3

is considered in the design of P and W such that
excessively large residual ISI is avoided, even when LB is small.

• The performance difference between S-A and S-H is almost negligible as
the channel variance is only 3% and the length of the linear filters is
moderately large, i.e., LX = 3.

All BER results presented above are generated with the assumption that
all decisions on previously transmitted symbols are correct, which is referred to
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as ‘perfect feedback’. In practice, this assumption does not hold and one erro-
neous decision could severely impair the error performance, since this decision
error influences future decisions. This error propagation is difficult to model
mathematically [46], and Fig. 5.13 therefore compares the BER in the case of
perfect feedback with the simulated BER achieved by a realistic feedback filter
suffering from error propagation. For both cases, the BER performance of S-A,
S-H, and S-F is presented as a function of the SNR with LX = 3, ΦB = ΦB,16,
and σr = 5%. As for the perfect feedback, the BER is computed by means of
the procedure described in Section 5.4, whereas the BER including the effect of
error propagation is obtained by simulating the transmission of 1.2·107 random
symbols over each of the 1000 channel realizations, yielding a total of 1.2 · 1010

transmitted symbols. Following observations can be made:

• Only a small to moderate increase in BER is observed when error prop-
agation is present. Indeed, the degradation in SNR is less than 0.5 dB
and 1 dB in S-A and S-H, respectively, while maximum 3 times as much
errors are present at high SNR in the case of S-F. This observation thus
validates the assumption of perfect feedback when a fast and reliable
indication of BER is required.

• The equalization scheme with a feedback filter affected by error propaga-
tion still outperforms the equalization scheme without any feedback (Fig.
5.2), even when the linear filters in the latter are relatively long. This ob-
servation is confirmed by comparing Fig. 5.13 with Fig. 5.7. Indeed, the
BER achieved over the channel with σr = 5% equalized by a DFE with
error propagation in Fig. 5.13 is lower than the BER achieved over the
channel with σr = 3% equalized by means of linear filters with LX = 7
in Fig. 5.7.

The impact of error propagation could of course also be dependent on the
number of feedback taps and the placement of the active time delays. Fig.
5.14 therefore adds the BER with error propagation to the BER results of Fig.
5.12 in the case of method M4. This figure confirms that the performance
difference between perfect and realistic feedback is not only fairly constant
over the entire range of LB, but also small to moderate for all equalization
strategies. Moreover, similar results are obtained for configuration M3 (not
shown).

In conclusion, the numerical results without error propagation provide a
good indication of the actual error performance of the feedback filter with
error propagation.

5.5.3 Fractionally-spaced equalizers

This subsection considers fractionally-spaced linear filters as a means to further
improve the performance. In particular, Fig. 5.15 investigates the impact of
doubling the operating rate of either P or W on MSE and BER as a function of
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Figure 5.14: Influence of the error propagation on the BER performance as a
function of LB in the case of methodM4, σr = 3%, SNR = 20dB, and LX = 3.
The effect of the error propagation is fairly constant over the whole range of
LB.
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Figure 5.15: Performance of the adjustable and the hybrid strategy in terms
of both 1/MSE and BER with fractionally-spaced equalizers as a function of
σr at SNR = 25 dB. Three pairs of (NP, NW) are considered: (1, 1), (2, 1),
and (1, 2). For the symbol-spaced equalizer, LX = 5, whereas all fractionally-
spaced equalizers possess the same time span. The feedback filter is either
present (ΦB = ΦB,16) or not (ΦB = ∅). Doubling the operating rate of either
P or W clearly improves MSE and BER for both strategies.
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σr at SNR = 25 dB for the adjustable and the hybrid strategy. In the former,
(NP, NW) = (2, 1), whereas (NP, NW) = (1, 2) in the latter. As a reference,
the case with solely symbol-spaced equalizers, i.e., (NP, NW) = (1, 1), and
LX = 5 is included as well. To allow for a fair comparison, the time span of the
fractionally-spaced filters equals the time span of the symbol-spaced filters by
doubling the number of causal and anti-causal taps. Moreover, the feedback
filter B contains either 16-taps (ΦB = ΦB,16), or is absent (ΦB = ∅). Following
observations can be made.

• Whether NP or NW is increased from 1 to 2, the MSE and the BER
performance considerably improves in the case of the adjustable strategy.
More precisely, a gain in 1/MSE of up to 1 dB and decreases in BER by a
factor 100 and more are observed. As both P and W are adjustable, both
fractionally-spaced equalizers yield similar performance and no preference
is given to either. The performance improvement in both MSE and BER
seems to be larger when the feedback filter is absent, i.e., ΦB = ∅, than
when a 16-tap feedback filter is active, since in the former configuration
doubling the operating rate of one of the linear filters has relatively more
impact on the total equalization power than in the latter configuration.

• As for the hybrid strategy, the configuration with the fractionally-spaced
W, i.e., (NP, NW) = (1, 2) yields superior performance compared to the
configuration with the fractionally-spaced P, i.e., (NP, NW) = (2, 1),
since the former filter is adjustable and the latter filter is fixed. This
performance difference is especially pronounced for larger σr, for which a
fractionally-spaced fixed P is less beneficial.

The sensitivity of the optimal equalization strategies to the sampling delay
ε is illustrated in Fig. 5.16 for both symbol-spaced and fractionally-spaced
equalizers with SNR = 25 dB, σr = 5%, and ΦB = ∅. In this figure, the 1/MSE
and the BER performance are plotted as a function of ∆ε/T . The deviation ∆ε
denotes the difference between ε and the delay εmax, the latter being defined
as the delay corresponding to the largest element of H(u). In total, three
configurations are investigated: one with only symbol-spaced equalizers, i.e.,
NP = NW = 1, and two with one linear filter operating at twice the symbol
rate, i.e., (NP, NW) = (2, 1) and (NP, NW) = (1, 2). All equalizer taps are
equally distributed around the main tap of the filter and the time span of
all equalizers is kept constant by considering 11-tap symbol-spaced filters and
21-tap fractionally-spaced filters. The following observations can be made:

• As for the adjustable strategy, only mild fluctuations in MSE and BER are
perceived when both P and W are symbol-spaced equalizers. Moreover,
the sampling delay ε = εmax is not necessarily optimal such that an
additional optimization over ε realizes potentially a marginal gain in MSE
and BER. However, this optimization requires the numerical evaluation
of the performance for numerous values of ε, which often induces an
excessive computational complexity, yielding only limited benefits.
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Figure 5.16: Performance of the adjustable, the hybrid, and the fixed strategy
in terms of both 1/MSE and BER as a function of ∆ε/T for SNR = 25 dB,
σr = 5%, and ΦB = ∅. Three pairs of (NP, NW) are considered: (1, 1), (2, 1),
and (1, 2). All symbol-spaced equalizers comprise 11 taps evenly spread around
the center tap, while any fractionally-spaced equalizer operating at twice the
symbol rate possesses 21 taps such that the time span of all filters is identical. In
the case of an adjustable fractionally-spaced filter, the performance is constant
with respect to ∆ε.
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• More prominent is the nearly constant performance for different ε in the
case of the adjustable strategy when a fractionally-spaced equalizer is
present. Indeed, this fractionally-spaced equalizer is capable of introduc-
ing an arbitrary additional delay over the useful signal frequency-band
|f | < B (with B slightly exceeding 1

2T due to the transmit and receive
filter rolloff), which is something a symbol-spaced equalizer cannot do.

• In the hybrid strategy, the iterative computation of the fixed P and the
scaling factor α is performed with the assumption that ε = εmax. When
the communication link is in operation, the sampling constant ε could of
course be different to εmax, which is subsequently taken into account in
the design of all adjustable equalization parameters at the receiver. When
both P and W are symbol-spaced, the sensitivity to ε is nearly identical
compared to the adjustable strategy. Additionally, the performance is
again constant for a fractionally-spaced W with NW = 2. However,
a fractionally-spaced pre-equalizer P is designed for ε = εmax and its
superior performance compared to a symbol-spaced pre-equalizer only
applies when ε slightly deviates from εmax.

• Just as the hybrid strategy, the fixed strategy computes the fixed equal-
ization parameters with respect to ε = εmax. Contrary to the hybrid
strategy, this strategy has, however, no mechanism to cope with the mis-
match between ε and εmax. The performance of the fixed strategy there-
fore rapidly worsens with increasing |∆ε|, even when a fractionally-spaced
equalizer is present.

5.5.4 Convergence analysis

Irrespective of the presence of a feedback filter, all optimal equalization strate-
gies proposed above obtain the equalization parameters by means of an iterative
algorithm. The convergence of these iterative algorithms is investigated in Fig.
5.17. More precisely, this figure plots the MSE, the relative decrease γ in MSE,
and the SER corresponding to the adjustable, the hybrid, and the fixed strategy
as a function of the number of iterations for (NP, NW) = (1, 1), SNR =25 dB,
LX = 7, ΦB = ∅, and σr = 3%. As for the hybrid strategy, the convergence
when either P or W is fractionally-spaced with spacing T/2 is also included.
Finally, the cross markers indicate the iteration index at which the relative
decrease of MSE is below γmin = 10−4. The following observations hold:

• By design, MSE is a nonincreasing function of the iteration index. More-
over, MSE is lower bounded by 0 such that convergence is guaranteed.
For all strategies, most improvement in both MSE and BER is observed
in the first iterations, after which the performance gain gradually dimin-
ishes. Consequently, γmin must be small enough such that convergence is
reached after the initial performance improvement, but must be not too
small either such that the computational complexity does not become
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Figure 5.17: Performance of the optimal adjustable, the optimal hybrid, and
the optimal fixed strategy in terms of 1/MSE, γ, and BER as a function of the
number of iterations for (NP, NW) = (1, 1), SNR =25 dB, LX = 7, ΦB = ∅, and
σr = 3%. Moreover, the performance of the hybrid strategy is also included
when either P or W is fractionally spaced with a factor 2. Additional cross
markers indicate the iteration index at which convergence is achieved when
γmin = 10−4. The convergence is quite fast for all considered strategies and
configurations.
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Figure 5.18: Performance of all equalization strategies in terms of 1/MSE as a
function of σr in the case of 4-PAM (left plot) and 8-PAM (right plot). Just
as for the right plot of Fig. 5.6, SNR = 25 dB, LX = 7, and ΦB = ΦB,16. As
for the MSE performance of the different strategies, similar conclusions can be
drawn as in Fig. 5.6, irrespective of the value of M .

needlessly large. Nevertheless, a large number of iterations in the hybrid
and the fixed strategy is less of a concern in practice, as these iterative
computations can be performed offline.

• Whether or not a linear equalizer is fractionally spaced does not seem to
have a profound impact on the convergence rate.

• No feedback filter is present in Fig. 5.17. However, the addition of a
feedback filter does not alter the structure of the iterative algorithms.
Additional simulations (not shown) indicate no meaningful difference in
the convergence rate when the feedback filter is present.

5.5.5 Effect of constellation size for fixed bitrate
Fig. 5.18 presents the 1/MSE performance of all equalization strategies as a
function of σr for the 4-PAM (left plot) and the 8-PAM (right plot) constel-
lation. The system parameters are identical to the right plot of Fig. 5.6, i.e.,
SNR = 25 dB, LX = 7, and ΦB = ΦB,16. For the different values of M , the bit
rate is kept constant to 75 Gb/s by scaling the symbol rate 1/T (and, hence, the
bandwidth of the transmitted signal) by a factor of 1/ log2(M). The following
statements can be made:

• The main conclusions drawn from Fig. 5.6 for M = 2 are also valid for
larger M in Fig. 5.18, because the MSE performance is only indirectly
influenced by the specific value of M in the case of a normalized M -PAM
constellation. Indeed, for a given sequence of channel matrices {G(m)},
the MSEgch

defined in (5.25) is only dependent on the constellation en-
ergy σ2

a and the correlation matrix of the noise such that the optimal
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Figure 5.19: Performance of all equalization strategies in terms of BER as
a function of σr in the case of 4-PAM (left plot) and 8-PAM (right plot) at
SNR = 25 dB and LX = 7. The same parameters as in Fig. 5.18 are employed
except that the feedback filter is extended to 50 taps and 33 taps in the case
of 4-PAM and 8-PAM, respectively. However, even with these longer feedback
filters, the 4-PAM and the 8-PAM constellation result in inferior BER compared
to the 2-PAM constellation.

equalization parameters are identical for all M . However, larger M does
result in smaller symbol rates and thus different channel matrices {G(m)}
and the MSE performance is therefore not exactly the same for different
M .

• The degradation of the fixed strategy becomes considerably smaller for
increasing M . For example, the MSE at σr = 10% of the fixed strategy
is 7.4 dB, 4.4 dB, and 2.6 dB larger compared to the adjustable strategy
for M = 2, M = 4, and M = 8, respectively. The main reason for this
smaller performance gap is that most variability of this particular channel
is situated at large frequencies (see Fig. 2.2). Because larger M results
in smaller symbol rates, less variability among the channel realizations is
present, and thus less degradation in the fixed strategy is to be expected.

To explore the impact of larger M on the BER performance, Fig. 5.19
depicts the BER as a function of σr for the 4-PAM (left plot) and the 8-PAM
(right plot) constellation. Just as in Fig. 5.18, SNR = 25 dB, and LX = 7,
but the feedback filter is extended to 50 taps and to 33 taps in the case of
4-PAM and 8-PAM, respectively, such that the time span of the feedback filter
also covers the first reflection. Based on Fig. 5.19, one can make the following
observations:

• Similar conclusions can be made for the relative BER performance of
the different strategies in the case of 4-PAM and 8-PAM as for 2-PAM,
because the optimization method is not directly influenced by the specific
value of M .
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• Despite the longer feedback filters, the BER corresponding to both the
4-PAM and the 8-PAM constellation is worse compared to the BER
achieved in the case of the 2-PAM constellation. To explain this ob-
servation, one must consider all following factors that are influenced by
M . First of all, the distance between two neighboring constellation points
becomes smaller for largerM due to the normalization of the constellation
such that the noise margin declines. Moreover, the absolute value of the
smallest and the largest constellation point is proportional to

√
M , result-

ing in larger maximal interference. Thirdly, a higherM requires a smaller
symbol rate to achieve the same bit rate. Consequently, the bandwidth
of the transmit and the receive filter is smaller such that less interference
and XT are introduced by the channel as it possesses a low-pass charac-
teristic. For identical SNR levels, the noise variance finally decreases for
increasing M as the energy per bit is proportional to 1/ log2(M) when
the transmit energy is constant. The first two factors clearly have a neg-
ative impact on the BER when M increases, whereas the last two factors
favorably influence the BER. The negative factors are clearly dominant
for the numerical results presented in Fig. 5.19.

5.5.6 Simulation accuracy of the BER
In Fig. 5.20, the accuracy of the different methods to approximate BER (as
outlined in section 5.4.3) is investigated as a function of SNR for σr = 3%,
LX = 7, and ΦB = ∅ in the case of the adjustable strategy. To verify the
correctness of these methods, this figure contains also the simulated BERsim,
which is obtained by simulating the continuous transmission of 2 ·106 randomly
generated data symbols over each trace of each channel realization, resulting
in a total of Nsim = 8 · 109 simulated data symbols. This simulation is in
the literature often referred to as a Monte-Carlo simulation. As for BER1

and BER2, the variables N (the limited number of realizations of aISI used to
compute BER1) and K (the number of symbols contained in the dominant ISI)
are moderately large such that relatively accurate results are to be expected,
e.g., N = 106 and K = 24. Moreover, the lower bound BERLB and upper
bound BERUB are also considered: once for the small K = 4 and once for the
larger K = 24. The following observations hold:

• Particularly prominent is that both BER1 and BER2 are nearly identical
to the simulated BERsim, confirming the accuracy of both methods to
evaluate the BER. Only at low BER, a difference is notable, which
is caused by the unreliability of the simulated BERsim rather than the
inaccuracy of the approximations. In conclusion, both BER1 and BER2

can be employed to numerically compute an accurate approximation of
the BER, when N and K are large enough.

• In Fig. 5.20, the lower and especially the upper bound to BER are rather
loose. Indeed, the convergence improvement for K = 24 compared to
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Figure 5.20: Comparison of the simulated BERsim (Nsim = 8 · 109, dark red
dots), the approximation BER1 (N = 2 · 106, thick light red line) and the
approximation BER2 (K = 24, thin red line) as a function of SNR for σr = 3%,
LX = 7, and ΦB = ∅ in the case of the adjustable strategy. The lower bound
BERLB and the upper bound BERUB are included as well for both K = 4 and
K = 24. Both BER1 and BER2 are reliable approximations for BER in the
complete SNR range, whereas the upper and lower bound are rather loose, even
for large K.
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Figure 5.21: The approximation BER2 as a function ofK for various SNR levels
in the case of the adjustable strategy, σr = 3%, LX = 7, and ΦB = ∅. The
larger the SNR, the lower BER, and the larger K must be to reach convergence.

K = 4 is visible, but this improvement is not nearly enough to obtain tight
bounds. By design, further increasing K should eventually yield bounds
close to the actual value of BER, but this is not particularly attractive
as the computational complexity grows exponentially with K. Moreover,
the estimate BER2 requires the same computational complexity and is
already reliable for moderate K, making these tight bounds unnecessary.

To investigate the accuracy of the approximation BER2 more thoroughly,
Fig. 5.21 presents BER2 as a function of K for different SNR levels with
σr = 3%, LX = 7, and ΦB = ∅ in the case of the adjustable strategy. Visual
inspection confirms that for large K, BER2 converges to an asymptotic value.
However, the SNR level affects the convergence rate: the larger the SNR and
thus the lower BER2, the slower the convergence becomes.

In Figs. 5.20 and 5.21, all results are limited to the 2-PAM constellation
and no feedback filter is present. To verify whether the approximations of the
BER are still reliable for larger constellations and when the feedback filter is
present, Fig. 5.22 compares the approximations BER1 (N = 106) and BER2

(K = 11) with the simulated BER1 (Nsim = 109) for 4-PAM transmission with
ΦB = {1, · · · , 50}. Here, the approximations are obtained by applying the
reasoning from Section 5.4.3 on the BER expression for the 4-PAM constellation
from (11.25). Additionally, the figure includes the lower bound BER4PAM,LB,
which is equal to SER/2 according to (5.73). Clearly, Fig. 5.22 confirms not
only that the approximations are still well-defined, but also that the formulated
lower bound is extremely tight.
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Figure 5.22: Comparison of the simulated BERsim (Nsim = 109, dark red dots)
and the approximations BER1 (N = 106, thick light red line) and BER2 (K =
11, thin red line), and the lower bound BER4PAM,LB (dark red squares) as
a function of SNR for σr = 3%, LX = 7, ΦB = {1, · · · , 50}, and 4-PAM
transmission. All approximations of BER yield accurate results and the lower
bound BER4PAM,LB is extremely tight.

In conclusion, all numerical methods to evaluate the BER and the SER
yield reliable and accurate results, except for the lower bound BERLB and
upper bound BERUB.

5.6 Comparison of different optimization meth-
ods

The joint optimization of the different equalization coefficients is solved for
all strategies above by means of an iterative optimization method. However,
other optimization methods could be employed, yielding possibly better per-
formance as this iterative optimization algorithm does not necessarily converge
to the global optimum. Here, two alternative optimization methods are briefly
discussed: the SF Newton optimization method from [79, 80] and the IBRO
method from [81, 82].

In this section, these two methods are applied to the linear equalization
scheme presented in Section 5.2 and the discussion is limited to the adjustable
strategy S-A. In this strategy, the optimal set (P?,W?, α?) is obtained by
minimizing MSEgch

from (5.25) with ΦB = ∅ subject to the energy constraint
from (5.5). At optimum, this constraint is met with equality such that the
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following relationship holds

α2 =
σ2
a

LETX
Tr
[
P̂
H

RTXP̂
]

(5.84)

with P̂ = αP. Plugging (5.84) into (5.25) reveals that the solution of the
constrained optimization problem can then also be obtained by minimizing the
following expression for MSEgch

(P̂,W) with respect to P̂ and W:

MSEgch
(P̂,W) =

1

L
Tr

 L
(2)
G∑

m=−L(1)
G

∥∥∥WG(m)P̂− δ(m)IL

∥∥∥2

+
Tr
[
P̂
H

RTXP̂
]

WRn̄WH

LETX

 . (5.85)

5.6.1 Alternating optimization method
Despite the obvious similarity with the optimization of MSEgch,B

?
a
from (5.30)

in Subsection 5.2.1, the alternating optimization of MSEgch
(P̂,W) from (5.85)

is briefly discussed here to facilitate the comparison with the other optimization
methods. In this iterative method, the optimal P̂

?
and W? are alternately

computed for given W and P̂, respectively. The optimal P̂
?
for given W is

given by

P̂
?

= D−1GH(0) with D = GHG +
Tr
(
WRn̄WH

)
LETX

RTX, (5.86)

where the stacked matrix G is similarly defined as GN in (5.31), i.e.,

G =
[
GH

(
−L(1)

G

)
· · ·GH

(
L

(2)
G

)]H
. (5.87)

The corresponding minimal MSEG,P̂
? can be expressed as

MSEG,P̂
? =

1

L
Tr
[
IL − G(0)D−1GH(0)

]
. (5.88)

Second, the optimal W? for given P̂ is defined as

W? = GH(0)C−1 with C = GGH +
Tr
(
P̂
H

RTXP̂
)

LETX
Rn̄, (5.89)

where the augmented matrix G is defined as

G =
[
G(−L(1)

G ) · · ·G(L
(2)
G )
]
. (5.90)



90 CHAPTER 5. STOCHASTIC CHANNEL: DFE

The associated minimal MSEG,W? can be written as

MSEG,W? =
1

L
Tr
[
IL − G(0)C−1GH(0)

]
. (5.91)

The computation of the optimal P̂
?
and W? in each iteration of the iterative op-

timization method consists entirely of matrix multiplications and matrix inver-
sions. Closer inspection of (5.86) and (5.89) reveals that the corresponding com-
putational complexity of one iteration is of the order ofO

(
L3LG max (LW, LP)

2
)
.

5.6.2 Saddle-free Newton optimization method (SF-Newton)
Newton’s method is a well-known, iterative general descent algorithm to find
the root of a differentiable function [83]. When applied to the first-order deriva-
tive or to the gradient of the objective function f0, this algorithm can be em-
ployed to find a critical point, i.e., a point x where the gradient of f0 vanishes.
In this algorithm, the search direction is defined as follows:

∆xnt(x) = −
(
O2f0(x)

)−1
Of0(x), (5.92)

where Of0(x), and O2f0(x) are the gradient and Hessian of f0 at point x, re-
spectively. Newton’s method is an effective algorithm to solve an unconstrained
convex optimization problem, because the only critical point of a convex f0 is
equal to the global optimum ([83]). Unfortunately, directly applying Newton’s
method to a nonconvex objective function such as the MSEgch

(P̂,W) from
(5.85) does not yield adequate performance as many critical points could be
present and they are not all globally optimal. Indeed, depending on the eigen-
values of the Hessian, the critical point is either a local minimum (only positive
eigenvalues), or a local maximum (only negative eigenvalues), or a saddle point
(both positive and negative eigenvalues). The main drawback of Newton’s
method is that the saddle points act as attractors, since the search direction
along each eigenvector is rescaled with the inverse of the corresponding eigen-
value. Consequently, the increment in Newton’s method is directed towards
saddle points as the negative eigenvalues reverse the sign of the gradient in the
subspace in which the Hessian is negative definite. Based on the eigendecom-
position O2f0(x̂) = QΛQT , an alternative and better search direction ∆xSF is
therefore defined as

∆xSF = −
(
O2f0(x)

)−1

Of0(x), (5.93)

where O2f0(x) = QΛQT and the diagonal matrix Λ is constructed by revers-
ing the sign of all negative eigenvalues in Λ, while the positive eigenvalues
remain unaltered. With this modified search direction, the saddle points are
no longer attractors and the resulting optimization method is called the SF
Newton optimization method.
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When the SF-Newton method is applied to the minimization of MSEgch
(P̂,W)

from (5.85), the gradient and Hessian of MSEgch
must be computed with re-

spect to both the real and the imaginary part of P̂ and W. For conciseness,
the exact expressions are not included. Nevertheless, the heaviest computa-
tional burden in each iteration is the eigendecomposition of the Hessian O2f0(·)
and the inversion of O2f0(·). Without proof, this results in a computational
complexity equal to O

((
L2(LP + LW)

)3), which is substantially larger than
the computational complexity of one iteration of the alternating optimization
method.

5.6.3 Improved bidirectional random optimization method
(IBRO)

The IBRO method is an example of a random search algorithm, which aims to
optimize an objective function f0 (x). Conceptually, this method attempts to
improve the estimate of the optimum, xi, by generating a random increment
ξi according to a normal distribution with mean bi and covariance matrix σ2I.
Characteristic to the IBRO algorithm is that the possible reduction caused by
the increment ξi is verified in two directions, i.e., xi + ξi and xi − ξi, whereas
even an additional increment is considered when the first increment fails to
reduce f0(xi). Furthermore, when an increment successfully decreases f0, the
mean bi is partially realigned to the direction of this increment. All details of
the IBRO method can be found in [81].

One advantage of the IBRO method is that no gradient information is re-
quired in the optimization process. This method is therefore applicable to a
broad class of objective functions, including non-differentiable functions. For
instance, the minimization of MSEgch

(P̂,W) can be performed by minimiz-

ing either MSEG,P̂
?(W) from (5.88) or MSEG,W?

(
P̂
)
from (5.91) instead of

MSEG,W?

(
P̂,W

)
from (5.85), greatly reducing the dimensions of the search

space as the minimization is only over the coefficients of W or P̂, respectively.
Because of this smaller search space, smaller computational complexity and
faster convergence is to be expected.

The optimization of MSEG,W?(P̂) by means of the IBRO algorithm has
in fact already been proposed in [82]. However, the discussion here has some
noticeable differences to the optimization procedure from [82]. Unlike the op-
timization problem here, no energy constraint is considered at the transmitter
in [82]. Second, the variance σ2 is considered to be fixed in [82], whereas al-
lowing the variance to change in each iteration yields better performance in
terms of both convergence and accuracy. For example, [84] multiplies the vari-
ance by αsuc > 1 when Nsuc consecutive iterations decrease f0, whereas the
variance is multiplied by αfail < 1 when Nfail consecutive iterations fail to de-
crease f0. Furthermore, convergence can be defined as the moment when σ2

becomes smaller than a certain threshold. Thirdly, the optimization method



92 CHAPTER 5. STOCHASTIC CHANNEL: DFE

0 25 50 75
Iteration

0

8.5

13.5

15.5

20

1
/
M
S
E

[d
B
]

Alternating

SF-Newton

SNR=30 dB

SNR=20 dB

SNR=10 dB

0 25 50 75
Iteration

0

9.4

13.5
15

20

1
/
M
S
E

[d
B
]

Alternating

SF-Newton

LX = 1

LX = 3

LX = 5

Figure 5.23: MSE performance of the SF-Newton and the alternating opti-
mization method as a function of the iteration index. In the left plot, LX = 3
and three SNR-levels are considered: SNR = 10 dB, SNR = 20 dB, and
SNR = 30 dB. In the right plot, SNR = 20 dB and three values for LX are
considered: LX = 1, LX = 3, and LX = 5. The alternating method has a faster
convergence, but the SF-Newton method achieves a smaller MSE.

in [82] always opts to minimize MSEG,W?(P̂) rather than MSEG,P̂
?(W). This

strategy is reasonable when LP ≤ LW, as the minimization is then over the
smallest search space. However, minimizing MSEG,P̂

? (W) is a better option
when LW < LP.

The most computationally complex instruction in the IBRO method is the
evaluation of either MSEG,W?

(
P̂
)
or MSEG,P̂

?(W), which both correspond

to a maximum complexity of O
(
L3LWLPLG

)
. Hence, per iteration, this com-

plexity is slightly smaller than the complexity of the alternating optimization
method.

5.6.4 MSE performance comparison
To compare the performance of the alternating and the SF-Newton optimiza-
tion method, Fig. 5.23 visualizes the MSE averaged over 1000 random frequency-
selective 4 × 4 MIMO channels with an exponential power delay profile as a
function of the iteration index. In the left plot, LX = 3 and SNR is either
10 dB or 20 dB or 30 dB, whereas SNR is set to 20 dB and LX to either 1 or 3
or 5 in the right plot. Following observations can be made:

• At convergence, solving the optimization problem by means of the SF-
Newton method yields slightly better average performance compared to
the alternating optimization method. Consequently, this observation con-
firms that the alternating method is only locally optimum.

• The SF-Newton method converges more slowly than the alternating op-
timization method. Indeed, the numerical results demonstrate that the
number of iterations needed for convergence in the case of the alternating
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Figure 5.24: MSEgch
performance corresponding to 20000 different random

initializations as a function of the iteration index for one specific channel re-
alization with SNR = 20 dB and LX = 3. The thick black lines show the
MSEgch

averaged over the different initializations. Although the alternating
algorithm converges relatively fast, a fairly large difference in MSEgch

is ob-
served at convergence. Less difference is noticed for the SF-Newton method,
but the convergence is slower and the convergence rate greatly depends on the
initialization.

method for most channel realizations is considerably less than the number
of iterations required on average to reach convergence in the SF-Newton
method. Because the SF-Newton method not only requires more itera-
tions, but also has a larger computational complexity per iteration, the
SF-Newton method is considerably more computationally complex than
the iterative optimization method.

• The higher the SNR level in the left plot of Fig. 5.23, the more itera-
tions both algorithms need to reach convergence as the noise becomes less
dominant. Furthermore, increasing the number of equalization parame-
ters in the right plot of Fig. 5.23 naturally enlarges the design space, and
more iterations are needed on average to reach convergence. This effect,
however, is especially pronounced for the SF-Newton method, implying
that the alternating method is better in handling large design spaces.

In conclusion, one must opt for the SF-Newton method when performance is
essential, whereas the alternating method is to be preferred when the compu-
tational complexity is a limiting factor due to either a large design space or a
limited amount of available computational resources.

Fig. 5.24 analyzes the performance of both the alternating and the SF-
Newton method for one particular random channel realization gch with SNR =
20 dB and LX = 3. In total, both algorithms are executed 20000 times, each
time with a different random initialization. As above, the faster convergence
of the alternating method and the lower MSEgch

achieved by the SF-Newton
method are both directly observed in Fig 5.24 as well. Moreover, two additional
findings can be derived.
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Figure 5.25: 1/MSE performance of the IBRO method and the optimization
method from [82]. For each channel, 20 runs of the algorithms are executed
and all MSE results are averaged over 200 channel realizations. As a reference,
the MSE obtained by the SF-Newton and the alternating optimization method
are included as well. Clearly, the improved IBRO algorithm presented here
outperforms the optimization method of [82].

• Fig. 5.24 first demonstrates that both algorithms cannot guarantee to
converge to the global optimum. After 100 iterations, all MSEgch

com-
puted by means of the alternating method are larger than all MSEgch

obtained by the SF-Newton method. Moreover, the different runs of the
SF-Newton method do not converge to one optimum and some spread in
the obtained MSEgch

values exists at convergence.

• Second, the influence of the exact value of the initialization on MSEgch

is opposite for the two methods. As for the alternating method, the
convergence is fast irrespective of the initialization, but the final MSEgch

values differ relatively much from each other. In the case of the SF-
Newton method, the convergence rate, however, greatly depends on the
exact initialization but less difference between the final MSEgch

values is
observed.

The average MSE performance of the IBRO method as a function of the itera-
tion index is analyzed in Fig. 5.25. Here, MSE is obtained by averaging MSEgch

over 200 random channel realizations and, since the IBRO method is random
by construction, over 20 executions of the IBRO method for each channel re-
alization. In this figure, both the optimization method proposed in [82] and
the improved IBRO method considered here are investigated. As a reference,
the obtained MSE by the SF-Newton method and the alternating optimization
method are included as well. Following observations can be made:

• The convergence rate of the IBRO method is much slower compared to
the SF-Newton and the alternating optimization method. Indeed, the im-
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proved IBRO method requires more than 100 times more iterations than
the SF-Newton and the alternating method. Due to this large number
of iterations, the total computational complexity of the IBRO algorithm
is significantly larger compared to the alternating optimization method,
and even the SF-Newton method when the number of data streams L
and the filter lengths are relatively small.

• After approximately 1.2 · 104 iterations, the MSE obtained by the im-
proved IBRO method is smaller than the MSE of the iterative optimiza-
tion method, confirming that the improved IBRO method can compete
with the other optimization methods in terms of performance. For other
filter lengths, it is verified that the IBRO method could even outperform
the SF-Newton method (not shown).

• Compared to the optimization method presented in [82], allowing the
variance σ2 to vary in the adjusted IBRO method greatly improves both
the convergence speed and the MSE after 30000 iterations. At conver-
gence, the IBRO method from [82] is up to 1.4 times larger than the MSE
of the improved IBRO method. These results indicate that the proposed
version of the IBRO algorithm is indeed better than the version of [82].

5.6.5 Summary and remarks
This section proposes two optimization methods as an alternative to the alter-
nating optimization method. First, the SF-Newton method modifies the search
direction of Newton’s method to avoid convergence to saddle points. Numer-
ical results confirm that the SF-Newton method outperforms the alternating
method at convergence, but its convergence rate is slower and its computational
complexity higher. Moreover, convergence to the global optimum is not guar-
anteed. Second, the IBRO method iteratively improves the current estimate
of the optimum by exploring two or more random search directions. Although
the IBRO method presented here performs better than the IBRO from [82],
its convergence is far too slow such that the IBRO method is not a suitable
alternative to the other methods.

This section considers the optimization of the equalization parameters from
the linear equalization scheme (Fig. 5.2) for the adjustable strategy. However,
the discussion can almost directly be extended to the equalization scheme with
a DFE (Fig. 5.1), since the expression for MSEgch

is structurally identical.
Moreover, the SF-Newton and IBRO method can also directly be applied to
the fixed strategy, but not to the hybrid strategy. Indeed, alternately comput-
ing the fixed and adjustable equalization parameters is inherent to the hybrid
strategy, impeding the joint optimization of all equalization parameters with
either the SF-Newton or the IBRO method. Moreover, the subproblems of
finding the optimal adjustable and the optimal fixed parameters in the hybrid
strategy can be solved analytically such that there is no need for numerical
optimization methods.
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5.7 Conclusions

This chapter proposes different equalization strategies to equalize a stochastic
frequency-selective MIMO channel suffering from channel variability by means
of the equalization scheme presented in Fig. 5.1, which consists of a linear pre-
equalizer at the transmitter and a DFE at the receiver. To obtain the optimal
equalization parameters, the average MSE between the decision variable and
the transmitted data is minimized according to the optimization framework of
Chapter 4. Different equalization strategies are proposed, each with a distinct
combination of performance and complexity. The best-performing strategy is to
adjust all equalization parameters to the specific channel realization (strategy
S-A), while the lowest-complexity strategy is to equalize all channel realizations
with identical and fixed equalizers (strategy S-F). The hybrid strategy S-H, on
the other hand, aims to approximate the good performance of S-A and the
low complexity of S-F by combining adjustable and fixed equalization parame-
ters. Moreover, two suboptimal approaches are considered. First, the channel
variability is ignored in the computation of the fixed equalization parameters
in the first suboptimal approach, while the adjustable equalization filters are
neglected in the computation of the fixed equalization parameters in the second
suboptimal approach.

Next, to evaluate the performance of the equalization scheme and the dif-
ferent equalization strategies, analytical expressions for the SER and the BER
are derived in the case of M-PAM transmission. Moreover, several techniques
are presented to numerically evaluate the obtained expressions. Numerical
simulations confirm that these techniques yield reliable and accurate results.

Numerical results indicate that the adjustable strategy has a fairly constant
performance for the different channel variability levels considered. Rather than
long linear filters, an adjustable feedback filter is recommended when low error
rates are required. Moreover, when the number of feedback taps is restricted,
better performance is achieved when the feedback filter is obtained by selecting
the dominant taps from a long feedback filter rather than setting ΦB to the first
LB causal time delays. As for the hybrid strategy, it could be a low-complexity
alternative to the adjustable strategy with only a limited degradation, on the
condition that enough equalization parameters are adjustable and enough chan-
nel realizations are incorporated in the expectation EGch

[·]. On the other hand,
the fixed strategy cannot cope with the channel variability, yielding poor per-
formance for moderate to large σr. As for the suboptimal strategies, ignoring
the channel variability in the first suboptimal strategy results in a degradation
that steadily increases for larger σr, whereas the second suboptimal strategy
yields inadequate results, irrespective of the number of taps that are adjustable.
This latter observation highlights the importance of considering the adjustable
parameters in the design of the fixed parameters. These observations about
the different strategies hold, irrespective of the constellation size M .

Fractionally-spaced equalizers could considerably improve the MSE and the
BER performance. Especially interesting is an adjustable filter W operating
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at twice the symbol rate in the adjustable and the hybrid strategy since this
filter achieves not only a significant performance gain for all considered vari-
ability levels, but also a robustness to alterations in the sampling delay. This
performance gain is notable also for a fractionally-spaced filter P in the hybrid
strategy, but only when the channel variability is not too high and when the
actual sampling instant does not deviate too much from the sampling moment
assumed for the equalizer coefficient computation.

For the iterative algorithms, most of the performance improvement is ob-
served in the first iterations such that one can safely terminate these algorithms
after an adequate number of iterations.

Beside the iterative alternating optimization method, Section 5.6 proposes
two alternative optimization methods to obtain the optimal equalization pa-
rameters: the SF-Newton method and the IBRO method. Although both meth-
ods yield on average slightly better performance, their convergence is slower
(especially for the IBRO method) and their total computational complexity is
noticeably larger.
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6
Stochastic channel:

Tomlinson-Harashima precoding

The aim of this chapter is to propose a second equalization scheme in the
context of a frequency-selective MIMO channel that is affected by channel
variability. More precisely, this equalization scheme consists of a THP and a
linear fractionally-spaced equalizer at the transmitter, and a linear fractionally-
spaced equalizer at the receiver. In fact, this equalization scheme with a THP
can be interpreted as the DFE equalization scheme from Chapter 5, but with
the feedback filter transferred from the receiver side to the transmitter side.
One consequence of this transfer is that a modulo operator at the transmitter is
required to limit the transmit energy, which could otherwise become very large
due to the feedback. Section 6.1 discusses the system model of the considered
equalization scheme in detail.

Next, Section 6.2 applies the optimization framework from Chapter 4 to ob-
tain a set of well-performing equalization parameters by minimizing the MSE
between the decision variable and the data symbol in the extended symbol con-
stellation, while considering that the channel coefficients are random variables
due to the channel variability. Similar to Chapter 5, the choice for the MSE as
the objective function is motivated by its excellent performance and mathemat-
ical simplicity. We define several equalization strategies, each one with its own
distinct performance-complexity combination. First, the adjustable strategy
assumes that all equalization parameters adjust to the specific channel real-
ization, allowing to directly minimize the conditional MSE and yielding the
best performance, but also the highest complexity (Subsection 6.2.1). Next, all
equalization parameters are independent of the channel realization in the fixed
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Figure 6.1: System model of the equalization scheme with a nonlinear THP
and a linear equalizer at both the transmitter and the receiver.

strategy (Subsection 6.2.2), such that the complexity could be substantially
lower at the cost of a performance degradation. Thirdly, the hybrid strategy
(Subsection 6.2.3) aims to combine low-complexity with good performance. In
this regard, all equalization parameters at the transmitter, i.e., the feedback
filter and the linear equalizer, are assumed to be fixed, whereas the parameters
of the linear equalizer at the receiver are adjustable. Finally, two suboptimal
approaches (Subsections 6.2.4-6.2.5) are introduced to derive the fixed equal-
ization parameters.

Section 6.3 first derives a closed-form expression for the SER and the BER
corresponding to the investigated equalization scheme, after which numerical
methods are considered to accurately evaluate the derived expressions.

Subsequently, numerical results are presented in Section 6.4, in which the
performances of the proposed equalization scheme and the different equalization
strategies are investigated in terms of (average) MSE and (average) SER/BER.
As an example, M-PAM transmission over the stochastic chip-to-chip intercon-
nect presented in Section 2.2 is considered.

To improve the performance of the investigated equalization scheme, one
could add a feedback equalizer at the receiver such that both a THP precoder
at the transmitter and a DFE at the receiver are present. This additional
feedback filter could improve the performance, especially in the hybrid strategy
as the extra filter is adjustable to the channel realization. All details of this
equalization scheme can be found in Section 6.5.

Finally, conclusions are drawn in Section 6.6.
In this chapter, only baseband communication is considered. However, after

only a few minor alterations, the derived results are also valid for the complex-
valued baseband notation, commonly employed for representing bandpass sig-
nals and bandpass filters.

6.1 System model

Fig. 6.1 depicts the system model of the transmission over a frequency-selective
MIMO channel equalized by means of a THP combined with a fractionally-
spaced equalizer at the transmitter and a fractionally-spaced equalizer at the
receiver. Below, this equalization scheme is referred to as the THP equalization
scheme. In the case of baseband communication, the data symbol vector a(k)
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Figure 6.2: Linearized system model of the equalization scheme with a nonlin-
ear THP and linear fractionally-spaced equalizer at both the transmitter and
the receiver.

at the input of the transmitter consists of L symbol streams, whose elements
al(k) are spatially and temporally uncorrelated and belong to the M -PAM
constellation with symbol set CM−PAM = {(−M + 1)∆, (−M + 3)∆, · · · , (M −
3)∆, (M − 1)∆}. Consequently, E[al1(k)al2(m)] = σ2

aδl1−l2δk−m. As in (5.59),
the factor ∆ is typically chosen to normalize the average symbol energy σ2

a to
one. At the transmitter, the THP is characterized by a feedback filter T with
coefficient matrices T(m) corresponding to the active time delays m ∈ ΦT.
Here, ΦT represents the set of LT strictly causal time delays, on which this
feedback filter is active, i.e., T(m) 6= 0 ∀m ∈ ΦT. The signal at the output of
the THP, v(k), is then constructed as follows:

v(k) =

⌈
a(k)−

∑
m∈ΦT

T(m)v(k −m)

⌋
M∆

, (6.1)

where d·cM∆ symbolizes the element-wise modulo operator restricting each el-
ement of v(k) to the interval [−M∆,M∆). The main purpose of this modulo
operator is to limit the energy of v(k), which could otherwise become exces-
sively large. The effect of the modulo operator can also be captured by ex-
pressing v(k) as the summation of the modulo operator’s input and the term
d(k)2M∆, where d(k) ∈ ZL is selected such that the elements of v(k) are
constrained to the interval [−M∆,M∆). Consequently, v(k) can be expressed
as

v(k) = a(k)−
∑
m∈ΦT

T(m)v(k −m) + d(k)2M∆ (6.2)

= aex(k)−
∑
m∈ΦT

T(m)v(k −m). (6.3)

In this last expression, v(k) is interpreted as the sum of a symbol aex(k) =
a(k) + d(k)2M∆ in the extended symbol set and a feedback term. The cor-
responding system model (Fig. 6.2) is generally called the linearized system
model as the nonlinear modulo operator is absent.

The signal path from v(k) to u(k) in the equalization scheme investigated
here is completely identical to the signal path from a(k) to u(k) in the linear
equalization scheme presented in Fig. 5.2. Moreover, the noise contribution
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to u(k) is identical in both system models. The decision variable u(k) can
therefore be expressed as a function of v(k) and n̄(k) by replacing a(k−m) in
(5.21) by v(k −m), i.e.,

u(k) = α
∑
m∈Φ

WG(m)Pv(k −m) + αWn̄(k), (6.4)

where all notations are identical to those in Chapter 5.
To recover the original data symbols a(k), one could apply the modulo

operator d·cM∆ to the extended symbol aex(k). All equalization variables are
therefore designed such that the decision variable u(k) at the receiver matches
aex(k) as closely as possible. This approach enables to perform symbol-by-
symbol detection on u(k) in the extended symbol set, yielding âex(k), after
which the estimate of the original data â(k) is obtained as the output of the
modulo operator applied to âex(k).

In the case of bandpass communication, complex-valued symbol constella-
tions are allowed as well. One condition is, however, that the periodic extension
of the symbol constellation must completely fill the complex plane without any
gaps or overlaps. For example, one possible symbol constellation is theM -QAM
constellation. In this case, all equalization parameters are complex-valued as
well and relation (6.1) must be reformulated as

v(k) =

a(k)−
∑
j∈ΦT

T(m)v(k − j)


√
M∆

, (6.5)

where both the real and the imaginary part of the argument of d·c√M∆ are
restricted to the interval [−

√
M∆,

√
M∆). As a result, the variable d(k) in

(6.2) is now complex-valued as well, i.e., d(k) ∈ CL.

6.2 MMSE equalization

In this section, the equalization parameters for the equalization scheme of Sec-
tion 6.1 are derived for a baseband frequency-selective MIMO channel suffering
from channel variability according to the optimization procedure from Chapter
4. Desirably, the objective function f0 is equal to some kind of error proba-
bility, but this choice induces a considerable mathematical complexity. As an
alternative, the MSE between aex(k) and u(k) is a well-defined performance
measure to verify whether the set of equalization parameters (T,P,α,W) yields
adequate performance, because the original data symbol vector a(k) can be cor-
rectly retrieved from the decision variable u(k) by means of a symbol-by-symbol
detector and a modulo operator, when u(k) is relatively close to the extended
data symbol aex(k). For this equalization scheme, the MSE for a particular
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channel realization gch, MSEgch
, is thus defined as

MSEgch
=

E
[
‖u(k)− aex(k)‖2

]
Lσ2

a

(6.6)

=

E

[∥∥∥u(k)− v(k)−
∑

m∈ΦT

T(m)v(k −m)
∥∥∥2
]

Lσ2
a

(6.7)

=
1

Lσ2
a

E

[∥∥∥α∑
m∈Φ

(WG(m)P− δmIL) v(k −m)−

−
∑
m∈ΦT

T(m)v(k −m) + αWn̄(k)
∥∥∥2
]
, (6.8)

where (6.8) follows from inserting (6.3) and (6.4) into (6.6) and (6.7), respec-
tively. The expectation E[·] is with respect to all v(k −m) with m ∈ Φ and
all the noise samples. To evaluate the MSEgch

from (6.8), the statistical prop-
erties of the signal vector v(k) must be determined. Unfortunately, the exact
PDF is rather complicated and depends on both the feedback taps T(m) and
the size of the symbol constellation. In this regard, Theorem 3.1 of [50] states
that the sequence v(k) generated by the THP precoder consists of almost inde-
pendently and uniformly distributed variables over the interval [−M∆,M∆).
Based on this theorem, the second-order moments E[v(k)v(k − m)T ] can be
approximated as follows:

E[v(k)v(k −m)T ] ≈ σ2
vδmIL, (6.9)

where σ2
v = M2

M2−1σ
2
a . Compared to the average energy of the M -PAM con-

stellation, σ2
a , the average energy per sample in v(k), σ2

v, is slightly larger,
increasing the impact of energy constraint on the pre-equalizer P. This effect
is peculiar to THP, and is often referred to as the power loss. Remark that the
ratio σ2

v/σ
2
a approaches 1 as M approaches +∞.

Considering that the autocorrelation of the symbol stream v(k) is defined
in (6.9) and the covariance matrix of the noise is given by (5.26), one can then
rewrite the conditional MSEgch

as follows:

MSEgch
=

1

Lσ2
a

[ ∑
m∈ΦN

σ2
v ‖αWG(m)P− δmIL‖2 + α2Tr(WRn̄WT )

+
∑
m∈ΦT

σ2
v ‖αWG(m)P−T(m)‖2

]
, (6.10)

where ΦN is the set of LN = LG − LT time delays, for which the feedback
equalizer T is not active, i.e., ΦN = Φ \ ΦT.

Since the frequency-selective MIMO channel is assumed to be stochastic,
the computational and the implementational complexity could again be lowered
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by considering fixed equalizers that do not adapt to the channel realizations.
The objective function corresponding to the MMSE equalizer is therefore not
the conditional MSEgch

, but the average MSE, which is defined as

MSE = EGch
[MSEgch

]. (6.11)

Hence, the optimization problem to be solved is the following:

(P?, α?,W?,T?) = arg min
P,α,W,T

MSE(P, α,W,T)

subject to σ2
vTr

[
PTRTXP

]
≤ LETX

, (6.12)

where the energy constraint is similarly constructed as in (5.5), but with σ2
v

substituted for σ2
a .

Structurally, the MMSE optimization problem from (6.12) is analogous to
the MMSE optimization problem from Chapter 5. Consequently, the remarks
made in Chapter 5 are valid for this optimization problem as well. Hence, the
scaling factor α could be restricted to the positive numbers and the optimal
pre-equalizer P? satisfies the energy constraint with equality.

To illustrate the trade-off between the performance and the complexity,
the optimization framework from Chapter 4 is employed to propose different
equalization strategies to solve the constrained minimization of MSE. Optimal
performance is achieved when all equalization coefficients are adjusted to the
specific channel realization gch (strategy S-A) but at the cost of a high com-
plexity. Next, the least complexity is induced when all equalization parameters
are fixed (strategy S-F), whereas a balance between performance and complex-
ity is achieved in the hybrid strategy S-H. To avoid the need for accurate CSIT
in this last strategy, all equalization parameters associated with the design of
the transmitter, i.e., P, α, and T, are fixed, while the linear filter W at the
receiver is adjustable. Moreover, two suboptimal approaches will be formulated
here as well: (i) all fixed equalization parameters are determined while neglect-
ing the channel variability; and (ii) all fixed equalization parameters in the
hybrid strategy are computed while assuming that no adjustable equalization
parameters are present. The different equalization strategies are summarized
in Table 6.1, and a more detailed discussion of each strategy is presented in the
subsections below.

6.2.1 Adjustable strategy (S-A)
In this best-performing strategy, all equalization parameters, i.e., P, α,W,T,
are adjustable to the specific channel realization gch, hence simplifying the
minimization of the average MSE to the minimization of MSEgch

from (6.8)
for each channel realization gch. In terms of the optimization framework from
Chapter 4, all equalization parameters are collected in the vector x (gch), mak-
ing any iterations between the adjustable and the fixed equalization parameters
of course irrelevant. Still, an iterative algorithm is required to find the optimal
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Table 6.1: Overview of the different equalization strategies.

Strategy Notation Adjustable
parameters

Fixed
parameters

Adjustable S-A P, α,W,T /
Fixed S-F / P, α,W,T
Hybrid S-H W P, α,T

Fixed-suboptimal 1 S-Fs1 / P, α,W,T
Hybrid-suboptimal 1 S-Hs1 W P, α,T
Hybrid-suboptimal 2 S-Hs2 Wadj P, α,Wfix,T

(P?
a, α

?
a,W

?
a,T

?
a) as the joint optimization of (6.10) has no straightforward

analytical solution. More precisely, the optimal T?
a is easily expressed as a

function of the other equalization parameters, because the feedback filter T is
only involved in the last term of (6.10), i.e.,

T?
a(m) = αWG(m)P. (6.13)

for m ∈ ΦT. When (6.13) is plugged into (6.10), the last term in (6.10) is
canceled and the resulting MSEgch

optimized over T, MSEgch,T
?
a
, simplifies to

MSEgch,T
?
a

=
1

Lσ2
a

( ∑
m∈ΦN

σ2
v ‖αWG(m)P− δmIL‖2 + α2Tr(WRn̄WT )

)
.

(6.14)
The expression for MSEgch,T

?
a
from (6.14) is in essence equal to the expression

for MSEgch,B
?
a
from (5.30). Consequently, an effective algorithm to acquire the

optimal set (P?
a, α

?
a,W

?
a) is to alternately compute the optimal (P?

a, α
?
a) for

given W and the optimal W?
a for given (P, α) by minimizing MSEgch,T

?
a
. Be-

cause of the similarity with the subproblems handled in Subsection 5.2.1, only
the expressions for (P?

a, α
?
a,W

?
a) are explicitly given here. First, the optimal

(P?
a, α

?
a) for given W is given by

P?
a =

1

α?a
D−1
a G(0) (6.15)

and

α?a =

√
σ2

v

LETX
Tr
(
G(0)D−1

a RTXD−1
a GT (0)

)
(6.16)

with Da = GTNGN + ζaRTX, ζa =
Tr(WRn̄W

T )
LETX

, G(m) = WG(m), and GN =[
GT (ΦN(1)) · · ·GT (ΦN(LN))

]T
. The corresponding minimum MSEgch,P

?
a,α

?
a,T

?
a

can then be simplified to

MSEgch,P
?
a,α

?
a,T

?
a

=
σ2

v

Lσ2
a

Tr
(
IL − G(0)D−1

a GT (0)
)
. (6.17)
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Second, the optimal linear equalizer, W?
a, for a given set (P, α) is given by

W?
a = GT (0)C−1

a , (6.18)

where Ca = GNGTN + α2Rn̄

σ2
v

, G(m) = αPG(m), and GN = [G(ΦN(1)) · · ·
G(ΦN(LN))]. The corresponding minimum MSEgch,W

?
a,T

?
a
then follows from

inserting (6.18) into (6.14), and simplifying the result leads to

MSEgch,W
?
a,T

?
a

=
σ2

v

Lσ2
a

Tr
(
IL − GT (0)C−1

a G(0)
)
. (6.19)

Due to the similarity between MSEgch,T
?
a
and MSEgch,B

?
a
from (5.30), the same

stopping criteria and initialization of W as for the DFE equalization scheme
(Subsection 5.2.1) can be used here as well.

6.2.2 Fixed strategy (S-F)

To lower the complexity, the equalization parameters in the fixed strategy do
not depend on the specific channel realization, meaning that all coefficients of
(P,W, α,T) belong to the vector y in the optimization algorithm from Chapter
4. Consequently, no iterations between the adjustable and the fixed equaliza-
tion parameters are required. However, similar to the adjustable strategy, an
iterative algorithm is particularly suitable to solve the joint optimization prob-
lem from (6.12), because an analytical solution is not readily available. This
iterative algorithm exhibits a similar structure to the iterative algorithm of the
adjustable strategy. Indeed, first the optimal T?

f is expressed as a function of

the other equalization parameters, after which the optimal
(
P?
f , α

?
f

)
for given

W and the optimal W?
f for given (P, α) are alternately determined.

The optimal feedback filter T?
f is easily determined as

T?
f (m) = αWEGch

[G(m)] P (6.20)

for m ∈ ΦT. Inserting (6.20) into (6.11) yields the corresponding minimum
MSET?f

, which is given by

MSET?f
=

1

Lσ2
a

(
EGch

[ ∑
m∈ΦN

σ2
v ‖αWG(m)P− δmIL‖2

]
+ α2Tr

(
WRn̄WT

)
+ EGch

[ ∑
m∈ΦT

σ2
v ‖αWG(m)P− αWEGch

[G(m)]P‖2
])

. (6.21)

One can note that MSET?f
is very similar to the MSEB?f

from (5.41) such that
the same iterative procedure can be employed, i.e., alternately computing the
optimal

(
P?
f , α

?
f

)
and W?

f for given W and
(
P?
f , α

?
f

)
, respectively. Due to
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this similarity, the mathematical details are omitted and only the expressions
for the optimal parameters are given.

The optimal P?
f and α?f for given W are respectively given by

P?
f =

1

α?f
D−1
f EGch

[
GT (0)

]
(6.22)

and

α?f =

√
σ2

v

LETX
Tr
(
EGch

[G(0)]D−1
f RTXD−1

f EGch

[
GT (0)

])
(6.23)

with

Df = EGch

[
GTNGN + GTTGT

]
− EGch

[
GTT

]
EGch

[GT] + ζfRTX, (6.24)

ζf = Tr(WRn̄W
T )

LETX
, and GT =

[
GT (ΦT(1)) · · ·GT (ΦT(LT))

]T
. Furthermore,

the minimized MSEP?f ,α
?
f ,T

?
f
can be written as

MSEP?f ,α
?
f ,T

?
f

=
σ2

v

Lσ2
a

Tr
(
IL − EGch

[G (0)] D−1
f EGch

[
GT (0)

])
. (6.25)

The optimal W?
f for given (P, α) is acquired by minimizing MSET?f

with
respect to W, yielding

W?
f = EGch

[GT (0)]C−1
f (6.26)

with

Cf = EGch
[GNGTN + GTGTT]− EGch

[GT]EGch

[
GTT
]
+
α2Rn̄

σ2
v

(6.27)

and GT = [G (ΦT(1)) · · ·G (ΦT (LT))]. The corresponding minimal value of
MSET?f

, MSEW?
f ,T

?
f
can then be expressed as

MSEW?
f ,T

?
f

=
σ2

v

Lσ2
a

Tr
(
IL − EGch

[
GT (0)

]
C−1
f EGch

[G(0)]
)
. (6.28)

Just as for the adjustable strategy, the stopping criteria and the initialization
of W is the same as for the DFE equalization scheme.

6.2.3 Hybrid strategy (S-H)
In the hybrid strategy, all equalization parameters at the transmitter are fixed
such that only the linear filter W at the receiver can adjust to the specific
channel realization gch. Similar to the other strategies, one could first derive the
optimal feedback filter T?

h as a function of the other parameters by minimizing
MSE from (6.11), i.e.,
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T?
h(m) = αEGch

[WG(m)] P (6.29)

for m ∈ ΦT. Consequently, the MSEgch
after optimizing over T, MSEgch,T

?
h
,

can be written as

MSEgch,T
?
h

=
1

Lσ2
a

( ∑
m∈ΦN

σ2
v ‖αWG(m)P− δmIL‖2 + α2Tr

(
WRn̄WT

)
+

∑
m∈ΦT

σ2
v ‖αWG(m)P− αEGch

[WG(m)] P‖2
)
. (6.30)

Next, the optimal (P?
h, α

?
h), and W?

h can be obtained by applying the optimiza-
tion framework described in Algorithm 4.1 to EGch

[
MSEgch,T

?
h

]
from (6.30),

where the vector y consists of all coefficients of P and the scaling factor α,
whereas the vector x (gch) contains all coefficients of W. However, this opti-
mization procedure is quite challenging as the minimization of MSEgch,T

?
h
over

the filter W requires the derivative of EGch
[WG(m)] with respect to W, which

cannot be readily obtained. Alternatively, it is mathematically more tractable
to apply the optimization framework from Algorithm 4.1 to MSE from (6.11)
such that the coefficients of T are added to the vector y, while the vector
x (gch) remains unaltered.

Regarding the joint optimization of (P, α,T) for given W, the optimal T?
h

is still given by (6.29), whereas the optimal P?
h and α?h are computed by mini-

mizing EGch

[
MSEgch,T

?
h

]
subject to the energy constraint. This optimization

is similar to deriving
(
P?
f , α

?
f

)
in the fixed strategy such that P?

h and α?h are
given by

P?
h =

1

α?h
D−1
h EGch

[GT (0)] (6.31)

and

α?h =

√
σ2

v

LETX
Tr
(
EGch

[G(0)] D−1
h RTXD−1

h EGch

[
GT (0)

])
(6.32)

with

Dh = EGch

[
GTNGN + GTTGT

]
− EGch

[
GTT

]
EGch

[GT] + ζhRTX, (6.33)

and ζh =
EGch [Tr(WRn̄W

T )]
LETX

. The evaluation of MSE from (6.11) at (P?
h, α

?
h,

W,T?
h) results in the following expression for the optimized MSEP?h,α

?
h,T

?
h
:

MSEP?h,α
?
h,T

?
h

=
σ2

v

Lσ2
a

Tr
(
IL − EGch

[G(0)] D−1
h EGch

[
GT (0)

])
. (6.34)
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Next, to derive the optimal linear equalizer W?
h for given (P, α,T), the MSEgch

from (6.10) must be minimized with respect to W, yielding

W?
h =

(
GT (0) + TGTT

)
C−1
h (6.35)

with C−1
h = GNGTN + GTGTT + α2Rn̄

σ2
v

. After plugging (6.35) into (6.10) and
simplifying the obtained expression, the optimized MSEgch,W

?
h
can be written

as

MSEgch,W
?
h

=
σ2

v

Lσ2
a

Tr
(
IL + TTT − (GT (0) + TGTT)C−1

(
G(0) + GTTT

))
.

(6.36)
To initialize x0(gch), the initial feedforward filter W is assumed to be equal

to the all-pass filter, i.e., W(i) = ILδi.

6.2.4 Suboptimal 1 (S-Fs1 and S-Hs1)
Similar to the first suboptimal approach in the case of the DFE equalization
scheme, all fixed equalization parameters in either the fixed or the hybrid strat-
egy are determined, while the channel variability is ignored. More precisely,
all channel matrices G(m) are assumed to be equal to EGch

[G(m)], which is
equivalent to considering a channel set Gch containing only EGch

[gch]. As a re-
sult, all second order moments simplify to a product of first order moments such
that all terms containing GT and GT in Df and Cf , respectively, disappear.
With this assumption, the fixed strategy becomes in fact equal to the adjustable
strategy applied to the average channel EGch

[gch] . As for the hybrid strategy,
the fixed equalization parameters are obtained by the same procedure, after
which the adjustable filter W is computed once for each channel realization
gch.

This suboptimal approach is denoted by S-Fs1 and S-Hs1 for the fixed and
the hybrid strategy, respectively.

6.2.5 Suboptimal 2 (S-Hs2)
Similar to the suboptimal approach presented in Section 5.2.5, one can follow
the optimization method from [53] by computing first the fixed equalization
parameters in the hybrid strategy with the assumption that the adjustable
filter W at the receiver is not present, i.e., equal to an all-pass filter. After
the design of the fixed parameters, the adjustable filter W is then designed to
combat the residual ISI. Just as in Section 5.2.5, additional design freedom is
established by dividing the adjustable filter W into a fixed linear filter Wfix and
an adjustable linear filter Wadj with LW,fix and LW,adj taps, respectively. The
fixed parameters can then be computed by applying the optimization algorithm
of the fixed algorithm with W = Wfix, after which Wadj can be obtained by
means of standard techniques.
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The corresponding suboptimal hybrid strategy is denoted by S-Hs2.

6.3 SER and BER expression
To be able to investigate the error probability performance of the presented
equalization scheme and the different equalization strategies, this section de-
rives the SER and the BER expression for the system model from Fig. 6.1.
More precisely, this discussion considers uncoded M -PAM transmission over a
frequency-selective MIMO baseband channel.

6.3.1 SER expression for M-PAM transmission
The SER conditioned on the channel realization gch and corresponding to the
lth symbol stream, SER(l)

gch
, is defined as the probability that the decision âl(k)

differs from the original data symbol al(k). The first step in the derivation of
the SER(l)

gch
expression is to rewrite the decision variable u(k) by replacing the

quantity v(k) in the term with m = 0 in (6.4) with the expression for v(k)
from (6.3), yielding

u(k)=Ğ0aex(k) +
∑
m∈Φ0

αWG(m)Pv(k −m)−
∑
m∈ΦT

Ğ0T(m)v(k −m) + w(k)

(6.37)

with Ğ0 = αWG(0)P, Φ0 = Φ \ {0}, and w(k) = αWn̄(k). Consequently, the
lth element of ul(k) can be rewritten as

ul(k) = (1 + el) (aex(k))l + isil(k)(vISI,a
(ISI)
ex ) + wl(k), (6.38)

where e = diag
(
Ğ0

)
− 1, and

isi(k)(vISI,a
(ISI)
ex ) =

∑
m∈ΦN\{0}

αWG(m)Pv(k −m)

+
∑
m∈ΦT

(
αWG(m)P− Ğ0T(m)

)
v(k −m)

+
(
Ğ0 − diag (e + 1)

)
aex(k). (6.39)

To allow for simpler notations, the time variable (k) is omitted in the remain-
der of this section. In (6.38), the interference term isil depends not only on
the elements of all causal and anti-causal signals v(k − m), but also on the
elements of the current extended data symbol aex except for (aex)l. The for-
mer are collected in the vector vISI, whereas the latter are gathered in the
vector a

(ISI)
ex . Similar to (5.60), (6.38) demonstrates that the decision variable

ul is in fact a summation of three terms: (i) a useful term (1 + el) (aex)l,
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Figure 6.3: Visualization of the extended 4-PAM constellation. All constel-
lation points are symbolized by the dots on the horizontal axis, whereas the
boundaries of the decision regions D(·) are indicated by the vertical lines.

(ii) an ISI term isil(vISI,a
(ISI)
ex ) and a Gaussian noise term wl with variance

σ2
wl

= α2
(
WRn̄WT

)
l,l
. Although the structure of ul is similar to the struc-

ture of ul in the case of the equalization scheme investigated in Chapter 5,
the derivation of the SER(l)

gch
here is somewhat different. Indeed, the decision

on ul must be performed in the extended symbol constellation instead of the
standard M -PAM constellation, i.e., the symbol-by-symbol detector maps ul
to the closest constellation point (âex)l in the extended symbol set, after which
the modulo operator retrieves the corresponding decision of the original data
symbol âl. Consequently, multiple constellation points (âex)l yield the same âl
such that a correct âl is obtained when ul is inside the union of multiple deci-
sion regions. For example, Fig. 6.3 presents the extended symbol constellation
of the 4-PAM constellation. When al is for instance equal to ∆, the decision âl
is correct if and only if ul is an element of ∪q∈ZD(∆ + 2qM∆). Based on this
reasoning, an expression for SER(l)

gch
can be derived as follows:

SER(l)
gch

= Pr (âl 6= al) = 1− Pr (âl = al) (6.40)

= 1−
∑
q∈Z

Pr (ul ∈ D ((aex)l + 2qM∆)) . (6.41)

In Appendix 11.5, an elaborate discussion is given on how to derive the following
expression for SER(l)

gch
:

SER(l)
gch

= 1−

Eaex,visi

∑
q∈Z

Q

−∆ + 2qM∆− el (aex)l − isil

(
vISI,a

(ISI)
ex

)
σwl


−Q

∆ + 2qM∆− el (aex)l − isil

(
vISI,a

(ISI)
ex

)
σwl

 , (6.42)

where the expectation Eaex,visi
[·] denotes the expectation over all possible vISI,

and all possible vectors aex, i.e., both (aex)l and a
(ISI)
ex . Averaging the SER(l)

gch
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from (6.42) over all symbol streams and all channel realizations then results in
the average SER, i.e.,

SER = EGch

[
1

L

L∑
l=1

SER(l)
gch

]
. (6.43)

6.3.2 BER expression for M-PAM transmission
Similar to the derivation in Section 5.4.2, BER(l)

gch
can be expressed as

BER(l)
gch

=
1

log2(M)

∑
aex,a

N 6= (aex, a) Pr (ul ∈ D(aex), al = a) , (6.44)

where the summation is over all elements aex in the extended symbol set and
all a in the symbol set CM−PAM. Hence, contrary to the SER, not only whether
or not the symbol âl is correctly decoded is important, but also the number of
bit differences between âl and al in the case of an incorrect decision influences
BER(l)

gch
. To evaluate (6.44), the repetitive nature of the extended symbol

constellation, the uniform distribution of al, and the symmetry in both the
symbol constellation and the PDF of isil can be exploited to express BER(l)

gch

as a sum of Q-functions. However, the number of terms in this summation
rapidly increases with M , making it difficult to derive a general and compact
expression for BER(l)

gch
. Nevertheless, an expression for BER(l)

gch
in the case of

4-PAM and 8-PAM is developed in Appendix 11.6.
As an alternative, one can, similarly as in Section 5.4.2, assume that an

erroneous decision will result in just one erroneous bit error, as neighboring
symbols differ only at one bit position in the case of Gray mapping. With this
assumption, N6= in (6.44) is always equal to one, resulting in a lower bound on
BER(l)

gch
that equals SER(l)

gch
divided by log2(M), i.e.,

BER
(l)
gch,LB ≈

1

log2(M)
SER(l)

gch
. (6.45)

Again, averaging the BER
(l)
gch,LB over all symbol streams and channel realiza-

tions yields a lower bound on the average BER.

6.3.3 Numerical evaluation of the SER and BER expres-
sion

When evaluating SER from (6.43), not only the same two difficulties as in
Section 5.4.3 must be faced, but also the infinite summation over q can of
course not be exactly assessed. The following approximations are therefore
employed to overcome these difficulties:

• The expectation EGch
[·] over the different channel realizations is again

approximated by taking the arithmetic average over a representative sub-
set of Nch channel realizations.
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• An analytical expression for the average of the Q-functions in (6.42) over
the joint distribution of aex and vISI is not readily available. Moreover,
since vISI is a continuous-time vector, the number of different possible isil
terms is in principle infinitely large such that one cannot simply sum over
all vISI. Still, one can easily approximate the expectation Eaex,visi

[·] by
generating a large number N of different values for aex and vISI by means
of (6.1) and subsequently averaging all Q-functions over the obtained set
of values.

• As for the infinite summation over q, the terms corresponding to q = 0
are dominant such that all other terms can be disregarded.

Based on these last two approximations, a reliable indication of SER(l)
gch

is given
by

SER(l)
gch
≈ 1− 1

N

 N∑
n=1

Q

−∆− el (aex,n)l − isil

(
a

(ISI)
ex,n ,vISI,n

)
σwl


−Q

∆− el (aex,n)l − isil

(
a

(ISI)
ex,n ,vISI,n

)
σwl

 . (6.46)

Subsequently, averaging (6.46) over all symbol streams and all channel re-
alizations results in a numerical approximation of SER denoted by SER1.

As for BER, the same approximations as for the SER can be applied to
BER

(l)
gch,LB, yielding an approximation BER1.

6.4 Numerical results and discussion

To illustrate the performance of the equalization scheme and equalization strate-
gies proposed in this chapter, this section presents, similar to Section 5.5, sev-
eral numerical results for basebandM -PAM transmission over the MIMO chip-
to-chip interconnect that is affected by manufacturing tolerances (Chapter 2).
The SNR is again defined as the ratio of the transmitted energy per bit to the
one-sided spectral density of the channel noise, i.e., SNR = ETX

log2(M)N0
. Unless

mentioned otherwise, 2-PAM transmission is employed with the sampling delay
ε set to 0. Moreover, the linear equalizers are restricted to be symbol-spaced
and at least N = 106 terms are employed in the determination of SER(l)

gch
.

Below, the different equalization strategies are first compared by plotting
their performance as a function of σr and LW in Figs. 6.4 and 6.5, respectively,
after which the convergence of the different equalization strategies is discussed
in Fig. 6.6. Next, the BER achieved by means of this equalization scheme is
compared with the BER achieved by the equalization schemes from Chapter 5
(Figs. 6.7 and 6.8). In addition, the accuracy of the numerical evaluation of
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Figure 6.4: Performance of all equalization strategies in terms of both 1/MSE
(left plot) and BER (right plot) as a function of σr for SNR = 25 dB, LX = 7,
and ΦT = ΦT,16. Similar relative performance as for the DFE equalization
scheme can be observed.

the BER is investigated in Fig. 6.9. Finally, the assumption that each element
of v(k) is uniformly distributed over [−M∆,M∆) is verified in Fig. 6.10.

To facilitate the comparison of the different equalization strategies in terms
of performance, Fig. 6.4 presents both MSE and BER for all strategies as a
function of σr when SNR = 25dB and LX = 7, while the feedback filter of
the THP consists of 16 taps, i.e., ΦT = ΦT,16 = {1, · · · , 16}. In general, the
different strategies exhibit similar relative performance as in the case of the
equalization scheme from Chapter 5 (Fig. 5.6). The following observations can
be made:

• In terms of performance, the adjustable strategy is superior to all other
equalization strategies, and this performance is fairly constant over the
whole range of σr. Moreover, the MSE performance of the adjustable
strategy in Fig. 6.4 and the MSE performance of the adjustable strategy
in the case of the DFE equalization scheme in Fig 5.6 are related in a
simple way, when the lengths of the corresponding linear equalizers are the
same and ΦT = ΦB. Indeed, under this condition, it can be verified that,
after optimization, the system with a DFE and the system with a THP
yield the same feedback filter and the same linear equalizer at the receiver;
for the THP equalization scheme, the coefficients of the linear equalizer
at the transmitter and the scaling factor at the receiver are obtained by
multiplying the corresponding quantities of the DFE equalization scheme
by a factor σaσv (because of the power loss of the THP system) and a factor
σv
σa

, respectively. As result, the minimized MSE of the system with THP

is larger by a factor σ2
v

σ2
a
, compared to the system with DFE. For 2-PAM,

this factor amounts to 4/3 (or about 1.25 dB), which corresponds to the
difference observed when comparing Fig. 5.6 (right plot) and Fig. 6.4.
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• Fig. 6.4 further demonstrates that the optimal hybrid strategy performs
only slightly worse than the optimal adjustable strategy when σr is rela-
tively small. Compared to the DFE equalization scheme, the performance
gap between the hybrid and the adjustable strategy, however, grows faster
with increasing σr in the case of the THP equalization scheme considered
here, because more equalization parameters are fixed.

• The performance of the optimal fixed strategy is again not competitive
with the adjustable, nor with the optimal hybrid strategy, since both MSE
and BER corresponding to the fixed strategy quickly rise with increasing
σr. Just as for the adjustable strategy, the MSE of the fixed strategy in
the case of the THP equalization scheme is in fact larger by a factor σ2

v

σ2
a

( 1.25 dB for 2-PAM) than in the case of the DFE equalization scheme
from Chapter 5.

• Because the feedback filter T is fixed in the hybrid strategy, considering
the second-order moments in the design of the fixed filters in the hybrid
strategy is more important for the THP equalization scheme than for
the DFE equalization scheme from Chapter 5. Indeed, the performance
difference between the optimal hybrid strategy and the suboptimal ap-
proach S-Hs1 is insignificant for small σr, but intolerably increases for
larger σr. For example, the BER is more than a factor 100 larger for
S-Hs1 compared to the optimal hybrid strategy at σr = 10%. As for the
fixed strategy, the relative performance of the optimal fixed strategy and
the suboptimal S-Fs1 is similar to Fig. 5.6.

• Just as the filter W in the other strategies, the cascade of Wfix and Wadj

contains 15 taps in the second suboptimal strategy S-Hs2. More precisely,
L

(1)
W,fix = L

(2)
W,fix = 2 and L

(1)
W,adj = L

(2)
W,adj = 5. Fig. 6.4 demonstrates

that this suboptimal approach yields unsatisfactory performance that is
even worse than the performance of the first suboptimal approach S-
Hs1. While the performance gap between the adjustable strategy and
the suboptimal S-Hs2 is quite large and constant in the case of the DFE
equalization scheme (right plot of Fig. 5.6), this performance gap in the
case of the THP equalization scheme is relatively small for small σr and
quickly grows with increasing σr, indicating the optimization approach
from [53] is not suitable for larger levels of variability.

Similar to Fig. 5.8 from Chapter 5, the performance of the different strate-
gies as a function of LW is interesting to investigate when the total number of
taps in the cascade of the linear filters P and W remains constant. To this
end, Fig 6.5 presents both the MSE and the BER performance for all three
optimal equalization strategies as a function of LW in the case of σr = 5%,
SNR = 25dB, and ΦT = ΦT,16, while the cascade of P and W always con-
tains 29 taps. In general, the same conclusions as for the DFE equalization
scheme from Chapter 5 can be drawn. Indeed, the adjustable strategy has a
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Figure 6.5: Performance of the adjustable, the hybrid, and the fixed strategy in
terms of both 1/MSE and BER as a function of LW for σr = 5%, SNR = 25dB,
and ΦT = ΦT,16, while the total number of taps in the cascade of P and W
remains constant and equal to 29. Similar conclusions as in Fig. 5.8 can be
drawn.

nearly constant performance, except when only one the of the linear filters is
present. The performance of the fixed strategy is inferior to the performance of
the adjustable strategy in the whole range of LW. As for the hybrid strategy,
a sharp performance gain is observed when going from small to moderate LW,
while the hybrid strategy only marginally performs worse than the adjustable
strategy at larger LW. Compared to the right plot in Fig. 5.8, however, the
performance gain at low LW is less sharp and the performance gap between the
adjustable and the hybrid strategy at moderate to large LW is slightly larger,
because relatively more equalization parameters are fixed in the THP equal-
ization scheme. Still, competitive performance can be achieved by the hybrid
strategy with a relatively small number of adjustable equalization coefficients.

For each strategy, the alternating optimization algorithm presented here to
minimize MSE is structurally identical to the alternating optimization algo-
rithm proposed in Chapter 5 to minimize MSE in the case of the DFE equal-
ization scheme. Unsurprisingly, the convergence of both alternating algorithms
is similar as well. More precisely, the largest decrease in MSE is observed in
the first iterations, whereas later iterations yield only marginal performance
gains. Fig. 6.6 confirms these observations by presenting MSE and the relative
decrease γ as a function of the number of iterations Nit in the case of σr = 3%,
SNR = 25 dB, LX = 7, and ΦT = ΦT,16. Still, this figure indicates that the
hybrid strategy requires slightly more iterations to reach convergence than the
adjustable and the fixed strategy, which is probably because the feedback filter
T is also iteratively obtained in the hybrid strategy, whereas this feedback filter
T is always optimal for given (P, α,W) in the case of the adjustable and the
fixed strategy.

The goal of Figs. 6.7 and 6.8 is to compare the BER performance achieved
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Figure 6.6: Performance of the adjustable, the hybrid, and the fixed strategy in
terms of MSE and relative decrease γ as a function ofNit when σr = 3%, SNR =
25 dB, LX = 7, and ΦT = ΦT,16. Evidently, most performance improvement is
achieved in the first iterations of the alternating optimization algorithms.
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Figure 6.7: Performance of the adjustable (left) and the hybrid (right) strategy
in terms of BER as a function of SNR in the case of 2-PAM transmission
and σr = 5%. In total, three configurations are considered: (i) the linear
equalization scheme (LX = 3 or LX = 7), (ii) the DFE equalization scheme
(LX = 3 and ΦB = ΦB,16), and (iii) the THP equalization scheme (LX = 3 and
ΦT = ΦT,16). For 2-PAM transmission, the DFE equalization scheme results
in the best performance.
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Figure 6.8: Performance of the adjustable (left) and the hybrid (right) strategy
in terms of BER as a function of SNR in the case of 4-PAM transmission and
σr = 3%. Two equalization schemes are considered: (i) the DFE equalization
scheme (LX = 7 and ΦB = {16 dominant feedback taps}) and (ii) the THP
equalization scheme (LX = 3 and ΦT = {16 dominant feedback taps}). Due to
the larger constellation size, the power loss is smaller than in Fig. 6.7 and, at
moderate SNR, the THP equalization scheme performs better than the DFE
equalization scheme with error propagation in the case of S-A.

in the case of the THP equalization scheme with the BER performance corre-
sponding to the linear equalization scheme and the DFE equalization scheme,
presented in Chapter 5, for 2-PAM and 4-PAM transmission, respectively. In
Fig. 6.7, σr is set to 5% and both the adjustable (left plot) and the hybrid
strategy (right plot) are considered for the following three equalizer configu-
rations: (i) the linear equalization scheme (LX = 3 or LX = 7), (ii) the DFE
equalization scheme (LX = 3 and ΦB = ΦB,16), and (iii) the THP equalization
scheme (LX = 3 and ΦT = ΦT,16). On the other hand, the BER associ-
ated with only equalizer configurations (ii) and (iii) are included in the case of
σr = 3% in Fig. 6.8, where now LX = 7 and the various feedback equalizers
are obtained by selecting the 16 most dominant taps of a long feedback filter
with 100 active time delays. Note that for a fair comparison, the number of
equalization parameters is the same for the DFE equalization scheme and the
THP equalization scheme. In the case of a DFE, the figures include both the
BER assuming perfect feedback and the simulated BER with error propaga-
tion. In the case of 2-PAM transmission, a lower bound that excludes the effect
of the modulo loss is added in the case of THP in Fig. 6.7. This lower bound
is only valid for 2-PAM and constructed by assuming that each decision region
possesses only one decision boundary instead of two. The following remarks
can be made:

• As for the adjustable strategy in the case of 2-PAM signaling (Fig. 6.7),
the BER associated with the THP equalization scheme is smaller for
medium to larger SNR compared to the linear equalization scheme with
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long equalizers (LX = 7), indicating that, in this SNR range, the THP
equalization scheme is preferred to the linear equalization scheme with
long linear equalizers. Still, the THP equalization scheme is clearly out-
performed by the DFE equalization scheme, even when the error propa-
gation of the latter is taken into account. Comparing the expression for
SER of both equalization schemes, this performance gap can mainly be
attributed to the power loss (1.25 dB for 2-PAM) and the larger values
of isi(k), because v(k) can assumes larger values than a(k) when a THP
precoder is present. The impact of the modulo loss is verified to be minor
as the gap between the lower bound and the actual performance is small.
Hence, the DFE equalization scheme is the most favorable in terms of
performance in the case of 2-PAM transmission.

• The influence of the power loss dramatically reduces for larger constella-
tions, e.g., for the 4-PAM transmission in Fig. 6.8 this power loss equals
16/15 or 0.28 dB, which is almost 1 dB lower than in the case of the
2-PAM constellation from Fig. 6.7. By comparing these two figures, one
can clearly see that the performance gap between the THP equalization
scheme and the DFE equalization scheme considerably reduces. In the
case of the adjustable strategy and 4-PAM transmission, the THP equal-
ization scheme yields even better performance at moderate SNR than the
DFE equalization scheme when the effect of the error propagation in the
latter scheme is taken into consideration.

• The performance gap between the THP equalization scheme and DFE
equalization scheme is larger in the case of the hybrid strategy than in the
case of the adjustable strategy, as the feedback filter is fixed in the former
equalization scheme and adjustable in the latter equalization scheme. Due
to the smaller decision areas corresponding to the 4-PAM constellation,
the THP equalization scheme cannot even remove enough ISI to avoid an
error floor in the right plot of Fig. 6.8.

The accuracy of the approximation BER1 is examined in Fig. 6.9, which
presents first BER1 as a function of the SNR when σr = 3%, LX = 7, ΦT =
ΦT,16, and N = 2 · 106. Additionally, the simulated BERsim is included as well
and this value is obtained by counting the bit errors in a numerical simulation
of the transmission of 2 ·106 symbols over each trace of all channel realizations,
yielding a total of 8 · 109 transmitted symbols. Thirdly, Fig. 6.9 also presents
BER1,q, which is similarly constructed as BER1 but in the case of BER1,q

all terms corresponding to q ∈ {−1, 0, 1} are included in the summation in
(6.42) rather than only the terms corresponding to q = 0. Clearly, Fig. 6.9
indicates that all three computation methods yield similar numerical results
in the entire range of SNR, confirming that BER1 is a good approximation
of BER. Moreover, this figure demonstrates that the terms corresponding to
q = 0 are indeed dominant in (6.42).

In the computation of the optimal equalization parameters, all elements of
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Figure 6.9: Investigation of the accuracy of BER1 (thin line) as a function of
the SNR for σr = 3%, LX = 7, ΦT = ΦT,16, and N = 2 · 106. For verification,
the simulated BERsim (circular markers) and the BER1,q (thick line) are added.
This plot confirms that the numerical approximation of BER1 is reliable when
N is sufficiently large.
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Figure 6.10: Simulated distribution f (·) of (v(k))1,1 in the case of the 2-PAM
and the 4-PAM constellation for σr = 3%, SNR = 25 dB, LX = 7, and ΦT =
ΦT,16. The assumption of the uniform distribution holds better for larger
constellations as stated by Theorem 3.1 of [21].
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Figure 6.11: System model of the equalization scheme with a nonlinear THP
and a linear equalizer at the transmitter, and a nonlinear DFE at the receiver.

the vector v(k) are assumed to be independent and uniformly distributed over
the interval [−M∆,M∆) as stated by Theorem 3.1 of [21]. The assumption
of this uniform distribution is verified in Fig. 6.10, which plots the simulated
distribution f (·) of (v(k))1,1 in the case of the 2-PAM and the 4-PAM constel-
lation for the adjustable strategy with σr = 3%, SNR = 25dB, LX = 7, and
ΦT = ΦT,16. These results are valid for the hybrid and the fixed strategies as
well.

Several observations made in Chapter 5 for the DFE equalization scheme
can be made here as well, since both MSE optimization problems are struc-
turally similar. For example, the computation of the optimal set of active time
delays ΦT for the feedback filter T can be obtained by a similar approach as
for the feedback filter B in Subsection 5.5.2. Moreover, no significant differ-
ent behavior in performance is observed compared to Subsection 5.5.3 when
one of the linear equalizers is fractionally spaced, i.e., especially an adjustable
fractionally-spaced linear equalizer induces a performance gain for all variabil-
ity levels and has a robustness to different sampling moments. Additionally,
the same behavior as in Subsection 5.5.5 is observed when increasing the con-
stellation size, i.e., the BER performance becomes worse when M is increased
when the equalization lengths remains the same.

6.5 Addition of a feedback filter at the receiver
Either to improve the performance of the THP equalization scheme from Fig.
6.1, or to reduce the performance gap between the adjustable and the hybrid
strategy, the signal processing at the receiver could be enriched by an addi-
tional feedback filter B operating on the decisions âex(k −m) in the extended
symbol set (Fig. 6.11). In this section, a brief overview is first given on how this
additional feedback filter affects the system equations, the MMSE optimization
procedure and the SER expression, compared to the equalization scheme with-
out the feedback filter B. Afterwards, numerical results explore the possible
improvements in performance as a result of this decision-feedback filter. In this
section, the abbreviation THP-DFE refers to the equalization scheme from Fig.
6.11.

First of all, the decision-feedback filter B acts on the previously detected
extended symbols âex(k −m), where all active causal time delays m > 0 are
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collected in the set ΦB. As a result, the decision variable in the system model
of Fig. 6.11 can be written as

u(k) = α
∑
m∈Φ

WG(m)Pv(k−m) +αWn̄(k)−
∑
m∈ΦB

B(m)âex(k−m). (6.47)

As the decision-feedback filter does not alter the fact that the decision â(k) is
obtained by performing symbol-by-symbol detection on u(k) in the extended
symbol set, the MSE between u(k) and âex(k) is still a proper objective function
to derive an appropriate set of equalization coefficients. For a given channel
realization gch the MSEgch

is thus defined as

MSEgch
=

1

Lσ2
a

E

[∥∥∥∥α∑
m∈Φ

WG(m)Pv(k −m) + αWn̄(k)

−
∑
m∈ΦB

B(m)âex(k −m)− aex(k)

∥∥∥∥2
]
. (6.48)

Just as for the decision-feedback filter in Chapter 5, the decisions âex(k −m)
are assumed to be correct in the design of the equalization coefficients, as
the minimization of MSEgch

is otherwise too complicated to solve. Moreover,
expressing aex(k−m) and aex(k) in (6.48) as a function of the sequence {v(k)}
using (6.3), the MSEgch

expression becomes

MSEgch
=

1

Lσ2
a

E

[∥∥∥∥α∑
m∈Φ

WG(m)Pv(k −m) + αWn̄(k)− v(k)

−
∑
m∈ΦB

B(m)
(
v(k −m)+

∑
j∈ΦT

T(j)v(k −m− j)
)
−
∑
j∈ΦT

T(j)v(k − j)
∥∥∥∥2
]
.

(6.49)

Since the channel considered in this chapter is assumed to be random, the
equalization parameters associated with this equalization scheme are again ob-
tained by following the optimization procedure from Chapter 4. More precisely,
the objective function f0 is equal to the MSEgch

from (6.49), whereas the energy
constraint is the same as in optimization problem (6.12). In total, three equal-
ization strategies (Table 6.2) are examined in more detail: the adjustable, the
fixed and the hybrid strategy. As above, all equalization parameters, including
the coefficients of the decision-feedback filter, are adjustable in the adjustable
strategy and thus belong to the vector x(gch), whereas all equalization param-
eters are fixed in the fixed strategy and thus belong to the vector y. In the
hybrid strategy, the decision-feedback filter is adjustable to the channel, imply-
ing that the performance gap between the adjustable and the hybrid strategy
should reduce compared to the THP equalization scheme.

For conciseness and clarity, the mathematical derivation of the optimal
equalization parameters in the considered strategies is omitted here, but one
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Table 6.2: Overview of the different equalization strategies.

Strategy Notation Adjustable
parameters

Fixed
parameters

Adjustable S-A P, α,W,T,B /
Fixed S-F / P, α,W,T,B
Hybrid S-H W,B P, α,T

can resort to Appendix 11.7 for more details. One important remark is, how-
ever, that in each equalization strategy the optimal equalization parameters are
again the result of an iterative algorithm. As for the adjustable strategy, the
feedback filter in the equalization schemes above, i.e., B in the DFE equaliza-
tion scheme (Fig. 5.1) and T in the THP equalization scheme (Fig. 6.1), could
directly be expressed as a function of the other equalization parameters, which
are subsequently obtained by iteratively minimizing the MSEgch

optimized over
this feedback filter. This optimization approach is unfortunately not possible
for the THP-DFE equalization scheme of Fig. 6.11, because the optimal feed-
back filters T and B are not independent from each other as the MSEgch

in
(6.49) is composed of several product terms in which both the T and B are
present. As an alternative, MSEgch

is optimized by alternately computing the
optimal (P?

a, α
?
a,T

?
a) and optimal (W?

a,B
?
a) for given (W,B) and (P, α,T) ,

respectively. Similar remarks can be made for the fixed strategy.
The SER for the system model corresponding to Fig. 6.11 can be deduced

by means of a similar derivation as the SER for the THP equalization scheme
without the feedback filter B (Section 6.3). Indeed, the decision corresponding
to the kth symbol of the lth data streams, i.e., âl(k), is still based on ul(k)
and must be performed in the extended symbol set. However, the decision-
feedback filter B does change the expression for ul(k). More precisely, with the
assumption that all previously detected extended data symbols âex(k−m) are
correct, the decomposition of ul(k) from (6.38) still holds, but isi(k)(vISI,a

(ISI)
ex )

is now defined as

isi(vISI,a
(ISI)
ex ) =

∑
m∈Φ\{0}

αWG(m)Pv(k −m) +
(
Ğ0 − diag (e + 1)

)
aex(k)

−
∑
m∈ΦT

Ğ0T(m)v(k −m)−
∑
m∈ΦB

B(m)v(k −m)

−
∑

m1∈ΦB

∑
m2∈ΦT

B(m1)T(m2)v(k −m1 −m2). (6.50)

The remainder of the reasoning in Section 6.3 applies here as well, such that the
SER(l)

gch
corresponding to the THP-DFE equalization scheme is given by (6.42),

where isil

(
vISI,a

(ISI)
ex

)
is now equal to the lth component of isi

(
vISI,a

(ISI)
ex

)
defined in (6.50).
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Figure 6.12: Performance of S-A, S-H, and S-F for the THP-DFE equalization
scheme, in terms of both 1/MSE (left plot) and BER (right plot) as a function
of σr for SNR = 25dB, LX = 7, and ΦT = ΦB = {1, · · · , 8}. The performance
gap between the adjustable and the hybrid strategy is smaller than in Fig. 6.4,
where ΦT = ΦT,16 and ΦB = ∅.

Next, numerical results are provided to investigate the performance of the
THP-DFE equalization scheme. Comparing the THP-DFE equalization scheme
with the THP equalization scheme is, however, not really fair when assuming
that ΦT is the same in both equalization schemes and the feedback filter B is
just added in the case of the THP-DFE equalization scheme, as the THP-DFE
equalization scheme then obviously outperforms the THP equalization scheme.
Therefore, this section compares the THP and the THP-DFE equalization only
when the total number of feedback taps is identical. First, Fig. 6.12 depicts the
performance of the different strategies in the case of the THP-DFE equalization
scheme. Second, Fig. 6.13 investigates the effect of considering more and more
adjustable taps in the feedback filter at the receiver in the case of the adjustable
and the hybrid strategy. Finally, several configurations are considered in Fig.
6.14 to determine the optimal set of active time delays and to compute the
equalization parameters.

Fig. 6.12 presents the performance in terms of both 1/MSE and BER in
the case of the adjustable, the hybrid, and the fixed strategy for the THP-DFE
equalization scheme. The system parameters are identical to those from Fig.
6.4, expect for ΦT, as the 16 feedback taps are equally divided between the
transmitter and the receiver. Consequently, the set of active causal delays for
both T and B is given by {1, · · · , 8}. Compared to Fig. 6.4, the addition of
the decision-feedback filter B has the following impact:

• For the adjustable strategy S-A, approximately identical MSE and BER
is achieved for both the THP-DFE and the THP equalization schemes.
More comments on this observation can be found below.

• Compared to the performance gap between the hybrid and the adjustable
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Figure 6.13: Performance of the adjustable and the hybrid strategy in terms
of 1/MSE as a function of LB for σr = 5%, SNR = 25dB, and LX = 7. The
sets ΦT and ΦB are given by {1, · · · , 16 − LB} and {1, · · · , LB}, respectively.
The adjustable strategy has a nearly constant performance, whereas the hybrid
strategy mainly improves for small LB.

strategy for the THP equalization scheme (see Fig. 6.4), the gap for the
THP-DFE equalization scheme is significantly smaller (see Fig. 6.12). Be-
cause all feedback coefficients are fixed in the former equalization scheme
and half of them are adjustable in the latter equalization scheme, this
reduction in the performance gap is thus not surprising.

• Regarding the fixed strategy S-F, the same inferior performance is achieved
in the case of the THP-DFE equalization scheme as in the case of the THP
equalization scheme.

Next, Fig. 6.13 more closely examines the performance difference between
the adjustable and the hybrid strategy for the THP-DFE equalization scheme.
To this end, this figure plots the 1/MSE as a function of the number of taps
of the decision-feedback filter B, i.e., LB. Moreover, the number of taps of the
feedback filter T, LT, is equal to 16−LB such that the total number of feedback
taps is constant and equal to 16. The sets of active causal delay ΦT and ΦB

are {1, · · · , LT} and {1, · · · , LB}, respectively, while σr = 5%, SNR = 25 dB,
and LX = 7. The following can be noted:

• This figure shows that the MSE of the adjustable strategy is practically
the same for all values of LB, implying that the performance of the ad-
justable strategy is influenced mainly by the total number of feedback
taps and not by the specific division of these taps over the transmitter
and the receiver.

• Since the feedback filter at the receiver is adjustable in the hybrid strat-
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Figure 6.14: Performance of S-A in terms of 1/MSE as a function of LT+B for
σr = 5%, SNR = 25 dB and LX = 7. In total, five different methods D to
compute the equalization parameters and the sets ΦT and ΦB are included.
A general overview is given in the left plot, whereas the right plot contains a
more detailed view.

egy, better MSE performance is to be expected when LB rises. Fig. 6.13
not only confirms this expectation, but also reveals that most perfor-
mance improvement is achieved for small LB. Indeed, considering only
one adjustable tap at the receiver yields a decrease in the performance gap
between the adjustable and the hybrid strategy of almost 60% compared
to the case of the THP equalization scheme (LB = 0). Moreover, the
smallest performance gap between the adjustable and the hybrid strat-
egy is only slightly more than 10% of the original performance gap cor-
responding to LB = 0.

Just as for the equalization schemes from Figs. 5.1 and 6.1, in which a feed-
back filter is included at either the transmitter or the receiver, the selection
of the optimal sets of active time delays, i.e., ΦT and ΦB, for a given total
number of feedback taps LT+B = LT +LB is extremely hard as many possible
combinations exist. As an alternative, five different possible methods D to de-
termine these active time delays and to compute the corresponding equalization
parameters are proposed below, after which their performances are discussed
by means of Fig. 6.14.

1. In the first method D1, only the feedback filter T at the transmitter is
active and all feedback taps correspond to the first LT = LT+B causal
time delays, meaning that ΦT = {1, · · · , LT+B} and ΦB = ∅. In this
case, the THP-DFE equalization scheme of course reduces to the THP
equalization scheme and the optimization method from Subsection 6.2.1
is thus applied to compute all equalization parameters.

2. The feedback taps are equally divided between the transmitter and the
receiver in the second method D2 such that LT = LB = LT+B

2 . More-
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over, only the first LT and first LB causal time delays are active in both
feedback filters such that ΦT = {1, · · · , LT} and ΦB = {1, · · · , LB}, re-
spectively.

3. The third method D3 again assumes that both feedback filters possess
the same number of feedback taps, i.e., LT = LB = LT+B

2 , but the set ΦB

is chosen differently than in method D2. Indeed, the feedback filter T is
active at the first LT causal time delays, whereas the feedback filter B
is active at the subsequent LB causal time delays. Consequently, ΦT =
{1, · · · , LT} and ΦB = {LT + 1, · · · , LT+B}.

4. In the fourth method D4, all equalization parameters are first computed
assuming that both feedback equalizers are quite long, i.e., ΦT = ΦB =
{1, · · · , L�}. Afterwards, the LT+B active time delays are determined by
searching for the LT and LB dominant taps of the feedback filter T and
the feedback filter B, respectively, and the resulting sets ΦT and ΦB are
denoted by ΦT,D4 and ΦB,D4 . Here, LT = LB = LT+B

2 . The final feedback
filter T (B) is then obtained by keeping all taps corresponding to ΦT,D4

(ΦB,D4
), while setting all other taps to 0. Interestingly, the system with

the long feedback filters by design outperforms all considered methods D.

5. For the sets ΦT,D4
and ΦB,D4

, the equalization parameters computed
by means of method D4 are not optimal as they are derived with the
assumption that ΦT = ΦB = {1, · · · , L�}. In this method D5, the
sets ΦT,D4

and ΦB,D4
are first identically computed as in D4, but all

equalization parameters are afterwards recalculated with ΦT = ΦT,D4

and ΦB = ΦB,D4 such that the obtained equalization parameters are
optimal for the considered sets of active time delays.

In Fig. 6.14, the 1/MSE performance achieved by these different methods D
are presented as a function of LT+B when σr = 5%, SNR = 25 dB, LX = 7,
and L� = 70. Based on this figure, the following conclusions can be drawn.

• The first three methods D1-D3 yield approximately identical performance
such that the gain of the additional decision-feedback B filter is rather
small. For all three methods, a gain in MSE performance is noticed
around LT+B = 80, since, in contrast to short feedback filters, the ISI
caused by the first reflection can be targeted as well (Fig. 2.3). Re-
markably, this performance gain in the case of method D3 is perceived
for (slightly) smaller values of LT+B than in the case of methods D1 and
D2, since the feedback filters in method D3 has a larger range of causal
time instants from which they can reduce the corresponding interference.
Indeed, this range is equal to m ∈ {1, · · · , LT+B} in the case of methods
D1 and D2, whereas this range is equal to m ∈ {1, · · · , 1.5LT+B} in the
case of method D3.

• Although selecting the largest taps from a long feedback filter is a suitable
method to determine a proper set of active time delays when either the
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feedback filter T or the feedback filter B is present (Fig. 5.11), method
D4 results in poor performance when both these filters are present, e.g.,
only good performance in Fig. 6.14 is obtained only when almost all
feedback taps are active. Indeed, the effect on the MSEgch

of setting
relatively small feedback taps to 0 is hard too predict and could be rel-
atively large, because each feedback tap influences more than one term
in (6.49) as product terms of different feedback taps are present. Conse-
quently, method D4 is not a practical option when both feedback filters
are present.

• This poor performance encountered D4 can be significantly enhanced by
recomputing all equalization parameters in method D5 with ΦT = ΦT,D4

and ΦB = ΦB,D4
. Still, this method performs (slightly) worse than meth-

ods D1-D3 for small values of LT+B, implying that ΦT,D4
and ΦB,D4

are
far from optimal. When LT+B > 50, the performance of D5 rapidly im-
proves, indicating that the feedback filters are capable of removing most
of the larger ISI contributions, including the ISI from the first reflection.
At larger, LT+B, the methods D1-D3, however, results again in better
performance.

In conclusion, the presented methods to determine a good set of active time
instants thus all result in acceptable performance, apart from method D4. How-
ever, neither of these method outperforms all others and determining the opti-
mal set of active time instants for both feedback filters is still an open problem.

Additional simulations give rise to similar curves as in Fig. 6.6 when plot-
ting MSE as a function of the iteration index, which indicates that the added
decision-feedback filter at the receiver does not have a significant impact on
the convergence of the iterative algorithms for the MMSE optimization. For
conciseness, these figures are not shown here.

6.6 Conclusions
This chapter investigates the equalization of a stochastic frequency-selective
MIMO channel by means of a THP and two linear equalizers: one at the
transmitter and one at the receiver. In fact, this equalization scheme can be
interpreted as the DFE equalization scheme from Chapter 5 when the feedback
filter is moved from the receiver to the transmitter. As the channel is stochastic,
the optimization framework from Chapter 4 is applied and the MSE between
the decision variable and the extended data symbol is selected as the objective
function. In this regard, three equalization strategies are proposed. First, all
equalization parameters are adjustable to the specific channel realization in the
adjustable strategy, resulting in optimal performance and largest complexity.
To lower this complexity, all equalization parameters are independent of the
channel realization in the fixed strategy, while adjustable and fixed equalization
parameters are both present in the hybrid strategy to combine relatively low
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complexity with good performance. More precisely, this hybrid equalization
scheme consists of a fixed THP and a fixed linear equalizer at the transmitter,
while the linear equalizer at the receiver is adjustable.

Numerical results confirm that several conclusions drawn in the case of the
DFE equalization scheme hold here as well, because both MMSE optimization
algorithms are quite similar and sometimes directly related to each other. For
instance, the adjustable strategy achieves superior and nearly constant perfor-
mance in the considered channel variability range, whereas the degradation of
the fixed strategy quickly rises with increasing σr. The hybrid strategy could
still be a low-complexity alternative to the adjustable strategy, but the per-
formance difference between these two strategies is larger in the case of the
THP equalization scheme than in the case of the DFE equalization scheme
because more equalization parameters are fixed. Consequently, the number
of adjustable equalization taps in the equalizer W becomes more important
to achieve a decent performance. Additionally, the convergence of the hybrid
strategy is (slightly) slower in the case of the THP equalization scheme than in
the case of the DFE equalization scheme, because not only the linear equalizers,
but also the feedback filter is iteratively obtained.

The THP equalization scheme yields better performance than the linear
equalization scheme with long linear equalizers. Compared to the DFE equal-
ization scheme, however, the THP equalization scheme yields inferior perfor-
mance for 2-PAM transmission due to the negative effect of the power loss.
However, this effect reduces for increasing M such that the THP equalization
achieves a lower BER than the DFE equalization scheme for the 4-PAM con-
stellation when the impact of the error propagation is taken into account in
the latter equalization scheme.

To reduce the performance gap between the adjustable and the hybrid strat-
egy, a more general equalization scheme THP-DFE is introduced, where a feed-
back filter is present at both the transmitter and the receiver. As this additional
decision-feedback filter at the receiver alters the expression for the decision vari-
able, a modified iterative algorithm based on the optimization framework from
Chapter 4 has been proposed. As for all strategies, both feedback filters are
iteratively obtained, along with the coefficients of the linear equalizers. Nu-
merical results indicate that the addition of a feedback filter at the receiver
significantly reduces the gap between the adjustable and the hybrid strategy.
This reduction is already observable when the adjustable feedback filter at the
receiver contains only a few taps. Nevertheless, selecting the optimal sets of
active time delays for both feedback filters is not straightforward, as just select-
ing the largest taps from long feedback filters yield inadequate performance,
such that a recalculation of the equalization parameters corresponding to the
obtained sets is recommended.
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7
Partial-response signaling

This chapter examines the design of the adjustable equalization parameters
for an equalization scheme with PRS applied to a frequency-selective MIMO
channel, which is assumed to be perfectly known in the design of all equalization
parameters.

First, an equalization scheme consisting of a PRS precoder at the trans-
mitter and a nonlinear DFE at the receiver is introduced in Section 7.1. One
noticeable feature of the TIR of the considered PRS precoder is that it contains
both temporal, spatial, and ST components, making it more general than the
PRS precoders with either temporal or spatial components, encountered in the
literature.

Next, the primary focus of Section 7.2 lies on the design of the TIR and all
filter coefficients by means of minimizing the MSE. The first step in this opti-
mization is to derive the optimal DFE for a given TIR (Subsection 7.2.1), after
which the resulting MSE must be further minimized over the TIR (Subsection
7.2.2). As this last optimization is not straightforward, three iterative algo-
rithms, each with a different complexity, are proposed to obtain an optimized
TIR. These algorithms reduce the MSE by incrementing in each iteration one
row of the TIR matrix. In the first and the second algorithm (Sections 7.2.2.1
and 7.2.2.2, respectively) only part of the row is incremented. These algorithms
differ only regarding the criterion for selecting the part of the row to be up-
dated. The third algorithm increments in each iteration an entire row of the
TIR matrix by reformulating the optimization problem as a lattice decoding
algorithm (Section 7.2.2.3).

To allow for an in-depth investigation of the error performance achieved by
the PRS precoder and the different optimization algorithms, Section 7.3 derives
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Figure 7.1: System model of the equalization scheme consisting of a PRS pre-
coder at the transmitter and a nonlinear DFE at the receiver.

an accurate approximation for the BER.
Next, the numerical results presented in Section 7.4 reveal first that PRS

is capable of inducing a considerable performance improvement compared to
FRS. Second, the numerical results indicate that algorithm A3 is superior to
algorithms A1 and A2 in terms of performance, but at the cost of a much larger
computational complexity.

Finally, conclusions are drawn in Section 7.5.

7.1 System model

Fig. 7.1 displays the system model of an equalized MIMO NR ×NT bandpass
communication channel with a ST PRS (PRS-ST) precoder at the transmitter
and a nonlinear DFE at the receiver. For the bandpass channel, the complex-
valued baseband notation is employed.

The input at the transmitter consists of NT complex-valued data symbol
streams, i.e., c(k) = [c1(k) . . . cNT(k)]T with cl(k) denoting the kth symbol
from the lth data symbol stream. All data symbols are independently and
uniformly drawn from the complex symbol set CPRS = {0, · · · ,

√
M − 1} +

j{0, · · · ,
√
M −1}, where M is assumed to be an integer power of 4. Moreover,

the binary labels associated with the elements from CPRS are according to the
binary-reflected Gray mapping. Next, the data symbol vectors c(k) are applied
to the MIMO ST PRS precoder at the symbol rate 1/T . This ST PRS precoder

is characterized by the target polynomial T tar =
LT∑
m=0

T(m)Dm of degree LT

with coefficients that are Gaussian integer matrices T(m), m = 0, . . . , LT, of
dimension NT×NT. A Gaussian integer is defined as a complex-valued number
whose real and imaginary part are both integer, i.e., T(m) ∈ Z[j]NT×NT with
Z[j] = {a + jb|a, b ∈ Z}. Remember that the spatial components of the TIR
are characterized by the matrix T(0) and defined as the desired XT originated
from data symbols transmitted at the same time instant. Moreover, all diagonal
elements of the matrices {T(m)|m > 0} constitute the temporal components
of the TIR, whereas all non-diagonal elements of the matrices {T(m)|m >
0} specify the desired XT from data symbols transmitted at different time
instants. In contrast to previous work on PRS that mainly focused either
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on SISO channels (NT = NR = 1), or on strictly temporal partial response
(diagonal T(m)), or on strictly spatial partial response (T(m) = 0 for m > 0),
the more general complex MIMO precoder here allows ST components (with
spatial-only and temporal-only components as particular cases). The input
sequence {c(k)} is converted by the ST PRS precoder into the precoded output
sequence {b(k)} according to

b(k) =

[
T−1(0)

(
c(k)−

LT∑
m=1

T(m)b(k −m)

)]
√
M

, (7.1)

where [·]X symbolizes the element-wise modulo reduction to the interval [0, X)
of both the real and the imaginary part. To avoid any power loss as in THP,
PRS requires that all entries of the precoded sequence b(k) are independently
and uniformly drawn from the same symbol set, CPRS, as the one contain-
ing the elements of c(k). This property is acquired when all entries of T(m)
are Gaussian integers and T(0) is a complex-valued unimodular matrix (Ap-
pendix 11.9), since one can easily prove that T−1(0) ∈ Z[j]NT×NT if and only
if the determinant of the Gaussian integer matrix T(0) is restricted to the set
{1,−1, j,−j} (Appendix 11.8). Next, the components from b(k) are mapped
to the normalized M -QAM constellation, i.e.,

a(k) = 2∆b(k) + (1 + j)∆(−
√
M + 1)1, (7.2)

where ∆ =
√

3
2(M−1) such that the symbol energy is normalized, i.e., E

[
a(k)

aH(k)
]

= INT
.

The sequence a(k) is then transmitted over the discrete-time frequency-
selective NR×NT MIMO channel, which encompasses both the complex-valued
impulse response matrices H(m) of dimension NR × NT and the zero-mean
circular symmetric additive complex-valued Gaussian noise vector n(k) char-
acterized by the autocorrelation matrices Rn(m) = E

[
n(k)n(k +m)H

]
. The

channel input-output relationship is given by

y(k) =

L
(2)
H∑

m=−L(1)
H

H(m)a(k −m) + n(k). (7.3)

In (7.3), the channel response is assumed to be time-limited, i.e., H(m) =

0 ∀m /∈ {−L(1)
H , · · · , L(2)

H }.
At the receiver, the channel output y(k) is equalized by means of a DFE.

More precisely, this DFE consists of a linear MIMO feedforward equalization
filter W characterized by the impulse response matrices W(i) of dimension
NT×NR and a linear MIMO feedback filter B with impulse response matrices
B(m) of dimension NT×NT. The feedforward filter W and the feedback filter
B operate on the received signal y(k) and on the previously detected symbols
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â(k), respectively. Consequently, the decision variable u(k) can be formulated
as

u(k) =

L
(2)
W∑

i=−L(1)
W

L
(2)
H∑

m=−L(1)
H

W(i)H(m)a(k −m− i)

+

L
(2)
W∑

i=−L(1)
W

W(i)n(k − i)−
∑
m∈ΦB

B(m)â(k −m), (7.4)

where both filters are assumed to have finite length, i.e., W(i) = 0 ∀i /∈
{−L(1)

W , · · · , L(2)
W } and B(m) = 0 ∀m /∈ ΦB. As in Section 5.1 above, the set

ΦB consists of LB causal time delays and is not necessarily equal to the set
{1, · · · , LB}. To simplify the notations in (7.4), the NT × (NRLW) augmented
matrix W is similarly constructed as in (5.16), whereas G(m) and n̄(k) are
now respectively given by

G(m) =
[
HH(m+ L

(1)
W ) · · ·HH(m− L(2)

W )
]H

(7.5)

and
n̄(k) =

[
nH(k + L

(1)
W ) · · ·nH(k − L(2)

W )
]H

. (7.6)

Based on these shorthand notations, the decision variable u(k) defined in (7.4)
can be rewritten as

u(k) =
∑
m∈Φ

WG(m)a(k −m) + Wn̄(k)−
∑
m∈ΦB

B(m)â(k −m). (7.7)

As in Chapter 5, Φ is defined as the set {−L(1)
G , · · · , L(2)

G }, but L
(1)
G and L(2)

G

are here equal to {
L

(1)
G = L

(1)
H + L

(1)
W

L
(2)
G = L

(2)
H + L

(2)
W

. (7.8)

According to (7.1), the target response

uT(k) =

LT∑
m=0

T(m)a(k −m) (7.9)

and the original sequence c(k) are related by

c(k) =

[
uT(k)

2∆
+ coff

]
√
M

, (7.10)

where the offset coff is given by

coff =
(1 + j)(

√
M − 1)

2

LT∑
m=0

T(m)1. (7.11)
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The equalization coefficients are therefore selected such that the decision vari-
able u(k) from (7.7) approaches the target response vector uT(k) defined in
(7.9) as close as possible (in a MSE sense). Consequently, the decision on c(k),
ĉ(k), follows from replacing the quantity uT(k)

2∆ + coff in the right-hand side
of (7.10) by the Gaussian integer vector which is nearest to u(k)

2∆ + coff , after
which the modulo operator maps all elements of this decision to the original
constellation CPRS. The input of the feedback filter, i.e., the decision on a(k),
â(k), is constructed by substituting c(k) for ĉ(k) in the precoder equation (7.1),
yielding the decision on the vectors b(k), b̂(k), which are then mapped to the
corresponding M -QAM symbols â(k).

Note that the number of data streams Ndat in this equalization scheme
must be equal to NT as all matrices T(m) of the PRS precoder are NT ×NT

square matrices. For decent performance, NR is therefore assumed to be larger
or equal to NT, i.e., NR ≥ NT.

Similar to the feedforward filter in the equalization scheme examined in
Chapter 5, the feedforward filter W could be extended to a fractionally-spaced
equalizer, but as this only marginally impacts the main focus of this chapter,
a symbol-spaced filter W is considered for simplicity.

7.2 MMSE equalization

The goal of this section is to derive the optimal target response matrix T?,
the optimal feedforward filter W?, and the optimal feedback filter B? for a
given channel realization gch. For this joint optimization, the MSE is again
particularly suitable as the objective function because it unites excellent per-
formance with mathematical simplicity. For convenience, we denote by MSE
(rather than MSEgch

) the MSE conditioned on the channel realization. Since
all equalization parameters are adjustable in this chapter, there is no need to
consider the average (over the channel realizations) MSE in the optimization
problem. With e(k) = u(k) − uT(k) representing the difference between the
decision variable u(k) and the target response vector uT(k), the corresponding
normalized MSE is defined as

MSE ,
E
[
‖e(k)‖2

]
E
[
‖a(k)‖2

] =
Tr (Re)

E
[
‖a(k)‖2

] =
1

NT

NT∑
l=1

MSE(l). (7.12)

Similar to (5.24), the expectation E [·] in (7.12) is taken over both the data
symbols and the noise. Moreover, the error covariance matrix Re is defined as
E
[
e(k)eH(k)

]
. The lth diagonal element of Re is denoted by MSE(l), which

equals the MSE corresponding to the lth data stream. The total MSE then
equals the arithmetic average of all MSE(l).

To solve the minimization of (7.12), first a simplified notation is developed.
More precisely, the vector yW contains all channel output samples contributing
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to the decision variable u(k). Stacked vectors aT and aB comprise all symbols
contributing to uT(k) and to the input of the feedback filter, respectively,
whereas all remaining data symbols are collected in the stacked vector aN, i.e.,

yW =
[
yH(k + L

(1)
W ) · · ·yH(k − L(2)

W )
]H

, (7.13)

aB =
[
aH(k − ΦB(1)) · · ·aH(k − ΦB(LB))

]H
, (7.14)

aT =
[
aH(k) · · ·aH(k − LT)

]H
(7.15)

aN =
[
· · ·aH(k −m) · · ·

]H ∀m ∈ Φ \ {ΦT ∪ ΦB}. (7.16)

Since all symbols in a(k) are spatially and temporally uncorrelated, all cross
correlations between aT, aB, and aN are zero and the autocorrelation matrix
of each of these vectors equals the identity matrix, e.g., E

[
aTaHT

]
= IL(LT+1).

In this section, the intersection of ΦT = {0, · · · , LT} and ΦB is assumed to
be empty by design. Otherwise, the target response matrices T(m) ∀m ∈
{ΦT ∩ ΦB} would not influence the equalization performance at all, as the
feedback equalizer is capable of removing the contribution from a(k − m) to
e(k) for any m ∈ ΦB. Based on (7.3) and the notations in (7.13)-(7.16), the
relationship between yW and all data symbols can be rewritten as

yW = GTaT + GBaB + GNaN, (7.17)

where

GT = [G(0) · · ·G(LT)] , (7.18)
GB = [G(ΦB(1)) · · ·G(ΦB(LB))] , (7.19)
GN = [· · ·G(m) · · · ] ∀m ∈ Φ \ {ΦT ∪ ΦB}. (7.20)

Consequently, the MSE defined in (7.12) can be expressed as

MSE =
1

NT
E
[
‖W (GTaT + GBaB + GNaN + n̄(k))−BâB −TaT‖2

]
,

(7.21)
where the augmented T = [T(0) · · ·T(LT)], and the stacked âB is similarly
constructed as aB but with the decisions â(k) instead of the actual symbols
a(k). Below, the optimal W and B are first formulated for a given target re-
sponse matrix T in Subsection 7.2.1, after which three algorithms are presented
in Subsection 7.2.2 to optimize the target response matrix T.

7.2.1 Optimization over W and B

Similar to the MMSE optimization from Section 5.2, the presence of the decision
vector âB complicates the minimization of MSE from (7.21) with respect to
W and B for given T. For mathematical simplicity, all previously detected
symbols are therefore assumed to be correct such that âB can be replaced
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with aB in (7.21). The optimal coefficients W? and B?, for given T, are then
straightforwardly obtained by equating the derivatives of the MSE with respect
to W and B to zero, yielding

W? = TGH
T

(
GTGH

T + GNGH
N + Rn̄

)−1

and B? = W?GB, (7.22)

where Rn̄ , E
[
n̄(k)n̄H(k)

]
. Subsequently, the minimal MSE for given T, de-

noted by MSEW?,B? , is obtained by plugging (7.22) in (7.21), and the resulting
expression can be simplified to

MSEW?,B? =
1

NT
Tr
(
TGTH

)
, (7.23)

where

G = INT(LT+1) −GH
T

(
GTGH

T + GNGH
N + Rn̄

)−1

GT. (7.24)

Note that the matrix G is a positive Hermitian matrix.
For FRS, i.e., T = [INT 0NT×NTLT ], the expressions in (7.22) and (7.23)

are verified to simplify to the standard expressions for the MMSE equalizer
(see Section 5.2.1).

7.2.2 Optimization over T

Instead of considering a channel-independent TIR T, as for FRS or duobi-
nary (T = [I I 0]), this section optimizes T by minimizing MSEW?,B? from
(7.23) subject to two constraints: (i) all entries of T must belong to Z[j] and
(ii) det(T(0)) must belong to the set {1,−1, j,−j}. TIRs satisfying these con-
straints are called feasible, and ensure that b(k) and c(k) possess identical
statistics.

Expression (7.23) for MSEW?,B? reveals that the lth row of T influences
only MSE(l) =

(
TGTH

)
l,l
, i.e., the MSE corresponding to the lth data stream.

Hence, when the constraint on the determinant of T(0) is satisfied, constructing
a new TIR matrix T′ by multiplying one row of T with the complex conju-
gate of det (T(0)) results in det

(
T′(0)

)
= 1, while the MSE remains unal-

tered. Without loss of generality, the second constraint is therefore replaced
by det (T(0)) = 1 in the sequel.

Although the lth row of T affects only MSE(l), the rows of T cannot be
chosen independently from each other due to the constraint on the determinant
of T(0), impeding the optimization of each row individually. As an alternative,
this subsection discusses three iterative algorithms to compute an optimized
TIR T?. In the ith iteration of each algorithm, the TIR Ti is incremented
with the increment Tinc, i.e.,

Ti+1 = Ti + Tinc. (7.25)
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In (7.25) the NT ×NT(LT + 1) increment matrix Tinc is a function of Ti and
the corresponding incremented MSEi+1 is given by

MSEi+1 =
1

NT
Tr
(
Ti+1GTH

i+1

)
(7.26)

= MSEi +
1

NT
Tr
(
TiGTH

inc + TincGTH
i + TincGTH

inc

)
. (7.27)

In the ith iteration, Tinc is restricted to possess only one nonzero row, namely
the row with index l?i . Hence, the ith iteration focuses entirely on the reduction
of MSE

(l?i )
i , while the other MSE

(l)
i remain unaltered. Moreover, l?i is selected

such that MSE
(l?i )
i is the largest among the reducible MSEi, i.e., MSE

(l?i )
i is the

largest diagonal element of the error covariance matrix that can be reduced by
an increment Tinc that is computed by a specific algorithm. More precisely,
when the sequence

(
MSE

(m1)
i , . . . ,MSE

(mNT
)

i

)
is sorted from large to small,

i.e., MSE
(mn)
i ≥ MSE

(mn+1)
i for n ∈ {1, · · · , NT − 1}, l?i = mn if and only

if MSE
(l)
i is not reducible for l ∈ {m1, · · · ,mn−1} and MSE

(mn)
i is reducible.

Furthermore, to guarantee the feasibility of Ti+1, each entry of Tinc must
be a Gaussian integer, i.e., (Tinc)l,q ∈ Z[j], and, when updating a certain
row of Ti(0), the first NT elements of the nonzero row of the increment Tinc

must additionally be a linear combination of the other rows of Ti(0) such that
det (Ti(0)) does not alter. Initializing T0 to a random feasible TIR results
then obviously in an optimized T?, since convergence to a (local) optimum is
guaranteed because the MSE is lowered in each iteration and bounded below
by 0. However, convergence to the global optimum is not guaranteed by this
optimization algorithm, making the initialization and the computation of Tinc

crucial for the quality of T?. Initializing T0 as FRS is the most logical choice,
because the resulting MSE is then upper bounded by the MSE achieved in the
case of FRS.

Below, three different algorithms to compute the increment Tinc are pre-
sented. The first algorithm A1 (Subsection 7.2.2.1) updates the l?i th row of Ti

with an increment from a predefined subset that induces the largest decrease in
MSE

(l?i )
i , yielding a fast and low-complexity algorithm. The second algorithm

A2 is similar to algorithm A1, but it updates the element(s) of the l?i th row
of Ti yielding the largest guaranteed decrease, which is defined in Subsection
7.2.2.2. This largest guaranteed decrease does not only depend on the current
Ti, but also on the potential of future TIR increments. Due to this extra in-
formation, convergence to a better (local) optimum is expected at the cost of
a slightly larger computation complexity. In the last algorithm A3 (Subsection
7.2.2.3), even better performance is expected as the entire l?i th row is updated
by solving a relatively complicated lattice decoding problem.
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7.2.2.1 Algorithm 1 (A1)

In algorithm A1, Tinc is restricted to the set
{

T
(l,q)
inc |l ∈ {1, · · · , NT} , q ∈

{1, · · · , (LT + 1)NT}
}
. When q > NT, T

(l,q)
inc updates the (l, q)th element of

Ti, i.e,
T

(l,q)
inc = λl,qJl,q q > NT. (7.28)

When q ≤ NT, T
(l,q)
inc adds a multiple of row q of Ti(0) to row l of Ti(0), i.e.,

T
(l,q)
inc = [λl,qJl,qTi(0) 0] q ≤ NT, l 6= q. (7.29)

In (7.28) and (7.29), the matrix Jl,q is defined as a matrix whose elements are all
equal to zero except for the (l, q)th element that equals 1. Moreover, the factor
λl,q must be a Gaussian integer, and its optimum value, λ?l,q, is determined by
maximizing the decrease δl,q = MSEi−MSEi+1, where MSEi+1 is obtained by
plugging (7.28) and (7.29) into (7.27). After some mathematical manipulation,
this decrease (as a function of λl,q) is verified to be

δl,q = −2Re [λl,qAl,q]− |λl,q|2Bq (7.30)

with

Al,q =

{
(GTH

i )q,l q > NT(
Ti(0)GNTTH

i

)
q,l q ≤ NT, l 6= q

, (7.31)

Bq =

(G)q,q q > NT(
Ti(0)GNT ,NTTH

i (0)
)
q,q

q ≤ NT,
, (7.32)

where GNT and GNT ,NT are constructed by keeping the first NT rows from
G and the first NT columns of GNT , respectively. Since the maximum of the
second order function in (7.30) is reached at λl,q = −A

∗
l,q

Bq
, the Gaussian integer

inducing the largest δl,q is given by

λ?l,q =

⌊−A∗l,q
Bq

⌉
, (7.33)

where b·e rounds both the real and the imaginary part to the nearest integer.
For given (l, q), the largest decrease of MSE

(l)
i corresponding to the increment

T
(l,q)
inc with λl,q = λ?l,q is then given by inserting (7.33) into (7.30), yielding

δ?l,q = −2Re
[
λ?l,qAl,q

]
− |λ?l,q|2Bq. (7.34)

For given l, MSE
(l)
i is called reducible when the largest reduction of MSE

(l)
i

resulting from an increment matrix T
(l,q)
inc , i.e., max

q
δ?l,q, is larger than 0. Oth-

erwise, MSE
(l)
i is irreducible. As pointed out above, A1 determines the index



140 CHAPTER 7. PARTIAL-RESPONSE SIGNALING

Algorithm 7.1 Pseudocode algorithm A1.
1: T0 = [INT

0], i = 0.

2: while ∃ l : MSE
(l)
i reducible do

3: Select l?i as largest reducible MSE
(l)
i

4: q?i = arg max
q
δ?l?i ,q

5: Compute Ti+1 = Ti + T
(l?i ,q

?
i )

inc with T
(l?i ,q

?
i )

inc given by (7.28)-(7.29)
6: i← i+ 1

7: end
8: T? = Ti

l?i such that MSE
(l?i )
i is the largest of the reducible MSE

(l)
i . The algorithm

then increments Ti with T
(l?i ,q

?
i )

inc , where q?i = arg max
q
δ?l?i ,q

such that MSE
(l?i )
i

is reduced by an amount δ?l?i ,q?i . Algorithm A1 terminates when none of the

MSE
(l)
i can be further reduced. The pseudocode of A1 is listed in Algorithm

7.1.

7.2.2.2 Algorithm 2 (A2)

Algorithms A1 and A2 are completely identical except that the selection cri-
terion for q?i (line 4 in Algorithm 7.1) exercises more caution in algorithm A2.
Instead of opting for the TIR increment T

(l,q)
inc inducing the largest decrease in

the largest reducible MSE
(l?i )
i as in algorithm A1, algorithm A2 selects the most

promising TIR increment. More precisely, algorithm A2 opts for the TIR in-
crement T

(l,q)
inc inducing the largest guaranteed decrease rather than the largest

current decrease. This guaranteed decrease d?l,q is defined as the following sum
of two terms:

d?l,q = δ?l,q + δ?l,q,LB. (7.35)

The first term, δ?l,q, is already defined in (7.34) and represents the optimal
decrease achieved by the increment T

(l,q)
inc in iteration i. The second term,

δ?l,q,LB, is a lower bound on the maximal realizable decrease achievable by all
possible TIR increments in future iterations i+ 1, i+ 2, etc, when the optimal
increment T

(l,q)
inc is selected in iteration i. Note that these increments in future

iterations are not limited to row l, since this lower bound considers all possible
TIR increments. For given Ti+1, the reduction of the MSE realized during
iteration i+ 1 +m, with m > 0, usually depends on the increments previously
performed during iterations i+1, . . . , i+m. To compute the lower bound δ?l,q,LB,
the increments are constrained in iterations i+ 2, i+ 3, etc. such that, for all
m > 0 the decrease achieved in iteration i+ 1 +m is influenced only by Ti+1

and by the increment made in iteration i+ 1 +m, but not by the increments of
iterations i+ 1, . . . , i+m. This way, the sum of all future decreases computed
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subject to this constraint represents a lower bound on the maximum possible
decrease, which would be accomplished by unconstrained increments.

Algorithm 7.2 Calculation of δ?l,q,LB.

1: Input: Ti,T
(l,q)
inc

2: Ti+1 = Ti + T
(l,q)
inc , δ?l,q,LB = 0, m = 0

3: Construct matrix ∆: compute ∆l,q = δ?l,q using (7.34) with Ti replaced by
Ti+1

4: while m < NT do
5: li+1+m, qi+1+m = arg max

l,q
∆l,q

6: δ?l,q,LB ← δ?l,q,LB + ∆li+1+m,qi+1+m

7: ∆li+1+m,| = 0

8: if qi+1+m ≤ NT then
9: ∆|,li+1+m

= 0

10: end
11: m← m+ 1

12: end

For each increment T
(l,q)
inc in iteration i, the lower bound δ?l,q,LB must be

computed according to the algorithm presented in Algorithm 7.2. In this al-
gorithm, the matrix Ti and the update T

(l,q)
inc are given such that the Ti+1 is

equal to the sum Ti + T
(l,q)
inc . Moreover, the quantities li+n ∈ {1, · · · , NT} and

qi+n{1, · · · , (LT + 1)NT} here define the increment matrix T
(l,q)
inc in iteration

i+n. Equations (7.31) and (7.32) indicate that the MSE reduction in iteration
i+ n depends on the li+nth row of Ti+n and if qi+n ≤ NT also on the qi+nth
row of Ti+n(0) for all n> 0. Hence, with the purpose that the MSE reduction
in iteration i + 1 + m is not influenced by the increments made in iterations
i+1, . . . , i+m for anym > 0, the quantities li+1+m and qi+1+m must be outside
the sets {li+n|n = 1, · · · ,m} and {li+n|qi+n ≤ NT, n = 1, . . . ,m}, respectively.
As a result, the largest value ofm to be considered cannot exceed NT−1. When
{(li+1+m, qi+1+m)|m > 0} is constructed this way, the MSE reduction corre-
sponding to iteration i+1+m can be computed from (7.34) by substituting the
matrices Ti+1 and Ti+1(0) (rather than Ti+1+m and Ti+1+m(0)) for Ti and
Ti(0), respectively, in (7.31) and (7.32). For given Ti and T

(l,q)
inc , the subopti-

mal greedy algorithm from Algorithm 7.2 selects in each iteration from the set
{i+1, · · · , i+NT} the constrained increment that achieves the largest decrease,
and subsequently sums these decreases to obtain δ?l,q,LB. Because the MSE re-
duction in iteration i + 1 + m is not influenced by the increments in made in
iterations i+1, . . . , i+m for any m > 0, all reductions can be computed before
determining all quantities {li+1+m, qi+1+m|m ≥ 0}. These reductions could be
stored in the matrix ∆, where ∆l,q is set to the maximal reduction for the incre-
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ment T
(l,q)
inc in iteration i+1. The quantities {li+1+m, qi+1+m|m ≥ 0} could then

iteratively be selected according to li+1+m, qi+1+m = arg max
l,q

∆l,q.Afterwards,

the corresponding row of ∆l,q, i.e., ∆li+1+m,| , is set equal to 0 and also the
corresponding column of ∆l,q, i.e., ∆|,li+1+m

= 0, when qi+i+m ≤ 0, because
these reductions associated with these elements of ∆ cannot be chosen in later
iterations as otherwise the different increments would not be independent.

Algorithm A2 opts in the ith iteration for the increment matrix that induces
the largest guaranteed reduction, denoted by d?l?i ,q?i , of MSE

(l?i )
i , where l?i equals

the index of the largest of the reducible MSE
(l)
i . As in algorithm A1, MSE

(l)
i

is called reducible when max
q
δ?l,q > 0. Moreover, q?i is then selected such that

the largest guaranteed decreased is maximized, i.e., q?i = arg max
q
d?l?i ,q

. Con-

sequently, the pseudocode of A2 differs from A1 only in the selection criterion
for q?i (line 4 in Algorithm 7.1).

7.2.2.3 Algorithm 3 (A3)

In algorithm A3, the ith iteration determines the optimized increment for an
entire row of Ti rather than only a part of a row of Ti as in the algorithms
above. In this regard, the Hermitian positive-definite matrix G is first fac-
torized according to its Cholesky decomposition, i.e., G = LLH , where L is
a lower triangular matrix. Based on (7.23), the MSE after iteration i, i.e.,
MSEi+1, can thus be rewritten as

MSEi+1 =
1

NT
Tr
(
Ti+1LLHTH

i+1

)
(7.36)

=
1

NT

NT∑
l=1

‖tl,i+1L‖2 , (7.37)

where tl,i+1 equals the lth row of the TIR matrix Ti+1. As this algorithm in-
crements an entire row li in iteration i, the updated row tli,i+1 can be expressed
as

tli,i+1 = tli,i + tinc, (7.38)

while all the other rows of Ti remain unaltered. To satisfy the constraints, all
components of the row increment tinc must first belong to Z[j]. Second, its
first NT elements must be a linear combination of the first NT elements of the
other rows of Ti, i.e, tl,i with l 6= li. For a more mathematical description tinc

and L are first decomposed as

tinc =
[
t
(0)
inc t

(1)
inc

]
, (7.39)

L =
[
(L(0))H (L(1))H

]H
, (7.40)
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where t
(0)
inc and t

(1)
inc contain the first NT and the last NTLT elements of tinc,

respectively, whereas L(0) and L(1) comprise the first NT and last NTLT rows
of L, respectively. To met the requirements, t

(0)
inc in (7.39) must be a linear

combination with Gaussian integer coefficients of the first NT elements of tl,i

with l 6= li and all elements of t
(1)
inc must be Gaussian integers as well. These

requirements can then be expressed as

t
(0)
inc =

NT∑
l=1
l 6=li

(
λ

(0)
inc

)
l
t
(0)
l,i = λ

(0)
incT

(0)
li,i
, (7.41)

t
(1)
inc = λ

(1)
inc, (7.42)

where t
(0)
l,i consists of the first NT elements of tl,i, and T

(0)
li,i

is constructed by
removing the lith row from Ti(0). In (7.41) and (7.42) all elements of the
vectors λ(0)

inc and λ(1)
inc must be Gaussian integers and can be combined into the

single vector λinc =
[
λ

(0)
inc λ

(1)
inc

]
. For a given Ti and li, the vector λinc must be

selected such that the MSE
(li)
i+1 becomes as small as possible. To this purpose,

(7.41) and (7.42) are first substituted in (7.39), after which (7.38)-(7.40) are
employed to reformulate the minimization of MSE

(li)
i+1, i.e., the lith term in the

summation from (7.37), into the following closest point search:

λ?inc = arg min
λinc∈Z[j](LT+1)NT−1

‖λincGlat − x‖2 , (7.43)

where x = −t
(0)
li,i

L and

Glat =

[
T

(0)
li,i

L(0)

L(1)

]
. (7.44)

To solve the minimization problem of (7.43), the lattice decoding algorithm
presented in [85] is applied after decomposing all complex-valued quantities
into their real and their imaginary parts. This algorithm searches for a point
x̂ from a lattice with generator matrix Glat that is closest to x, by recursively
decomposing the lattice into lower-dimensional sublattices.

In algorithm A3, MSE
(l)
i is called reducible when the corresponding λ?inc

has at least one nonzero element. The pseudocode of A3 (Algorithm 7.3) is
similar to algorithms A1 and A2 except that A3 updates in each iteration an
entire row of Ti, making the selection of q?i pointless.

7.2.2.4 Complexity considerations

This subsection provides some general remarks on the complexity per iteration
of the proposed algorithms.

For algorithm A1, at most
(
(LT + 1)N2

T −NT

)
optimal λ?l,q from (7.33)

must be calculated per iteration, which is of course feasible in polynomial time.
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Algorithm 7.3 Pseudocode of Algorithm A3.
1: T0 = [INT

0], i = 0.

2: while ∃ l : MSE
(l)
i reducible do

3: Select l?i as largest reducible MSE
(l)
i

4: Compute row increment tinc by solving optimization problem (7.43)
5: Update Ti+1 by computing tli,i+1 using (7.38)
6: i← i+ 1

7: end
8: T? = Ti

To compute the largest guaranteed decrease d?l,q in A2 for all possible (l, q),
not only all optimal λ?l,q for Ti must be determined, but one must compute also
all λ?l,q of the next iteration for each increment T

(l,q)
inc in the current iteration.

Consequently, at most
(
(LT + 1)N2

T −NT

)2 different λ?l,q must be determined,
yielding, compared to A1, a larger complexity that is still polynomial in NT

and LT.
Clearly, algorithm A3 is the most complex, as each iteration must solve

multiple closest point problems. Unfortunately, this problem is NP-hard and
no polynomial time algorithm is available (yet) to resolve it. Indeed, the search
time of the lattice decoding algorithm in [85] rises exponentially with the prob-
lem’s dimensions, i.e., (LT + 1)NT − 1.

7.2.2.5 Optimality and convergence considerations

Due to the greedy nature of algorithm A1, the obtained T? is not guaranteed
to be globally optimal. For example, several small decreases may be better
than one large decrease, or one small decrease in the current iteration could
enable a large decrease in future iterations. Both these events are completely
ignored by this greedy algorithm.

Although the selection criterion in algorithm A2 more carefully selects the
optimal q?i , the obtained T? is still not guaranteed to be globally optimum, as
algorithm A2 is essentially still a greedy algorithm. Nevertheless, algorithm
A2 is expected to yield better performance than A1, as it can only benefit
from the additional information in the selection of the increment. Moreover,
the convergence conditions of algorithms A1 and A2 are identical, i.e., both
algorithms terminate when none of the MSE

(l)
i can be further reduced. Hence

neither algorithm is able to further lower the MSE when one algorithm is
initialized with the TIR T obtained by means of the other algorithm.

When comparing algorithms A1 and A2 with algorithm A3, one can readily
comprehend that the increments T

(l,q)
inc , allowed in A1 and A2, corresponds to

a vector λ?inc with exactly one nonzero element in A3. The possible increments
in A1 and A2 form thus a small subset of all increments allowed in A3. As



7.3. BER EXPRESSION FOR PRS 145

a consequence, running algorithm A1 or A2 initialized with the TIR matrix
obtained by means of A3 will not further drop the MSE, whereas the reverse
does not necessarily hold, implying that algorithm A3 has superior performance
compared to A1 and A2.

7.3 BER expression for PRS
In this section, the BER expression for the ST PRS over a frequency-selective
MIMO channel is derived. In [78], the SER of SISO PRS with an M -PAM
constellation has already been discussed in detail. Here, this work is extended
to obtain the BER for the general MIMO PRS with an M -QAM constellation
using a two-dimensional binary reflected Gray mapping. Actually, this two-
dimensional Gray mapping consists of two binary reflected Gray codes with
halved dimension, as the real part and the imaginary part of the data symbol
specify each log2(M)

2 bits.
First, a scaled and translated version v(k) of the decision variable u(k) is

introduced, i.e.,

v(k) =
u(k)

2∆
+ coff , (7.45)

with coff defined in (7.11). Based on the decomposition of u(k) from (7.7), the
target response vector uT(k) from (7.9), and the mapping rule from (7.2), v(k)
can be expressed as

v(k) =

LT∑
m=0

T(m)b(k −m) + isi(k) + nv(k), (7.46)

where nv(k) = Wn̄(k)
2∆ and isi(k) =

∑
m∈Φ

E(m)a(k −m) with

2∆E(m) =


WG(m)−T(m) m ∈ ΦT

WG(m)−B(m) m ∈ ΦB

WG(m) m ∈ Φ\ {ΦT ∪ ΦB}
. (7.47)

Because (7.1) yields

LT∑
m=0

T(m)b(k −m) = c(k) + T(0)d(k)
√
M, (7.48)

where the components of d(k) are Gaussian integers, v(k) from (7.45) reduces
to

v(k) = cex(k) + isi(k) + nv(k) (7.49)

with cex(k) = c(k) + T(0)d(k)
√
M. At the receiver, the symbol-by-symbol de-

tector makes a decision ĉex(k) of cex(k) in the extended symbol set by rounding
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v(k) to the closest Gaussian integer. As this procedure is performed for each
data stream individually, the decision of the received symbol at instant k in
the lth stream, (ĉex(k))l is based on

vl(k) = (cex(k))l + isil(k) + (nv(k))l , (7.50)

where vl(k), (cex(k))l, isil(k), and (nv(k))l equal the lth component of the
associated vectors v(k), cex(k), isi(k), and nv(k), respectively. Afterwards, the
modulo operator [·]√M is applied to (ĉex(k))l, yielding the decisions ĉl(k) ∈
CPRS of the transmitted symbol cl(k) transmitted in the lth data stream at
instant k. As the error performance does not depend on the symbol index k,
this index is dropped in the sequel for notational conciseness. The BER of the
lth data stream, BER(l), can be expressed as

BER(l) =
∑
(c,ĉ)

N 6= (c, ĉ)

log2(M)
Pr (cl = c, ĉl = ĉ) , (7.51)

where N 6= (c, ĉ) represents the number of bits by which the binary labels of c
and ĉ differ. In Appendix 11.10, an elaborate discussion is given on how the
following simple but accurate approximation for BER(l) is derived from (7.51):

BER(l) ≈ 1

log2(M)
EaISI

[
4Q

(
0.5− Re [isil(aISI)]

σ(nv)l

)]
, (7.52)

where Q (·) once more represents the tail distribution of the standard normal
distribution, σ(nv)l equals the standard deviation of the real part of (nv(k))l,
and EaISI

[·] denotes the expectation over all symbols contributing to Re[isil(
aISI)]. The computational complexity in (7.52) rises exponentially with the
channel and the filter length, thus rapidly becoming prohibitively large in nu-
merical simulations. As an alternative, similar techniques as in Subsection 5.4.3
can be proposed to numerically evaluate this expression. For instance, a large
number of N realizations of Re [isil(aISI)] could be generated, after which the
expectation in (7.52) is replaced by the arithmetical average.

7.4 Numerical results and discussion
This section characterizes the performance of the optimization algorithms (A1,
A2, and A3) discussed in Subsections 7.2.2.1-7.2.2.3 by numerical results for
three scenarios, of which the simulation settings are summarized in Table 7.1.
In all scenarios, the channel H(m) is a complex-valued frequency-selective
Rayleigh-fading MIMO channel withNR = NT = 4 and an exponentially decay-

ing power delay profile with base µ, i.e., E
[∣∣∣(H(m))p,q

∣∣∣2] = µ−(m+L
(1)
H ), p, q ∈

{1, · · · , 4} and m ∈ {−L(1)
H , · · · , L(2)

H }. All channels taps are further assumed
to be spatially and temporally uncorrelated. Moreover, all components of the
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Table 7.1: Simulation settings of the different scenarios.
• 4-QAM constellation •ΦB = {4, 5}

• 3500 channel realizations •L(1)
H = 0, L(2)

H = 25

•PRS settings: • Scenarios:
FRS (LT = 0, T(0) = I) S1: µ = 2, L(1)

W + L
(2)
W + 1 = 13

PRS-S (LT = 0; A1, A2, and A3) S2: µ = 2, L(1)
W + L

(2)
W + 1 = 21

PRS-ST(LT = 3; A1, A2, and A3) S3: µ = 5, L(1)
W + L

(2)
W + 1 = 13

circular symmetric Gaussian noise n(k) are spatially and temporally uncorre-
lated and possess variance N0, i.e., Rn(m) = N0δmI4, whereas the components
of a(k) belong to a Gray-mapped 4-QAM constellation. In the first scenario
S1, a severely frequency-selective channel (µ = 2) is equalized by means of a
DFE consisting of a 13-tap feedforward filter and a 2-tap feedback filter with
ΦB = {4, 5}. Extending the feedforward filter to 21 taps in the second scenario
S2 evidently improves the performance at the cost of a larger complexity. The
third scenario S3 is identical to S1, except that the frequency-selectivity of the
channel is less severe (µ = 5). In all scenarios, a comparison is made between:
(i) traditional FRS; (ii) spatial-only PRS (PRS-S), whose TIR possesses only
spatial components (LT = 0); and (iii) ST PRS, whose TIR consists of both
spatial, temporal, and ST components (LT = 3).

First, Subsection 7.4.1 issues several statements on the average performance
of the different algorithms for the three considered scenarios. While the average
performance is certainly one of the key performance indicators, the behavior of
the different algorithms for individual channel realizations is also of particular
importance. Hence, this performance aspect is the subject of Subsection 7.4.2.
Moreover, the convergence and the complexity of the different algorithms is
compared in Subsection 7.4.3 in terms of the number of iterations and the
relative runtime. Finally, Subsection 7.4.4 investigates whether an alternative
selection criterion for the row index l yields better performance.

7.4.1 Average performance
This discussion principally focuses on the average performance in terms of MSE
and BER, because the former is the objective function of the optimization prob-
lem, whereas the latter is an important performance measure in practice. In
this regard, Figs. 7.2, 7.3, and 7.4 respectively depict the 1/MSE and BER
performances averaged over 3500 channel realizations in scenarios S1, S2, and
S3, respectively, as a function of SNR = Eb

N0
= ETX

log2(M)N0
, where Eb and ETX

denote the transmitted energy per bit and per symbol, respectively. Further-
more, Table 7.2 lists the SNR in dB needed to achieve an average BER of 10−8

in the considered scenarios. The significant performance improvement achieved
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Figure 7.2: Scenario S1: average MSE (left) and average BER (right) as a
function of the SNR with µ = 2 and a 13-tap W. Compared to FRS, PRS
drastically improves the performance. In particular, PRS-ST optimized using
A3 considerably reduces the BER floor.

by PRS compared to FRS is immediately apparent. Indeed, the smaller MSE
accomplished by PRS is of course a direct consequence of the additional opti-
mization of T, but, more interestingly, the BER plots and Table 7.2 indicate
that also the BER of the PRS is significantly lower compared to FRS. One
noteworthy example is the drastic reduction of the error floor by considering
PRS instead of FRS in S1 (Fig. 7.2). Moreover, the longer feedforward filter in
S2 allows PRS even to completely remove the error floor encountered by FRS
or at least to lower it to below 10-8 (Fig. 7.3). Finally, compared to FRS, PRS
accomplishes a reduction up to 16 dB in SNR to reach a target BER of 10−8

in S3 (Fig. 7.4).
Significant differences in average performance between the three algorithms

A1, A2, and A3 occur when the TIR has spatial, temporal, and ST components
(LT = 3). In this configuration, algorithm A3 not only yields an average MSE
that is smaller than the MSEs of algorithms A1 and A2, but, more importantly,
also drastically lowers the BER. For instance, only algorithm A3 is able to
reduce the error floor below 10−8 in scenario S1. Further, its SNR required to
reach a BER of 10−8 in scenario S2 is approximately 2.8 dB and 2.5 dB lower
compared to algorithms A1 and A2, respectively, whereas the gain of algorithm
A3 compared to algorithms A1 and A2 in scenario S3 is about 2.3 dB and 1.5 dB,
respectively. These results therefore imply not only that algorithms A1 and A2
do not yield the global optimum, but also that algorithm A3 is to be preferred
when performance is essential. Furthermore, these numerical results confirm
our expectation that algorithm A2 outperforms algorithm A1 on average, yet
the gain of A2 compared to A1 turns out to be quite moderate: a lower error
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Figure 7.3: Scenario S2: average MSE (left) and average BER (right) as a
function of the SNR with µ = 2 and a 21-tap W. Compared to S1 (Fig. 7.2),
increasing the length of W results in remarkably better performance.

Table 7.2: SNR in dB needed to reach an average BER = 10−8.

Scenario FRS PRS-S PRS-ST

A1 A2 A3 A1 A2 A3

S1 - - - - - - 22.17
S2 - 21.44 21.43 21.37 17.40 17.10 14.64
S3 31.69 18.65 18.51 18.40 17.79 17.00 15.53

floor is achieved in S1 (factor 2), whereas the SNR required to meet the BER
target decreases by less than 0.8 dB in scenarios S2 and S3.

When the TIR possesses only spatial components, i.e., LT = 0, the perfor-
mance difference between algorithms A1, A2, and A3 is almost negligible for all
scenarios. In this case, T contains only T(0), limiting the possible increments
in all algorithms to the set of consecutive row additions. All algorithms are
therefore similar, resulting in nearly identical average MSE and BER perfor-
mance. In this case, the least complicated algorithm A1 is the most attractive.
For LT = 0, the minimization of (7.23) is structurally identical to the lat-
tice reduction problem from [69]. Indeed, algorithm A1 corresponds to the
element-based lattice reduction (ELR) algorithm from [69], while algorithm A3
is similar to the improved ELR algorithm from [69].

At low SNR, the matrix G in (7.24) closely resembles an identity matrix.
Consequently, the optimized PRS converges to FRS for low SNR. The perfor-
mance improvement of PRS over FRS is therefore mainly noticeable at high
SNR.
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Figure 7.4: Scenario S3: average MSE (left) and average BER (right) as a
function of the SNR with µ = 5 and a 13-tap W. Due to the mild frequency-
selectivity of the channel, the difference between PRS-S and PRS-ST is con-
siderably smaller.

As for the mildly selective channel in scenario S3, all PRS configurations
outperform FRS, but the difference between PRS-S and PRS-ST is less signif-
icant. Hence, the improvement of PRS can mainly be attributed to the spatial
components in T(0) and to a lesser extent to the temporal and ST compo-
nents in {T(m)|m > 0}. As the mildly frequency-selective channel generates
relatively small temporal ISI and ST ISI, this observation is not unexpected.

7.4.2 Performance for individual channel realizations

Section 7.4.1 above considers only numerical results that are averaged over 3500
channel realizations. To better understand how FRS and PRS affect the BER
performance for individual channel realizations, SNRFR, SNRPR

A1 , SNRPR
A2 , and

SNRPR
A3 are defined as the SNR required for a particular channel realization to

reach a BER of 10−8 in the case of FRS and the three algorithms for PRS,
respectively. The scatter plots from Fig. 7.5 compare SNRPR

A3 to SNRFR, to
SNRPR

A1 , and to SNRPR
A2 , for 3500 channel realizations in the case of S2 and

LT = 3 (PRS-ST). In these plots, a scatter point is labeled as ‘floor’ when the
target of 10−8 cannot be reached due to an error floor. Immediately evident
from the plots is that nearly all scatter points are above the line connecting
all points where the SNR on the ordinate equals SNRPR

A3 . Hence, apart from
some exceptions, PRS optimized with algorithm A3 requires the lowest SNR to
reach the target BER. Additionally, the MSE achieved by means of algorithm
A3, MSEPR

A3 , has been numerically verified to be the lowest for all channel real-
izations (not shown). These observations not only corroborate the superiority
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Figure 7.5: Scenario S2: scatter plot of the points (SNRPR
A3 ,SNRY), where

SNRY equals SNRFR, SNRPR
A1 and SNRPR

A2 in the left, the middle, and the
right plot, respectively. All points above/below the solid straight line represent
channel realizations for which SNRY is larger/smaller than SNRPR

A3 .

of algorithm A3 in terms of MSE, but also illustrate that a smaller MSE does
not necessarily guarantee a smaller BER. Next, the largest gain from applying
A3 is observed for unfavorable channels, i.e., channel realizations requiring a
rather large SNRFR, SNRPR

A1 , and SNRPR
A2 , whereas only minor gains are ob-

tained for favorable realizations with smaller values for SNRFR, SNRPR
A1 , and

SNRPR
A2 . Additional simulations confirm that all conclusions drawn here apply

also to scenarios with different filter lengths and/or base µ (not shown).

While the MSE of algorithm A3, MSEPR
A3 , is numerically verified to be the

lowest for all channel realizations, algorithms A1 and A2 yield only locally
optimal MSEs. As for their relative performance, results above confirm that
algorithm A2 outperforms algorithm A1 on average as expected. However, this
observation does not impede that algorithm A1 could yield better performance
than algorithm A2 for a specific channel realization, because a sequence of
increments in algorithm A1 could for example enable a large future decrease
that was not considered by algorithm A2. This claim is supported by Fig. 7.5,
which compares the MSE achieved by algorithm A1, i.e., MSEPR

A1 , with the MSE
achieved by algorithm A2, i.e, MSEPR

A2 , by means of a scatter plot in the case
of scenario S2 at SNR = 20 dB. For about 92.5% of the channels, the outcome
of algorithms A1 and A2 is identical, while algorithm A2 is superior for 6.5%
of the channels and algorithm A1 outperforms algorithm A2 for only < 1% of
the channel realizations. Consequently, neither algorithm A1 nor algorithm A2
is superior to the other in terms of minimal MSE for all channel realizations.
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Figure 7.6: Scenario S2: scatter plot of the points (MSEPR
A1 ,MSEPR

A2 ) at SNR =
20 dB. For most channel realizations, algorithm A1 and algorithm A2 yield
identical performance.
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Figure 7.7: Histogram of the number of iterations required for convergence of
algorithms A1-A3 in the case of scenario S2 with LT = 2 and SNR = 20 dB
for both NT = NR = 4 and NT = NR = 6. Moreover, the relative runtimes
with respect to algorithm A1 are also listed for A2 and A3. A small number of
high-complexity iterations results in almost instant convergence for algorithm
A3, whereas algorithms A1 and A2 require more, but significantly less complex
iterations.
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Figure 7.8: Scenario S2: average runtime of algorithms A2 and A3 relative to
the runtime of algorithm A1 as a function of SNR for NT = NR ∈ {3, 4} and
LT ∈ {1, 3}. Especially at high SNR, the runtime of algorithm A3 quickly rises
with increasing NT and LT.

7.4.3 Convergence and complexity analysis

One key feature of all algorithms is their computational complexity. Fig. 7.7
therefore presents the histogram (3500 channels) of the number of iterations
required for convergence in the case of scenario S2 with LT = 2 and SNR =
20 dB for both NT = NR = 4 and NT = NR = 6. Moreover, an additional
table lists the runtimes R of algorithms A2 and A3 relative to the runtime
of algorithm A1, i.e., RA1. In this discussion, only the relative and not the
absolute runtime of an algorithm is considered, because the latter is hugely
dependent on the specific implementation and the computing power of the
simulation machine, whereas the former is expected to be less influenced by
these parameters. The following remarks can be made:

• In the case of both algorithm A1 and algorithm A2, convergence is reached
for at least 90% of the channels after 2NT iterations, but the runtime of
A2, RA2, is approximately 2.5 times as large as the runtime of A1, RA1.
This last observation has two reasons: (i) algorithm A2 requires on aver-
age slightly more iterations than algorithm A1; and (ii) one iteration of
algorithm A2 is somewhat more complex than one iteration of algorithm
A1 as possibly more increments must be computed.

• As for algorithm A3, only approximately NT iterations are needed for
convergence. Nevertheless, RA3 is significantly larger than both RA1

and RA2, because the complexity of the lattice decoding problem rises
exponentially with the productNTLT, and the complexity of one iteration
thus rapidly becomes substantial.

In conclusion, algorithms A1 and A2 are to be preferred when either per-
formance is subordinated to complexity or when all algorithms yield similar
performance, e.g., at low SNR or in the case of PRS-S. Yet, when performance
is critical, algorithm A3 should be employed.
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Figure 7.9: Scenario S2: comparison of the achieved MSE at SNR = 20 dB
for 25 channel realizations in the case of algorithm A1 (left plot), algorithm
A2 (middle plot), and algorithm A3 (right plot) for PRS-ST (LT = 3) with
T0 either randomly initialized (50 realizations of T0 per channel realization)
or initialized as FRS. As a reference, the MSE achieved by FRS is included as
well. Clearly, the performance of algorithms A1 and A2 is highly susceptible to
the initialization, whereas algorithm A3 yields excellent performance compared
to FRS, irrespective of the initialization.

A more detailed insight into the runtime of the different algorithms is gained
in Fig. 7.8, in which both the ratio RA2/RA1 and the ratio RA3/RA1 are
investigated as a function of the SNR for different values of NT and LT in the
case of scenario S2. The following observations hold:

• Algorithm A1 is executed the fastest because the ratios RA2/RA1 and
RA3/RA1 are always larger than 1, irrespective of the SNR, NT and LT.

• The execution of algorithm A2 takes on average approximately two and
maximally three times as much time as the execution of Algorithm A1.
Compared to A1, the runtime of A2 is larger, especially at high SNR,
whereas NT and LT do not have a major impact on the ratio RA2/RA1.

• The runtime of algorithm A3 is clearly the largest, confirming that its
iterations are indeed more complex compared to the iterations of algo-
rithms A1 and A2, since less iteration are generally required in algorithm
A3. Just as for A2, the ratioRA3/RA1 increases with larger SNR, but the
number of symbol streams NT and the length of the target response LT

have also a profound impact on RA3/RA1. Especially at high SNR, the
runtime of A3 quickly rises for increasing NT and LT. These observations
are not unexpected as the complexity of the lattice decoding algorithm
rises exponentially with the problem’s dimensions, i.e., NT(LT + 1)− 1.

The effect of the initialization of T0 on the obtained MSE is investigated in Fig.
7.9 for algorithms A1 (left plot), A2 (middle plot), and A3 (right plot) in the
case of scenario S2 at SNR = 20 dB. More specifically, this figure depicts for
25 random channel realizations: (i) the MSE achieved by means of all three al-
gorithms when T0 is initialized as FRS, i.e., T0 = [I 0]; (ii) the MSE achieved
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Figure 7.10: Scenario S2: scatter plots of the points (SNRPR
Y ,SNRPR

YMR
) for

3500 channel realizations, where Y equals A1, A2, and A3 in the left, middle,
and right plot. More than 90% of all scatter points lie very close to the line
connecting all points for which SNRPR

Y = SNRPR
YMR

, indicating that SNRPR
A1 ≈

SNRPR
A1MR

, SNRPR
A2 ≈ SNRPR

A2MR
, and SNRPR

A3 ≈ SNRPR
A3MR

. Consequently, the
performance is roughly identical with respect to the selection criterion of l?i .

when T0 is set to a random feasible TIR (50 realizations of T0 per channel
realization); and (iii) the MSE achieved in the case of FRS. When T0 is ini-
tialized as FRS, the MSE obtained by all three algorithms is of course smaller
than the MSE in the case of FRS, simply because an additional optimization
over T is performed. In the case of the random initialization of T0, however,
algorithms A1 and A2 get trapped in local minima whose performance is often
significantly worse than the performance of FRS, emphasizing the importance
of good initialization in algorithms A1 and A2. On the other hand, the perfor-
mance of algorithm of A3 is essentially unaffected by the value of T0, because
all different T0 yield the same results.

7.4.4 Alternative selection criterion

In all the results above, the optimal row index l?i corresponds to the largest re-
ducible MSE

(l)
i . However, an alternative selection criterion for l?i could be

envisaged as well. For instance, the row l?i could be chosen more aggres-
sively such that the increment is selected to maximally decrease MSE

(l)
i , e.g.,

(l?i , q
?
i ) = arg max

l,q
δ?l,q in algorithm A1. The resulting algorithms with this

alternative selection criterion are denoted by A1MR, A2MR, and A3MR. To
compare the two selection criteria in terms of performance, Fig. 7.10 presents
three scatter plots in which the tuples (SNRPR

Y ,SNRPR
YMR

) are presented. More
specifically, SNRPR

YMR
is analogously defined as SNRPR

Y , i.e, the SNR required
for a particular channel realization to reach a target BER of 10−8 when algo-
rithm YMR is employed. In Fig. 7.10, Y is equal to A1, A2, and A3 in the
left, the middle, and the right plot, respectively. Moreover, a straight line,
connecting all points for which SNRPR

Y = SNRPR
YMR

is added to facilitate the
performance comparison. Immediately noticeable on the scatter plots is that
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almost all scatter points are close to or even lie on this straight line, especially
in the case of algorithm A3, indicating that algorithms Y and YMR yield similar
performance for most channel realizations. This statement is confirmed by the
MSE performance (not shown), as the MSE of at least 85% of the channel real-
izations is identical for algorithms Y and YMR. As for the channel realizations
whose performances differ, algorithm Y is superior for roughly half of them,
whereas algorithm YMR is superior for the other half. Hence, on average, the
performances of algorithms Y and YMR are nearly identical.

In terms of MSE, algorithms A3 and A3MR almost always yield identical
performance and thus also identical TIRs. However, a few exceptions exists,
where either algorithm A3 or algorithm A3MR achieves a smaller MSE than
the other algorithm. This numerical results indicates that neither algorithm
converges to the global optimum for all channel realizations, but we strongly
believe that the global minimum is reached for most channel realizations.

Irrespective of the considered algorithm, additional simulations reveal that
both selection criteria require on average approximately the same number of
iterations to converge. Consequently, the selection criterion requiring the least
computations per iteration is expected to be executed the fastest and is thus
preferred. In the case of algorithm YMR, the largest decrease must be computed
for each l ∈ {1, · · · , NT} such that the increment inducing the largest reduction
in MSEi can be selected. On the other hand, algorithm Y must compute only
L ≤ NT largest decreases per iteration, where L is such that the Lth largest
MSE

(l)
i is reducible and the L− 1 larger MSE

(l)
i are irreducible. Consequently,

the computational complexity per iteration is larger for algorithm YMR than
for algorithm Y, making the latter the better choice.

7.5 Conclusions

This chapter discusses an equalization scheme with a ST MIMO PRS precoder,
where a frequency-selective MIMO channel is equalized with respect to a gen-
eral TIR that contains both temporal, spatial, and ST components. This TIR
and all equalization coefficients of the DFE are jointly optimized according to
the MMSE criterion. First, the optimal DFE for a given TIR is derived. Next,
three iterative algorithms are described that perform a row-by-row optimiza-
tion of the TIR by updating the row of the TIR matrix corresponding to the
largest reducible MSE(l). The least complex algorithm A1 selects from a pre-
defined set of allowed increments the one yielding the largest decrease of the
largest reducible MSE. The allowed increment either alters exactly one element
of the TIR matrix, or adds an Gaussian integer multiple of one row of T(0) to
another row of T(0). Algorithm A2 employs the same set of increments, and is
structurally similar to A1, but its selection criterion considers also the potential
of future increments. The most complex A3 updates in each iteration an entire
row of the TIR matrix by solving a lattice decoding problem. Next, this chapter
derives the BER expression along with an accurate approximation. The nu-



7.5. CONCLUSIONS 157

merical results confirm that PRS considerably outperforms FRS, not only when
the TIR contains ST components (PRS-ST), but also when the TIR contains
only spatial components (PRS-S). Interestingly, the performance improvement
of PRS-ST compared to PRS-S becomes more prominent for severely distorted
channel as the ST components of the TIR are more pronounced. As for the
different algorithms, especially algorithm A3 achieves superior average perfor-
mances, justifying its larger complexity, whereas algorithm A2 only slightly
outperforms algorithm A1. However, the average performance difference be-
tween the different algorithms is negligibly small for a spatial-only TIR or at
low SNR, making the low-complexity A1 most preferable in this situation. The
performance of individual channel realizations confirms the superiority of al-
gorithm A3 and also reveals that algorithm A2 yield not necessarily better
performance than algorithm A1. A disadvantage of algorithm A3 is that its
runtime quickly grows with increasing NT or LT, while this increase is far less
noticeable for algorithms A1 and A2. Moreover, simulations show that algo-
rithms A1 and A2 are susceptible to the initialization. Algorithm A3, on the
other hand, does not suffer from this as it converges to the same optimum for
all different initializations. Finally, an alternative selection criterion for l?i is
proposed, which essentially results in approximately identical performance for
all algorithms.
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8
Robust partial-response signaling

This chapter discusses the equalizer design in the case of PRS over a frequency-
selective and time-variant MIMO channel, just as Chapter 7. In contrast to
Chapter 7, the design of the equalization parameters is based on estimates of
the channel rather than the actual channel realization itself. As these estimates
are noisy and/or delayed, a statistically robust optimization framework is pro-
posed in this chapter. First, the concept of robustness is introduced in Section
8.1. Second, Section 8.2 presents the equalization scheme consisting of a PRS
precoder and a linear filter at the transmitter. Next, Section 8.3 describes,
in general, the optimization problem that must be solved in the robust design
(Subsection 8.3.1), after which this general optimization framework is applied
to the MSE corresponding to the considered equalization scheme (Subsection
8.3.2). Mathematical details of this MMSE optimization are given in Subsection
8.3.3, whereas Section 8.4 briefly discusses how the BER for this equalization
scheme can be numerically obtained. In Section 8.5, numerical results illustrate
that the robust PRS design offers several performance improvements compared
to the case of naively assuming that the channel estimates are perfect. Finally,
conclusions are drawn in Section 8.6.

In this chapter, only bandpass transmission is considered, and all bandpass
signals and all bandpass filters are represented in complex-valued baseband
notation.

159
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Figure 8.1: System model of the equalization scheme consisting of a PRS pre-
coder and a linear equalizer at the transmitter.

8.1 Robust design

All equalization and TIR parameters are ideally computed with perfect CSI.
However, the assumption of perfect CSI is often unrealistic in practice, espe-
cially at the transmitter. Indeed, several different elements could impact the
quality of the CSI: channel noise during the estimation process, intolerably
large processing delays, and limited bandwidth of the return channel, causing
quantization errors and/or propagation delay. Consequently the CSIT, is often
a noisy and/or delayed version of the actual channel. In general, the naive
approach of determining the equalization and TIR parameters without taking
these estimation imperfections into account results in adequate performance
only when the available CSIT is sufficiently accurate. Alternatively, superior
performance is usually attained by robust equalization design, because it in-
corporates the imperfections of the CSIT in the design of the equalization and
the TIR parameters. As a result, the performance of the robust equalization
and TIR parameters is more conservative, but also far less sensitive to the
imperfections of the CSIT. Two main classes of robust designs exist. As for
the worst-case designs, the channel estimation error is assumed to be within a
bounded uncertainty region, e.g., due to quantization noise. Next, a minimax
optimization problem is solved to guarantee a certain performance level for all
estimation errors within that region [86, 87, 88, 89, 90, 91]. As an alternative
to the worst-case design, the estimation error could also be modeled statisti-
cally, allowing to design the equalization and TIR parameters by optimizing a
performance measure averaged over the joint distribution of the channel and
the CSI [74, 54, 75, 92, 91]. In this chapter, the latter concept of robustness is
employed and applied to the general ST PRS precoder.

8.2 System model

Fig. 8.1 shows the block diagram of the communication system considered in
this chapter. More specifically, a frequency-selective MIMO channel with NT

inputs and NR outputs is equalized by means of a ST PRS precoder and a linear
FIR MIMO equalizer at the transmitter, and the data is recovered by means of
a symbol-by-symbol detector at the receiver that operates on a scaled version of
the received signal. This equalization scheme is quite similar to the equalization
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Figure 8.2: Structure of the κth frame of the block transmission scheme (se-
quence c(k)) . The transmitter generates alternately a block of pilot symbols
and a block of data symbols with guard intervals between them such that no
IBI occurs at the receiver.

scheme discussed in Chapter 7, but with the DFE at the receiver in the latter
scheme being replaced by a linear FIR MIMO equalizer at the transmitter.
Moreover, the frequency-selective channel in this chapter is assumed to be wide-
sense stationary slowly Rayleigh-fading, meaning that the optimal equalization
coefficients must change over time as well. To this end, regularly updated and
reliable CSI must be available at the transmitter. Here, this requirement is
fulfilled by considering block transmission, in which the consecutively transmit
frames span each Nf symbols and contain pilot symbols and data symbols.
The pilot symbols are employed to perform channel estimation at the receiver,
after which the acquired estimate is fed back to the transmitter over a return
channel with possibly limited bandwidth. The obtained CSIT is, however,
often inaccurate (because of channel estimation errors caused by noise) and/or
delayed (because of the propagation delay on the actual and the return channel,
and the processing time required for computing the estimate at the receiver).

The structure of the block transmission is now discussed in more detail
by means of Fig. 8.2, which schematically illustrates the κth frame in the
sequence c(k). Clearly, the sequence c(k) is composed of a stream of blocks
that alternately span Np symbols periods and Nd symbol periods. The former
blocks are filled with pilot symbols, whereas the latter blocks contain data
symbols. In each frame, two guard intervals are present with a duration of
Ng,1T and Ng,2T , respectively. These guard times must be large enough to
ensure that the receiver does not suffer from interference between pilot symbols
and data symbols, but must also be as small as possible to maximize the channel
throughput. As for the pilot symbols, both the PRS precoder and the linear
equalizer are bypassed such that these symbols are directly applied to the
channel in frame κ from time index kp,κ = (κ − 1)Nf up to and including
time index kp,κ +Np− 1. Consequently, the received data block corresponding
to these pilot symbols ranges from kp,κ − L

(1)
H up to and including kp,κ +

Np − 1 + L
(2)
H , from which, however, only the part ranging from kp,κ + L

(2)
H

till kp,κ + Np − 1 − L(1)
H is used in the channel estimation process (Appendix

11.11). On the other hand, the data symbols of frame κ in the sequence c(k)
correspond to the time index interval Id,κ = [kd,κ = kp,κ+NP−1+Ng,1, kd,κ+
Nd−1]. In contrary to the pilot symbols, this block of data symbols is precoded
and pre-equalized by the PRS precoder and the linear filter, respectively, after
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which the resulting signal is transmitted over the channel. This results in a
received data block starting at time index kd,κ−L(1)

G and ending at time index
kd,κ + Nd − 1 + L

(2)
G . Still, only the scaled received samples in the interval

Id,κ are applied to the symbol-by-symbol detector to recover the data symbols.
Next, Ng,1 and Ng,2 are equal to the smallest values that ensure that the useful
part of the received samples from both the block with pilot symbols and the
block with data symbols is not corrupted by interference of any other blocks.
To satisfy this requirement, one could derive that Ng,1 = max

(
L

(2)
H , L

(1)
P

)
+ 1

and Ng,2 = max
(
L

(1)
H , L

(2)
P

)
+ 1. The total duration of one frame is then given

by NfT = (NP +Nd +Ng,1 +Ng,2)T . In the following, we describe both the
transmitter and the receiver processing related to the data symbols in a generic
frame.

As for the PRS precoder characterized by the target response vector T,
the description given in Chapter 7 applies here as well, with the exception
that NR instead of NT symbol streams are considered here. Indeed, the linear
equalization filter is situated here at the transmitter instead of the receiver. As
a result, the symbol-by-symbol detector directly operates on a scaled version of
each channel output. Therefore, the number of data streams Ndat is set equal to
NR and the assumption is made thatNT ≥ NR. So, the input at the transmitter
consists of NR independent complex-valued data symbol streams, whose entries
are all an element of the constellation CPRS. Moreover, the relationship specified
in (7.1) and (7.2) between the data input symbol vector c(k) and the vector
a(k) still holds here, but the matrices T(m) now belong to the set Z[j]NR×NR .
After the PRS precoder, the obtained symbol sequence {a(k)} is equalized by
means of the equalizer P, which represents a linear symbol-spaced FIR filter,
yielding the signal x(k). This equalizer is characterized by the NT×NR impulse
response matrices P(n) such that x(k) can be expressed as

x(k) =

L
(2)
P∑

n=−L(1)
P

P(n)a(k − n), (8.1)

where all active delay indices n of the equalizer P are limited to the set {−L(1)
P ,

· · · , L(2)
P }. Analogous to the equalizer P in the equalization schemes from

the previous chapters, an energy constraint must ensure that the transmitted
energy per symbol does not become excessive. This energy constraint is given
by

σ2
aTr

[
PHRTXP

]
≤ NRETX, (8.2)

where RTX is defined in (5.8).
Subsequently, the signal x(k) propagates over a wide-sense stationary

frequency-selective Rayleigh fading NR × NT MIMO channel that is charac-
terized by the discrete-time channel impulse response matrices H(m, k). These
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matrices H(m, k) are related to the impulse response matrix Hch(u, t) of the
underlying continuous-time Rayleigh fading channel according to the following
relationship:

H(m, k) =

∫ +∞

−∞
hc(mT + ε− u)Hch(u, kT ) du, (8.3)

where hc(u) denotes the impulse response of the cascade of the transmit and the
receive filter. Since the channel is assumed to be slowly fading, its associated
coherence time is assumed to be much larger than the symbol period such that
the frame duration, i.e., NfT , can be chosen to be considerably smaller than
the coherence time. As a result, H(m, k) is quasi-static during the transmis-
sion of one frame, allowing to approximate H(m, k) by Hκ(m) = H(m,κNf)
during the κth frame, i.e., for κNf ≤ k < (κ+ 1)Nf . Moreover, as the duration
of the channel impulse response is essentially finite in practice, L(1)

H and L(2)
H

are again defined such that Hκ(m) = 0 ∀m /∈ {−L(1)
H , · · · , L(2)

H }. The chan-
nel also adds a noise vector n(k), whose components are zero-mean Gaussian
distributed variables that are temporally and mutually uncorrelated such that
E
[
n(k)n(k −m)H

]
= N0δmI. The channel input-output relationship is thus

given by

y(k) =

L
(2)
H∑

m=−L(1)
H

Hκ(m)x(k −m) + n(k). (8.4)

All channel coefficients Hκ(m) are collected in a single matrix Hκ = [Hκ(−L(1)
H )

· · ·Hκ(−L(2)
H )]. For notational convenience, the frame index κ is omitted in the

following when the dependency on the frame index is evident.
The signal processing at the receiver is kept to the strict minimum. The

signal y(k) is first multiplied by a factor α to compensate for the constrained
transmit energy per symbol, yielding the decision variable u(k), i.e.,

u(k) = α

L
(2)
G∑

m=−L(1)
G

G(m)Pa(k −m) + αn(k), (8.5)

where G(m) =
[
H(m− L(1)

P ) · · ·H(m+ L
(2)
P )
]
and

{
L

(1)
G = L

(1)
H + L

(1)
P

L
(2)
G = L

(2)
H + L

(2)
P

. (8.6)

Subsequently, the symbol-by-symbol detector retrieves the original data from
u(k) similarly as in Chapter 7 by means of the relationship between the original
data and the target response uT(k) defined in (7.10) and (7.11).
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8.3 Robust equalizer design

This section first discusses the general optimization problem that must be
solved in the statistically robust equalizer design in Subsection 8.3.1. Next,
this general optimization procedure is applied to the communication system
from Fig. 8.1 by opting for the MSE between u(k) and uT(k) as the objec-
tive function (Subsection 8.3.2), after which the mathematical details of this
minimization are further examined in Subsection 8.3.3.

In the following, the channel vector hκ is defined as the result of stacking
the columns of Hκ into one single column vector with NTNRLH components.
Moreover, the estimate of hκ is denoted as ĥκ, while the vector containing the
CSIT that is available for the design of the equalization parameters for frame
κ is symbolized by the vector ˆ̄hκ.

8.3.1 General optimization problem

All equalization parameters are collected into the vector z. Because only the
CSIT ˆ̄hκ is assumed to be available in the design of the equalization parameters
associated with frame κ, z is a function of ˆ̄hκ, which is highlighted by the
notation z(ˆ̄hκ).

To obtain an optimal z?(ˆ̄hκ) in frame κ, one must optimize an objective
function f0 that is possibly subject to one or more constraints, e.g., the energy
constraint from (8.2). In general, this objective function depends on both the
channel vector hκ and the equalization parameters, leading to the notation
f0(z(ˆ̄hκ),hκ). In the case of perfect CSIT, ˆ̄hκ is equal to hκ such that for
a given hκ, one can directly minimize f0(z(hκ),hκ). However, as in practice
the CSIT is imperfect, the robust equalizer design takes this imperfection into
account by minimizing f̄0, which is defined as the expected value of f0 with
respect to joint distribution of hκ and ˆ̄hκ. Consequently, the objective function
in the case of imperfect CSIT is given by

f̄0 =

∫ ∫
f
Gch,

ˆ̄Gch
(hκ,

ˆ̄hκ)f0(z(ˆ̄hκ),hκ) dhκ dˆ̄hκ, (8.7)

where f
Gch,

ˆ̄Gch
(hκ,

ˆ̄hκ) represents the joint PDF of the channel vector hκ and

the available CSIT ˆ̄hκ. In (8.7), Gch and ˆ̄Gch denote the random variables
corresponding to the channel vector hκ and the channel estimation vector ˆ̄hκ,
respectively. By expressing the joint PDF f

Gch,
ˆ̄Gch

(·) as the product of the
conditional PDF f

Gch| ˆ̄Gch
(·|·) and the PDF f ˆ̄Gch

(·), one can rewrite f̄0 as

f̄0 =

∫
f ˆ̄Gch

(ˆ̄hκ)f̄
0| ˆ̄Gch

(z(ˆ̄hκ), ˆ̄hκ) dˆ̄hκ, (8.8)
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where the a posteriori expectation f̄
0| ˆ̄Gch

(z(ˆ̄hκ), ˆ̄hκ) of f0 is given by

f̄
0| ˆ̄Gch

(z(ˆ̄hκ), ˆ̄hκ) =

∫
f
Gch| ˆ̄Gch

(hκ|ˆ̄hκ)f0(z(ˆ̄hκ),hκ) dhκ. (8.9)

Because f ˆ̄Gch
(ˆ̄hκ) ≥ 0 for all ˆ̄hκ, the optimal f̄0 can be determined by mini-

mizing f̄
0| ˆ̄Gch

(z(ˆ̄hκ), ˆ̄hκ) for each ˆ̄hκ. Consequently, the optimal equalization

parameters z?(ˆ̄hκ) for a given vector ˆ̄hκ result from solving the following opti-
mization problem:

z?(ˆ̄hκ) = arg min
z(ˆ̄hκ)

f̄
0| ˆ̄Gch

(z(ˆ̄hκ), ˆ̄hκ), (8.10)

possibly subject to one or more constraints.
In the case of perfect CSIT, we have ˆ̄hκ = hκ, in which case (8.9) and (8.10)

reduce to
f̄

0| ˆ̄Gch
(hκ) = f0(z(hκ),hκ) (8.11)

and
z?(hκ) = arg min

z(hκ)
f0(z(hκ),hκ) (8.12)

The resulting equalizer coefficients are the same as those obtained from the
optimization (3.1), when all equalizer coefficients are adjustable in the latter
optimization, i.e., y = {Ø}.

8.3.2 MMSE optimization problem

In the MMSE optimization problem, the objective function f0(z(ˆ̄hκ),hκ) equals
the MSE between the decision variable u(k) and the target response uT(k).
This MSE is denoted by MSEhκ and, for a specific realization of hκ, MSEhκ is
defined as

MSEhκ =
1

NRσ2
a

E
[
‖u(k)− uT(k)‖2

]
. (8.13)

=
1

NR
Tr

[
αPHGH

κGκP+α2N0

σ2
a

INR
+THT−αTHGT,κP−αPHGH

T,κT

]
(8.14)

with
Gκ =

[
GH
κ (−L(1)

G ) · · ·GH
κ (L

(2)
G )
]H

(8.15)

and
GT,κ =

[
GH
κ (0) · · ·GH

κ (LT)
]H

. (8.16)

Moreover, the matrix T is obtained in this chapter by stacking all matrices

T(m) into a (LT +1)NR×NR stacked matrix, i.e., T =
[
TH(0) · · ·TH(LT)

]H
.
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When the available CSIT is imperfect, Section 8.3.1 states that the robust
design of the equalization parameters takes MSEˆ̄hκ

as the objective function.
This MSEˆ̄hκ

is defined as the a posteriori expectation of MSEhκ , i.e.,

MSEˆ̄hκ
=

∫
f
Gch| ˆ̄Gch

(hκ|ˆ̄hκ)MSEhκ dhκ (8.17)

=
1

NR
Tr

[
α2PHEGG(ˆ̄hκ)P + α2N0

σ2
a

INR + THT

− αTHEGT(ˆ̄hκ)P− αPHEH
GT(ˆ̄hκ)T

]
, (8.18)

where
EGG(ˆ̄hκ) =

∫
f
Gch| ˆ̄Gch

(hκ|ˆ̄hκ)GH
κ Gκ dhκ (8.19)

and
EGT(ˆ̄hκ) =

∫
f
Gch| ˆ̄Gch

(hκ|ˆ̄hκ)GT,κ dhκ. (8.20)

Consequently, the robust equalization coefficients in frame κ for a given ˆ̄hκ are
computed by solving the following optimization problem:

(P?
κ, α

?
κ,T

?
κ) = arg min

P,α,T
MSEˆ̄hκ

subject to σ2
aTr

[
PHRTXP

]
≤ NRETX

. (8.21)

This chapter considers three particular types of CSIT, which differ in the avail-
able channel estimates at the transmitter: (C1) both the current estimate ĥκ
and the past K estimates, i.e., ĥκ−1, · · · , ĥκ−K, are available; (C2) only the
current estimate is available; and (C3) only the past K estimates are available.
Hence, the vector ˆ̄hκ depends on the considered type of CSIT, according to

ˆ̄hκ =


[ĥ
H

κ · · · ĥ
H

κ−K]H C1
ĥκ C2

[ĥ
H

κ−1 · · · ĥ
H

κ−K]H C3

. (8.22)

For each type of available CSIT, Appendix 11.11 explains how to analytically
obtain the a posteriori expectations EGG(ˆ̄hκ) and EGT(ˆ̄hκ), defined in respec-
tively (8.19) and (8.20), in the case of MMSE channel estimation from pilot
symbols.

8.3.3 Calculation of the equalization parameters

To solve optimization problem (8.21), first the optimal filter P? and the optimal
scaling factor α? are expressed as a function of T. To this end, MSEˆ̄hκ

from
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(8.18) is minimized with respect to P and α for given T subject to the energy
constraint. This optimization problem is noteworthy a particular case of the
general optimization problem described in Appendix 11.2. More precisely, the
matrices G, A1, A2, and A3 from this appendix correspond to the matrices
EGG(ˆ̄hκ), THEGT(ˆ̄hκ), THT, and N0INR

, respectively. Consequently, the
optimal P? and α? can be expressed as

P?
κ =

1

α?κ
D−1EH

GT(ˆ̄hκ)T (8.23)

and

α?κ =

√
σ2

a

NRETX
Tr
(
THEGT

(
ˆ̄hκ

)
D−1RTXD−1EH

GT(ˆ̄hκ)T
)

(8.24)

with D = EGG

(
ˆ̄hκ

)
+ N0

ETX
RTX. After plugging (8.23) and (8.24) into (8.18),

the MSEˆ̄hκ
optimized over P and α, i.e., MSEˆ̄hκ,P?,α?

can be simplified to

MSEˆ̄hκ,P?,α?
=

1

NR
Tr
(
THGT

)
(8.25)

with G = I−EGT

(
ˆ̄hκ

)
D−1EH

GT

(
ˆ̄hκ

)
. Next, MSEˆ̄hκ,P?,α?

from (8.25) must
be optimized with respect to the TIR T. This optimization problem is, how-
ever, identical to optimizing MSEW?,B? from (7.23) such that the optimization
algorithms presented in Section 7.2.2 can be employed here as well.

8.4 BER expression
The goal of this section is to derive an expression for the BER corresponding
to the system model of Fig. 8.1 with Gray-mapped M -QAM transmission. For
this purpose, we define, analogously to Section 7.3, the translated version v(k)
of the decision variable u(k) as follows:

v(k) =
u(k)

2∆
+ coff , (8.26)

where u(k) is now given by (8.5), while coff is defined in (7.11). Just as in
Section 7.3, v(k) can be decomposed as

v(k) =

LT∑
m=0

T(m)b(k −m) + isi(k) + nv(k), (8.27)

where now nv(k) = αn(k)
2∆ and isi(k) =

∑
m∈Φ

E(m)a(k −m) with

2∆E(m) =

{
αG(m)P−T(m) m ∈ ΦT

αG(m)P m ∈ Φ \ ΦT

. (8.28)
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Because the decompositions of v(k) in (7.46) and (8.27) are structurally the
same, the derivation of the BER expression is completely identical to the deriva-
tion of the BER expression in Section 7.3 such that expression (7.52) for BER(l)

holds here as well, but with the above definitions of nv(k) and isi(k).

8.5 Numerical results and discussion

To investigate the performance of the proposed robust design of the general
MIMO ST PRS precoder and the accompanying linear equalizer, this section
presents numerical results pertaining to the transmission of precoded 4-QAM
symbols over a frequency-selective Rayleigh fading channel at a symbol rate
1/T = 20 MHz. In all results, the transmitter is assumed to consist of (i) a ST
PRS precoder with LT = 2 feedback taps, (ii) a 21-tap linear equalizer (L(1)

P =

L
(2)
P = 10), and (iii) NT = NR = 3 antennas. To determine the optimal TIR T,

algorithm A3 from Section 7.2.2.3 is employed, because this algorithm yields the
best performance. The considered frequency-selective Rayleigh fading channel
is an example of the multipath wideband channel from Section 2.3. Here,
the power delay profile pd(u) is assumed to be exponentially decreasing, i.e.,
pd(u) = (1/T ) exp (−u/T ), whereas the Doppler spectrum pD(ν) is selected as
a zero-mean Gaussian with a standard deviation of fD = 50 Hz. Taking symbol
blocks of Nf = 104 symbols, one obtains NfTfD = 0.025 � 1, indicating that
the channel variations over a symbol block are indeed small. The relation given
in (8.3) between Hch(u, t) and H(m, k) and the property from (2.6) allow to
numerically evaluate the covariance between (Hκ1(m1))l1,l2 and (Hκ2(m2))l1,l2
for the relevant values of m1, m2, and κ1 − κ2, for example in (11.96) of
Appendix 11.11; these covariances do not depend on (l1, l2). Consequently,
Moreover, channel estimation is accomplished by means of Zadoff-Chu (ZC)
sequences, with Ēp = 10ETX or Ēp = 100ETX (see Appendix 11.12), where Ēp

denotes the useful portion of the energy of the pilot symbols.
Figs. 8.3 - 8.6 depict the MSE and the BER performance, both averaged

over 2000 channel realizations, as a function of SNR. More precisely, Figs.
8.3 and 8.4 consider the cases of PRS with Ēp = 10ETX and Ēp = 100ETX,
respectively, whereas Figs. 8.5 and 8.6 examine the performance in the case
of FRS with Ēp = 10ETX and Ēp = 100ETX, respectively. Similar to the
chapters above, the SNR is again defined as the ratio ETX

log2(M)N0
. In all figures,

the performances resulting from the robust equalization designs for the CSIT
types C1, C2, and C3 (with K = 2) are compared to the following cases:

• Perfect CSIT, where the actual channel hκ is available. This case obvi-
ously outperforms all other scenarios.

• Delayed CSIT, where the K previous channel realizations are perfectly
known at the transmitter. These K channel states are collected in the
vector h̄κ,K =

[
hHκ−1 · · ·h

H
κ−K

]H
. To determine the optimal equalizer
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Figure 8.3: MSE (left plot) and BER (right plot) performance as a function of
SNR in the case of ST PRS with Ēp = 10ETX. The CSIT types C1, C2, and
C3 are compared to the cases of perfect CSIT and delayed CSIT (K = 2) and
to the naive approach that ignores channel estimation errors.

and TIR, the a posteriori expectation E
[
·|ˆ̄hκ

]
in (8.19) and (8.20) must

be replaced by the a posteriori expectation E
[
·|h̄κ,K

]
, such that MSEˆ̄hκ

defined in (8.18) becomes a function of h̄κ,K instead of ˆ̄hκ, which is em-
phasized by the notation MSEh̄κ,K . The associated conditional PDF can
directly be derived from the channel statistics. For CSIT type C3, the
performance limit for Ep approaching infinity equals the performance
achieved for delayed CSIT.

• The naive approach, in which one could naively derive the optimal equal-
ization parameters by ignoring the channel state estimation errors such
that ĥκ for CSIT types C1 and C2 and ˆ̄hκ,K = [ĥ

H

κ−1 · · · ĥ
H

κ−K]H for CSIT
type C3 are assumed to be perfect. As a consequence, (P?

κ, α
?
κ,T

?
κ) are

obtained in this naive approach by minimizing MSEhκ but with hκ re-
placed by the estimate ĥκ (types C1 and C2) and by minimizing MSEh̄κ,K

but with h̄κ,K replaced by the delayed estimates ˆ̄hκ,K (type C3). By de-
sign, the naive approach is inferior to the robust design, for all three types
of CSIT.

Just as in Chapter 7, an especially noteworthy observation is the significant
performance gain of PRS compared to FRS. For the cases with perfect CSIT
and delayed CSIT, PRS indeed achieves not only a considerably lower MSE
than FRS in the high SNR region, but also significantly lowers the BER floor
(of the order of 10−5 for FRS) to (far) below 10−6, demonstrating the potential
of ST PRS. Likewise, the robust design in the case of PRS not only outper-
forms the robust design in FRS for a given type of CSIT, but also achieves
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Figure 8.4: MSE (left plot) and BER (right plot) performance as a function of
SNR in the case of ST PRS with Ēp = 100ETX. The same scenarios as in Fig.
8.3 are compared.
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Figure 8.5: MSE (left plot) and BER (right plot) performance as a function of
SNR in the case of FRS with Ēp = 10ETX. The same scenarios as in Fig. 8.3
are compared.
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Figure 8.6: MSE (left plot) and BER (right plot) performance as a function of
SNR in the case of FRS with Ēp = 100ETX. The same scenarios as in Fig. 8.3
are compared.

(considerably) lower BER values (at high SNR) than FRS with perfect CSIT,
even for the rather poor estimation quality of Ēp = 10ETX. This observation
thus confirms that a suitable TIR T and a suitable linear filter P are obtained
by all robust PRS configurations.

Not surprisingly, the more channel estimates that are available at the TX,
the better the performance of the robust configurations becomes, which is il-
lustrated in all figures by the superior performance of C1 and C2 compared
to C2 and C3, respectively. When the estimation quality improves, e.g., Ēp =
100ETX in Figs. 8.4 and 8.6, the performance gap between robust C1 and
robust C2 diminishes and both configurations perform almost as well as in the
case with perfect CSIT, because an (excellent) estimate of the current channel
is available. Although the MSE and the BER of C3 reduce with increasing
Ēp, a performance loss compared to C1/C2 is notable for both PRS and FRS.
Moreover, a similar observation holds when comparing perfect CSIT with de-
layed CSIT (which are the performance limits for C1/C2 and C2 when Ēp grows
infinitely large). This performance gap between C1/C2 and C3 is explained by
the rather large uncertainty about the current channel given the estimates of
only K = 2 prior channel realizations, as this gap is confirmed to disappear
for increasing K in Fig. 8.7. Indeed, this figure shows the MSE performance
as a function of SNR in the case of configuration C3. In total, three values
of K, i.e., K ∈ {1, 2, 4}, and two values of Ēp, i.e., Ēp ∈ {10ETX, 100ETX},
are considered. Moreover, the cases with perfect CSIT and with delayed CSIT
are added as a reference. This figure demonstrates not only that the difference
between perfect CSIT and delayed CSIT diminishes for growing K and even
almost vanishes for K = 4, but also that the larger K, the larger Ēp must be
to approximate the performance limit in the case of configuration C3.



172 CHAPTER 8. ROBUST PARTIAL-RESPONSE SIGNALING

15 20 25 30 35
SNR [dB]

8

10

12

14

16

18

20

22

24

1
/
M
S
E

[d
B
]

K = 1

K = 4

K = 2
perfect CSIT
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Figure 8.7: MSE performance as a function of SNR in the case of the robust
configuration C3 for various K and Ēp. As a reference the case when the chan-
nel is perfectly known is also incorporated. For larger K, the performance gap
between perfect CSIT and delayed CSIT reduces, but larger Ēp is required to
reach the performance level of delayed CSIT in the case of the robust configu-
ration C3.

Comparing the results for PRS (Figs. 8.3 and 8.4) with the results for FRS
(Figs. 8.5 and 8.6) reveals that the performance difference between the robust
configurations (C1/C2 and C3) and their limits for infinite Ēp, i.e., perfect
CSIT and delayed CSIT, is larger in the case of PRS than in the case of FRS.
This is caused by the additional optimization over the TIR in PRS. Indeed,
whereas the TIR for FRS is the same for all strategies, the robust TIR in the
case of PRS is not necessarily identical to the TIR derived with perfect CSIT
or delayed CSIT. These TIR differences could induce a considerable difference
in both MSE and BER, since both the real and the imaginary part of the TIR
are not continuous as the TIR assumes integer values only.

In the naive approach, the equalization parameters are computed with the
assumption that the current estimate ĥκ (C1/C2) or the previous estimates
ˆ̄hκ,K are without estimation error. Figs. 8.3 - 8.6 clearly demonstrate that
the naive approach is inferior to the robust approach. The difference between
the robust and the naive approach is particularly prominent when the channel
estimates are rather poor, whereas the difference between the two approaches
reduces with increasing Ēp. Hence, the robust design is preferable, especially
since the computational complexity of both approaches is comparable, as this
complexity is dominated by the computation of T and not by the evaluation
of the expectations in (8.19) and (8.20).

The numerical results above clearly indicate that better estimation quality,
i.e., larger Ēp, results in better performance of the robust and the naive design.
However, the larger Ēp, the more resources, i.e., bandwidth and/or energy, that
must be allocated to the pilot symbols, which in practice often comes at the
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Figure 8.8: MSE (left plot) and BER (right plot) performance as a function of
Np in the case of PRS for SNRf = 25dB. The MSE for optimal Np is indicated
with a small circle.

cost of a decrease in the available resources for the data symbols. Therefore, an
additional constraint is defined here, imposing that the total energy of a frame
must be constant. Consequently, an optimum division of this frame energy
between the pilot symbols and the data symbols must be determined. Indeed,
when Ēp is too low, the quality of the channel estimate is not sufficient, whereas
when Ēp is too high, the energy available for data transmission decreases,
inducing larger error performance. To investigate this trade-off in more detail,
the energy per pilot symbol and the energy per data symbol are, for simplicity,
assumed to be equal to ETX. Hence, the total energy Ef of one frame is equal
to (Np +Nd)ETX, whereas Ēp = (Np − LH + 1)ETX. The effective energy per
data symbol is then given by the ratio Nd

Np+Nd
ETX, based on which the SNRf

is defined as

SNRf =
ETX

log2(M)N0

(
1 +

Np

Nd

)
. (8.29)

=
Ef

Nd log2(M)N0
. (8.30)

For a given value of Nd, M , and N0, keeping the energy Ef fixed is equivalent
with keeping SNRf fixed. To visualize the trade-off between the estimation
quality and the data symbol energy, Fig. 8.8 displays the MSE and the BER
performance of all configurations for Np = 25 up to Np = 2000 for both the
robust and the naive approach, while the SNRf is kept fixed at 25 dB and
Nd = 104. The following observations hold:

• In terms of both MSE and BER, the optimal value N?
p is reached around

Np = 600 for configurations C1 and C2, whereas the optimal N?
p is ap-

proximately 1.7 times larger for configuration C3. One possible reason
for this larger optimal N?

p is that unlike configurations C1 and C2, no



174 CHAPTER 8. ROBUST PARTIAL-RESPONSE SIGNALING

Table 8.1: Overview of the optimal N?
p and the associated εd for various Nd.

Configuration Nd = 10000 Nd = 1000 Nd = 500

robust C1 541 / 0.95 173 / 0.83 121 / 0.77
robust C2 643 / 0.94 191 / 0.82 143 / 0.74
robust C3 1007 / 0.91 309 / 0.75 231 / 0.66

estimate of the current channel state is available in configuration C3 such
that a prediction of the current channel state based on estimates of the
previous states is required. Apparently, to make this prediction reliable,
more pilot symbols are needed than when an estimate of the current
channel is available.

• Just as above, one intuitively expects that the performance difference
between the robust and the naive approach diminishes for increasing Np

as the estimates are more reliable for larger Np. This expectation is met
in Fig. 8.8.

• The slope of the performance increase at low Np is much steeper than
the slope of the performance decrease at large Np, which can mainly be
contributed to the fact that Ēp is directly related to Np, whereas the
energy per data bit linearly decrease with Np but at a much slower slope
given by −Np/Nd.

• Additional simulations, whose results are not shown here, reveal that the
optimal value N?

p is relatively independent of the precise value of SNRf .

• At optimal N?
p , the performance difference between the robust and the

naive approach is nearly invisible in Fig. 8.8. In this figure, the block
length Nd is relatively large such that the optimal values N?

p still results
in a acceptable ratio εd, which is defined as the fraction of one frame that
is dedicated to the transmission of data symbols, i.e., εd = Nd/Nf . For
smaller Nd, the optimal N?

p decreases, but not linearly with Nd such that
the ratio εd decreases and the throughput thus reduces. To illustrate this
reasoning, Table 8.1 lists the optimal N?

p and the associated εd for various
Nd for all configurations. When for small Nd the throughput becomes
too small, one must opt for an Np that is significantly smaller than the
optimal N?

p . For these smaller Np, the performance difference between
the robust and the naive design is more prominent, making the former
clearly preferable to the latter.
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8.6 Conclusions
This chapter applies the concept of statistically robust equalization to ST PRS
over a frequency-selective and time-variant MIMO channel. More precisely, the
transmitter designs both the TIR associated with PRS and the linear equal-
izer P based solely on the available imperfect CSIT, which consists of noisy
estimates of the MIMO channel of the current and/or previous frames. The
robustness in the design is accomplished by statistically modeling the channel
estimation error and subsequently minimizing the average MSE between the
decision variable and the target response, where the average is with respect
to the joint PDF of the actual channel realization and the available CSIT. In
total, three types of CSIT are investigated: (i) the estimates of the current
channel state and K previous channel states are available in type C1; (ii) only
the current channel state estimate is known in type C2; and (iii) the robust de-
sign is based on only the channel estimates of the K previous channel states in
type C3. Numerical results confirm that the proposed robust PRS significantly
improves the performance compared to the naive approach that ignores channel
estimation errors, when the quality of the available CSIT is rather poor. As a
result, the robust design is preferable, as the computational complexity of the
robust and the naive approaches are similar. Compared to FRS, PRS yields a
decrease in both MSE and BER for both the robust design and the design with
perfect CSIT. Moreover, the robust PRS with poor estimation quality is even
capable of outperforming FRS with perfect CSIT. Finally, a trade-off between
the estimation quality on the one side and the energy per data symbol and/or
the throughput on the other side has to be faced when the resources for one
frame, e.g., Ef , is fixed.
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9
Stochastic channel: partial-response

signaling

This chapter focuses on the design and the performance of the general ST PRS
precoder presented in Chapter 7 in the context of a stochastic channel suffering
from channel variability. Moreover, the PRS equalization scheme investigated
in Chapter 7 is expanded in this chapter with a linear pre-equalizer at the
transmitter.

This chapter is organized as follows. Firstly, the impact of this additional
linear filter on the system’s equations is discussed in Section 9.1. Secondly, the
main topic of Section 9.2 is the design of the equalization parameters according
to the MMSE criterion. The choice for the MSE as the objective function is
again justified by its combination of decent performance with mathematical
simplicity. As the channel is assumed to be stochastic, the optimization proce-
dure from Chapter 4 is applied to the considered equalization scheme. In total,
three equalization strategies are proposed: the adjustable (Subsection 9.2.1),
the fixed (Subsection 9.2.2), and the hybrid (Subsection 9.2.3) equalization
strategy. The adjustable strategy aims for optimal performance by consider-
ing only adjustable equalization parameters, whereas the fixed strategy mini-
mizes the complexity as its equalization parameters are fixed. A performance-
complexity trade-off is inherent to the hybrid strategy, as the equalization pa-
rameters associated with the receiver are adjustable, and those at the transmit-
ter are fixed. Thirdly, the derivation of the BER expression for the expanded
ST PRS equalization scheme follows the same reasoning as in Section 7.3. Still,
some minor differences can be distinguished, which are listed in Section 9.3.
Fourthly, Section 9.4 presents the performance achieved by the MMSE design

177
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Figure 9.1: System model of the equalization scheme consisting of a ST PRS
precoder and a linear equalizer at the transmitter and a nonlinear DFE at the
receiver.

in the case of the chip-to-chip interconnect from Chapter 2 by means of nu-
merical results. For instance, this section not only discusses the sensitivity of
all equalization strategies to the amount of variability, but also compares the
performances achieved by PRS and by FRS. Finally, conclusions are drawn in
Section 9.5.

All system equations and expressions in this chapter are specifically derived
in the context of baseband communication.

9.1 System model
The system model of the equalization scheme considered in this Chapter is
presented in Fig. 9.1. At the transmitter, the entries of the vector c(k) are
independently and uniformly drawn from the set {0, · · · ,M − 1}, where M is
assumed to be an integer power of 2. Just as in Chapters 7 and 8, the ST PRS
precoder, characterized by the TIR T, transforms the input stream c(k) into the
stream b(k). In contrast to the chapters above, however, real-valued M -PAM
transmission is considered instead of complex-valued M -QAM transmission.
As a result, the TIR is real-valued and the relationship between b(k) and c(k)
given in (7.1) still holds, but with M substituted for

√
M . Moreover a(k) is

then constructed as follows

a(k) = 2∆b(k) + (−M + 1)∆1, (9.1)

where ∆ is often selected to normalize the M -PAM constellation. All entries
from the TIR matrix T are restricted to be integer, and the L×Lmatrix T(0) is
unimodular, ensuring that all elements of a(k) are independently and uniformly
drawn from the M -PAM constellation such that E

[
a(k)aT (k)

]
= σ2

aIL.
This equalization scheme considers both a linear FIR pre-equalizer P at the

transmitter and a nonlinear DFE, consisting of a feedforward FIR filter W and
a feedback FIR filter B, at the receiver. Comparing the system models from
Fig. 9.1 and Fig. 5.1 confirms that the signal path from a(k) to u(k) is the
same in both figures. Consequently, u(k) can be similarly expressed as (5.15),
i.e.,

u(k) = α

L
(2)
G∑

m=−L(1)
G

WG(m)Pa(k−m)+αWn̄(k)−
∑
m∈ΦB

B(m)â(k−m), (9.2)
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where the notations are the same as in Chapter 5.
The original data c(k) can again be retrieved from the target response uT(k)

from (7.9), since they are related as follows

c(k) =

[
uT(k)

2∆
+ coff

]
M

, (9.3)

where the offset coff is now given by

coff =
M − 1

2

LT∑
m=0

T(m)1. (9.4)

Analogous to Chapter 7, the equalization coefficients are designed such that
u(k) is as close as possible to uT(k) in a MSE sense. This equalizer design
then allows to perform symbol-by-symbol detection by replacing the quantity
uT(k)

2∆ + coff with the integer vector closest to u(k)
2∆ + coff in the right-hand side

of (9.3), yielding the decision ĉ(k).
Interestingly, the baseband transmission variants of the equalization schemes

with bandpass transmission from Chapters 7 and 8 are in fact special cases from
the system model above. Indeed, the system equations can be derived by simply
setting either (LP,P) = (1, I) or (LW,W,B) = (1, I,0), respectively.

9.2 MMSE optimization
As this chapter discusses the design of the equalization parameters for a chan-
nel subject to channel variability, the optimization framework from Chapter 4
is applied to the considered equalization scheme. For mathematical simplicity,
the MSE between the decision variable u(k) and the target response uT(k) is
selected as the objective function f0. Moreover, the design of the equalizers as-
sumes that all decisions at the receiver are correct. The MSE for one particular
channel realization gch is again denoted by MSEgch

and defined as

MSEgch
=

E
[
‖u(k)− uT(k)‖2

]
Lσ2

a

(9.5)

=
1

L

[ ∑
m∈ΦT

‖αWG(m)P−T(m)‖2

+
∑
m∈ΦB

‖αWG(m)P−B(m)‖2

+
∑
m∈ΦN

‖αWG(m)P‖2 +
α2

σ2
a

Tr
(
WRn̄WT

)]
, (9.6)

where Rn̄ , E
[
n̄(k)n̄T (k)

]
, ΦN = {−L(1)

G , · · · , L(2)
G } \ (ΦB ∪ ΦT), and the

assumption is made that all previously detected symbols are correct. Just as
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Table 9.1: Overview of the different equalization strategies.

Strategy Notation Adjustable
parameters

Fixed
parameters

Adjustable S-A P, α,W,T,B /
Fixed S-F / P, α,W,T,B
Hybrid S-H W,B P, α,T

in Chapter 7, the intersection between ΦT and ΦB is assumed to be empty by
design, since, for a specific causal time delay m ∈ ΦB ∩ΦT, the feedback filter
is capable of removing all causal interference, irrespective of the value of the
TIR matrix T(m).

When (part of) the equalization parameters are fixed, not the MSEgch
, but

the average MSE = EGch

[
MSEgch

]
must be minimized subject to the energy

constraint, resulting in the following optimization problem:

(P?, α?,W?,T?,B?) = arg min
P,α,W,T,B

MSE(P, α,W,T,B)

subject to σ2
aTr

[
PTRTXP

]
≤ LETX

. (9.7)

For this optimization problem, one can argue similarly to optimization problem
(5.28) that a necessary condition for optimality is that the energy constraint is
met with equality. Moreover, the real-valued α can be restricted to be positive
without loss of generality.

This chapter discusses the same three equalization strategies as the chapters
above that study an equalization design in the context of a channel suffering
from channel variability, i.e., the adjustable, the hybrid, and the fixed strat-
egy. In the adjustable strategy, the TIR and all equalization coefficients are
adjustable and therefore, in terms of the optimization procedure from Chapter
4, belong to the vector x(gch). On the other hand, all equalization parame-
ters in the fixed strategy are determined based on solely the channel statistics,
meaning that all equalization parameters are fixed and thus belong to the vec-
tor y. As for the hybrid strategy, all equalization parameters associated with
the receiver are adjustable, i.e., W and B, whereas all equalization parame-
ters corresponding to the design of the transmitter are fixed, i.e., P, α, and
T. Hence, the former parameters belong to the vector x (gch), and the lat-
ter parameters are part of the vector y. In summary, Table 9.1 provides an
overview of the considered equalization strategies. In the subsections below, a
detailed discussion is given on how the equalization parameters are derived for
all equalization strategies by minimizing MSE.
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9.2.1 Adjustable strategy

In the adjustable strategy, all equalization parameters are adjustable, imply-
ing that no iterations between the adjustable and the fixed parameters are
required. As a result, one can directly minimize the conditional MSEgch

from
(9.6) instead of the average MSE to find the optimal set of adjustable equaliza-
tion parameters, i.e., x?(gch). To perform this minimization of MSEgch

subject
to the energy constraint, an iterative optimization algorithm is recommended
here as the analytical minimization is too complicated. The disadvantage of
this iterative approach, however, is that convergence to the global optimum is
not guaranteed. First, the optimal feedback filter B?

a is expressed as a func-
tion of the other equalization parameters, after which the resulting MSEgch,B

?
a

is reduced by alternately determining the optimal (P?
a, α

?
a,T

?
a) and optimal

(W?
a,T

?
a) for given W and (P, α), respectively, until convergence is reached.

The feedback filter B(m) appears only in the second term of (9.6), allowing
to easily express the optimal B?

a as

B?
a(m) = αWG(m)P (9.8)

for m ∈ ΦB. When MSEgch
is evaluated at B?

a, the second term in (9.6)
vanishes such that the optimal MSEgch,B

?
a
can be written as

MSEgch,B
?
a

=
1

L

[ ∑
m∈ΦT

‖αWG(m)P−T(m)‖2

+
∑
m∈ΦN

‖αWG(m)P‖2 +
α2

σ2
a

Tr
(
WRn̄WT

)]
. (9.9)

To obtain the optimal (P?
a, α

?
a,T

?
a) for given W in the first step of each itera-

tion, MSEgch,B
? from (9.9) is first rewritten as

MSEgch,B
?
a

=
1

L
Tr

(
TT

PTP + α2PT
(
GTNGN + GTTGT

)
P +

α2

σ2
a

WRn̄WT

− αTT
PGTP− αPTGTTTP

)
, (9.10)

where the stacked matrix TP is constructed by stacking all matrices T(m),
i.e., TP =

[
T(0)T · · ·T(LT)T

]T , GN =
[
GT (ΦN(1)) · · ·GT (ΦN(LN))

]T , and
GT =

[
GT (ΦT(1)) · · ·GT (ΦT(LT))

]T
. The minimization of (9.10) subject to

the energy constraint with respect to (P, α,TP) for given W is performed in
two steps: (i) the optimal (P?

a, α
?
a) is determined as a function of TP and (ii)

the optimized T?
P,a is obtained by minimizing MSEgch,P

?
a,α

?
a,B

?
a
. The first step

is in fact a particular case of the optimization problem from Appendix 11.2.
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The optimal P?
a and α?a are thus given by

P?
a =

1

α?a
D−1
a GTTTP (9.11)

and

α?a =

√
σ2

a

LETX
Tr
(
TT

PGTD−1
a RTXD−1

a GTTTP

)
(9.12)

with Da = GTNGN + GTTGT + ζaRTX and ζa =
Tr(WRn̄W

T )
LETX

, yielding

MSEgch,P
?
a,α

?
a,B

?
a

=
1

L
Tr
(
TT

PGP,aTP

)
, (9.13)

where GP,a = IL−GTD−1
a GTT. Interestingly, the minimization of MSEgch,P

?
a,α

?
a,B

?
a

from (9.13) with respect to TP shares a similar structure with the minimization
of MSEW?,B? from (7.23) in Subsection 7.2.2 with respect to T. Consequently,
all three algorithms proposed in Subsection 7.2.2 can be employed to compute
T?

P,a. In the remainder of this chapter, algorithm A3 is preferred to the other
two algorithms as it achieves the best performance of the three algorithms.

The goal of the second stage of each iteration is to determine the opti-
mal (W?

a,T
?
a) for given (P, α). In this regard, the MSEgch,B

?
a
from (9.9) is

reformulated as

MSEgch,B
?
a

=
1

L
Tr

(
TWTT

W + W
(
GNGTN + GTGTT

)
WT +

α2

σ2
a

WRn̄WT

−WGTTT
W −TWGTTWT

)
, (9.14)

where the augmented TW = [T(0) · · ·T(LT)], GN = [G (ΦN(1)) · · ·G (ΦN(LN))],
and GT = [G (ΦT(1)) · · ·G (ΦT(LT))]. First, the optimal W?

a can be derived
by equating the derivative

∂MSEgch,B
?
a

∂W to zero, yielding

W?
a = TWGTTC−1

a , (9.15)

where Ca = GNGTN+GTGTT+α2

σ2
a
Rn̄. Second, T?

W,a is determined by minimizing
MSEgch,W

?
a,B

?
a
, which equals MSEgch,B

?
a
evaluated at W?

a, i.e.,

MSEgch,W
?
a,B

?
a

=
1

L
Tr
(
TWGW,aT

T
W

)
(9.16)

with GW,a = IL − GTTC−1
a GT. Just as the minimization of MSEgch,P

?
a,α

?
a,B

?
a
,

minimizing MSEgch,W
?
a,B

?
a
from (9.16) with respect to TW can be performed

by means of algorithm A3 from Subsection 7.2.2.3.
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Remark that the algorithm presented here is identical to the algorithm
employed to determine the equalization parameters of the adjustable strategy in
the DFE equalization scheme of Section 5.2.1 when LT = 0 and TP = TW = IL.

Regarding the initialization, the initial feedforward filter W is chosen to
be the all-pass filter, i.e., W(i) = ILδi. Iterations can be stopped after a
fixed number of iterations or when the relative decrease of the MSEgch

is small
enough.

9.2.2 Fixed strategy
In the fixed strategy, the average MSE must be minimized subject to the en-
ergy constraint to design all (fixed) equalization parameters, i.e., to determine
the vector y?. Therefore, an iterative algorithm is proposed below, which is
structurally identical to the algorithm associated with the adjustable strategy.
First, the optimal B?

f is derived, after which the resulting MSEB?f
is iteratively

reduced by alternately computing the optimal
(
P?
f , α

?
f ,T

?
f

)
and the optimal(

W?
f ,T

?
f

)
for given W and (P, α), respectively.

By equating the partial derivative of MSE with respect to the components
of B to zero, one can readily determine B?

f as

B?
f (m) = αWEGch

[G(m)] P (9.17)

for m ∈ ΦB. Due to the fixed nature of this feedback filter, not all causal
interference can be removed for all channel realizations and the MSE evaluated
at B?

f is given by

MSEB?f
=

1

L

[ ∑
m∈ΦT

EGch

[
‖αWG(m)P−T(m)‖2

]
+
∑
m∈ΦB

EGch

[
‖αWG(m)P− αWEGch

[G(m)] P‖2
]

+
∑
m∈ΦN

EGch

[
‖αWG(m)P‖2

]
+
α2

σ2
a

Tr
(
WRn̄WH

)]
. (9.18)

To compute the optimal
(
P?
f , α

?
f ,T

?
f

)
for given W in the first step of each

iteration, MSEB?f
is rewritten as

MSEB?f
=

1

L
Tr

(
α2PT

(
EGch

[
GTNGN+ GTTGT+ GTBGB

]
− EGch

[
GTB

]
EGch

[GB]
)
P

+
α2

σ2
a

WRn̄WT−αTT
PEGch

[GT]P−αPTEGch

[
GTT

]
TP + TT

PTP

)
.

(9.19)
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As MSEB?f
from (9.19) is structurally identical to MSEgch,B

?
a
from (9.10), the

minimization of (9.19) subject to the energy constraint with respect to (P, α)
can again be solved with the aid of Appendix 11.2, yielding

P?
f =

1

α?f
D−1
f EGch

[
GTT

]
TP (9.20)

and

α?f =

√
σ2

a

LETX
Tr
(
TT

PEGch
[GT] D−1

f RTXD−1
f EGch

[
GTT

]
TP

)
(9.21)

with Df = EGch

[
GTNGN+ GTTGT+ GTBGB

]
− EGch

[
GTB

]
EGch

[GB]+ ζfRTX and

ζf =
Tr(WRn̄W

T )
LETX

. The resulting average MSEB?f
optimized over P and α for

given W is symbolized by MSEP?f ,α
?
f ,B

?
f
and given by

MSEP?f ,α
?
f ,B

?
f

=
1

L
Tr
(
TT

PGP,fTP

)
, (9.22)

where GP,f = IL−EGch
[GT] D−1

f EGch

[
GTT

]
. The similarities between MSEgch,P

?
a,α

?
a,B

?
a

from (9.13) and MSEP?f ,α
?
f ,B

?
f
from (9.22) are apparent and algorithm A3 from

Section 7.2.2.3 can thus be applied to compute T?
P,f .

The second step in each iteration of the optimization of MSEB?f
is to com-

pute the optimal
(
W?

f ,T
?
f

)
for given (P, α). To this end, MSEB?f

is first
rewritten as

MSEB?f
=

1

L
Tr

(
W
(
EGch

[
GNGTN + GTGTT + GBGTB

]
− EGch

[GB]EGch

[
GTB
])

WT

+
α2

σ2
a

WRn̄WT−WEGch
[GT]TT

W−TWEGch

[
GTT
]
WT+TWTT

W

)
.

(9.23)

Equating the derivatives of MSEB?f
from (9.23) with respect to the feedforward

filter to zero then yields

W?
f = TWEGch

[
GTT
]

C−1
f (9.24)

with Cf = EGch

[
GNGTN + GTGTT + GBGTB

]
−EGch

[GB]EGch

[
GTB
]

+α2Rn̄. Con-

sequently, the optimized MSEW?
f ,B

?
f
can then be simplified to

MSEW?
f ,B

?
f

=
1

L
Tr
(
TWGW,fT

T
W

)
(9.25)
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with GW,f = IL−EGch

[
GTT
]

C−1
f EGch

[GT]. To obtain T?
W,f , algorithm A3 is

applied to MSEW?
f ,B

?
f
.

Finally, similar remarks as for the adjustable strategy can be made. Firstly,
the algorithm presented here reduces to the algorithm of the fixed strategy in
the DFE equalization scheme (Section 5.2.2) when LT = 0 and TP = TW = IL.
Secondly, the initial feedforward filter W is set to the all-pass filter. Thirdly,
iterations are stopped either after a certain number of iterations or when the
relative decrease of MSE is smaller than a predefined threshold.

9.2.3 Hybrid strategy
The hybrid strategy consists of both adjustable, i.e., W and B, and fixed,
i.e., P, α, and T, equalization parameters. Consequently, all equalization pa-
rameters are designed according to the iterative algorithm from Chapter 4,
which alternately computes the optimal y? for given x (gch) and the optimal
x? (gch) for given y. Just as for the hybrid strategy in the case of the DFE
equalization scheme from Chapter 5, however, the optimal adjustable B?

h is
easily expressed as a function of the other equalization parameters, yielding
the optimized MSEgch,B

?
h
. In fact, B?

h and MSEgch,B
?
h
are identical to B?

a

and MSEgch,B
?
a
from (9.8) and (9.9), respectively. Hence, instead of executing

the iterative algorithm with f0 = MSEgch
, one could apply the algorithm to

f0 = MSEgch,B
?
h
, where the vector y contains all coefficients of P, α, and T

and the vector x (gch) comprises all coefficients of the feedforward filter W.
To compute the optimal y?, i.e., (P?

h, α
?
h,T

?
h), for given W, the average

MSEB?h
= EGch

[MSEgch,B
?
h
] is first rewritten as

MSEB?h
=

1

L
Tr

(
α2PTEGch

[
GTNGN + GTTGT

]
P +

α2

σ2
a

EGch

[
WRn̄WT

]
− αTT

PEGch
[GT] P− αPTEGch

[
GTT

]
TP + TT

PTP

)
. (9.26)

Analogous to the adjustable and the fixed strategy, the optimal pre-equalizer
P?
h and the optimal scaling factor α?h again directly follow from Appendix 11.2,

as optimizing (9.26) subject to the energy constraint is a particular case of the
optimization problem considered in this appendix. Consequently, P?

h and α?h
are respectively derived as

P?
h =

1

α?h
D−1
h EGch

[
GTT

]
TP (9.27)

and

α?h =

√
σ2

a

LETX
Tr
(
TT

PEGch
[GT] D−1

h RTXD−1
h EGch

[
GTT

]
TP

)
(9.28)
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with D−1
h = EGch

[
GTNGN + GTTGT

]
+ ζhRTX and ζh =

Tr(EGch [WRn̄W
T ])

LETX
. The

associated minimum MSEP?h,α
?
h,B

?
h
can be written as

MSEP?h,α
?
h,B

?
h

=
1

L
Tr
(
TT

PGP,hTP

)
(9.29)

with GP,h = IL − EGch
[GT] D−1

h EGch

[
GTT

]
. Similar to T?

P,a and T?
P,f in the

adjustable and the fixed strategy, respectively, the optimized T?
P,h is derived

by applying algorithm A3 to MSEP?h,α
?
h,B

?
h
from (9.29).

The second step in each iteration is to compute the optimal adjustable feed-
forward filter W?

h for a fixed vector y, i.e., the set (P, α,T). This subproblem
is in fact identical to determining the optimal feedforward filter W?

a in the
adjustable strategy when the TIR TW is given. Consequently, the optimal W?

h

is given by
W?

h = TWGTTC−1
h (9.30)

with Ch = Ca and the corresponding MSEgch,W
?
h,B

?
h
is then given by

MSEgch,W
?
h,B

?
h

=
1

L
Tr
(
TWGW,hT

T
W

)
, (9.31)

where GW,h = IL − GTTC−1
h GT.

When LT = 0 and TW = IL, the algorithm reduces to the algorithm of the
hybrid strategy in the DFE equalization scheme (Section 5.2.3).

To initialize x (gch), all initial feedforward filters W are again assumed to
be equal to the all-pass filter.

9.3 BER expression for PRS

Compared to the derivation of the BER expression from Section 7.3, two dif-
ferences can be noticed here. First, this chapter considers baseband commu-
nication and M -PAM transmission rather than bandpass communication and
M -QAM transmission. Second, the added pre-equalizer P alters the expres-
sion for the decision variable u(k). Still, to derive the BER expression for the
equalization scheme from Fig. 9.1, a procedure similar to the one in Section
7.3 can be followed, hence merely the differences are highlighted here.

First, the variable v(k) is again a scaled and translated version of the de-
cision variable u(k), but the offset vector coff is now defined in (9.4). The
decomposition of v(k) in (7.46) still holds but E(m) in the definition of isi(k)
is now given by

2∆E(m) =


WG(m)P−T(m) m ∈ ΦT

WG(m)P−B(m) m ∈ ΦB

WG(m)P m ∈ Φ\ {ΦT ∪ ΦB}
. (9.32)
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The symbol-by-symbol detector makes a decision (ĉex(k))l of (cex(k))l in the
extended symbol set based on vl(k) for each data stream individually, after
which the modulo operator [·]M is applied to (ĉex(k))l, yielding the decision
ĉl(k) ∈ {0, · · · ,M − 1}. Consequently, the definition for BER(l) is identical to
the one from (7.51). To construct an accurate approximation similar to (7.52),
one could follow an analogous derivation as in Appendix 11.10, bearing in mind
thatM -PAM transmission is considered here instead ofM -QAM transmission.
More precisely, the approximation is made that the symbol ĉl(k) is correctly
detected only when vl(k) is an element of the decision region of (ĉex(k))l,
whereas exactly one bit error is assumed to occur when vl(k) lies in any other
decision region, yielding the approximation

BER(l) ≈ 1

log2(M)
EaISI

[
2Q

(
0.5− Re [isil(aISI)]

σ(nv)l

)]
. (9.33)

To numerically evaluate BER(l) from (9.33), one could again approximate the
expectation EaISI

[·] by the arithmetical average over a large number of N re-
alizations of Re [isil(aISI)].

9.4 Numerical results and discussion

This section discusses the performance of the investigated equalization scheme
and the proposed equalization strategies in terms of MSE and BER in the case
of the frequency-selective chip-to-chip interconnect of Chapter 2. Similar to the
chapters above, the SNR is defined as the ratio of the transmitted energy per bit
to the one-sided spectral density of the channel-noise, i.e., SNR = ETX

log2(M)N0
.

As the influence of M is not the main objective of this section, only 2-PAM
transmission is considered.

First Fig. 9.2 compares the MSE and the BER performance of the different
strategies as a function of the channel deviation σr for different equalization
scenarios. A remarkable result is that the hybrid strategy has sometimes a bet-
ter performance than the adjustable strategy, which is more closely investigated
in Fig. 9.3 by plotting MSE against the iteration index. Next, the performance
difference between PRS and FRS as a function of the SNR is visualized in Figs.
9.4 and 9.5 for the the linear and DFE equalization scheme, respectively. Fi-
nally, the importance of the order, in which (W?,B?) and (P?, α?,T?) are
computed, is highlighted in Fig. 9.6.

Fig. 9.2 displays the MSE and the BER performance averaged over 1000
channel realizations at SNR = 25 dB as a function of σr for both FRS and PRS.
In the latter case, LT = 3, whereas the number of taps in the pre-equalizer and
the feedforward filter are selected such that the convolution of both linear filters
has 13 taps. In the left plots of Fig. 9.2, the feedforward filter is omitted such
that all 13 taps are placed at the transmitter, i.e., L(1)

P = L
(2)
P = 6. On the

other hand, the pre-equalizer is bypassed in the right plots of Fig. 9.2, implying
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Figure 9.2: Performance of all equalization strategies in terms of both 1/MSE
and BER as a function of σr for SNR = 25 dB and ΦB = {4, · · · , 19}. Both
FRS (dashed lines) and PRS with LT = 3 (solid lines) are considered. The
linear feedforward filter W and the pre-equalizer P are omitted in the left and
the right plots, respectively, whereas the equalization taps in the middle plots
are equally split between the feedforward filter and the pre-equalizer. Mostly,
best performance is achieved in the case of the adjustable strategy with PRS.

that the feedforward filter consists of all 13 taps, i.e., L(1)
W = L

(2)
W = 6. In the

middle plots of Fig. 9.2, the taps are equally divided between P and W, i.e.,
L

(1)
P = L

(2)
P = L

(1)
W = L

(2)
W = 3. Moreover, the feedback equalizer has 16 taps,

corresponding to the time delays of the set ΦB = {4, · · · , 19}. Based on a
closer examination of Fig. 9.2, one could derive the following observations:

• Due to the additional optimization over T, PRS clearly outperforms FRS
in terms of MSE with a gain up to 2 dB. Despite the larger number of
neighboring symbols in PRS, a significant decrease in BER is observed as
well, especially for the hybrid and the adjustable equalization strategy,
illustrating the superiority of PRS over FRS. To compute the optimal
filter taps when the TIR is predefined to a specific target response, the
proposed optimization algorithm is easily modified by ignoring the op-
timization over T and setting T to the appropriate value. In practice,
duo-binary is a commonly employed TIR (T = [IL IL]) for low-pass chan-
nels. However, the performance of duo-binary (not shown) applied to the
considered interconnect and equalization scheme is actually considerably
worse compared to FRS, emphasizing the main feature of the proposed
optimization algorithm, i.e., it computes a suitable T for every possible
channel realization.

• Comparing the three equalization configurations considered in Fig. 9.2
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confirms that the best MSE and the best BER performance are achieved
when both the pre-equalizer and the feedforward filter are present. When
all taps of the linear equalizers are placed at either the transmitter or the
receiver, the performance of strategy S-A is impeded by the energy con-
straint or the noise enhancement, respectively. Dividing the equalization
taps between the pre-equalizer and the feedforward filter, however, re-
sults in a better trade-off between the energy constraint and the noise
enhancement, yielding superior overall performance.

• Regarding the relative performance of the different equalization strategies
achieved by the PRS equalization scheme, similar remarks as for the DFE
and the THP equalization scheme hold. More precisely, the performance
of the adjustable strategy is mostly superior to the performance of the
other strategies, whereas the performance of the fixed strategy consid-
erably deteriorates with increasing σr, making this equalization strategy
unattractive in practice. As for the hybrid strategy, its performance is
close to or almost equal to the performance of the adjustable strategy
when the variability is relatively low and/or enough equalization param-
eters are adjustable. Otherwise, the degradation of the hybrid strategy
rapidly grows with increasing variability levels. Indeed, when the feed-
forward filter W at the receiver is bypassed (left plots of Fig. 9.2), the
hybrid strategy performs only marginally better than the fixed strategy as
in this case the feedback filter B is the only adjustable filter in the hybrid
strategy. On the other hand, both the MSE and the BER corresponding
to the hybrid strategy approach the performance of the adjustable strat-
egy, when the pre-equalizer at the transmitter is bypassed (right plots
of Fig. 9.2). This observation is anticipated, since the only difference
between strategies S-A and S-H in this case is the (in)ability to adjust
the TIR to the specific channel realization. A direct consequence is that
identical performance is attained when the TIRs of these strategies are
equal, which of course holds for FRS. When both the pre-equalizer and
the feedforward filter are present (middle plots of Fig. 9.2), the perfor-
mance of the hybrid strategy for small σr is close to or even better than
the performance of the adjustable strategy (see discussion below) in the
case of PRS. However, the hybrid strategy becomes less attractive for
large σr, as its degradation compared to the adjustable strategy rapidly
grows with increasing σr, especially in terms of BER. To explain this ob-
servation BER

(99%)
is defined as the BER averaged over the 99% of the

channel realizations with the smallest BER. As for the adjustable strat-
egy, the relative difference (BER-BER

(99%)
)/BER is fairly constant with

respect to the channel variability and rather limited, whereas BER
(99%)

is sometimes substantially smaller than BER for the hybrid strategy, in-
dicating that only a limited number of channel outliers negatively impact
the BER. For these outliers, the fixed T in the hybrid strategy is not a
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suitable choice, resulting in inferior performance compared to the other
realizations. One main drawback of the hybrid strategy, is that probably
for any T some channel realizations yielding poor BER performance ex-
ist, especially when σr is moderate to high. As the proposed algorithm
minimizes the average MSE, no guarantee can be given that these large
BER values are minimized.

• One remarkable result in Fig. 9.2 is that for small σr the hybrid strategy
possesses a lower MSE than the adjustable strategy when both P and W
are active (middle plots). This observation results from the inability of
the iterative optimization algorithms to converge to the global optimum.
Indeed, although alternately computing (P?, α?,T?) and (W?,T?) is a
fairly straightforward approach to determine a set of suitable equalization
parameters, its main drawback is that the convergence in the case of PRS
is particularly sensitive to the specific value of T and the optimization
algorithm gets trapped in a local minimum. Consequently, the iterative
algorithm does not necessarily guarantee that the adjustable strategy
results in a lower MSE than the hybrid strategy, especially when the
channel variability is small. The main reason for this local convergence is
that due to the discrete nature of T, the final value of the TIR is mostly
set during the first few iterations, and then does not alter during later
iterations, even though a lower MSE can possibly be achieved by other
TIRs. Indeed, because either P or W is given in the computation of T?

and both filters P and W are already reasonably adapted to the current
TIR after a few iterations, a strong preference to keep the current TIR is
inherent to the computation of the next TIR. In other words, it is unlikely
that T will change after a few iterations. For example, assume that, after
the first iterations, the MSE associated with the TIR T1 is lower than
the MSE corresponding to the TIR T2, then the iterative algorithm will
probably pick T1 as the optimal TIR, even though the final MSE after
many iterations could be smaller in the case of T2 than in the case of T1.

This last remark is more thoroughly investigated in Fig. 9.3, which displays
the MSE achieved by PRS as a function of the iteration index for the adjustable
and the hybrid strategy in the case of σr = 2%, LX = 3, SNR = 25dB, LT = 3,
and ΦB = {4, · · · , 19}. Remark that these parameters are the same as in the
middle plots of Fig. 9.2. More precisely, the left plot of Fig. 9.3 gives an
overview of the convergence of MSE, whereas the right plot of Fig. 9.3 focuses
on the first iterations. To facilitate the comparison between these two strate-
gies, the MSE performance of the adjustable strategy is also included when the
adjustable TIR is set to the fixed TIR computed by the hybrid strategy. This
equalization strategy is denoted by S-AThyb

and its MSE performance is also
added in the middle plot of Fig. 9.2. Fig. 9.3 demonstrates that, by design,
the adjustable strategy S-A indeed achieves the lowest MSE after the first it-
eration. However, the hybrid strategy not only achieves a lower MSE than the
adjustable strategy after only a couple of iterations, but it also converges to
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Figure 9.3: Performance in terms of MSE as a function of the iteration index
for the strategies S-A, S-H, and S-AThyb

in the case of σr = 2%, LX = 3,
SNR = 25 dB, LT = 3, and ΦB = {4, · · · , 19}. Initially, the adjustable strategy
S-A achieves the best performance, but at convergence the strategies S-H and
S-AThyb

achieve lower MSE, since strategy S-A suffers from convergence to a
local optimum.

a MSE which is smaller than the MSE resulting from the adjustable strategy,
suggesting that the adjustable strategy suffers in this case from convergence to
a local minimum. This latter observation is confirmed by the performance of
S-AThyb

, because this variant of the adjustable strategy also converges, after
many iterations, to a lower MSE than the original adjustable and the hybrid
strategy. Finally, it is important to stress that the performances of S-AThyb

and S-H are not necessarily optimal either and thus not necessarily better than
the performance of strategy S-A, for other σr or other channels.

To visualize the effect of the addition of the PRS precoder to the linear
equalization scheme, i.e., ΦB = ∅, on the performance, Fig. 9.4 plots the
performance in terms of MSE (left plot) and BER (right plot) of the linear
equalization scheme as a function of the SNR for the adjustable and the hybrid
strategy in the case of both FRS and PRS, which are labeled as ‘LE-FRS’
and ‘LE-PRS’, respectively. More precisely, LX = 7, σr = 5%, and the PRS
is restricted to spatial-only PRS, i.e., LT = 0. Fig. 9.4 implies that the
performances of LE-FRS and LE-PRS are identical at lower SNR, because the
noise is dominant in expressions (9.13), (9.16), (9.29), and (9.31) such that
the TIR corresponding to PRS coincides with FRS. At larger SNR, the gain
of the spatial-only PRS compared to FRS is, however, unmistakable. Indeed,
both the MSE and the BER of both the adjustable and the hybrid strategy
are considerably better in the case of spatial-only PRS compared to FRS. For
example, to reach a target BER of 10−8, the adjustable and the hybrid strategy
in the case of PRS achieve a gain in SNR of approximately 5 dB and 3 dB,
respectively, compared to the adjustable strategy in the case of FRS.

Another potential benefit of PRS is that it could be used to alleviate the
latency constraint imposed by the feedback filter B on the receiver. To illustrate
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Figure 9.5: Performance of the adjustable strategy in terms of 1/MSE (left
plot) and BER (right plot) for a 16-tap feedback filter with mB,min ∈ {1, 2, 4}
in the case of both FRS and PRS with LX = 3 and σr = 5%. Compared to
FRS with mB,min = 1, PRS results in less performance loss than FRS when
mB,min = 2 and mB,min = 4.
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this point, mB,min is first defined as the smallest causal time delay that is part
of the set ΦB, i.e., mB,min = min ΦB. Traditionally, all LB feedback taps
correspond to the first LB causal time delays such that ΦB = {1, · · · , LB}
and mB,min = 1. One consequence of this choice is that the decision on the
current symbol must be available to the input of the feedback filter B within
one symbol period, which could be cumbersome in practice, especially in high-
speed applications. When PRS with LT > 0 is considered, the associated ΦT is
equal to the set {0, · · · , LT} . Recall that the intersection between ΦT and ΦB

is empty by design, since otherwise all TIR matrices T(m) with m ∈ ΦT ∩ΦB

have no effect. Therefore, mB,min in the case of PRS is equal to or larger
than LT + 1, granting the receiver more time to make the decisions available
to the feedback filter. The set of the LB active time delays is then given by
{mB,min, · · · ,mB,min +LB− 1}. To examine the effect of different mB,min and
how PRS could be beneficial, Fig. 9.5 shows the 1/MSE (left plot) and the
BER (right plot) performance of the adjustable strategy as a function of the
SNR for a 16-tap feedback filter withmB,min ∈ {1, 2, 4} in the case of both FRS
and PRS. As for FRS, best performance is reached when mB,min = 1, which is
logical, as this feedback filter can eliminate the relatively large ISI caused by the
most recent past data symbols. When mB,min must be set larger than 1 due to
implementation constraints, a significant deterioration in performance of FRS
is observed in Fig. 9.5 in terms of both MSE and BER, e.g., to reach a target
BER of 10−8 an increase in SNR of approximately 1.5 dB and 5.3 dB compared
to mB,min = 1 is required for mB,min = 2 and mB,min = 4, respectively. This
performance gap between mB,min = 1 and mB,min = 2/4 can, however, be
significantly reduced by considering PRS. Indeed, the additional SNR in dB
needed compared to FRS with mB,min = 1 to attain a target BER of 10−8 is
at least 50% smaller for both mB,min = 2 and mB,min = 4, suggesting that
the PRS can better handle the ISI generated by the symbols a(k − m) with
m ∈ {1, · · · , LT} than FRS, when mB,min = LT + 1. .

In Fig. 9.6, the sensitivity to the TIR is once more illustrated by comparing
the MSE performances of the adjustable and the hybrid strategy as a function of
LW for two different iterative algorithms. The first algorithm, labeled as ‘First
P’ is equal to the algorithm proposed in Section 9.2, whereas the second algo-
rithm ‘First W’ is identical to the first one expect that the order of computing
the equalization coefficients in each iteration is interchanged: (W?,T?) /W?

is first computed for given (P, α) and then (P?, α?,T?) for given W. In both
plots of Fig. 9.6, the convolution of the equalizers P and W contains 29 taps
in total and the feedback filter B possesses 16 taps. In the left plot, the PRS
precoder is present with LT = 3 and the active time delays of the feedback filter
are given by ΦB = {4, · · · , 19}, whereas in the right plot FRS is considered,
meaning that the PRS precoder is inactive, i.e., T = IL, and ΦB = {1, · · · , 16}.
In this case, the PRS equalization scheme in fact simplifies to DFE equalization
scheme from Chapter 5. The following remarks can be made.

• When LP and LW somewhat differ, the performance gap between the
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Figure 9.6: Performance of the adjustable and the hybrid strategy in terms of
1/MSE as a function of LW with SNR = 25 dB and a 16-tap feedback filter,
while the convolution of P and W consists of 29 taps in total. In the left
plot, the PRS precoder is active (LT = 3, ΦB = {4, · · · , 19}), whereas the
PRS precoder is inactive in the right plot (ΦB = {1, · · · , 16}). Two iterative
optimization algorithms are considered: (i) ‘First P’ and (ii) ‘First W’. Due to
the selectivity to the TIR in the case of PRS, the best performance is achieved
when the TIR and the longest linear equalizer is computed first.

algorithms ‘First P’ and ‘First W’ is apparent in the case of the active
PRS precoder (left plot of Fig. 9.6). This performance gap suggests that
different TIRs are obtained by the two algorithms. Clearly, the best MSE
performance for both the adjustable and the hybrid strategy is achieved
when the TIR and the longest linear filter are computed first in each
iteration, i.e., algorithm ‘First P’ when LP > LW and algorithm ‘First
W’ when LW > LP.

• When LP = LW = 7 in the case of PRS, the average performance of
the algorithms ‘First P’ and ‘First W’ is approximately identical. By no
means, this implies that both algorithms yield nearly identical MSEgch

for each channel realization. To support this claim, Fig. 9.7 plots the
histogram of the ratio MSEW/MSEP, where MSEW and MSEP denote the
MSEgch

obtained by the algorithms ‘First W’ and ‘First P’, respectively.
Clearly, for some channel realizations MSEW < MSEP, while for others
MSEW > MSEP such that neither algorithm is in general preferred.

• In the case of FRS, i.e., when the PRS precoder is inactive, the TIR must
not be optimized and the sensitivity to the TIR then of course vanishes.
This statement is corroborated by the right plot of Fig. 9.6, in which the
algorithms ‘First P’ and ‘First W’ yield nearly identical performance for
all values of LW.

• As for PRS, similar conclusions can be made for the performance regard-
ing the influence of LW as in the FRS case (Fig. 5.8). More precisely,
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Figure 9.7: Histogram of the ratio MSEW/MSEP in the case of PRS for 1000
channel realization with σr = 5%, LX = 7, SNR = 25 dB, ΦB = {4, · · · , 19}
and LT = 3. Neither the first algorithm ‘First P’ nor the second algorithm
‘First W’ yields the global optimum for all channel realizations.

the performance for the adjustable strategy is reasonably constant when
the best-performing algorithm is selected, whereas the performance of
the hybrid strategy is poor for low LW, but quickly improves when LW

increases.

9.5 Conclusions
This chapter expands the PRS equalization scheme from Chapter 7 with a
linear pre-equalizer at the transmitter and discusses the performance of the
resulting equalization scheme in the case of a communication channel suffering
from channel variability. Therefore, the equalization procedure from Chapter
4 is put into practice, yielding three equalization strategies, whose optimized
equalization parameters are derived according to the MMSE criterion. In the
adjustable strategy, all equalization parameters are designed with respect to
the specific channel realization, implying optimal performance at the cost of
a relatively large complexity. The fixed strategy induces less complexity, e.g.,
no return channel between receiver and transmitter, by considering only fixed
equalization parameters. However, the fixed strategy possesses an inherent
and high sensitivity to the channel variability making this strategy mostly
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inadequate in practice. Finally, the goal of the hybrid strategy is to combine
low complexity with good performance. To this end, only the transmitter is
fixed, whereas the receiver is adjustable to the channel realization.

Numerical results pertaining to the chip-to-chip interconnect from Chap-
ter 2 reveal that PRS indeed outperforms FRS for all proposed equalization
strategies, especially at moderate and large SNR. Unsurprisingly, the adjustable
equalization strategy yields mostly the best performance, whereas the perfor-
mance of the fixed strategy rapidly deteriorates with increasing variability.
More interesting is that the performance difference between the hybrid strat-
egy and the adjustable strategy is limited when the channel variability is low
and/or enough adjustable equalization parameters are present. Moreover, just
as in the case of FRS, better performance is achieved in the case of PRS when
both the pre-equalizer and the feedforward filter are present. The proposed
iterative algorithms, however, do not guarantee convergence to the global op-
timum. Due to the discrete nature of the TIR, determining the optimal TIR is
especially challenging such that the hybrid strategy in some cases even outper-
forms the adjustable strategy. Moreover, different iterative algorithms could
be proposed, but none of them outperforms the others in all cases.



10
Concluding remarks

In this chapter, Section 10.1 first formulates the main conclusions from this dis-
sertation, after which some possible future research topics are briefly explored
in Section 10.2. Finally, Section 10.3 provides an overview of our publications
regarding this dissertation.

10.1 Main conclusions

The first part of this dissertation focuses on the equalization of a frequency-
selective MIMO channel suffering from channel variability. The principle idea is
to lower the computational and the implementational complexity of the equal-
ization while preserving a good equalization quality, by adapting only part of
the equalization parameters to the channel realization and taking fixed values
for remaining equalization parameters. These fixed values are independent of
the specific channel realization and, therefore, completely determined by the
channel statistics. In this regard, an optimization framework is proposed, in
which a general objective function is optimized by alternately determining the
optimal adjustable and the optimal fixed equalization parameters. Based on
this framework, different equalization strategies can be formulated. First, the
adjustable strategy has the best performance but the highest complexity, as
all equalization parameters are adjustable to the specific channel realization.
Second, all equalization parameters are fixed in the fixed strategy, avoiding the
need for channel estimation. Lastly, the hybrid strategy combines adjustable
with fixed equalization parameters and thus aims to combine the low complex-
ity of the fixed strategy with the good performance of the adjustable strategy.

197
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Furthermore, two simplifications regarding the computation of the fixed equal-
ization parameters are proposed, yielding two suboptimal approaches. The
first suboptimal approach neglects any channel variability, whereas the sec-
ond suboptimal approach ignores the potential of the adjustable equalization
parameters in the computation of the fixed equalization parameters.

This optimization framework is subsequently applied to the linear, the DFE
and the THP equalization scheme with linear FIR filters. More precisely, the
objective function is selected as the MSE between the transmitted symbol (in
the extended symbol set) and the decision variable, as it combines good perfor-
mance with mathematical simplicity. Moreover, expressions for the SER and
the BER for all equalization schemes are derived, after which the performance
of the different equalization strategies is illustrated by means of some numerical
results for a MIMO chip-to-chip interconnect. From the resulting performance
results, one can draw the following conclusions:

• In the considered range of channel variability, the adjustable strategy
yields a fairly constant performance that is superior to the performance
of the other strategies. The fixed strategy, on the other hand, cannot
cope with channel variability, as its performance rapidly deteriorates
with increasing channel variability. The hybrid strategy could be a low-
complexity alternative to the adjustable strategy with only a limited per-
formance degradation for all channel variability levels, on the condition
that (i) enough equalization parameters are adjustable and (ii) the com-
puted channel statistics are based on a representative subset of channel
realizations. The performance difference between the adjustable and the
hybrid strategy is in general larger in the case of the THP equalization
scheme than in the case of the DFE equalization scheme, since the feed-
back filter is fixed in the former equalization scheme and adjustable in
the latter equalization scheme.

• The suboptimal approaches to compute the fixed equalization parameters
induce a significant performance loss, especially at higher channel vari-
ability. This observation highlights the importance of taking into account
the channel variability and the adjustable parameters in the design of the
fixed equalization parameters.

• When only limited equalization resources are available, a short feedback
filter is to be preferred to long linear filters for both the DFE and THP
equalization scheme as the short feedback filter yields better performance.
Moreover, to derive the active causal delays associated with this limited
number of feedback taps, a simple suboptimal technique that yields nearly
optimal performance is to select the dominant taps from a long feedback
filter.

• For the investigated equalization schemes, the MMSE equalization pa-
rameters are derived by means of an iterative algorithm that alternately
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computes a set of optimal parameters. Numerical results confirm that
the performance improvement of this iterative algorithm is the highest in
the first few iterations, since only marginal performance improvements
are noticed after reasonable number of iterations. Only in the case of
the hybrid strategy of the THP equalization scheme, the convergence is
slightly slower as also the feedback filter is iteratively determined.

• Two alternative optimization methods are proposed to solve the MMSE
optimization problem in the case of the adjustable strategy in the DFE
equalization scheme: the SF-Newton method and the IBRO method. Al-
though both methods yield on average slightly better performance, their
convergence is slower and their computational complexity is larger, mak-
ing them less attractive in practice. Moreover, these methods are not
suitable to compute the equalization parameters for the hybrid strategy.

• To reduce the performance gap between the adjustable and the hybrid
strategy in the case of the THP equalization scheme, an adjustable feed-
back filter is added to the receiver. Numerical results imply that this
additional feedback does not alter the performance of the adjustable strat-
egy, but does improve the performance of the hybrid strategy, even when
the feedback filter at the receiver contains only a few taps. Unfortu-
nately, selecting the optimal sets of active time delays for both feedback
filters is not straightforward, as selecting the largest taps from long feed-
back filters yields inadequate performance for this equalization scheme;
therefore, it is recommended to first determine the sets of all active time
delays of the feedback filters and then perform a (re)calculation of all
other equalization parameters.

The second part of this dissertation completely focuses on PRS, in which, in
contrast to FRS, a controlled amount of interference is allowed at the input of
the symbol-by-symbol detector. First, the traditional PRS precoders presented
in the literature are generalized to a ST PRS precoder such that the TIR
matrix contains not only temporal or only spatial components, but also ST
components.

Next, the MMSE design of the equalization coefficients and the TIR pa-
rameters is considered in the case of perfect CSI at both the transmitter and
the receiver. In this regard, the MSE is first minimized for a given TIR matrix,
after which the TIR matrix is optimized. In total, three row-by-row TIR ma-
trix optimization algorithms are proposed. The least complicated algorithm A1
selects the increment from a predefined set that yields the largest decrease of
the largest reducible MSE. Structurally, algorithm A2 is identical to algorithm
A2, but it opts for the increment inducing the largest guaranteed decrease such
that also the potential of future increments is included in the selection crite-
rion. Thirdly, the most complex algorithm A3 updates in each iteration an
entire row of the TIR matrix by reformulating the TIR optimization problem
as a series of lattice decoding problems. Numerical results regarding a complex-
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valued frequency-selective Rayleigh-fading MIMO channel lead to the following
conclusions:

• In the case that the active time delays of the feedback filter at the receiver
is identical for both FRS and PRS, the general ST PRS precoder is able
to significantly outperform FRS for various amounts of distortion in the
frequency-selective channel, even when its TIR matrix is restricted to
spatial components.

• Both the average performance and the performance associated with in-
dividual channel realizations show that algorithm A3 achieves superior
performance compared to algorithms A1 and A2, but this superiority
comes at the cost of a large complexity that quickly rises with the num-
ber of elements in the TIR matrix.

• Algorithm A2 only slightly outperforms the more basic algorithm A1,
even though the potential of future updates is incorporated in the selec-
tion criterion of the former algorithm. Moreover, both algorithms achieve
nearly identical performance as algorithm A3 in the case of low SNR
and/or spatial-only TIR. In these situations, the least complicated algo-
rithm A1 is then of course to be preferred.

The assumption of perfect CSIT is often unrealistic in practice, such that
naively optimizing the equalization parameters and the TIR matrix, while as-
suming that the available channel estimate equals the actual channel realiza-
tion, is often suboptimal. Because of channel estimation errors, the available
CSIT is noisy and/or outdated and therefore, a robust design of both the
equalization and the TIR parameters is derived for a frequency-selective and
time-variant MIMO channel. Here, robustness is defined in a statistical way,
meaning that one must optimize the objective function, e.g., the MSE, averaged
over the joint PDF of the actual channel and the available CSIT. Numerical
results first confirm that the robust design yields indeed better results than the
naive approach that ignores all channel estimation errors, especially when the
channel estimation quality is poor. Second, the superiority in MSE and BER
of the proposed PRS precoder compared to traditional FRS is confirmed for
the robust design when the the active time delays of the feedback filter at the
receiver is identical for both FRS and PRS. Notable, the robust PRS with poor
estimation quality is capable of outperforming FRS with perfect CSIT.

Finally, the design of the general ST PRS precoder is investigated for
the channel model that is considered in the first part of this dissertation: a
frequency-selective MIMO channel suffering from channel variability. More
precisely, the optimization framework used in the first part of this disserta-
tion is applied to the ST PRS precoder. For this channel model, two linear
equalizers are assumed to be present, i.e., one at the transmitter and one at
the receiver, whereas only one of these linear equalizers are considered to be
present in the case of a frequency-selective Rayleigh-fading MIMO channel.
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Subsequently, three equalization strategies are proposed: (i) the adjustable
strategy possesses only adjustable parameters; (ii) the fixed strategy considers
only fixed parameters; and (iii) all parameters associated with the transmitter
are fixed in the hybrid strategy, whereas all parameters corresponding to the
receiver are adjustable. Again, numerical results confirm the superiority of PRS
compared to FRS in MSE and BER performance for all equalization strategies.
Just as in the first part of this dissertation, the adjustable strategy yields the
best performance, whereas the fixed strategy already results in poor perfor-
mance for moderate channel variability. Moreover, the performance difference
between the hybrid and the adjustable equalization strategy is limited when
the variability is small and/or enough equalization parameters are adjustable.
However, the iterative algorithms do not guarantee convergence to the global
optimum. In particular, determining the optimal TIR is challenging due to its
discrete nature such that the hybrid strategy in some cases even outperforms
the adjustable strategy.

10.2 Future work

This sections lists and briefly discusses three topics that may constitute the
object of future studies.

10.2.1 Different objective functions

In this dissertation, the objective function f0 is equal to the MSE between the
data symbol (in the extended symbol set) and the decision variable. However,
this objective function does not guarantee optimal error performance such that
other choices for the objective function could in principle result in superior
performance. Here several alternatives are explored.

• Instead of minimizing the averaged square of the magnitude of the error
signal, one could minimize the average of the nth power of the magnitude
of the error signal with n ∈ N0, i.e., arg minE [‖e(k)‖n]. Analogous to the
abbreviation MSE, the average of the nth power is denoted here as MnE.
The main motivation to consider n > 2 is that the relative weight of the
larger errors compared to the smaller errors grows for increasing n. Con-
sequently, the minimum MnE (MMnE) equalizer is expected to induce
more smaller but fewer larger errors than the MMSE equalizer. Because
the BER at large SNR is typically dominated by the larger errors, better
error performance is to be expected for larger n. A closed-form analytical
expression for the optimal equalization parameters for n > 2 is often un-
available, such that numerical optimization algorithms must be adapted
to compute the optimal equalization parameters. As the MnE in general
is not convex, the SF-Newton method could be employed to converge
to a (local) optimum. Unfortunately, the computational complexity of
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evaluating the gradient and the modified Hessian in this method expo-
nentially increases with n such that the maximum value of n is limited
by the available computational resources.

• One could also directly minimize the SER or the BER, which has previ-
ously been studied in [26, 27]. However, no closed-form analytical solu-
tion can be derived and two factors hinder the effective use of numerical
methods: (i) the convergence to local optima and (ii) the expectation
with respect to all data symbols that contribute to the ISI, which is es-
sentially impossible to compute exactly for channels and/or equalizers
with large memory. To overcome these difficulties, the authors in [26, 27]
(i) approximate the condition for minimum SER such that global con-
vergence is guaranteed; and (ii) propose a stochastic gradient algorithm
to iteratively minimize the SER. The resulting algorithm is called the
adaptive minimum-SER (AMSER) algorithm. The main disadvantage
of this algorithm, is, however, that many iterations are needed to reach
convergence for low SER values.

When all equalization parameters are adjustable to a specific channel realiza-
tion gch, one could also opt for determining the equalization parameters by
solving a minimax design.

• One example of a minimax design is the minimization of the maximum
ISI, which is also called the distortion. Here, the resulting algorithm is
denoted as the minimum distortion (MDist). In fact, MDist has already
been presented in [93] for a linear equalizer at the receiver, and can easily
be extended to the DFE equalization scheme. One can show that the
optimal set of equalization parameters in this case is the solution of a
linear program. The main disadvantage of this design is that the effect
of the equalization on the noise variance is not taken into account, which
could result in an intolerably large noise amplification.

• Another possibility to determine the equalization parameters is to min-
imize the worst-case SER (w.c. SER), i.e., minimizing the SER cor-
responding to the symbol sequence inducing the largest SER, which is
typically equal to the symbol sequence inducing the largest ISI. Since
the SER at high SNR is often dominated by the largest few terms, this
equalization design is expected to yield excellent results. Because Q (·)
is a monotonically decreasing function, minimizing the worst-case SER
is equivalent to maximizing the argument of the Q-function associated
with the worst-case SER. On closer inspection, this argument is usually
equal to the ratio of a concave numerator and convex denominator, e.g.,
(5.68), such that the problem of minimizing the worst-case SER can be
expressed as a nonlinear fractional programming problem. A parametric
method to solve this type of problems has been presented in [94]. In fact,
the w.c. SER equalization design could be interpreted as a generalization
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Figure 10.1: SER of an SISO example channel for various alternative methods
to compute the equalization parameters. In the left plot, only a 5-tap linear
filter at the receiver is present, whereas an additional 2-tap feedback filter is
added in the right plot.

of the MDist equalization design, as the parametric method repeatedly
solves the minimization of the weighted sum of the distortion and the
noise variance.

To illustrate the performance differences between the alternative optimiza-
tion methods, Fig. 10.1 shows the SER performance when these methods are
applied to a SISO example channel that is equalized by means of the DFE
equalization scheme, assuming perfect CSI. This channel is characterized by
the frequency response H(z) of the cascade of the transmit, the channel and
the receive filter. In Fig. 10.1, 4-PAM signaling over the channel that has
been studied in [27] is considered, i.e., H(z) = 0.66 + z−1 − 0.66z−2. In the
left plot of Fig. 10.1, only a 5-tap linear filter at the receiver is present in the
equalization scheme, whereas an additional 2-tap feedback filter is added in the
right plot of Fig. 10.1. Interestingly, these two plots illustrate the weaknesses
and strengths of the different optimization methods

• An increase of n in the MnE equalizer results in noticeable lower SER
values, especially when the equalization resources are limited. In this case
(left plot), the larger n, the more the focus lies on the larger errors that
dominate the error performance. When sufficient equalization resources
are available (right plot), the equalizer is able to reduce all possible errors,
irrespective of the precise value of n. In this case, the performance is less
dependent of n.

• The MDist equalizer yields excellent performance in the left plot of Fig.
10.1, whereas it suffers from a prohibitively large noise enhancement in
the right plot of Fig. 10.1.

• For the example channel, the SER performance reached by the w.c. SER
equalizer is found to be competitive and close to the SER performance
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when the SER is directly minimized. Moreover, the w.c. SER equalizer
is nearly identical to the MDist equalizer when the latter yields excellent
performance, whereas the worst-case SER equalizer avoids an intolerably
large noise enhancement when the performance of the MDist equalizer is
not good.

• When convergence is reached, the equalization parameters computed with
the AMSER algorithm achieve indeed the smallest SER. However, the
problem of insufficient convergence is clearly visible for small SER in the
right plot of Fig. 10.1.

The numerical results here are restricted to the equalization of a SISO example
channel with perfect CSI. Moreover, the equalization scheme solely contains
equalization filters at the receiver. The aim of future research could be to
expand the various methods presented here to (i) MIMO channels suffering
from channel variability and (ii) all equalization schemes considered in this
dissertation, where equalization filters could be present at both the transmitter
and the receiver. In particular, the application of the minimax design to a
channel suffering from channel variability is interesting as the optimization
procedure from Chapter 4 is not directly applicable.

10.2.2 Robust minimax design of PRS precoder

In Chapter 8, robustness is defined in a statistical way, i.e., the robust equal-
ization parameters for the PRS equalization scheme are derived by minimizing
the MSE averaged over the joint PDF of the channel and the channel estimate.
However, robustness can also be defined in a worst-case sense. In this case,
the channel estimation error is assumed to be within a bounded uncertainty
region. The equalization design then optimizes the performance level that is
guaranteed for all estimation errors within that region. More precisely, one
could express the channel vector hκ as the sum of the channel estimate ĥκ
and a bounded error vector ∆hκ, i.e., hκ = ĥκ + ∆hκ with ‖∆hκ‖2 < ε. The
minimax problem that subsequently must be solved is the following :

(P?
κ, α

?
κ,T

?
κ) = arg min

P,α,T
max MSEhκ

subject to σ2
aTr

[
PHRTXP

]
≤ NRETX. (10.1)

‖∆hκ‖2 ≤ ε

For a given T, one can derive the optimal (P?
κ, α

?
κ) by means of a similar rea-

soning as in [95] that reformulates this optimization problem as a semidefinite
programming problem [83]. The optimization over T, however, is still an open
problem. One possibility is to optimize T while naively assuming that the
channel estimate is perfect, but this approach is obviously not optimal.
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10.2.3 Extension of the ST-PRS precoder
The TIR of the general ST PRS precoder, presented in Chapter 7 and charac-
terized by (7.1), has two constraints: (i) all elements of T must be Gaussian
integers and (ii) the NT×NT matrix T(0) must be unimodular. However, this
last constraint could be slightly relaxed by proposing a different relationship
between the input sequence {c(k)} and the precoded sequence {b(k)}, i.e.,

D̄T(0)b(k) ≡ c(k)−
LT∑
m=1

T(m)b(k −m) (mod
√
M), (10.2)

where the integer elements di of the diagonal matrix D̄, i.e., D̄ = diag(d1, · · · , dNT
)

are all relatively prime to
√
M . Moreover, the precoded symbol vector b(k)

must be an element of the set CNT

PRS. Similar to the relationship from (7.1), one
can prove that for each possible c(k) a unique b(k) ∈ CNT

PRS exists that fulfills
the relationship in (10.2). As a result, all elements of the vector b(k) are then
uniformly and independently drawn from the symbol set CPRS, just as for the
vector c(k). In fact, the PRS precoder defined in Chapter 7 is equal to the
PRS precoder resulting from the relationship from (10.2) when D̄ = INT .

Due to the additional D̄ in (10.2), the target response uT(k) for the PRS
precoder presented here must be altered compared to (7.9), i.e.,

uT(k) = D̄T(0)a(k) +

LT∑
m>0

T(m)a(k −m). (10.3)

The relationship between the original data c(k) and the target response uT(k)
is then again given by

c(k) =

[
uT(k)

2∆
+ coff

]
√
M

, (10.4)

but with coff now defined as

coff =
(1 + j)(−

√
M + 1)

2

(
D̄T(0) +

LT∑
m>0

T(m)

)
1. (10.5)

Based on the relationship in (10.4), one could optimize the equalization param-
eters such that the decision variable u(k) resembles the target response uT(k)
as much as possible, allowing to perform symbol-by-symbol detection on the
vector u(k)

2∆ + coff . Just as in Chapter 7, the MSE between u(k) and uT(k) is
a good candidate for the objective function f0. For this PRS precoder, how-
ever, one must not only minimize the coefficients of the linear filters and the
TIR matrix T, but also the elements of the diagonal matrix D̄. Consequently,
the algorithms presented in Section 7.2 are not applicable anymore. Future
research, therefore, could focus on the design and the performance evaluation
of an optimization algorithm that jointly minimizes the MSE with respect to
all equalization parameters, including the matrix D̄.
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11
Appendices

11.1 Optimization problem with complex argu-
ments

First, the optimization of a real-valued function f(z) with respect to one
complex-valued argument z = x+ jy is considered. This function can of course
be interpreted as a real-valued function of two real-valued variables, i.e., the
real part, x, and the imaginary part y. Consequently, a stationary point of
this function can be determined by equating the derivatives of f(z) to both
real-valued variables to zero, i.e.,

{
∂f(z)
∂x = 0
∂f(z)
∂y = 0

. (11.1)

The main drawback of this approach is that the function f(z) must be explicitly
written as function of x and y before these derivatives can be determined.
Alternatively, one could interpreted the function f(z) as a function of two
complex variables z and z∗, i.e., f(z, z∗). The derivatives from (11.1) can then
be reformulated as{

∂f(z,z∗)
∂x = ∂f(z,z∗)

∂z
∂z
∂x + ∂f(z,z∗)

∂z∗
∂z∗

∂x = ∂f(z,z∗)
∂z + ∂f(z,z∗)

∂z∗
∂f(z,z∗)

∂y = ∂f(z,z∗)
∂z

∂z
∂y + ∂f(z,z∗)

∂z∗
∂z∗

∂y = j ∂f(z,z∗)
∂z − j ∂f(z,z∗)

∂z∗

. (11.2)

207
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The derivatives ∂f(z,z∗)
∂z and ∂f(z,z∗)

∂z∗ are also called the Wirtinger derivatives
[20] and can be found by solving the system in (11.2), yielding

∂f(z,z∗)
∂z = 1

2

(
∂f(z,z∗)

∂x − j ∂f(z,z∗)
∂y

)
∂f(z,z∗)
∂z∗ = 1

2

(
∂f(z,z∗)

∂x + j ∂f(z,z∗)
∂y

) . (11.3)

Closer inspection of (11.3) reveals that the condition for a stationary point
from (11.1) is equivalent to equating either ∂f(z,z∗)

∂z or ∂f(z,z∗)
∂z∗ to zero. To

compute the Writinger derivatives, the function f(z) must be expressed as a
function of z and z∗, which is in general more convenient than expressing f(z)
as a function of x and y.

For example, assume that the condition for the stationary points of f(z) =
|z|4 must be defined. In the first approach, this f(z) is reformulated as a
function f(x, y) of the real part x and the imaginary part y, which results in

f(x, y) = (x2 + y2)2

= x4 + 2x2y2 + y4. (11.4)

Equating the derivatives of (11.4) with respect to x and y to zero then yields
the following system of equations:{

∂f(x,y)
∂x = 4x3 + 4xy2 = 0

∂f(x,y)
∂y = 4y3 + 4x2y = 0

. (11.5)

In the second approach, f(z) is first expressed as a function of z and z∗, i.e.,

f(z, z∗) = zz∗zz∗ (11.6)

such that the derivative with respect to z∗ can be determined by as

∂f(z, z∗)

∂z∗
= 2zzz∗.

= 2
(
(x3 + xy2) + j(x2y + y3

)
. (11.7)

Expression (11.7) confirms that equating ∂f(z,z∗)
∂z∗ to zero is indeed equivalent

with the system from (11.5).
The function f could also be dependent on a M ×N matrix Z. Of course,

to determine a stationary point of the function f(Z), one should equate the
derivatives with respect to all elements of Z to zero. For convenience, the
notation ∂f(Z)

∂Z∗ is introduced, which is defined as

∂f(Z)

∂Z∗
=


∂f(z)
∂(Z)∗1,1

∂f(z)
∂(Z)∗1,n

...
. . .

...
∂f(z)
∂(Z)∗m,1

∂f(z)
∂(Z)∗m,n

 (11.8)
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Table 11.1: Examples of the derivative ∂f(Z)
∂Z∗ .

f(Z) ∂f(Z)
∂Z∗ additional information

Tr
(
ZAZH

)
ZA A is Hermitian N ×N matrix

Tr
(
ZHAZ

)
AZ A is Hermitian M ×M matrix

Tr
(
AZ + ZHAH

)
AH

and the stationary points can then be found by solving

∂f(Z)

∂Z∗
= 0.

Table 11.1 lists the derivative ∂
∂Z∗ of several example functions encountered in

this dissertation.

11.2 Optimization problem A
In this appendix, the following optimization problem is solved with respect to
the (LLP)× L matrix P and the real-valued α:

(P?, α?) = arg min
P,α

1

L
Tr

(
α2PHGP− αA1P− αPHAH

1 + A2 +
α2

σ2
a

A3

)
s. t. σ2

aTr
[
PHRTXP

]
≤ LETX

,

(11.9)
where G is a positive semidefinite Hermitian (LLP) × (LLP) matrix, A1 is
a L × (LLP) matrix, A2 is a L × L matrix, A3 is L × L Hermitian matrix,
and RTX is a positive definite (LLP) × (LLP) Hermitian matrix. The energy
constraint is integrated in the design of (P?, α?) by considering the Lagrangian
Λ with the Lagrangian multiplier λ, which is given by

Λ =
1

L
Tr

(
α2PHGP− αA1P− αPHAH

1 + A2 +
α2

σ2
a

A3

)
+ λ

(
σ2

aTr
[
PHRTXP

]
− LETX

)
. (11.10)

At optimum, the complex derivative of Λ with respect to the components of P,
α, and λ must be equal to zero, yielding the following system of equations:
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
∂Λ
∂P∗ = 1

L

(
α2GP− αAH

1

)
+ λσ2

aRTXP = 0

∂Λ
∂α = 1

LTr
(

2αPHGP−A1P−PHAH
1 + 2α

σ2
a
A3

)
= 0.

∂Λ
∂λ = σ2

aTr
[
PHRTXP

]
− LETX = 0

(11.11)

Subsequently, equating Tr

(
PH ∂Λ

∂P∗ +
(
PH ∂Λ

∂P∗

)H)
to α∂Λ

∂α results in

2λσ2
aTr

[
PHRTXP

]
=

1

L

2α2

σ2
a

Tr (A3) (11.12)

such that the optimal λ? is given by

λ? =
α2

Lσ2
a

ζ, (11.13)

with ζ = Tr(A3)
LETX

as σ2
aTr

[
PHRTXP

]
can be replaced by LETX due to the

constraint. Next, λ? from (11.13) is substituted for λ in the first equation of
(11.11), after which the optimal P? can be determined as

P? =
1

α
(G + ζRTX)

−1
AH

1 . (11.14)

The optimal α? is then obtained by plugging (11.14) into the energy constraint
(last equation of (11.11)), yielding

α? =

√
σ2

a

LETX
A1 (G + ζRTX)

−1
RTX (G + ζRTX)

−1
AH

1 . (11.15)

Evaluating the objective function at the optimal P? and optimal α? results
of course in the minimum value of the objective function f0,min, which can be
written as

f0,min =
1

L
Tr
(
A2 −A1 (G + ζRTX)

−1
AH

1

)
. (11.16)

11.3 DFE: computation of adjustable parame-
ters in S-Hs2

In this section, expressions are derived for the adjustable (Wadj,B) for given
(P, α,Wfix) in case of the suboptimal S-Hs2 approach presented in Subsection
5.2.5.
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First of all, the signal z(kw) at the output of the adjustable filter Wadj can
be written as

z(kw) =
∑

ia∈ΦWadj

if∈ΦWfix
n∈ΦP
m

αWadj(ia)Wfix(if)H(sTW + ε− nTP −mT )P(n)a(m)

+
∑

ia∈ΦWadj

if∈ΦWfix

αWadj(ia)Wfix(if)nRX(sTW + ε). (11.17)

where ΦWadj
= {−L(1)

W,adj, · · · , L
(2)
W,adj}, ΦWfix

= {−L(1)
W,fix, · · · , L

(2)
W,fix}, ΦP =

{−L(1)
P , · · · , L(2)

P }, and s = kw−ia−if . With the assumption that all previously
detected symbols are correct, the decision variable u(k) can then be expressed
as

u(k) = z(kNW)−
∑
m∈ΦB

B(m)a(k −m)

=

L
(2)
G∑

m=−L(1)
G

αWadjGWfix
(m)Pa(k −m) + αWn̄Wfix

(k)−
∑
m∈ΦB

B(m)a(k −m),

(11.18)

where GWfix
(m) is similarly defined as G(m) in (5.18), but with Ȟm(ia, n)

replaced by

Ȟm,Wfix
(ia, n) =

∑
if∈ΦWfix

Wfix(if)H(mT − iaTW − ifTW − nTP + ε).

Furthermore, the sequence {GWfix
(m)} has again a limited time duration, i.e.,

GWfix
(m) = 0 ∀m /∈ {−L(1)

G , · · · , L(2)
G } with

L
(1)
G =

⌊
L

(1)
H +

L
(1)
P

NP
+

L
(1)
W,adj

NW
+

L
(2)
W,fix

NW

⌋

L
(2)
G =

⌊
L

(2)
H +

L
(2)
P

NP
+

L
(2)
W,adj

NW
+

L
(2)
W,fix

NW

⌋ . (11.19)

Finally, the noise variable n̄Wfix
(k) in (11.18) is constructed as the following

stacked vector:

n̄HWfix
(k) =

[
nHWfix

(k,−L(1)
W,adj) · · ·n

H
Wfix

(k, L
(2)
W,adj)

]H
(11.20)

with

nWfix
(k, i) =

L
(2)
W,fix∑

if=−L(1)
W,fix

Wfix(if)nRX(kT − iTW − ifTW + ε). (11.21)
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Since the expression for u(k) in (11.18) is structurally identical to the expression
for u(k) in (5.15), the optimal W?

adj and B? that minimize the conditional
MSEgch

for given (P, α,W) are similarly derived as the optimal W? and B?

in the optimal adjustable and the optimal hybrid strategy, i.e.,

B?(m) = αW?
adjGWfix

(m)P and W?
adj = GH(0)C−1. (11.22)

In (11.22), G(m) = αGWfix
(m)P and C = GNG

H
N + α2

σ2
a
Rn̄Wfix

, in which GN

is constructed as in (5.31) and Rn̄Wfix
is defined as the autocorrelation of

n̄HWfix
(k), which can be constructed on the basis of the following correlation

matrix:

E
[
nWfix

(k, i)nHWfix
(k, i′)

]
=

L
(2)
W,fix∑

if=−L(1)
W,fix

Wfix(if)N0R̃RXWH
fix(if+i−i′). (11.23)

11.4 DFE: BER(l)
gch

expression for M-PAM trans-
mission

In this appendix, the expression for BER(l)
gch

from (5.70) is resolved for 4-PAM
and 8-PAM constellation with the Gray mapping presented in Fig. 5.5. Only
the resulting expression are included here, as the derivations itself are not
difficult nor interesting.

First, the shorthanded notation Q(a, b) is introduced and equal to

Q(a, b) = Q

(
a∆ + bel∆ + isil(aISI)

σwl

)
. (11.24)

The BER(l)
gch

in case of 4-PAM can then be written as

BER
(l)
gch,4-PAM =

1

4
[Q(1, 3) + Q(3, 3)−Q(5, 3) + Q(3, 1) + Q(1, 1) + Q(1,−1)] ,

(11.25)

whereas the BER(l)
gch

in case of 8-PAM is given by

BER
(l)
gch,8-PAM =

1

12
[Q (1, 7) + Q (3, 7)−Q (5, 7) + Q (7, 7)−Q (9, 7)

+ Q (11, 7) + Q (13, 7) + Q (1,−5) + Q (1, 5) + Q (3, 5)

+ Q (5, 5)−Q (7, 5)−Q (9, 5) + Q (11, 5) + Q (3,−3)

+ Q (1,−3) + Q (1, 3) + Q (3, 3) + Q (5, 3)−Q (7, 3)

−Q (9, 3)−Q (5,−1) + Q (3,−1) + Q (1,−1) + Q (1, 1)

+Q (3, 1) + Q (5, 1)−Q (7, 1)] . (11.26)
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When no error floor is present and the SNR approaches zero, the terms with
the smallest argument of Q (·) are dominant in (11.25) and in (11.26) due to
the rapid decrease of Q (x) for large positive x. Since el is typically much
smaller than 1, this means that only the terms with a = 1 must be considered
in this case. Unsurprisingly, the expressions (11.25) and (11.26) then reduce to
SER(l)

gch
/ log2(M).

11.5 THP: derivation of the SER(l)
gch

expression

The goal of this section is to derive expression (6.42) for the SER of the lth
symbol stream conditioned on the channel realization gch in case of the THP
equalization scheme from Chapter 6.

First, expression (6.41) is reformulated as

SER(l)
gch

= 1−
∑
q∈Z

Pr (ul ∈ D ((aex)l + 2qM∆)) (11.27)

= 1−
∑
q∈Z

Pr
(

(1 + el) (aex)l + ISIl

(
a(ISI)

ex ,vISI

)
+ wl ∈ D((aex)l , q)

)
,

(11.28)

where D ((aex)l , q) denotes the decision area corresponding to (aex)l + 2qM∆,
i.e.,

D((aex)l , q) = [(aex)l + 2qM∆−∆, (aex)l + 2qM∆ + ∆) . (11.29)

Deriving a closed-form analytical expression for SER(l)
gch

from (11.28) is com-
plicated, since both the exact distribution of (aex)l and the exact PDF of
ISIl

(
a

(ISI)
ex ,vISI

)
are hard to obtain and quite complex. However, the proba-

bility in (11.28) can be rewritten as the conditional probability for given (aex)l ,

a
(ISI)
ex and vISI summed over all possible (aex)l and a

(ISI)
ex and integrated over

all vISI. Consequently, SER(l)
gch

can be rewritten as

SER(l)
gch

=1−
∫ ∑
aex,a

(ISI)
ex

q∈Z

P
(
aex,a

(ISI)
ex ,vISI,q

)
fvISI

((aex)l=aex,a
(ISI)
ex =a(ISI)

ex ,vISI) dvISI,

(11.30)
where the conditional probability P (aex,a

(ISI)
ex ,vISI) is given by

P (aex,a
(ISI)
ex ,vISI, q) = Pr

(
ul ∈ D ((aex)l , q) | (aex)l=aex,a

(ISI)
ex =a(ISI)

ex ,vISI

)
(11.31)

= Pr
(

elaex + ISIl

(
a(ISI)

ex ,vISI

)
+ wl ∈ [2qM∆−∆, 2qM∆ + ∆)

)
(11.32)
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and fvISI((aex)l=aex,a
(ISI)
ex =a

(ISI)
ex ,vISI) denotes the joint PDF over (aex)l, a

(ISI)
ex ,

and vISI. Since wl is Gaussian distributed with zero-mean and standard devi-
ation σwl , one can express the conditional PDF from (11.32) in terms of the
Q-function, yielding the following expression for SER(l)

gch
:

SER(l)
gch

= 1−

Eaex,visi

∑
q∈Z

Q

2qM∆−∆− el (aex)l − ISIl

(
a

(ISI)
ex ,vISI

)
σwl


−Q

2qM∆ + ∆− el (aex)l − ISIl

(
a

(ISI)
ex ,vISI

)
σwl

 . (11.33)

In (11.33), the expectation Eaex,visi
[·] denotes the expectation over all possible

aex, i.e., both (aex)l and a
(ISI)
ex , and vISI.

11.6 THP: BER(l)
gch

expression for M-PAM trans-
mission

This appendix resolves the BER(l)
gch

expression from (6.44) in case of the 4-PAM
and 8-PAM constellation with Gray mapping, which are depicted in Fig. 5.5.

An interesting property of the 4-PAM constellation with Gray mapping is
that N6=(x, y) in (6.44) depends only on the difference between two constella-
tion points and not on their exact values. As a result, BER

(l)
gch,4-PAM can be

expressed as follows

BER
(l)
gch,4-PAM =

1

2

∑
n∈Z

N 6=(n2∆) Pr (ul ∈ D((aex)l + n2∆)) (11.34)

with

N6=(x) =


0 x = 8q∆

1 x = 2∆ + 4q∆

2 x = 4∆ + 8q∆

with q ∈ Z. (11.35)

Hence, BER
(l)
gch,4-PAM can be rewritten as

BER
(l)
gch,4-PAM =

1

2

(∑
q∈Z

Pr (ul ∈ D ((aex)l + 2∆ + 8q∆))

+ 2 Pr (ul ∈ D ((aex)l + 4∆ + 8q∆))

+ Pr (ul ∈ D ((aex)l + 6∆ + 8q∆))
)
. (11.36)

Similarly as in Appendix 11.5, the three different terms in (11.5), can be
expressed as the expected value of the corresponding conditional probability
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for given (aex)l, a
(ISI)
ex , and vISI. Using the symmetry property of the PDF of

(aex)l and isil, BER
(l)
gch,4-PAM can then be written as

BER
(l)
gch,4-PAM = Eaex,visi

[∑
q∈Z+

(
Q4-PAM (1) + Q4-PAM (3)

−Q4-PAM (5)−Q4-PAM (7)
)]
, (11.37)

where the shorthanded notation Q4-PAM is defined by

Q4-PAM(x) = Q

x∆ + 8q∆− el (aex)l − isil

(
a

(ISI)
ex ,vISI

)
σwl

 . (11.38)

A similar reasoning holds for 8-PAM, yielding

BER
(l)
gch,8-PAM = Eaex,visi

[∑
q∈Z+

(
Q8-PAM (1) + Q8-PAM (3)

−Q8-PAM (13)−Q8-PAM (15)
)]
, (11.39)

where

Q8-PAM(x) = Q

x∆ + 16q∆− el (aex)l − isil

(
a

(ISI)
ex ,vISI

)
σwl

 . (11.40)

11.7 THP-DFE: Computation of equalization pa-
rameters

The goal of this appendix is to derive the iterative algorithm for all equaliza-
tion strategies in the case of the THP-DFE equalization scheme, in which a
feedback filter at the receiver is added to the equalization scheme with a THP
precoder from Chapter 6. More precisely, this appendix discusses the minimiza-
tion of MSE = EGch

[
MSEgch

]
, with MSEgch

defined in (6.49), subject to the

energy constraint σ2
vTr

[
PTRTXP

]
≤ LETX. The following sections present

this minimization in the context of the adjustable, the fixed, and the hybrid
strategy.

The matrices B and T are defined in this section as follows. When the
equalization parameters corresponding to the transmitter, i.e., (P, α,T), are
computed for a given set of equalization parameters corresponding to the re-
ceiver, i.e., (W,B), the LBL × L stacked matrix B and the LTL × L stacked
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matrix T are constructed by stacking respectively all B(m) and T(m), i.e.,
B = [BH(ΦB(1)) · · ·BH(ΦB(LB))]H and T = [TH(ΦT(1)) · · ·TH(ΦT(LT))]H .
On the other hand, when the equalization parameters corresponding to the
receiver, i.e., (W,B), are determined for a given set of equalization parameters
corresponding to the transmitter, i.e., (P, α,T), the L×LLB augmented matrix
B and the L×LLT augmented matrix T are constructed as B = [B(ΦB(1)) · · ·
B(ΦB(LB))] and T = [T(ΦT(1)) · · ·T(ΦT(LT))].

Adjustable strategy (S-A)
Because all equalization parameters are adjustable to the channel realization
gch, i.e., belong to the vector x (gch), MSE can be minimized in this strategy
by individually minimizing MSEgch

for each channel realization gch. Just as
for other equalization schemes, the joint optimization of MSEgch

with respect
to all equalization parameters is mathematically too difficult and an iterative
optimization algorithm is proposed as an alternative. More precisely, all equal-
ization parameters corresponding to the transmitter, i.e., (P, α,T), and all
equalization parameters corresponding to the receiver, i.e., (W,B) are alter-
nately computed while the other parameters are assumed to be given and fixed.
To compute the optimal (P?

a, α
?
a,T

?
a), the MSEgch

from (6.49) is first rewritten
as

MSEgch
=

1

L
Tr

[
IL + α2PHGHGP +

α2

σ2
v

WRn̄WH + BHB + THYTT

− αG(0)P− αPHGH(0)− αPHGHB B− αBHGBP

−TH(αCTP−DT)−
(
αPHCH

T −DH
T

)
T

]
, (11.41)

where
YT = ILLT

+ B̄1 + B̄
H
1 + B̄2, (11.42)

CT = GT + BG, (11.43)

and

DT = IBTB + B̄3B. (11.44)

In (11.42), the LLT × LLT block matrices B̄1 and B̄2 are defined as follows:[
B̄1

]
i,j

=BH(j − i) and
[
B̄2

]
i,j

=
∑
m∈ΦB

BH(m+ i− j)B(m) ∀i, j ∈ ΦT.

(11.45)
Moreover, the LLT×LLP block matrix BG in (11.43) is determined according
to [

BG
]
i,1 =

∑
m∈ΦB

BH (m− ΦT(j))G(m) ∀i ∈ ΦT, (11.46)
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whereas the LLT×LLB block matrices IBT and B̄3 in (11.44) are constructed
by means of the following relationships:

[IBT]i,j = ILδΦT(i)−ΦB(j) and
[
B̄3

]
i,j

= BH(j − i) ∀i ∈ ΦT, j ∈ ΦB. (11.47)

The optimal set (P?
a, α

?
a,T

?
a) is subsequently obtained by minimizing MSEgch

from (11.41) first with respect to T, after which (P?
a, α

?
a) is the result of the

minimization of the resulting MSEgch,T
?
a
subject to the energy constraint. One

could verify that this latter minimization problem is again an example of the
optimization problem from Appendix 11.2. Applying this optimization proce-
dure then yields

T?
a = Y−1

T (αCTP?
a −DT) , (11.48)

P?
a =

1

α?a
Y−1

P XP, (11.49)

and

α?a =

√
σ2

v

σ2
aLETX

XH
P Y−1

P RTXY−1
P XP, (11.50)

where

YP =
Tr
(
WRn̄WH

)
LETX

RTX + GHG −CH
T Y−1

T CT (11.51)

and
XP = GH(0) + GHB B−CH

T Y−1
T DT. (11.52)

After plugging (11.48)-(11.50) into (11.41), the resulting optimized MSEgch,P
?
a,α

?
a,T

?
a

can be simplified to

MSEgch,P
?
a,α

?
a,T

?
a

=
1

L
Tr
[
IL + BHB−DH

T Y−1
T DT −XH

P Y−1
P XP

]
. (11.53)

The second step in each iteration is to compute the optimal (W?
a,B

?
a) for a

given set (P, α,T). To this end, MSEgch
is first rewritten as

MSEgch
=

1

L
Tr

[
IL − α2WGGHWH +

α2

σ2
v

WRn̄WH + TTH + BYBBH

− αGH(0)WH − αWG(0)− αGTTH − αTGHT WH

− (αWCB −DB) BH −B
(
αCH

B WH −DH
B

)]
, (11.54)

where
YB = ILLB

+ T̄1 + T̄
H
1 + T̄2, (11.55)

CB = GB + GT, (11.56)

and
DB = TIBT + TT̄3. (11.57)
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In (11.55), the different matrices in the LLB ×LLB block matrices T̄1 and T̄2

are given by[
T̄1

]
i,j

=TH(i− j) and
[
T̄1

]
i,j

=
∑
m∈ΦT

T(m)TH(m+ i− j) ∀i, j ∈ ΦB.

(11.58)
Moreover, the LLW × LLB block matrix GT in (11.56) is defined according to[

GT
]
1,j

=
∑
m∈ΦT

G(m)TH (m− ΦB(j)) ∀j ∈ ΦB, (11.59)

while the LLT × LLB block matrix T̄3 in (11.57) is constructed as follows:[
T̄3

]
i,j

= TH(i− j) ∀i ∈ ΦT, j ∈ ΦB. (11.60)

The joint minimization of MSEgch
from (11.54) with respect to B and W can

easily be performed by first minimizing MSEgch
with respect to B, after which

one can further reduce the obtained MSEgch,B
?
a
by means of a minimization

over W. The following optimized variables are obtained:

B?
a = (αWCB −DB)Y−1

B and W?
a =

1

α
XWY−1

W , (11.61)

where
YW = GGH +

Rn̄

σ2
v

−CBY−1
B CH

B (11.62)

and
XW = GH(0) + TGHT −DBY−1

B CH
B . (11.63)

The corresponding minimized MSEgch
denoted by MSEgch,W

?
a,B

?
a
can then be

expressed as

MSEgch,W
?
a,B

?
a

=
1

L
Tr
[
IL + TTH −DBY−1

B DH
B −XWY−1

W XH
W

]
. (11.64)

Fixed strategy (S-F)
As all equalization parameters are assumed to be fixed in this strategy, the
equalization parameters must be obtained by minimizing the average MSE.
Similar to the adjustable strategy, this optimization problem is solved by al-
ternately computing the optimal

(
P?
f , α

?
f ,T

?
f

)
and the optimal

(
W?

f ,B
?
f

)
for

given (W,B) and (P, α,T), respectively.
First, the optimal

(
P?
f , α

?
f ,T

?
f

)
and associated minimal MSEP?f ,α

?
f ,T

?
f
for

given (W,B) are in fact identical to (P?
a, α

?
a,T

?
a) and MSEgch,P

?
a,α

?
a,T

?
a
, but

with CT, YP, and XP now defined as

CT = EGch
[GT] + EGch

[
BG
]
, (11.65)
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YP =
σ2

vTr
(
WRn̄WH

)
σ2

aETX
RTX + EGch

[
GHG

]
−CH

T Y−1
T CT, (11.66)

and
XP = EGch

[
GH(0)

]
+ EGch

[
GHB
]

B−CH
T Y−1

T DT. (11.67)

Second, the optimal
(
W?

f ,B
?
f

)
and corresponding minimal MSEW?

f ,B
?
f
for

given (P, α,T) is respectively given by the expressions (11.61) and (11.64), but
with CB, YW, and XW defined as

CB = EGch
[GB] + EGch

[
GT
]
, (11.68)

YW = EGch

[
GGH

]
+

Rn̄

σ2
v

−CBY−1
B CH

B , (11.69)

and
XW = EGch

[
GH(0)

]
+ TEGch

[
GHT

]
−DBY−1

B CH
B . (11.70)

Hybrid strategy (S-H)
In the hybrid strategy, all equalization parameters corresponding to the trans-
mitter are fixed, i.e., (P, α,T), whereas all equalization parameters associated
with the receiver are adjustable, i.e., (W,B). In terms of the optimization pro-
cedure from Chapter 4, this means that the former parameters are collected in
the vector y, while the latter parameters are the elements of the vector x (gch).
To determine the optimal (P?

h, α
?
h,T

?
h,W

?
h,B

?
h), the optimization algorithm

from Algorithm 4.1 is applied and the two subproblems therein are discussed
below.

First, the optimal y? must be computed for given x (gch), i.e., the optimal
fixed (P?

h, α
?
h,T

?
h) are computed when (W,B) are given. Similarly as in the

fixed strategy, one can easily verify that the optimal (P?
h, α

?
h,T

?
h) are again

given by (11.48)-(11.50) but with YT,CT, DT,YP, and XP defined as

YT = ILLT
+ EGch

[
B̄1 + B̄

H
1 + B̄2

]
, (11.71)

CT = EGch
[GT] + EGch

[
BG
]
, (11.72)

DT = EGch

[
IBTB + B̄3B

]
, (11.73)

YP =
Tr
(
EGch

[
WRn̄WH

])
LETX

RTX + EGch

(
GHG

)
−CH

T Y−1
T CT, (11.74)

and
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XP = EGch

[
GH(0)

]
+ EGch

[
GHB B

]
−CH

T Y−1
T DT. (11.75)

Second, the computation of the optimal adjustable (W?
h,B

?
h) for given

(P, α,T) is completely identical as in the adjustable strategy.

11.8 PRS: proposition 1

Proposition 1. For any nonsingular matrix C with Gaussian integer elements,
i.e., Ci,j ∈ Z[j], the elements of its inverse C−1 are also Guassian integeres if
and only if |det(C)| = 1.

Proof. This proposition has been proved for a real-valued nonsingular integer
matrix C in [102]. The inverse C−1 for a nonsingular C can be constructed
from the adjoint matrix, adj(C), i.e.,

C−1 =
1

det (C)
adj(C). (11.76)

(1) Sufficient condition: As C consists of Gaussian integer elements, then
(i) the elements of the adjoint matrix are also Gaussian integers, since its
elements are equal to the different cofactors of C. Moreover, when |det(C)| = 1,
det(C) must be an element of the set {1,−1, j,−j}. Consequently, C−1 also
has Gaussian integer elements.

(2) Necessary condition: When both C and C−1 consist of Gaussian inte-
ger elements, then both det(C) and det

(
C−1

)
are Gaussian integers. Denote

det(C) = x1 + jy1 and det
(
C−1

)
= x2 + jy2 with x1, x2, y1, y2 ∈ Z. Because

det
(
C−1

)
= 1

det(C) , the following relations hold:

x2 =
x1

x2
1 + y2

1

, y2 =
−y1

x2
1 + y2

1

. (11.77)

Since all parameters in (11.77) must be integer-valued, it can be verified that
either (x1, y1) = (x2, y2) = (α, 0) or (x1, y1) = −(x2, y2) = (0, α) with α = ±1
such that |det (C)| =

∣∣det
(
C−1

)∣∣ = 1.

11.9 PRS: proposition 2

Proposition 2. When all entries of the sequence {c(k)} are independently and
uniformly drawn from the set CPRS = {0, · · · ,

√
M − 1} + j{0, · · · ,

√
M − 1}

and b(k) is constructed according to

b(k) =

[
T−1(0)

(
c(k)−

LT∑
o=1

T(m)b(k − o)

)]
√
M

, (11.78)
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where [·]√M equals the element-wise modulo-
√
Mreduction of the real and the

imaginary part, and (i) all entries of the matrix T−1(0) and all matrices T(m)
are Gaussian integers and (ii)

∣∣det(T−1(0))
∣∣ = 1, then also all entries of the

sequence {b(k)} are independently and uniformly drawn from CPRS.

Proof. Equation (11.78) can be interpreted as a finite-state machine with input,

state, and output at instant k given by c(k), s(k) =
[
bT (k − 1) · · ·bT (k − LT)

]T
,

and b(k), respectively. Next all components of the initial state s(0) are as-
sumed to belong to the set CPRS. As the elements of T−1(0) and T(m) with
m = 1, . . . , LT are Gaussian integers and c(k) ∈ CNT

PRS by assumption, it is
proven by induction that b(k) ∈ CNT

PRS and s(k) ∈ CLTNT

PRS for k ∈ {0, · · · ,K}.
The joint probability mass function of b(0),b(1), . . . ,b(K) conditioned on

s(0) can be expressed as

Pr [b(0)=β(0), . . . ,b(K)=β(K)|s(0)=σ(0)]=

K∏
k=0

Pr [b(k)=β(k)|s(k)=σ(k)]

(11.79)
with β(k) ∈ CNT

PRS and σ(k) = CLTNT

PRS for k ∈ {0, · · · ,K}. When s(k) = σ(k),
the only value of c(k) ∈ CNT

PRS giving rise to b(k) = β(K) is c(k) = γ(k), where
γ(k) = [T(0)β(k) + [T(1) · · ·T(LT)]σ(k)]√M . Hence,

Pr [b(k) = β(k)|s(k) = σ(k)] = Pr [c(k) = γ(k)] = M−NT , (11.80)

where the right-most equation results from the statistical properties of c(k).
Thus (11.79) becomes

Pr [b(0) = β(0), . . . ,b(K) = β(K)|s(0) = σ(0)] = M−(K+1)NT , (11.81)

which depends neither on (β(0), . . . ,β(K)) nor on σ(0). This indicates that all
entries of the vectors b(0), . . . ,b(K) are independently and uniformly drawn
from CPRS.

11.10 PRS: derivation of BER(l) expression for
ST PRS

This appendix discusses the detailed derivation of (7.52), which is an approxi-
mation of (7.51).

First, all pairs of symbols ((cex)l , (ĉex)l) in the extended symbol constella-
tion that correspond to the pair (cl, ĉl) after the modulo operator are expressed
as
(

cl + dl
√
M, ĉl + d̂l

√
M
)
with

(
dl, d̂l

)
∈ C2

PRS. All symbols a(k −m) that
contribute to isil are collected in the vector aISI. This appendix employs the
notations pl (r) and pl (r|s) to respectively denote the probability mass func-
tions Pr (rl = r) and Pr (rl = r|sl = s), where r and s are vectors of discrete
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random variables. The probability Pr (cl = c, ĉl = ĉ) can then be rewritten as

pl (c, ĉ) =
∑

(d,d̂)∈Z[j]2

∑
aISI

pl
(
c, ĉ, d, d̂,aISI

)
(11.82)

=
∑

(d,d̂)∈Z[j]2

∑
aISI

pl
(
ĉ, d̂|c, d,aISI

)
pl (d|c,aISI) pl (c,aISI) . (11.83)

Next, the symbols cd = c + d
√
M and ĉd̂ = ĉ + d̂

√
M in the extended symbol

set are defined, allowing to rewrite pl
(
ĉ, d̂|c, d,aISI

)
as

pl
(
ĉ, d̂|c, d,aISI

)
= Pr (cd + isil (aISI) + (nv)l ∈ D (ĉd̂)) , (11.84)

where D(·) represents the decision area of a symbol in the extended symbol
set, and the notation isil (aISI) emphasizes the dependence of isil on the vector
aISI. Because the right-hand side of (11.84) is affected by only the difference
ĉ + d̂

√
M − c− d

√
M − isil (aISI), (11.84) reduces to

pl
(
ĉ, d̂|c, d,aISI

)
= Pr

(
c + isil (aISI) + (nv)l ∈ D

(
ĉd−
))
, (11.85)

where ĉd− = ĉ+d−
√
M with d− = d̂−d. After substituting (11.85) into (11.83)

and replacing the sum over
(
d, d̂
)
∈ Z[j]2 by a summation over (d, d−) ∈ Z[j]2,

only pl (d|c,aISI) in (11.83) depends on d. As the summation of pl (d|c,aISI)
over all d amounts to 1, pl (c, ĉ) from (11.83) can be written as

pl (c, ĉ) =
∑

d−∈Z[j]

∑
aISI

F
(
c− ĉd− ,aISI, (nv)l

)
pl (c,aISI) , (11.86)

where F
(
c− ĉd− ,aISI, (nv)l

)
is a shorthanded notation for Pr(c + isil (aISI) +

(nv)l ∈ D
(
ĉd−
)
). Plugging (11.86) into (7.51) subsequently yields

BER(l) =
∑
aISI

∑
c∈CPRS

G(c,aISI) Pr (cl = c,aISI = aISI) , (11.87)

where

G (c,aISI) =
∑

ĉd−∈Z[j]

N 6=
(
c, ĉd−

)
log2(M)

F
(
c− ĉd− ,aISI, (nv)l

)
(11.88)

and the functionN 6= (c, ĉ) is generalized to the extended symbol set, i.e., N6= (c, ĉ) =
N 6=

(
c, ĉd−

)
for all d− ∈ Z[j]. Unfortunately, the summation over all ĉd− in

(7.51) consists of an infinite number of terms, prohibiting the exact evalua-
tion of BER(l). However, the properties of the binary reflected Gray mapping
impose not only that horizontally and vertically neighboring symbols in the
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x=0

Figure 11.1: Visualization of the approximationN 6=,≈(x). The white, light gray,
and dark gray areas represent the areas for which N 6=,≈(x) = 0, N 6=,≈(x) = 1,
and N 6=,≈(x) = 2, respectively.

extended symbol set only differ one bit, but also that diagonally neighbor-
ing symbols differ only in two bits, justifying the approximation N6=(c, ĉd−) ≈
N 6=,≈

(
c− ĉd−

)
, where

N 6=,≈ (x) =


0 x = 0

1 (Re [x] = 0) ∨ (Im [x] = 0)

2 otherwise
. (11.89)

The approximation N 6=,≈(x) is visualized in Fig. 11.1. Interestingly, the num-
ber of errors in the decision areas adjacent to x = 0 within the dashed square
is not altered by the approximation meaning that N6=(c, ĉd−) = N 6=,≈

(
c− ĉd−

)
when the difference c − ĉd− is within the dashed square. For M = 4, the
approximation is actually an upper bound as only additional errors are intro-
duced. Replacing in (11.88) N 6=

(
c, ĉd−

)
by N 6=,≈

(
c− ĉd−

)
yields the function

G≈ (aISI) that no longer depends on c, i.e.,

G≈ (aISI) =
∑
x∈Z[j]

N6=,≈(x)

log2(M)
F (x,aISI, (nv)l) (11.90)

The infinite summation over x in (11.90) can than be replaced by the sum-
mation over the two regions characterized by N 6=,≈(x) = 1 and N 6=,≈(x) = 2,
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respectively. This results in

G≈(aISI) = Q

(
0.5− Re [isil(aISI)]

σ(nv)l

)
+Q

(
0.5 + Re [isil(aISI)]

σ(nv)l

)
+Q

(
0.5− Im [isil(aISI)]

σ(nv)l

)
+Q

(
0.5 + Im [isil(aISI)]

σ(nv)l

)
, (11.91)

where Q (·) represents the tail distribution of the standard normal distribution
and σ(nv)l equals the standard deviation of the real part of, which is given by

σ(nv)l =

√
(WRn̄WH)

l,l

8∆2 . Substituting G≈ (aISI) for G (c,aISI) in (11.87) yields

the approximation of BER(l). Moreover, the rotational symmetry of the QAM
constellation can be exploited by remarking that Pr (aISI) = Pr (−aISI) =
Pr (jaISI) = Pr (−jaISI), simplifying the approximation to

BER(l) ≈ 1

log2(M)
EaISI

[
4Q

(
0.5− Re [isil(aISI)]

σ(nv)l

)]
. (11.92)

Because N6=,≈(x) maintains the number of bit errors in the decision areas ad-
jacent to the decision area of the data symbol, the approximation (11.92) is
expected to be very accurate when isil (aISI) and σ(nv)l are small compared to
1, e.g., in case of powerful equalization and large SNR.

11.11 Robust PRS: linear MMSE estimation from
pilot symbols

This appendix discusses how the channel estimate in the κth frame is derived
based on the pilot symbols. The structure of each frame is already shown in Fig.
8.2: each frame contains not only a block of pilot symbols and a block of data
symbols, but also two guard intervals to avoid that any interference from the
pilot symbols is present in the processing of the data symbols and vice versa.
As for the pilot symbols, only the signals received at the Np−LH+1 consecutive
instants, where the channel memory is entirely filled with pilot symbols, are
exploited for channel estimation. In Fig. 8.2, the associated interval of time
indices for frame κ is given by [kp,κ+L

(2)
H , kp,κ+Np−1−L(1)

H ]. This restriction
yields the NR× (Np−LH + 1) observation matrix Yκ, which can be written as

Yκ = HκAκ + Nκ, (11.93)

where the ith column of the NTLH × (Np − LH + 1) pilot symbol matrix Aκ

equals [aHp,κ(LH + i−2), · · · ,aHp,κ(i−1)]H . Here, the vector ap,κ(n) denotes the
NT × 1 pilot symbol vector transmitted during the nth symbol interval in the
κth block. Moreover, the relationship from (11.93) can also be represented as

yκ = Ahκ + nκ, (11.94)
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where A = AT
κ ⊗INR and yκ, nκ, and hκ are obtained by stacking the columns

of Yκ, Nκ, and Hκ, respectively. Because all noise samples are assumed to
be uncorrelated, the covariance matrix of the noise contribution nκ is given by
Rnκ = N0INR(NP−LH+1). From (11.94), one can compute the linear MMSE
estimate of hκ as ĥκ = Xyκ with

X =
(
N0R

−1
hκ

+ AHA
)−1

AH , (11.95)

where Rhκ is the covariance matrix of hκ. To express this covariance matrix,
the LH × LH matrices U(i) are defined as

(U(i))m,m′ = E
[
(Hκ+i(m))l,l′ (Hκ(m′))

∗
l,l′

]
(11.96)

for (m,m′) ∈
{
−L(1)

H , · · · , L(2)
H

}2

. The covariance matrix Rhκ is then given by

Rhκ = U(0)⊗ INR×NT
. Next, the vector h̄κ represents the perfect CSI and is

defined as h̄κ = hκ in the case of configuration C2 and as h̄κ = [hHκ · · ·h
H
κ−K]H

in the case of configurations C1 and C3. Based on this definition and the
decomposition ĥκ = XAhκ + Xnκ, one can express the available CSIT as
follows

ˆ̄hκ = Eh̄κ + Fn̄κ, (11.97)

where

E =


IK+1 ⊗ (XA) C1
XA C2
[0 IK ⊗ (XA)] C3

, (11.98)

F is similarly obtained by substituting X for XA in (11.98), and n̄κ is equal to
nκ in the case of configuration C2, whereas it results from stacking the vectors
nκ, · · · ,nκ−K in the case of configurations C1 and C3. The relationship in
(11.97) demonstrates that ˆ̄hκ, conditioned on h̄κ is Gaussian with mean Eh̄κ
and covariance matrix N0FFH . Moreover, the vector h̄κ itself is a zero-mean
Gaussian random vector with covariance matrix Rh̄κ = Ū⊗ INR×NR

, where Ū
is equal to the (K + 1)LH × (K + 1)LH block matrix with the LH × LH block
at position (i, j) ∈ {1, · · · ,K + 1} equal to U(i − j). Next, it can be verified
that, h̄κ, conditioned on ˆ̄hκ is also Gaussian distributed with a mean µ

h̄κ|ˆ̄hκ
and covariance matrix R

h̄κ|ˆ̄hκ
with

µ
h̄κ|ˆ̄hκ

= R
h̄κ|ˆ̄hκ

EH(N0FFH)−1 ˆ̄hκ (11.99)

and

R
h̄κ|ˆ̄hκ

=

(
R−1

h̄κ
+ EH

(
N0FFH

)−1

E

)−1

. (11.100)

Based on (8.15) and (8.16), it follows that the elements of EGG(ˆ̄hκ) and
EGT(ˆ̄hκ) from respectively (8.19) and (8.20) can be straightforwardly expressed
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in terms of the a posteriori expectations and covariances of the elements of hκ
for given ˆ̄hκ. These a posteriori moments are obtained by extracting the proper
elements from the a posteriori mean and the a posteriori covariance matrix of
h̄κ given in respectively (11.99) and (11.100).

11.12 Robust PRS: orthogonal pilot sequences
As an example, the considered pilot sequence is derived from a ZC sequence
[103, 104]. The pilot sequence for the first antenna is constructed by cyclically
extending a ZC sequence of length Np − LH + 1 with LH − 1 symbols, which
yields a pilot sequence of length Np. The pilot sequence for the lth antenna is
obtained by applying (l − 1)LH cyclic shifts to the ZC sequence from the first
antenna, and adding a cyclic extension of LH − 1 symbols. For Np −LH + 1 ≥
NTLH, all rows from Aκ are orthogonal, yielding AκA

H
κ = ĒpINTLH

, where
Ēp = (Np − LH + 1)Ep and Ep is the transmitted energy per pilot symbol.
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