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Multi-User Visible Light Communication Broadcast
Channels With Zero-Forcing Precoding

Thanh V. Pham, Student Member, IEEE, Hoa Le-Minh, Member, IEEE, and Anh T. Pham, Senior Member, IEEE

Abstract— This paper studies zero-forcing (ZF) precoding
designs for multi-user multiple-input single-output visible light
communication (VLC) broadcast channels. In such broadcast
systems, the main challenging issue arises from the presence of
multi-user interference (MUI) among non-coordinated users. In
order to completely suppress the MUI, ZF precoding, which is
originally designed for radio frequency (RF) communications, is
adopted. Different from RF counterpart, VLC signal is inherently
non-negative and has a limited linear range, which leads to an
amplitude constraint on the input data signal. Unlike the average
power constraint, obtaining the exact capacity for an amplitude-
constrained channel is more cumbersome. In this paper, we
first investigate lower and upper bounds on the capacity of an
amplitude-constrained Gaussian channel, which are especially
tight in the high signal-to-noise regime. Based on the derived
bounds, optimal beamformer designs for the max–min fairness
sum-rate and the maximum sum-rate problems are formulated
as convex optimization problems, which then can be efficiently
solved by using standard optimization packages.

Index Terms— VLC, multi-user MISO, precoding, max-min
fairness, sum-rate maximization.

I. INTRODUCTION

THE ever-increasing demand for high data-rate wireless
communications has spurred a rapid progress in the

research and development of visible light communication
(VLC) technology. Exploiting the massive deployment of light
emitting diodes (LEDs), VLC is expected to serve as a pos-
sible complement to the existing wireless technologies in the
future indoor networking. This is mainly due to a number of
advantages brought by VLC: dual functionalities (illumination
and communications), license-free spectrum, high signal-to-
noise ratio (SNR) and high security to name a few [1]–[4].
To open the road for commercialization, VLC has also been
standardized for wireless personal area networks (WPANs) in
IEEE 802.15.7 [5].

Despite the promising benefits, practical deployment of
VLC systems faces numerous challenges in which achieving
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high data rate is one of the major concerns due to the
limited modulation bandwidth of the LED. Extensive research
effort has been devoted to the data rate improvement of
VLC systems [6]–[9]. Among proposed methods, multiple-
input multiple-output (MIMO) is one of potential solutions
by exploiting the spatial multiplexing gain. Some experiments
have demonstrated that high data rates up to gigabits/s can
be achieved with the combination of MIMO and orthogonal
frequency division multiplexing (OFDM) technologies. The
use of multiple separated LED sources to form the MIMO
transmission is also natural since it helps to guarantee the
illumination standard (typically > 300 lux) for lighting a large
room/office.

A number of studies on MIMO-VLC systems, including
both theoretical analysis and experimental demonstrations,
have been recently reported [9]–[15]. In these studies,
VLC systems with one receiver (unicast transmission) were
examined. VLC networks can be nevertheless categorized as
broadcast networks, which are able to serve multiple users
simultaneously, due to the broadcast nature of visible light
signal. This is regarded as multi-user (MU) MIMO-VLC
broadcast systems which are analogous to the RF ones; and the
presence of multiple users, which results in the so-called MU
interference (MUI), consequently degrades the performance.

It is generally difficult to handle the MUI at receivers
when there is no coordination among them. As a result,
MUI effect mitigation should be done at the transmitter side.
This is the idea behind precoding techniques applied in MU
broadcast channel by pre-processing the transmit signal before
transmission. Precoding techniques for RF broadcast channels
have been extensively investigated [16]–[19]. Nevertheless,
adoption of those techniques for VLC is not straightforward
because the RF signal is complex-valued, which is fundamen-
tally different from the real and non-negative VLC signal.

Several studies on precoding design for MU-VLC systems,
which mainly focus on linear precoding algorithms with either
mean square error (MSE) or zero-forcing (ZF) criterion, have
been reported. In particular, for the case of multiple photo-
diodes (PDs) at the receivers, i.e. MU-MIMO configuration,
[20]–[22] studied the use of block diagonalization (BD) pre-
coding [17] which can be regarded as a generalization of the
ZF precoding. It is noted that our study in [22] is the first work
that took into account the non-negativity signal constraint in
designing the BD precoding for MU-MIMO VLC systems.
In case of single-PD receivers, or the MU-MISO configuration,
precoding matrices based on the MSE criterion were designed
to minimize the sum MSE [23] or to minimize the maxi-
mum MSE among users, i.e., max-min fairness MSE, [24].
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Following these studies, the sum-rate performance of
MU-MISO VLC systems with ZF precoding, one of the most
critical performance metrics in multiuser systems, is reported
[25], [26]. There are nevertheless two important limitations in
these studies. Firstly, these studies in fact did not consider
the sum-rate in terms of channel capacity, which is defined
as the maximum mutual information between the input and
the output for which an arbitrarily small bit error-rate (BER)
can be achieved. On the contrary, the sum-rate optimiza-
tion problem is formulated by adopting the expression in
[29, eq. (24)], which particularly specifies the achievable
data rate for an optical intensity modulation/direct detec-
tion (IM/DD) channel with multi-level M-ary pulse amplitude
modulation (PAM) given a minimum BER threshold. By doing
so, the problems could be formed as convex optimization ones
(which then can be solved by standard optimization packages)
because the achievable data rate expression depends on the
ratio of the amplitude signal to the standard deviation of noise,
i.e., root square of the SNR in [25] and [26].

Secondly, it is well-known that ZF precoding design has a
close relationship with the concept of generalized inverse in
linear algebra as its function is to invert the MU channel.
In previous studies, the ZF precoding was chosen in the
form of pseudo-inverse, a special generalized inverse of the
channel matrix, which has been proved to achieve the optimal
precoding design in MU-RF systems with average power con-
straint [16]. In VLC systems nevertheless, the combination of
peak power due to the limited linear range (further elaboration
in the next Section) and non-negativity signal results in the
amplitude constraint. The pseudo-inverse therefore may not
necessarily result in the optimal solution.

This paper attempts to tackle both limitations. First, we
examine the sum-rate performance of MU-MISO VLC sys-
tems in terms of the channel capacity with the amplitude
constraint. It is necessary to note that the study on lower bound
on the VLC channel capacity of MU-MISO VLC systems
with the amplitude constraint was reported in [27] and [28].
In this paper, we extend these studies by the derivation of
an upper bound and other two lower bounds with different
degrees of tightness. Asymptotic behaviors of these bounds
will be also discussed to confirm their validity in charac-
terizing the sum-rate performance. Secondly, we solve the
sum-rate optimization problems according to the considered
bounds, and prove that the pseudo-inverse is not necessarily
the optimal solution under the amplitude constraint. Finally,
two iterative algorithms are proposed to find the generalized
inverse solutions for the optimal precoding designs in the
case of sum-rate maximization. Convergence behaviors of the
proposed algorithms will also be evaluated to validate their
efficiency.

It is important to highlight that the capacity-achieving distri-
bution for the amplitude-constrained Gaussian scalar channel
is discrete with a finite number of mass points, and from
this observation, a numerical algorithm was developed to
determine the capacity and the optimal input distribution [30].
In addition to the exact solution, several closed-form lower
and upper bounds were also derived in [31], [32], and [35].
Furthermore, in the case of broadcast systems with precoding,

both precoding matrices and the input distribution should
be, in principle, jointly optimized to compute the channel
capacity. To the best of our knowledge, there has been no
study on this problem. In this paper, instead of finding an exact
solution, we investigate a suboptimal approach by omitting
the optimal input distribution condition. In particular, we rely
on previously proposed capacity bounds for scalar Gaussian
channels and focus on the optimal ZF precoding design.

The remainder of the paper is organized as follows.
In Section II, we revisit the issue of scalar Gaussian channel
capacity with an amplitude signal constraint. Simple lower and
upper bounds of the capacity are provided as benchmarks for
the precoding designs in the MU scenario. Section III intro-
duces the model of MU-MISO VLC broadcast systems, linear
precoding scheme and the discussion on amplitude constraint
on LEDs. A brief review of ZF precoding is provided in
Section IV. In Section V, we present the optimal precoding
matrix designs with respect to lower and upper capacity
bounds for the max-min fairness and the maximum sum-rate
criterions, respectively. Numerical results and discussions are
given in Section VI, and finally, we conclude the paper in
Section VII.

Notation: The following notations are used throughout the
paper. Bold upper case letters represent matrices, e.g., A. The
transpose of matrix A is written as AT , while [A]i, j indicates
the element at the i−th row and the j−th column and [A]k,:
denotes the k−th row vector of A. ‖·‖F and ‖·‖1 are the
Frobenius norm and the L1 norm operators, respectively. R,
R

+ are the real and positive real number sets. I(·; ·) and h(·)
represent the mutual information and the differential entropy
in nats, respectively. Expected value is denoted by E[·] and
the natural logarithm log(·) is used. Finally, sup denotes the
supremum operator and | · | is the absolute value operator.

II. INFORMATION CAPACITY OF

AMPLITUDE-CONSTRAINED

SCALAR GAUSSIAN CHANNELS

In this section, we revisit the capacity of scalar Gaussian
channels with an amplitude input signal constraint. Simple
closed-form expressions for the lower and upper bounds capac-
ity are provided as benchmarks for the capacity analysis in the
multiuser scenario. Smith [30], considered a scalar additive
Gaussian noise channel characterized by

Y = X + N, (1)

where X , N , and Y denote the channel input, noise, and output
random variables, respectively. The input random variable X
is assumed to be constrained to take on values on [−A, A] for
some arbitrary positive value of A.1 The noise random variable
N is assumed to be Gaussian with zero mean and variance N0.
The capacity-achieving distribution of X for the channel in
(1) is unique and discrete with a finite number of mass
points. Necessary and sufficient conditions for the distribution
were obtained and the capacity was computed numerically.

1The channel in (1) is sometimes referred as the Gaussian channel with
peak power constraint since the amplitude constraint X < |A| is equivalent
to the peak power constraint X2 < A2.



Nevertheless, it is worth noting that the developed numerical
procedure was quite computationally expensive especially for
large value of A

N0
. Therefore, closed-form expressions for the

capacity are of particular interest for system design purpose.

A. Lower Bound

For additive noise channels, one common way to derive a
lower bound capacity is to use the Entropy Power Inequal-
ity (EPI) [31], [33] as

C 1
L = I(X; Y ) = h(Y )− h(Y |X)

= h(X + N) − h(N)
(EPI)≥ 1

2
log

(
e2h(X) + e2h(N)

)
− h(N)

= 1

2
log

(
1 + e2h(X)

2πeN0

)
. (2)

To make this bound as tight as possible, the distribution of X is
chosen in such a way that maximizes the differential entropy
h(X) under the amplitude constraint X ≤ |A|. According
to the maximum entropy theorem [34], it is well-known that
the uniform distribution is the maximum entropy probability
distribution for a random variable under no constraint other
than it is contained in the distribution’s support. It is thus
reasonable to assume that X is uniformly distributed over
[−A, A], resulting in

C 1
L = 1

2
log

(
1 + 2A2

πeN0

)
. (3)

From the above expression, it is straightforward to derive
another bound as

C 2
L ≥ 1

2
log

(
1 + 2A2

πeN0

)
>

1

2
log

(
2A2

πeN0

)

= log

(
2A√

2πeN0

)
. (4)

B. Upper Bound

An upper bound for the capacity of a scalar Gaussian
channel with an amplitude constraint is given by [35]

CU = sup
α∈[0,1]

f (α), (5)

where f (α) = α log
(

2A√
2πeN0

)
− log

(
αα(1 − α)

3
2 (1−α)

)
. It is

seen that f (α) is twice differentiable and is a concave function
on its domain α ∈ [0, 1] due to the concavity of the logarithm
function. Therefore, the maxima of f (α) can be found by
finding the critical point α∗, (the point where f ′(α∗) = 0).
In appendix , we show that α∗ exists and is unique. Moreover,
α∗ can be numerically found by using the bisection method,
i.e., narrowing down the interval of α by halves over iteration
by iteration [36]. With a predefined error tolerance ν = 10−3

and an initial interval of [0, 1], α∗ can be obtained after around
15 iterations.

Fig. 1. Exact, lower and upper bounds capacities of amplitude-constrained
scalar Gaussian channels.

Fig. 2. Schematic diagram of a MU-MISO VLC system.

C. Asymptotic Behaviors

Figure 1 shows the exact, the lower and the upper bounds
capacity versus the peak SNR of an amplitude-constrained
Gaussian channel. It is seen that the upper bound and the lower
bound in (3) are tight at low and hight peak SNR regimes,
whereas the lower bound in (4) is tight at high SNR region
only. Obviously, for two lower bounds, lim A√

N0
→0 C 1

L = 0

and lim A√
N0

→0 C 2
L = −∞. The following proposition proves

the tightness of the upper bound at low and high peak SNR
regimes.

Proposition 1: Asymptotic behaviors of the upper bound

lim
A√
N0

→0
CU = 0, (6)

lim
A√
N0

→∞
CU = log

(
2A√

2πeN0

)
. (7)

Proof: See Appendix .

III. MU-MISO VLC SYSTEM MODEL

A. MU-MISO VLC Channel Model

Figure 2 illustrates the schematic diagram of a MU-MISO
VLC system with NT LED arrays as transmitters and
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K decentralized single-photodiode users. For indoor VLC
systems, there are generally two main types of link model,
which are the direct light-of-sight (LOS) and the non-direct
line-of-sight (NLOS). In most cases, only LOS link is taken
into account since it accounts for more than 95% of the total
received optical power at the receiver [38]. Quantitatively, even
the strongest NLOS path component is at least 7 dB lower
than the weakest LOS one [9]. For the sake of simplicity,
we thus consider the LOS propagation path in this study. Let
Hk ∈ R

1×NT be the channel matrix between LED arrays and
the k−th user

Hk = [
hk1 hk2 · · · hkNT

]
, (8)

where hki represents the direct current (DC) gain between
the k−th user and the i−th LED array. In practice, most LED
sources have Lambertian beam distribution where the emission
intensity is given as

L(φ) = l + 1

2π
cosl(φ), (9)

with φ is the angle of irradiance and l is the order of
Lambertian emission determined by the semi-angle for half
illuminance of the LED �1/2 as l = − log(2)

log(cos�1/2)
. For LOS

link, hki is given by [38]

hki =
⎧
⎨
⎩

Ar

d2
ki

L(φ)Ts(ψki )g(ψki ) cos(ψki ), 0 ≤ ψki ≤ �c,

0, ψki > �c,

(10)

where Ar and dki are the active area of the PD and the
distance from the LED array to the PD, respectively. ψki is
the angle of incidence, Ts(ψki ) is the gain of the optical filter
and �c denotes the optical field of view (FOV) of the PD.
g(ψki ) is the gain of the optical concentrator and given by

g(ψki ) =
⎧⎨
⎩

κ2

sin2�c
, 0 ≤ ψki ≤ �c,

0, ψki > �c,

(11)

where κ is the refractive index of the concentrator.

B. Precoding Model and Broadcast Transmission

In the considered MU-MISO VLC system, NT LED arrays
cooperate to broadcast information to K users simultaneously.
This configuration can be regarded as a coordinated multi-
point (CoMP) system for VLC communications [23]. In our
study, a DC-biased PAM scheme is employed. In such scheme,
a DC bias current IDC ∈ R

+ which determines the brightness
of the LEDs, is used to modulate a zero-mean data signal. Let
di ∈ R be the data symbol intended for the i -th user, and
d = [

d1 d2 . . . dK
]T ∈ R

K×1 be the data vector for all
users. It is assumed that di is zero-mean, and without loss of
generality, is normalized to the range of [−1, 1] [14]. At the
k−th LED array, the broadcast signal sk which consists of data
signals for all users, is generated from a linear combination of
the data vector and the matrix Vk = [

wk,1 wk,2 . . . wk,K
] ∈

R
1×K as

sk = Vkd, (12)

As a result, the transmitted signal xk can be expressed in the
form of

xk = sk + I k
DC, (13)

where I k
DC denotes the DC-bias for the k− LED array [15].

Since E[dk] = 0, the signal sk does not affect the
average illumination level of the LEDs. Instead, it is
uniquely determined by the DC-bias I k

DC. If we define x =[
x1 x2 . . . xK

]T ∈ R
K×1 as the transmitted signal vector and

IDC = [
I 1
DC I 2

DC . . . I K
DC

]T ∈ R
K×1 as the aggregate DC bias

vector, the received optical signal at the k−th user can be
written as

Pk
r = HkPs, (14)

where Ps =
[

P1
s P2

s . . . P NT
s

]T ∈ R
NT ×1 is the transmit-

ted optical power vector of the LED arrays whose element
Pk

s = ηxk is the transmitted optical power of the k−th LED
arrays with η is the LED conversion factor. The received
electrical signal at the k−th user after the optical-electrical
conversion is therefore given by

yk = γ Pk
r + nk = γ ηHkx + nk

= γ η

⎛
⎝HkWkdk + Hk

K∑
i=1,i �=k

Wi di + HkIDC

⎞
⎠ + nk,

(15)

with γ is the PD responsivity, Wk =[
w1,k w2,k . . . wNT ,k

]T ∈ R
NT ×1 is the precoder for the

k−th user. If we define W = [
W1 W2 . . . WK

] ∈ R
NT ×K ,

it can be seen that W can also be represented as
W = [

V1 V2 . . . VNT

]T , where the k−th row vector is
the precoder for the k−th LED array.

As seen in (15), the first term HkWkdk is the desired
signal, while the second term Hk

∑K
i=1,i �=k Wi di is the MUI.

The third term HkIDC represents the DC current for defining
the illumination that carries no data and nk denotes the
receiver noise, which is assumed to be additive white Gaussian
noise (AWGN) with zero mean and variance σ 2

k , given by

σ 2
k = 2ePk

r B + 4πeArγχamb
(
1 − cos(�c)

)
B + i2

amb B, (16)

where e is the elementary charge, B denotes the system
bandwidth and Pk

r = E[Pk
r ] = ηHkIDC is the average received

optical power at the k−th user. i2
amp is the pre-amplifier noise

current density, χamp is the ambient light photocurrent. After
removing the DC current by AC coupling, the received signal
can be written by

yk = γ η

⎛
⎝HkWkdk + Hk

K∑
i=1,i �=k

Wi di

⎞
⎠ + nk . (17)

C. Amplitude Constraint on VLC Signal

In this section, we briefly illustrate signal amplitude con-
straint in VLC systems, which is fundamentally different from
their RF counterpart. It should be noted that the constraint,



Fig. 3. Nonlinear LED transfer characteristic.

in turn, affects significantly the design of precoding matri-
ces. As shown in Fig. 3, the LEDs exhibit a limited linear
range, where the output optical power increases linearly from
0 to pmax in accordance with the input drive current from
0 to Imax. Hence, to guarantee normal operation of the LEDs,
i.e., to avoid the overheating of the LEDs and the potential
light intensity reduction, the drive current xk for the k−th
LED array must be constrained within the range of [0, Imax]
as

0 ≤ sk + I k
DC ≤ Imax. (18)

From (12) and since |dk| ≤ 1, we get

−∥∥Vk
∥∥

1 ≤ sk ≤ ∥∥Vk
∥∥

1. (19)

To ensure both (18) and (19), the following constraint should
be imposed

∥∥Vk
∥∥

1 ≤ �k, (20)

where �k = min
(

I k
DC, Imax − I k

DC

)
. We can write the above

constraint with respect to Wi or W as

K∑
i=1

∥∥[Wi ]k,:
∥∥

1 ≤ �k, (21)

or
∥∥[W]k,:

∥∥
1 ≤ �k . (22)

In this paper, depending on the targeted performance metric,
either the expression in (21) or (22) will be considered in the
design of the optimal precoding matrices.

IV. ZF PRECODING

The goal of the transmit precoding is to mitigate the negative
impact of the MUI term in the received signal (see (17)).
In particular, the ZF precoding algorithm aims to completely
remove the MUI via the construction of the precoder Wi in
such a way that it is orthogonal to channel matrices of other
users, i.e.,

HkWi = 0, ∀k �= i. (23)

In other words, if we define H = [
HT

1 HT
2 . . . HT

K

]T
as an

aggregate channel matrix, the ZF constraint in (23) implies
that

HW =

⎡
⎢⎢⎢⎣

√
q1 √

q2
. . . √

qK

⎤
⎥⎥⎥⎦ = diag{√q}, (24)

where
√

q = [√
q1

√
q2 . . .

√
qK

]T ∈ R
K×1 whose i−th

element represents the channel gain of the i−th user. We thus
can express W in the form

W = H−diag{√q}, (25)

where H− denotes the generalized inverse of H, which can
be any matrix that satisfies HH−H = H. Generally, the
generalized inverse H− is not unique. One of the special
generalized inverse is the pseudo-inverse H† = HT (HHT )−1,
which is known to have minimal Frobenius norm among all
the generalized inverses. Different from RF systems where
the pseudo-inverse is the optimum precoder under the total
average power constraint [16], we show that for VLC systems,
it is not necessary to be the optimal solution under amplitude
constraint of VLC signals. Assuming that H is full row-rank,
any generalized inverse H− can be expressed by

H− = H† + PQ, (26)

where P = I − H†H is the orthogonal projection onto the
null space of H and, Q is an arbitrary matrix. Plugging (26)
into (25), the general structure of any ZF precoding matrix W
is given by

W = [
H† + PQ

]
diag{√q}. (27)

This reduces the beamformer design problem for a certain
performance metric to an optimization problem with respect
to the q and the choice of generalized inverse H− via Q. In
the next section, we investigate the optimal precoding designs
for two typical performance measures in multiuser broadcast
systems, namely: max-min fairness and maximum sum-rate.

V. OPTIMAL BEAMFORMER DESIGN

By removing the MUI via ZF precoders, the received signal
at the k−th user simplifies to

yk = γ ηHkWkdk + nk . (28)

The goal of the precoding design is to find Wk’s that maximize
a performance measure under the amplitude signal constraint
in (22) and the ZF constraint in (24), i.e.,

maximize
q≥0,W

f (q)

subject to HW = diag{√q},∥∥[W]k,:
∥∥

1 ≤ �k∀k, (29)

where f (q) is the objective function that represents the
performance measure of interest. Denoting Ck as the rate of
the k−user, typical performance measures include [39]

i) Sum rate: f (q) = ∑K
k=1 Ck .



IEEE TRANSACTIONS ON COMMUNICATIONS

ii) Proportional fairness: f (q) = ∑K
k=1 log Ck .

iii) Harmonic mean: f (q) = 1/
∑K

k=1
1

Ck
.

iv) Max-min fairness: f (q) = min1≤k≤K Ck ,

with decreasing order of achievable sum rate and increasing
order of user fairness.

Since the closed-form expression for Ck is not available,
we rely on the lower and upper bounds of Ck developed
in Section II. Noted that dk ∈ [−1, 1], the amplitude
input signal is hence constrained within the range of
[−γ ηHkWk, γ ηHkWk]. We therefore have the following
lower and upper bounds for the rate of the k−th user

C 1
L ,k = 1

2
log

(
1 + 2γ ηHkWkWT

k HT
k

πeσ 2
k

)
, (30)

C 2
L ,k = log

(
2γ ηHkWk√

2πeσ 2
k

)
, (31)

and

CU,k = sup
αk∈[0,1]

αk log

(
2γ ηHkWk√

2πeσ 2
k

)

− log
(
α
αk
k (1 − αk)

3
2 (1−αk)

)
, (32)

where C 1
L ,k and C 2

L ,k are two lower bounds derived from (3)
and (4), respectively, while CU,k is the upper bound obtained
from (5). Capitalizing on these bounds, we now investigate
optimal precoding designs for two performance measures: the
max-min fairness and the maximum sum-rate.

A. Max-Min Fairness

The max-min fairness criterion aims to maximize the mini-
mum rate among users. It leads to the following optimization
problem

P1 : maximize
q≥0,W

min
k

Ck

subject to HW = diag{√q},∥∥[W]k,:
∥∥

1 ≤ �k ∀k.

1) Lower Bound: From the lower bound in (30), it is
obvious that C 1

L ,k is proportional to qk/σ
2
k . Let us define

σσσ = [
σ 2

1 σ
2
2 . . . σ

2
K

]T
and diag{q′} = diag{q}diag{σσσ }−1

where q′ = [
q ′

1 q ′
2 . . . q ′

K

]T . The optimization problem P1
can thus be rewritten as

P2 : maximize
q′≥0,W

min
k

q ′
k

subject to HW = diag{√q′}diag{√σσσ },∥∥[W]k,:
∥∥

1 ≤ �k ∀k.

Following the similar argument in [16], we can search
the optimal solution of the form q′ = q ′1 for some q ′ is
optimal. To see this, let W∗ and q∗ be the optimal solution
to P2 and we define new variables q′ = q1 and W =
W∗diag

{ [√
q/q∗

1 . . .
√

q/q∗
K

] }
, where q = mink q∗

k . Then,

it holds that

HW = HW∗diag
{ [√

q/q∗
1 . . .

√
q/q∗

K

] }

= diag{√q∗}diag{√σσσ }diag
{ [√

q/q∗
1 . . .

√
q/q∗

K

] }

= diag{√q′}diag{√σσσ }, (33)

and
∥∥[W]k,:

∥∥
1 =

∥∥∥
[
W∗diag

{ [√
q/q∗

1 . . .
√

q/q∗
K

] }]
k,:

∥∥∥
1

≤ ∥∥[W∗]k,:
∥∥

1, (34)

since q/q∗
k ≤ 1 for all k. That is, W and q′ are also feasible

and offer the same objective. We thus can reduce P2 to

P3 : maximize
q ′≥0,Q

q ′

subject to
√

q ′σ 2
k

∥∥∥∥
[
H† + PQ

]
k,:

∥∥∥∥
1

≤ �k ∀k.

It is easy to see that the optimal solution q ′
opt is given by

q ′
opt = �2

k

maxkσk

∥∥∥[H† + PQ
]

k,:
∥∥∥

2

1

(35)

where Q is the solution to

P4 : minimize
Q,t

t

subject to σk

∥∥∥[H† + PQ
]

k,:
∥∥∥

1
≤ t ∀k.

The above problem is a linear programming, which has been
extensively study [40] and can be solved efficiently by using
standard optimization packages [42], [43].

2) Upper Bound: For the upper bound, the optimization
problem is given by

P5 : maximize
αk∈[0,1],q′≥0,W

min
k

CU,k

subject to HW = diag{√q′}diag{√σσσ },∥∥[W]k,:
∥∥

1 ≤ �k ∀k.

It is noted that CU,k is proportional to q ′
k since the func-

tion f (αk, q ′
k)αk∈[0,1] = αk log

(
2γ η

√
q ′

k√
2πe

)
− log

(
α
αk
k (1 −

αk)
3
2 (1−αk)

)
is monotonically increase with respect to

√
q ′

k for
a fixed αk . Similar to the case of lower bound, we therefore
can reduce problem P5 to

P6 : maximize
q ′≥0,Q

q ′

subject to
√

q ′σ 2
k

∥∥∥[H† + PQ
]

k,:
∥∥∥

1
≤ �k ∀k,

which gives the same solution as in (35). Given the optimal
solution q ′

opt, an upper bound for the fairness rate CU of the
users is given by

CU = sup
αk∈[0,1]

αk log

(2γ η
√

q ′
opt√

2πe

)
− log

(
α
αk
k (1 − αk)

3
2 (1−αk)

)
.

(36)

The solution for CU can be obtained efficiently using the
bisection method as described in Section II. B.



B. Maximum Sum-Rate

In multiuser systems, another typical performance metric is
the maximum sum-rate of all users, which gives the following
optimization problem

P7 : maximize
Wk

K∑
k=1

Ck

subject to Hi Wk = 0 ∀k �= i,
K∑

i=1

∥∥[Wi ]k,:
∥∥

1 ≤ �k ∀k.

1) Lower Bound: First, considering the lower bound in (30),
the sum-rate maximization problem is written as

P8 : maximize
Wk

1

2

K∑
k=1

log

(
1 + 2γ ηHkWkWT

k HT
k

πeσ 2
k

)

subject to Hi Wk = 0 ∀k �= i,
K∑

i=1

∥∥[Wi ]k,:
∥∥

1 ≤ �k ∀k.

It should be noted that the above problem is not a convex
optimization problem with respect to Wk due to the non-
convexity of the objective function. Thus, it is generally
difficult (if not impossible) to optimally solve it in reasonable
time. We therefore attempt to study a sub-optimal solution by
finding a local optimality. To do that, let us introduce slack
variables λk and express HkWk = √

qk . Problem P8 is then
rewritten as

P9 : maximize
Wk ,qk,λk

1

2

K∑
k=1

log

(
1 + 2γ ηλk

πeσ 2
k

)

subject to HW = diag
{ [√

q1 . . .
√

qK
]T

}
,

K∑
i=1

∥∥[Wi ]k,:
∥∥

1 ≤ �k ∀k,

qk ≥ λk ∀k,

qk ≥ 0 ∀k.

It can be seen that the objective function of the above problem
is now concave. However, the first constraint is not convex
since HW is affine but diag

{ [√
q1 . . .

√
qK

]T
}

is concave.

To deal with this issue, we adopt the convex-concave proce-
dure (CCCP) [44], [45], which involves an iterative process, to
find a local optimal solution. Specifically, at the i -th iteration
of the procedure, we approximately linearize the concave term√

qk by using its Taylor expansion as
√

qk ≈
√

q(i−1)
k +

1

2
√

q(i−1)
k

(
qk −q(i−1)

k

)
, where q(i−1)

k is the value of qk obtained

from the previous iteration. As a result, problem P9 can be
transformed to a convex optimization problem as problem P10
on the bottom of this page. The detailed iterative algorithm for
solving P9 is described in Algorithm 1.

Algorithm 1 Iterative Algorithm for Solving Problem P9
1: Initialization

1) Estimate channel matrices Hk and noise variances
σ 2

k .
2) Initialize qk to be positive and sufficiently small, e.g.,

qk = 0.1.

2: Iteration: At the i−th iteration
1) Update q(i)k , λk , Wk given q(i−1)

k by solving problem
P10 using CVX toolbox .

2) i = i + 1.

3: Termination: terminate the iteration when
1) |q(i)k − q(i−1)

k | ≤ ε, where ε = 10−3 is a predefined
threshold, or

2) i = L, where L = 10 is the predefined maximum
number of iterations.

Due to the iterative nature, the Algorithm 1 usually requires
several iterations to ensure a convergence of the solution. As a
consequence, it may suffer from high computational time. We
therefore present a simple lower bound solution for problem
P8 with lower complexity. For this purpose, we rely on the
following observation

(∑K
i=1

∥∥[Wi ]k,:
∥∥

1

)2

K
≤

K∑
i=1

[Wi WT
i ]k,k ∀k. (37)

As proof, it is seen that
(∑K

i=1

∥∥ [Wi ]k,:
∥∥

1

)2 =
(∑K

i=1 |wk,i |
)2 and

∑K
i=1

[
Wi WT

i

]
k,k = ∑K

i=1 w
2
k,i . Hence,

P10 : maximize
Wk ,q

(i)
k ,λk

1

2

K∑
k=1

log

(
1 + 2γ ηλk

πeσ 2
k

)

subject to HW = diag

{ [√
q(i−1)

1 + 1

2
√

q(i−1)
1

(
q1 − q(i−1)

1

)
. . .

√
q(i−1)

K + 1

2
√

q(i−1)
K

(
qK − q(i−1)

K

)]T }
,

K∑
i=1

∥∥[Wi ]k,:
∥∥

1 ≤ �k ∀k,

q(i)k ≥ λk ∀k,

q(i)k ≥ 0 ∀k.
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the inequality in (37) can be obtained directly from the
Cauchy-Schwarz inequality. By replacing the second con-
straint in P8 by a stronger inequality as

∑K
i=1

[
Wi WT

i

]
k,k ≤

�2
k

K , we obtain the following optimization problem, which

yields a lower bound solution to problem P8

P11 : maximize
Wk

1

2

K∑
k=1

log

(
1 + 2γ ηHkWkWT

k HT
k

πeσ 2
k

)

subject to Hi Wk = 0∀k �= i,
K∑

i=1

[
Wi WT

i

]
k,k

≤ �2
k

K
∀k.

Obviously, the tightness of this bound depends on the tight-
ness of the inequality in (37), which is inversely proportional
to the number of users. As illustrated in Section VI, a very
tight lower bound solution to problem P8 can be achieved
when K = 2. For larger values, e.g., K = 3 and 4, acceptable
lower bounds can still be obtained. Now, to solve problem P11,
let us define Gi = Wi WT

i � 0, resulting in

P12 : maximize
Gk

1

2

K∑
k=1

log

(
1 + 2γ ηHkGkHT

k

πeσ 2
k

)

subject to Hi GkHT
i = 0 ∀k �= i,

K∑
i=1

[
Gi ]k,k ≤ �2

k

K
∀k,

rank(Gk) = 1 ∀k.

The objective function and the first two constraints of the
above problem are convex with respect to Gk . Unfortunately,
the third constraint is not convex. To overcome this difficulty,
we first omit that constraint to obtain

P13 : maximize
Gk

1

2

K∑
k=1

log

(
1 + 2γ ηHkGkHT

k

πeσ 2
k

)

subject to Hi GkHT
i = 0 ∀k �= i,

K∑
i=1

[
Gi ]k,k ≤ �2

k

K
∀k.

It can be seen that problem P13 is a standard determinant
maximization (MAXDET) program subject to linear matrix
inequalities [41], which can be solved efficiently by using
standard optimization packages. An important question now
is that whether the optimal solution of P13 is also optimal
to P11. Interestingly in [16], it is proved that the rank-one
constraint in P11 always holds. In other words, problems P13
and P11 are equivalent and thus they have the same solution.

Now, we examine the use of the lower bound in (4), which
accordingly leads to

P14 : maximize
Wk

K∑
k=1

log

⎛
⎝2γ ηHkWk√

2πeσ 2
k

⎞
⎠

subject to Hi Wk = 0 ∀k �= i,
K∑

i=1

∥∥[Wi ]k,:
∥∥

1 ≤ �k ∀k.

The above optimization problem is also a MAXDET program
subject to linear matrix inequalities. It therefore can be solved
by using standard optimization packages.

2) Upper Bound: The sum-rate optimization problem with
the use of the upper bound (32) can be written as

P15 : maximize
αk∈[0,1],Wk

K∑
k=1

αk log

(
2γ ηHkWk√

2πeσ 2
k

)

− log
(
α
αk
k (1 − αk)

3
2 (1−αk)

)

subject to Hi Wk = 0 ∀k �= i,
K∑

i=1

∥∥[Wi ]k,:
∥∥

1 ≤ �k ∀k.

The objective function of problem P15 is concave with respect
to Wk and αk . However, due to the special form of the
objective function (containing a product of an affine and a
concave function), most of standard optimization packages can
not be used directly to solve P15. To overcome this issue, we
use an iterative approach. In particular, we iteratively optimize
Wk and αk while fixing the other variable. Fixing αk , problem
can be solved using CVX. On the other hand, when Wk are
fixed, problem reduces to

P16 : maximize
αk∈[0,1]

K∑
k=1

f (αk),

where f (αk)=αk log

(
2γ ηHkWk√

2πeσ 2
k

)
− log

(
α
αk
k (1 − αk)

3
2 (1−αk)

)
.

Obviously, the optimal solution for problem P16 is achieved
when each summand f (αk) of the objective function is
maximized. Therefore, by solving optimal solutions for αk

using the bisection method, a solution for P15 can easily be
obtained. The proposed iterative algorithm is summarized in
Algorithm2 as follows.

Algorithm 2 Iterative Algorithm for Optimizing Wk and αk

1: Initialization
1) Estimate channel matrices Hk and noise variances

σ 2
k .

2) Initialize precoding matrices W(0)
k , e.g., W(0)

k = 0.

2: Iteration: At the i−th iteration
1) Update α(i)k given W(i−1)

k by solving problem P16
using the bisection method.

2) With the obtained α(i)k , solve problem P15 to update
W(i)

k by using CVX toolbox.
3) i = i + 1.

3: Termination: terminate the iteration when
1) ‖W(i)

k − W(i−1)
k ‖2

F ≤ ε, where ε = 10−3 is a
predefined threshold, or

2) i = L, where L = 10 is the predefined maximum
number of iterations.



Fig. 4. Geometrical configuration of a MU-MISO VLC system with 4 LED
arrays and 2 users.

VI. NUMERICAL RESULTS & DISCUSSIONS

This section presents numerical results to illustrate the
theoretical analyses of the max-min fairness and the maximum
sum-rate performances. Figure 4 shows the geometrical con-
figuration of the considered MU-MISO VLC system, which
consists of 4 LED arrays. We assume that all receivers are
placed on the same receive plane, which is 0.5 m above the
floor. In addition, for the sake of convenience, a Cartesian
coordinate system whose the origin is the center of the floor
is used for specifying the positions of users and the LED
arrays. Unless otherwise noted, the parameters of the room,
LED arrays and optical receivers are given in Table I. Further-
more, all analytical results are obtained by averaging 10, 000
different channel realizations (10, 000 different positions of
users are uniformly placed on the receive plane).

First, we compare the pseudo-inverse with the generalized
inverse design in terms of the max-min fairness performance.
The purpose is to validate our argument that, unlike its RF
counterpart, the pseudo-inverse, which was studied in previous
works [25], [26], may not necessarily result in the optimal
solution in MU-MISO VLC system due to the amplitude con-
straint. In Fig. 5, we present the averaged normalized fairness
power, which is defined as γ η

√
q ′

opt, versus the number of
LED arrays for different optimal designs of precoding matrix:
the generalized inverse and the pseudo inverse. The number
of users is set to K = 2 and the average transmitted power
per LED array is set to 30 dBm. In addition, because the
positions of LED arrays have an impact on the performance,
for the sake of comparison, we assume that LED arrays are
placed on a 2 meter radius circle so that the center points of
them form a regular polygon as in Fig. 6 for the scenarios
of NT = 2, 3, 5 and 6 (the case of NT = 4 was specified
in Table I). It is seen that the generalized inverse precoding
clearly outperforms the pseudo inverse, especially when the
number of LED arrays is lager than the number of users.
Particularly, the pseudo inverse becomes drastically inferior
to the optimal design as the number of LED arrays increases.

TABLE I

MU-MISO VLC SYSTEM PARAMETERS

Fig. 5. Averaged normalized fairness power for different precoding matrix
designs: generalized inverse and pseudo inverse.

This is because the pseudo inverse design restricts the search
for the optimal solution into a much smaller feasible subset,
i.e., restricting Q = 0.

Next, Figs. 7, 8 and 9 present the averaged sum max-min
fairness capacity versus the average LED array power Ps for
2-, 3-, and 4-user scenarios, respectively, with generalized and
pseudo inverses. The average LED array power ranges from
20 to 40 dBm, which corresponds to 0.1 to 10 W. As expected
from the previous figure, the generalized inverse performs
better than the pseudo inverse does in all cases, especially
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Fig. 6. Examples of LED array setup.

Fig. 7. Averaged sum max-min fairness rate versus average LED array
power: 2 users.

in the high power regime. Nevertheless, it is seen that the
superiority of the generalized inverse over the pseudo inverse
decreases with an increase in the number of users. Especially,
when the numbers of users and LED arrays are the same, i.e.,
NT = K = 4 in Fig. 9 or when NT = 2 = K in Fig. 5,
the performances of the generalized inverse precoding and the
pseudo inverse precoding are almost identical.

We demonstrate in Figs. 10, 11 and 12 the averaged sum
capacity versus the average LED array power for 2-, 3-
and 4-user scenarios, respectively. Firstly, as expected from
Proposition 1, all the bounds asymptotically converge at high
transmitted power. It is observed that the rate of convergence
is inversely proportional to the number of users, which is an
obvious consequence of the sum-rate performance. Secondly,
for the whole range of transmitted LED array power, the lower
bound in P8 is tight compared to the lower bound in P11
with maximum gaps are 0.4 nat and 0.5 nat for 3 and 4
user scenarios, respectively, (the gap is negligible when there

Fig. 8. Averaged sum max-min fairness rate versus average LED array
power: 3 users.

Fig. 9. Averaged sum max-min fairness rate versus average LED array
power: 4 users.

Fig. 10. Averaged sum-rate maximization versus average LED array
power: 2 users.

are 2 users). On the other hand, the lower bound in P14 is
applicable in the high transmitted power only for the case
of 3 and 4 users.

In Fig. 13a and Fig. 13b, the convergence behaviors of
Algorithm 1 and Algorithm 2 for different numbers of users



Fig. 11. Averaged sum-rate maximization versus average LED array
power: 3 users.

Fig. 12. Averaged sum-rate maximization versus average LED array
power: 4 users.

Fig. 13. (a) Convergence behavior of Algorithm 1, (b) Convergence behavior
of Algorithm 2.

are presented, respectively. The average transmitted LED array
power is set to 40 dBm. Specifically, at a targeted relative
sum-rate error of εsum-rate = 10−3, the Algorithm 1 requires
5 iterations for all cases of the number of users. For the case

of the Algorithm 2, it needs 2, 3 and 6 iterations when the
number of users are 2, 3 and 4, respectively, to obtain the
relative sum-rate error of 10−3.

VII. CONCLUSIONS

The paper studied optimal precoding designs for MU-MISO
VLC systems with practical constraints of the optical signal.
To mitigate the MUI among users, ZF precoding technique is
utilized due to its computational advantage. Unlike previous
studies, optimal ZF precoding matrices are designed in accor-
dance with specific performance criterions. Capitalizing on the
precoding designs, lower and upper bounds of the max-min
fairness and the maximum sum-rate are derived. Numerical
results showed that the generalized inverse design achieves
better performance than that of the pseudo inverse design,
especially in the high SNR region.

APPENDIX

PROOF OF PROPOSITION 1

The first derivative of f (α) is given by

f ′(α) = log

(
2A√

2πeN0

)
− log(α)+ 3

2
log(1 − α)+ 1

2
.

(38)

Since f ′(α) is continuous, monotonically decreasing over
(0, 1), limα→0 f ′(α) = ∞ and limα→1 f ′(α) = −∞, the
critical point α∗ exists and is unique. At the critical point

f1(α
∗) = log(α∗)− 3

2
log(1 − α∗) = log

(
2A√

2πeN0

)
+ 1

2
.

(39)

As

lim
A√
N0

→0
log

(
2A√

2πeN0

)
+ 1

2
= −∞, (40)

lim
A√
N0

→∞
log

(
2A√

2πeN0

)
+ 1

2
= ∞, (41)

lim
α∗→0

f1(α
∗) = −∞, (42)

lim
α∗→1

f1(α
∗) = ∞ (43)

and f1(α
∗) is continuous, monotonically increasing, we

deduce to

lim
A√
N0

→0
α∗ = 0 and lim

A√
N0

→∞
α∗ = 1. (44)

As a result

lim
A√
N0

→0
CU = f (0) = 0, (45)

lim
A√
N0

→∞
CU = f (1) = log

(
2A√

2πeN0

)
. (46)

This completes the proof.
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