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help in the moments when I needed the help the most.

Veljko Stanković
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Zusammenfassung

Mehrantennensysteme sind auf Grund der erhhten Bandbreiteneffizienz und Leistung eine

Schlsselkomponente von Mobilfunksystemen der Zukunft. Diese ermglichen das gleichzeit-

ige Senden von mehreren, rumlich getrennten Datenstrmen zu verschiedenen Nutzern. Die

zentrale Fragestellung in der Praxis ist, ob der ursprnglich vorausgesagte Kapazittsgewinn

in realistischen Szenarios erreicht wird und welche spezifischen Gewinne durch zustzliche

Antennen und das Ausnutzen von Kanalkenntnis am Sender und Empfnger erzielt werden,

was andererseits einen Zuwachs an Overhead oder ntiger Rechenleistung bedeutet.

In dieser Arbeit werden neue lineare und nicht-lineare MU-MIMO Precoding-Verfahren

vorgestellt. Der verfolgte Ansatz zur Bestimmung der Precoding-Matrizen ist allgemein

anwendbar und die entstandenen Algorithmen knnen zur Optimierung von verschiede-

nen Kriterien mit beliebig vielen Antennen an der Mobilstation eingesetzt werden. Das

wurde durch die Berechnung der Precoding-Matrix in zwei Schritten erreicht. Im ersten

Schritt wird die berschneidung der Zeilenrume minimiert, die durch die effektiven Kanal-

matrizen verschiedener Nutzer aufgespannt werden. Basierend auf mehreren parallelen

Einzelnutzer-MIMO-Kanlen wird im zweiten Schritt die Systemperformanz bezglich bes-

timmter Kriterien optimiert.

Aus der gngigen Literatur ist bereits bekannt, dass fr Nutzer mit nur einer Antenne das

MMSE Kriterium beim precoding optimal aber nicht bei Nutzern mit mehreren Antennen.

Deshalb werden in dieser Arbeit zwei neue Mehrnutzer MIMO Strategien vorgestellt, die

vom MSE Kriterium abgeleitet sind, nmlich sukzessives MMSE und RBD. Bei der sukzes-

siven Verarbeitung mit einer entsprechenden Anpassung der Sendeleistungsverteilung kann

die volle Diversitt des Systems ausgeschpft werden. Die Kapazitt nhert sich dabei der max-

imalen Summenrate des Systems an. Bei gemeinsamer Verarbeitung der MIMO Kanle wird

unabhngig vom Grad der Mehrnutzerinterferenz die maximale Diversitt erreicht.
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Die genannten Techniken setzen entweder eine aktuelle oder eine ber einen lngeren

Zeitraum gemittelte Kanalkenntnis voraus. Aus diesem Grund mssen die Auswirkungen

von Kanal-Schtzfehlern und Einflsse des Transceiver Front-Ends auf die Verfahren nher

untersucht werden.

Fr eine weitergehende Abschtzung der Mehrantennensysteme muss die Performanz des

Gesamtsystems untersucht werden, da viele Einflsse auf die rumliche Signalverarbeitung

bei Betrachtung eines einzelnen Links nicht erkennbar sind. Es wurde gezeigt, dass mit

MIMO Precoding Strategien ein Vielfaches der Datenrate eines Systems mit nur einer

Antenne erzielt werden kann, whrend der Overhead durch Pilotsymbole und Steuersignale

nur geringfgig zunimmt.
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Abstract

Multiple-input, multiple-output (MIMO) systems are a key component of future wireless

communication systems, because of their promising improvement in terms of performance

and bandwidth efficiency. An important research topic is the study of multi-user (MU)

MIMO systems. Such systems have the potential to combine the high throughput achiev-

able with MIMO processing with the benefits of space division multiple access (SDMA).

The main question from a practical standpoint is whether the initially predicted capacity

gains can be obtained in more realistic scenarios and what specific gains result from adding

more antennas and overhead or computational power to obtain channel state information

(CSI) at the transceivers.

In this thesis we introduce new linear and non-linear MU MIMO processing techniques.

The approach used for the design of the precoding matrix is general and the resulting

algorithms can address several optimization criteria with an arbitrary number of antennas

at the user terminals (UTs). This is achieved by designing the precoding matrices in two

steps. In the first step we minimize the overlap of the row spaces spanned by the effective

channel matrices of different users. In the next step, we optimize the system performance

with respect to the specific optimization criterion assuming a set of parallel single-user

MIMO channels.

As it was previously reported in the literature, minimum mean-squared-error (MMSE)

processing is optimum for single-antenna UTs. However, MMSE suffers from a perfor-

mance loss when users are equipped with more than one antenna. The two MU MIMO

processing techniques that result from the two different MSE criteria that are proposed in

this thesis are successive MMSE and regularized block diagonalization. By iterating the

closed form solution with appropriate power loading we are able to extract the full diver-

sity in the system and empirically approach the maximum sum-rate capacity in case of
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high multi-user interference. Joint processing of MIMO channels yields maximum diversity

regardless of the level of multi-user interference.

As these techniques rely on the fact that there is either instantaneous or long-term CSI

available at the base station to perform precoding and decoding, it was very important to

investigate the influence of the transceiver front-end imperfections and channel estimation

errors on their performance.

For a comprehensive assessment of multi-antenna techniques, it is mandatory to con-

sider the performance at system level, since many effects of spatial processing are not

tractable at the link level. System level investigations have shown that MU MIMO pre-

coding techniques provide several times higher data rates than single-input single-output

systems with only slightly increased pilot and control overhead.

vii



List of Tables

5.1 SO THP algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 SMMSE THP algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 SMMSE SIC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Regularized successive optimization THP (RSO THP) algorithm. . . . . . . 69

5.5 Iterative RBD (IRBD) algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Relative energy and processing time costs . . . . . . . . . . . . . . . . . . . 91

5.7 SMMSE algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Relative energy and processing time costs for steps (1) and (2) of SMMSE

algorithm given in Table 5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.9 Relative energy and processing time costs for steps (3) and (4) of SMMSE

algorithm given in Table 5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 IRBD algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.11 Relative energy and processing time costs for step (1) in the first iteration

of IRBD algorithm given in Table 5.10. . . . . . . . . . . . . . . . . . . . . . 93

5.12 Relative energy and processing time costs for step (1) in iterations after the

first one of IRBD algorithm given in Table 5.10. . . . . . . . . . . . . . . . . 93

5.13 Relative energy and processing time costs for step (2) of IRBD algorithm

given in Table 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.14 Relative energy and processing time costs for step (3) of IRBD algorithm

given in Table 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.15 Relative energy and processing time costs for step (4) of IRBD algorithm

given in Table 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.16 Relative energy and processing time costs for step (5) of IRBD algorithm

given in Table 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Environment specific parameters. . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



6.2 Deployment specific parameters. . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 OFDM parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Environment specific parameters. . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Outage cell throughput relative to SISO system throughput. Small office

scenario. Isolated cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 Outage user throughput relative to SISO system throughput. Small office

scenario. Isolated cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7 Outage cell throughput relative to SISO system throughput. Small office

scenario. Distributed MIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.8 Outage user throughput relative to SISO system throughput. Small office

scenario. Distributed MIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

ix



List of Figures

1.1 Block diagram of multi-user MIMO downlink system. . . . . . . . . . . . . 4

1.2 Block diagram of multi-user MIMO uplink system. . . . . . . . . . . . . . . 5

3.1 Broadcast channel upper bounds. 10 % Outage capacity. MR ≤MT case. . 27

3.2 Broadcast channel upper bounds. 10 % Outage capacity. MR > MT case. . 27

5.1 Uncoded BER performance of ZF and MMSE precoders. Flat fading, Hw

channel. K = 3, MT = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Information sum rate of BD,ZF and MMSE in a system with configuration

{1, 1, 1, 1} × 4. BD system with configuration {2, 2} × 4. . . . . . . . . . . . 41

5.3 Block diagram of the THP system. . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Graphical representation of the effective network channel matrix for BD

MMSE THP with the configuration {1, 1, 2, 2} × 6. Crosses represent MUI

elements that will be eliminated using THP. . . . . . . . . . . . . . . . . . . 45

5.5 10 % outage information rate of SO THP and MMSE THP in bps/Hz as a

function of the SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 BER as a function of SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.7 BER performance of SMMSE, SMMSE THP and BD as a function of the

SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 10 % outage information rate of SMMSE, BD and SMMSE THP in bps/Hz

as a function of the SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.9 BER performance of V-BLAST and SMMSE SIC in combination with

Alamouti STC and feddback of user uplink precoding vectors. . . . . . . . . 61

5.10 10 % outage information rate of BD, SMMSE and RBD as a function of SNR. 73

5.11 10 % outage information rate of RBD, RSO THP and IRBD as a function

of SNR. MR ≤MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

x



5.12 10 % outage information rate of RBD, RSO THP and IRBD as a function

of SNR. MR > MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.13 BER performance comparison of RBD with different power loading algo-

rithms with BD, SMMSE and SMMSE THP. . . . . . . . . . . . . . . . . . 75

5.14 BER performance of RBD, IRBD, JRBD and MU MIMO system with or-

thogonal users in configuration {2, 2, 2} × 8. . . . . . . . . . . . . . . . . . . 76

5.15 BER performance of RBD, IRBD, JRBD, RSO THP and MU MIMO system

with orthogonal users in configuration {4, 4, 4} × 4. . . . . . . . . . . . . . . 76

5.16 Uncoded BER performance of SMMSE, RBD, RSO THP, IRBD and MU

MIMO system with orthogonal users in configuration {4, 4, 4} × 4. . . . . . 77

5.17 10 % outage information rate of IRBD, SMMSE and BD with long-term

CSI at the transmitter as a function of the SNR. Each user is equipped

with two antennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.18 BER performance of IRBD with long-term CSI at the transmitter as a

function of the SNR. System configuration is {2, 2, 2} × 6. . . . . . . . . . . 82

5.19 10 % outage information rate with long-term CSI at the transmitter as a

function of the receive SNR. Each user is equipped with four antennas. . . 82

5.20 Influence of the calibration errors on the performance of IRBD and SMMSE.

The antenna system configuration is {3, 3, 3} × 6. . . . . . . . . . . . . . . . 87

5.21 Influence of the channel estimation errors on the performance of IRBD and

SMMSE. Antenna system configuration is {3, 3, 3} × 6. . . . . . . . . . . . . 90

6.1 WINNER scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Manhattan grid. The buildings are represented with squares. The dots

mark the positions of the base stations. The cell of interest is denoted in

the center of the grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Small office scenario. There are two corridors with 10 offices on each side

of the corridors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 WINNER super frame, frame and chunk configuration. . . . . . . . . . . . . 101

6.5 CCDF of cell throughput. IRBD precoding. Number of antennas at the

base station MT = 8. Isolated cell. . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 CCDF of user throughput. IRBD precoding. Number of antennas at the

base station MT = 8. Isolated cell. . . . . . . . . . . . . . . . . . . . . . . . 106

xi



6.7 CCDF of cell throughput. IRBD precoding. Number of antennas at the

base station MT = 16. Isolated cell. . . . . . . . . . . . . . . . . . . . . . . 107

6.8 CCDF of user throughput. IRBD precoding. Number of antennas at the

base station MT = 16. Isolated cell. . . . . . . . . . . . . . . . . . . . . . . 107

6.9 CCDF of cell throughput. IRBD precoding. Number of antennas at the

base station MT = 24. Isolated cell. . . . . . . . . . . . . . . . . . . . . . . 108

6.10 CCDF of user throughput. IRBD precoding. Number of antennas at the

base station MT = 24. Isolated cell. . . . . . . . . . . . . . . . . . . . . . . 108

6.11 CCDF of cell throughput. IRBD precoding. Number of antennas at the

base station MT = 16. Isolated cell. . . . . . . . . . . . . . . . . . . . . . . 109

6.12 CCDF of user throughput. IRBD precoding. Number of antennas at the

base station MT = 16. Isolated cell. . . . . . . . . . . . . . . . . . . . . . . 109

6.13 Position of the antenna arrays in a small office scenario. . . . . . . . . . . . 111

6.14 CCDF of cell throughput. IRBD precoding. Number of antennas at the

base station MT = 4. Number of base stations NBS = 4. . . . . . . . . . . . 112

6.15 CCDF of cell throughput. IRBD precoding. Number of antennas at the

base station MT = 4. Number of base stations NBS = 4. . . . . . . . . . . . 112

6.16 CCDF of cell throughput. IRBD precoding. Number of antennas at the

base station MT = 6. Number of base stations NBS = 4. . . . . . . . . . . . 113

6.17 CCDF of user throughput. IRBD precoding. Number of antennas at the

base station MT = 6. Number of base stations NBS = 4. . . . . . . . . . . . 113

6.18 CCDF of cell throughput. IRBD precoding. Number of antennas at the

base station MT = 8. Manhattan scenario. . . . . . . . . . . . . . . . . . . . 115

6.19 CCDF of user throughput. IRBD precoding. Number of antennas at the

base station MT = 8. Manhattan scenario. . . . . . . . . . . . . . . . . . . . 115

xii



List of Symbols and Abbreviations

./ - Element wise division

(•)+ - (x)+ := max(0, x)
∗ - Hadamard (element wise) product
‖X‖F - Frobenius norm of a matrix
X∗ - Matrix conjugate
XH - Matrix conjugate transpose
XT - Matrix transpose
1 - Matrix with all elements equal to 1
A - Array steering matrix
β - Scaling factor used to set the transmit power constraint
B - THP feedback matrix of dimension r × r
CN (a, b) - Complex Gaussian random variable with mean value a and variance b
CBC - Shannon capacity of multiple access channel
CMAC - Shannon capacity of broadcast channel
CSU - Single user Shannon capacity
D - Combined decoding matrix of all users on the uplink of dimension

r ×MT

Di - The ith user’s decoding matrix on the uplink of dimension ri ×MT

Da - Combined decoding matrix for MUI suppression of all users on the
uplink

Db - Combined decoding matrix for data decoding of all users on the uplink
Dai

- The ith user’s decoding matrix for MUI suppression on the uplink
Dbi

- The ith user’s decoding matrix for data decoding on the uplink
E {•} - Averaging function
Φ - Power loading matrix
Φi - The ith user’s power loading matrix
ΦimpD - Improved diversity power loading matrix
ΦMMSE - MMSE power loading matrix
ϕi,i - Element on the main diagonal of the power loading matrix
f0 - Subcarrier spacing
Fa - Combined precoding matrix for MUI suppression of all users

on the downlink

xiii



Fb - Combined precoding matrix for data precoding of all users
on the downlink

Fai
- The ith user’s precoding matrix for MUI suppression on the downlink

Fbi
- The ith user’s precoding matrix for data precoding on the downlink

F - Combined precoding matrix of all users on the downlink of dimension
MT × r

Fi - The ith user’s precoding matrix on the downlink of dimension MT × ri
GCSI - Channel estimator gain
G - Combined decoding matrix of all users on the downlink of dimension

r ×MR

Gi - The ith user’s decoding matrix on the downlink of dimension ri ×MRi

H - Combined network MIMO channel matrix of dimension MR ×MT

Hest - The estimate of the channel matrix
Hi - The ith user’s MIMO channel matrix of dimension MRi

×MT

H
(k,j)
i - The ith user’s channel matrix on the jth symbol of the kth chunk

Ĥ
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Chapter 1

Introduction

The next generation of wireless mobile communication systems requires the reliable trans-

mission of high-rate data under various types of channels and scenarios. Current wireless

mobile, data, and fixed access communication systems are converging into a data (all IP)

oriented wireless networks with high spectral efficiency. Future wireless communication

systems should be flexible and adaptive to various scenarios and Quality-of-Service (QoS)

requirements. The system should be robust to the influence of fading, interference, and

hardware imperfections.

The very high data rates that are required for future wireless systems in reasonably

large areas do not appear to be feasible with the conventional techniques and architectures.

Frequency bands that are envisioned for future wireless communication systems are well

above 2 GHz. The radio propagation in these bands is significantly more vulnerable to

non-line-of sight (NLOS) conditions, which is typical in modern urban communications.

The efficient design of wireless systems will require the use of multiple antennas, advanced

adaptive modulation and coding schemes, relaying nodes, cooperative networks and users,

and cross-layer design.

The goal of reaching high data rates is particularly challenging for systems that are

power, bandwidth, and complexity limited. However, another domain can be exploited to

significantly increase channel capacity: the use of multiple transmit and receive antennas.

Pioneering work by Winters [1], Telatar [2], and Foschini [3] ignited much interest in

this area by predicting remarkable spectral efficiencies for wireless systems with multiple

antennas when the channel exhibits rich scattering and the channel state information

(CSI) can be accurately tracked. This initial promise of exceptional spectral efficiency

resulted in an explosion of research activities to characterize the theoretical and practical
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issues associated with multiple-input multiple-output (MIMO) channels and to extend

these concepts to multi-user systems. The main question from both a theoretical and

practical standpoint is whether the enormous initially predicted capacity gains can be

obtained in a more realistic operating scenarios and what specific gains result from adding

more antennas and overhead or computational power to obtain CSI at the transmitter and

receiver.

The large spectral efficiencies associated with MIMO channels are based on the premise

that a rich scattering environment provides independent transmission paths for each

transmit-receive antenna pair. Therefore, for single-user (SU) systems, a transmission

and reception strategy that exploits this structure achieves capacity on approximately

min (MT ,MR) separate channels, where MT is the number of transmit antennas and MR

is the number of receive antennas. Thus, capacity scales linearly with min (MT ,MR) rel-

ative to a system with just one transmit and one receive antenna. The capacity increase

requires a scattering environment such that the matrix of channel gains between each

transmit and receive antenna pair has full rank and independent entries and that perfect

estimates of these gains are available at the transmitter and receiver.

Space-time coding (STC) [4], [5], and spatial multiplexing (SMUX) [3], [6], provide

full diversity and achieve high data rates over MIMO channels, respectively. Spatial mul-

tiplexing involves transmitting independent streams of data across multiple antennas to

maximize throughput, whereas space-time coding maps input symbol streams across space

and time for diversity and coding gain at a given data rate. Neither scheme requires CSI at

the transmitter. However, to achieve the maximum information rate and/or the diversity

and array gain afforded by increased computational complexity, appropriate precoding

and modulation techniques are necessary.

Generalized designs of a jointly optimum linear precoder and decoder for a SU MIMO

system, using a mean-squared error (MSE) criterion are presented in [7] and [8]. The

framework presented in these papers is general and addresses several optimization criteria

like minimum MSE (MMSE), minimum bit error rate (BER) and maximum information

rate. It is assumed that the channel is known at the receiver as well as at the transmitter.

CSI can be acquired at the transmitter either by using feedback from the receiver or by

using the reciprocity principle when the transmitter and receiver operate in time division

duplex (TDD) so that the time-invariant MIMO channel transfer function is the same in

both ways. The optimum precoder and decoder diagonalize the MIMO channel into eigen
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subchannels. The different solutions targeting different optimization criteria are obtained

by using different power allocation schemes over these subchannels. For example, the

optimum linear precoder and decoder that maximize the information rate, decouple the

MIMO channel into eigen subchannels and allocate power to these subchannels according

to the water-pouring policy [7], [9].

An important research topic is the study of multi-user (MU) MIMO systems. Such

systems have the potential to combine the high capacity achievable with MIMO processing

with the benefits of space division multiple access (SDMA). In the MU MIMO scenario,

a base station (BS) or an access point (AP) is equipped with multiple antennas and

it is simultaneously communicating with a group of users. Each of these users is also

equipped with multiple antennas. Motivated by the need for cheap mobiles with low power

consumption, we focus on systems where the complex signal processing is performed at

the BS/AP. The BS/AP will use the CSI available at the transmitter to allow these users

to share the same channel and mitigate or completely eliminate multi-user interference

(MUI) in an ideal case.

In a MU scenario, capacity becomes a K-dimensional region defining the set of all

rate vectors (R1, . . . , RK) simultaneously achievable by all K users. Two MU MIMO

scenarios can be distinguished. In the first scenario, multiple non-cooperative terminals

are transmitting to a single receiver. This scenario is often referred to as the MU MIMO

uplink (UL) channel. In the information theory it is known as the MIMO multiple access

channel (MAC). The scenario, in which a single terminal is transmitting to multiple non-

cooperative receivers is referred to as MU MIMO downlink channel or broadcast channel

(BC). MU MIMO downlink system is depicted in Figure 1.1 and MU MIMO uplink system

is depicted in Figure 1.2.

The capacity region of a general MIMO MAC was obtained in [2], [10]. It has been

shown that a linear detection with successive interference cancellation (SIC) provides the

maximum sum rate capacity of a MU MAC system. However, the capacity of a MIMO

BC is an open problem due to the lack of a general theory on non-degraded broadcast

channels. In pioneering work by Caire and Shamai [11], a set of achievable rates for the

MIMO BC was obtained by applying Costa’s ”dirty-paper” coding (DPC) technique at

the transmitter [12]. In [12], Costa proved the surprising result that the capacity of the

channel, when the non-causal additive Gaussian interference is perfectly known at the

transmitter, is the same as if the interference was not present. It was also shown in [11]
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Figure 1.1: Block diagram of multi-user MIMO downlink system.

that the sum rate MIMO BC capacity equals the maximum sum rate DPC achievable

region by demonstrating that the achievable rate meets the Sato upper bound [13].

DPC is a technique that allows non-causally known interference to be ”pre-subtracted”

at the transmitter. In [14], [15] it was shown that the achievable region of the MIMO BC

obtained using DPC is equal to the capacity region of the MIMO MAC using uplink-

downlink duality. This allows us to substitute the non-convex problem of finding the

DPC rate region with the dual MAC problem where the rates are convex functions of the

correlation matrices.

DPC can achieve the maximum sum rate of the system and provide the maximum

diversity order [16], [17]. However, these techniques require the use of a complex sphere-

decoder or an approximate closest-point solution, which makes them hard to implement in

practice, especially when the number of users is large [17]. Tomlinson-Harashima precod-

ing (THP) was first developed for single-input single-output (SISO) multipath channels,

where it was used to overcome the error propagation problem of decision feedback filter-

ing, [18], [19]. In [20] it is proposed for the equalization of MUI in MIMO systems. In

[21] the authors propose the use of THP in combination with MMSE filtering. In [21]

successive interference cancellation is performed at the transmitter, whereas the receiver

still performs linear filtering. In [22], both feedforward and feedback filters are deployed

at the transmitter which results in a significant reduction of the computational load at

the receiver side. Although DPCs outperform THP, THP is much less computationally

demanding and thus more attractive for practical implementation.

Linear MU MIMO processing techniques are less computationally demanding than

DPCs, and they can use either instantaneous channel knowledge or long-term statistics of
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Figure 1.2: Block diagram of multi-user MIMO uplink system.

the channel to perform precoding or decoding. In general, linear MU MIMO processing

techniques cannot provide the maximum sum rate capacity, but there are some cases where

this is possible and where the MUI is set to a minimum by choosing semi-orthogonal users

for simultaneous transmission using SDMA [23]. In this thesis it will be empirically shown

that linear processing techniques reach the sum-rate capacity of the BC channel also when

the total number of antennas at the user terminals is equal to or greater than the number

of antennas at the base station. Non-linear MU MIMO processing techniques require the

instantaneous knowledge of the channel transfer function at the BS. On the other hand,

linear MU MIMO processing techniques can be used with various degrees of channel state

information. Thus, linear techniques are more flexible and more favorable for practical

implementation than non-linear techniques.

1.1 Scope of the thesis and contributions

In this thesis we will introduce a general framework for the design of the multi-user MIMO

precoding and decoding matrices. Our goal is to define one MU MIMO algorithm that will

be able to address several optimization criteria like minimum MSE (MMSE), minimum bit

error rate (BER), and maximum information rate. When all users are equipped with one

antenna, it has been shown in the literature that the MU MIMO precoding and decoding

algorithms that are defined based on the MSE criterion have the best performance, [22],

[9]. In this thesis, two new cost functions that are derived from the MSE criterion will be

introduced. Based on the optimization of these two cost functions two new MU MIMO

precoding techniques will be defined.

The link between the user terminals and the base station in a wireless multi-user MIMO
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scenario is the wireless propagation channel. As a consequence, it is very important to ac-

curately model the behavior of the channel in the simulations to allow realistic assessment

of the performance that can be achieved. In Chapter 2 we describe the channel models

that will be used in the simulations. At the end, a discrete input-output signal model will

be introduced.

In Chapter 3, an overview of fundamental data rate limits of the MAC and the BC

channels will be given. Numerically finding the maximum of the DPC sum-rate capacity

region is not a trivial problem. Based on the iterative water-pouring algorithm for the

conventional MAC problem, an iterative water-pouring algorithm was proposed in [24],

to compute the correlation matrices of a dual MAC channel. These MAC correlation

matrices are then transformed to the downlink correlation matrices that achieve the same

rates under the same sum power constraint. This algorithm is complex and requires

numerous calculations of SVDs and the water-pouring algorithm. By using the Hadamard

inequality we find a novel algorithm in Chapter 3 to compute an upper bound which is

not always as tight as the previous one but which requires less computational effort.

An overview of the SU MIMO processing techniques will be given in Chapter 4. First,

we will review techniques that do not need any CSI at the transmitter to extract diversity

gain or spatial multiplexing gain. These techniques are suboptimum because they do not

require CSI at the transmitter to encode the user’s data. Generalized designs of a jointly

optimum linear precoder and decoder for a single user (SU) MIMO system, using a mean-

squared error (MSE) criterion are given in [7] and [8]. There are numerous results in the

literature which address the optimization of multi-user MIMO downlink systems using

different optimization criteria. However, most of the solutions are not general like in the

case of point-to-point communications.

In Chapter 5 we first give a short overview of the most relevant multi-user precoding

techniques that we have used as a starting point in our investigations. Each of these tech-

niques has certain drawbacks that have significant impact on the performance and design

of the multi-user MIMO systems. The minimum mean-square-error (MMSE) precoder

balances the multi-user interference mitigation with noise enhancement and minimizes the

total error. The drawback of this technique is that it is limited to single antenna user

terminals. In a MU MIMO system employing MMSE precoding, if the user terminal is

equipped with more than one antenna, the signal transmitted over each antenna needs to

be precoded independently. Block diagonalization (BD) is more appropriate to be used
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with user terminals with multiple number of antennas [25]. However, it has a limitation

that the total number of antennas at the user terminals has to be less than or equal to

the number of antennas at the base station.

BD MMSE THP is a novel technique introduced in [26] that combines MMSE THP

to precode the signals to the single-antenna terminals and BD to precode the signals to

the multiple-antenna terminals. The performance of this technique is better than BD or

MMSE THP, however, it has the same limitation regarding the number of antennas at the

user terminals and the base station as BD. Under these limitations, it has been shown by

simulations that a combination of BD and THP that was proposed in [27] called successive

optimization (SO) THP approaches the DPC sum-rate capacity bound.

In Section 5.5.1 we introduce a modified MSE cost function. Using this cost function

we derive the successive MMSE (SMMSE) precoding filter from the linear transmit MMSE

precoding optimization by neglecting the contribution between the elements of one user’s

channel matrix to this users’ MSE, [28]. In a system using SMMSE, the number of antennas

at the user terminals can be arbitrary but the total number of data streams has to be less

than or equal to the rank of the combined network channel matrix of all users. The

combination of SMMSE and THP was introduced in [29]. At low SNRs, SMMSE THP

approaches the DPC sum-rate capacity bound in simulations. At high SNRs SMMSE

THP provides higher diversity gain than SMMSE. A similar approach is used in [30] to

design an uplink MU MIMO receive filter. This technique is called SMMSE successive

interference cancellation (SIC) and it can provide much higher diversity than V-BLAST.

Although SMMSE processing allows a generalized design of MU MIMO precoding and

decoding matrices it does not always fully extract the diversity and antenna array gains

inherent in the MU MIMO system. In Section 5.6 we introduce the second cost function

based on the MSE criterion. The resulting precoding technique called regularized BD

(RBD) was introduced in [29] and [31]. In combination with THP or by iterating the

closed form solution we reach the maximum sum rate capacity of the broadcast channel

in simulations. By iterating or by joint precoding in two other dimensions, time and

frequency, we are able to extract the maximum diversity in the system.

In Section 5.7 a novel approach that allows that the same MU MIMO precoding algo-

rithms requiring instantaneous CSI at the transmitter can be used also with the long-term

channel knowledge is introduced. Using this approach it is possible to combine instan-

taneous CSI for some users and long-term CSI for others to perform precoding. These

7



results were presented originally in [32]. At the end of Chapter 5 we investigate the in-

fluence of hardware impairments and channel estimation errors on the performance of the

MU MIMO precoding techniques and we give a short overview of the relative complexity

of these techniques.

The results of the system level investigations of MU MIMO precoding techniques are

given in Chapter 6. These investigations are performed using the transmission system

proposed within the WINNER (Wireless World Initiative New Radio) project. Advanced

multi-antenna solutions are a very important part of the WINNER system. Since MU

MIMO precoding techniques require either instantaneous or long-term channel knowledge

at the transmitter, the most appropriate scenarios where these techniques can be used

are indoor, hotspot or micro cellular scenario where it is possible to acquire CSI at the

transmitter with low pilot and control overhead. The results show that MU MIMO systems

can provide much higher data rates than single-input single-output (SISO) systems with

a slightly higher pilot and control overhead.
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Chapter 2

MIMO channel modeling

A profound understanding of MIMO channels is crucial in selecting proper signaling strate-

gies in MIMO wireless systems. Simple models have been used to get the insight into the

impact of propagation conditions on MIMO capacity. They assume that only spatial fad-

ing correlation is responsible for the rank structure of the MIMO channel. In practice,

the realization of a high MIMO capacity in actual radio channels is sensitive not only

to the fading correlation, but also to the structure of the scattering in the propagation

environment. In this chapter we review the construction of wireless MIMO channels which

we will use in simulations, its sampled model, as well as the input-output signal model.

2.1 The MIMO channel

Fading represents fluctuations in received signal level. Macroscopic fading is caused by

shadowing effects of buildings or natural features and is determined by the local mean of

the fast fading signal. Microscopic fading corresponds to rapid fluctuations of the received

signal in time, frequency, and space and is caused by the signal scattering off objects

between the transmitter and the receiver. The effective path loss follows an inverse nth

power law. In real environments the path loss exponent varies from 2.5 to 6 and is also a

function of the terrain and foliage.

A MIMO channel with MT transmit antennas and MR receive antennas comprises of

MTMR SISO channels. The MIMO channel is given by the MR×MT matrix H (τ ; t) with

H (τ ; t) =




h1,1 (τ ; t) · · · h1,MT
(τ ; t)

...
. . .

...

hMR,1 (τ ; t) · · · hMR,MT
(τ ; t)


 (2.1)
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where hm,n (τ ; t) is the channel’s impulse response between nth transmit n = 1, . . . ,MT

and mth receive antenna m = 1, . . . ,MR as a function of delay τ and time t.

The MIMO channel is constructed under the narrowband array assumption [33]. Under

the narrowband assumption, the bandwidth of the signal is assumed to be much smaller

than the reciprocal of the transmit time of the signal across the antenna array. The scat-

terer location, antenna element patterns and geometry and the scattering model together

determine the average power and the correlation between elements of H (τ ; t).

Time varying fading due to the scatterer or transmitter/receiver motion results in

a Doppler spread over a finite spectral bandwidth (f ± fD), where fD is the maximum

Doppler frequency. Time selective fading is characterized by the coherence time TC . The

larger the coherence time, the slower the channel is changing.

In a multipath environment, several time-shifted and scaled versions of the transmitted

signal arrive at the receiver, which cause frequency selective fading. The maximum spread

of path delays is called time delay spread τmax. The root-mean-squared (RMS) delay

spread of the channel στ , is defined as [9]

στ =

√∫ τmax

0 (τ − τ̄)2 PDP (τ) dτ∫ τmax

0 PDP (τ) dτ

where PDP (τ) is the power delay profile of the channel, i.e. the average power as a

function of delay, and

τ̄ =

∫ τmax

0 τPDP (τ) dτ∫ τmax

0 PDP (τ) dτ

Frequency selective fading is characterized by the coherence bandwidth BC which is in-

versely proportional to the RMS delay spread and is a measure of a channel’s frequency

selectivity. When the coherence bandwidth is comparable or less than the signal band-

width, the channel is said to be frequency selective.

The angle spread at the transmitter/receiver refers to the spread of angles of depar-

ture/arrival of the multipath components at the transmit/receive antenna array. The RMS

angle spread, σθ, is defined using the angle spectrum (PAP - power angle profile), i.e., the

average power as a function of angle of arrival, θ, as

σθ =

√√√√
∫ π
−π

(
θ − θ̄

)2
PAP (θ) dθ∫ π

−π PAP (θ) dθ
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where θ̄ is the mean angle of arrival:

θ̄ =

∫ π
−π θ PAP (θ) dθ∫ π
−π PAP (θ) dθ

Angle spread causes the space selective fading which is characterized by the coherence

distance, DC . The coherence distance is the spatial separation for which the channel

coefficients are significantly correlated, and it is inversely proportional to the RMS angle

spread. The larger the angle spread, the shorter is the coherence distance.

The time delay spread increases with the distance between the base station and the

user terminal (UT). In the rural environments στ is less than 0.07 µs. In urban areas στ

is typically 0.8 µs, while in hilly terrains στ of 2 − 3 µs has been observed. In indoor

scenario the average values of στ are less than 200 ns, [34].

The angle spread strongly depends on the scenario and the antenna height. At the

BS it varies from a fraction of a degree in a flat rural scenario to up to 20◦ in hilly and

dense urban scenarios. The coherence distance varies from 3 to 20 λc, where λc is the

wave length of the carrier. Scatterers at the UTs are distributed in all directions which

yields much larger angle spreads. The coherence distance at the UT varies from 0.25λc to

5λc. The azimuth angle spread in indoor scenario is in the 20◦ to 40◦ range, [9].

2.2 Sampled channel model

Let us consider a frequency flat, slowly varying MIMO channel. The matrix in equation

(2.1) can be written as

H =




h1,1 · · · h1,MT

...
. . .

...

hMR,1 · · · hMR,MT


 (2.2)

where hm,n includes the effects of pulse shaping at the transmitter, matched filtering at

the receiver and the physical channel.

The statistical properties of H depend on the scattering environment and array geom-

etry at the transmitter and receiver. The classical spatially white MIMO channel Hw is

characterized by

E {hm,n} = 0; E
{∣∣h2

m,n

∣∣} = 1;

E
{
hm,nh

∗
i,j

}
= 0, i 6= m or j 6= n (2.3)
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where the elements hm,n are modeled as complex Gaussian random variables. In practice,

the MIMO channel can deviate significantly from the Hw behavior due to a variety of

reasons which will be covered in the following sections.

2.2.1 Spatial fading correlation

Spatial fading correlation can be modeled by

vec (H) = R1/2vec (Hw) (2.4)

where Hw is the spatially white MIMO channel and R is the spatial correlation matrix

defined as

R = E
{

vec (H) vec (H)H
}

(2.5)

The operation vec (H) stacks all elements of the matrix H column by column in a column

vector. If the SVD of matrix R is defined as R = V ΛV H , then R1/2 is defined as

R1/2 = V Λ1/2V H .

In many applications, a simpler and less general model, known as Kronecker model, is

more adequate and is given by

H = R1/2
r HwR

1/2
t (2.6)

where Rt ∈ CMT×MT is the transmit correlation matrix and Rr ∈ CMR×MR is the receive

correlation matrix. Both Rt and Rr are positive semi-definite matrices. The model in

equation (2.6) has less degrees of freedom than (2.4), which is capable of capturing any

correlation effects between the elements of H.

Modeling of frequency selective MIMO channel

In case of frequency selective channels, antenna correlation is modeled in the delay domain

using the Kronecker model. The lth channel path component is modeled as

H(l) = R(l)
r

1/2
H(l)

w R
(l)
t

1/2
(2.7)

where H
(l)
w is a spatially white unit variance flat fading MIMO channel of dimension

MR ×MT , whereas R
(l)
r = E

{
H(l)H(l) H

}
/MT and R

(l)
t = E

{
H(l) HH(l)

}
/MR are the

receive and the transmit correlation matrices with tr
(
R

(l)
r

)
= MR and tr

(
R

(l)
t

)
= MT .

Let us consider a scenario where the receiver is surrounded by a rich scattering envi-
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ronment and the transmitter antennas are separated by less than the coherence distance.

These propagation conditions correspond to a cellular communication systems typically

characterized by a low angular spread at the transmitter. On the other hand, the angular

spread at the mobile is often very large and thus low spatial correlation can be achieved

with relatively small antenna separation. Hence, we can write

R(l)
r = IMR

, R
(l)
t =

MT

tr
(
A(l)∗A(l)T

)A(l)∗A(l)T (2.8)

and the lth channel path component is modeled as

H(l) =

√√√√ MT

tr
(
A(l)∗A(l)T

)H(l)
w A(l)T (2.9)

where A(l) ∈ CMT×N is an array steering matrix containing N array response vectors

of the transmitting antenna array corresponding to N directions of departure [35], and

H
(l)
wi ∈ CMR×N is a spatially white unit variance flat fading MIMO channel.

2.2.2 Line-of-sight component

In the presence of a line-of-sight (LOS) component between the transmitter and the re-

ceiver, the MIMO channel may be modeled approximately as the sum of a fixed component

and a scattered component as follows [9]

H =

√
KR

KR + 1
HLOS +

√
1

KR + 1
Hw (2.10)

where E {H} =
√

KR

KR+1HLOS is the LOS component of the channel and
√

1
KR+1Hw is

the fading component assuming uncorrelated fading. The elements of HLOS are assumed

to have unit power. KR is the Ricean factor, which is defined as a ratio of the power of

the LOS component and the power of the scattered component.

2.2.3 Cross-polarized antennas

So far, we have assumed that the antennas at the transmitter and the receiver have

identical polarization. The use of antennas with different polarizations at the transmitter

and the receiver leads to a gain and correlation imbalance between the elements of the

channel H. As a consequence the elements of H show more complex behavior.
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Assuming correlated Rayleigh fading, the channel is modeled approximately as

H = X ∗
(
R1/2

r HwR
1/2
t

)
(2.11)

where

X =


 1MR/2×MT /2

√
α1MR/2×MT /2

√
α1MR/2×MT /2 1MR/2×MT /2


 . (2.12)

Moreover, ∗ is the Hadamard product and 1MR/2×MT /2 is a matrix with all elements equal

to one. The parameter 0 ≤ α ≤ 1 is related to the separation of orthogonal polarizations.

The values of α, Rr and Rt depend on variety of factors including cross-polarization

discrimination, cross-polarization coupling and antenna spacing. If antennas are capable

of perfectly separating polarizations then α = 0, otherwise if antennas use the same

polarization or the rich scattering environment changes the polarization of the signal, α

is close to or equal to 1.

2.3 Input-output signal model

In the following we will assume that the transmission of data is carried out using OFDM

modulation, that the cyclic prefix is longer than the channel time delay spread and that

the maximum Doppler frequency is much smaller than the subcarrier spacing. In this

case we can neglect the intercarrier interference caused by the Doppler spread and assume

that the channel is constant during one OFDM symbol. The discrete input-output signal

relation for the MIMO system on the kth subcarrier can be written as

y (k) = G (k) (H (k)F (k) x (k) + n (k)) (2.13)

where x (k) is the data vector to be transmitted, y (k) is the data vector at the output

of the channel and n (k) is the vector containing samples of complex, zero mean additive

white Gaussian noise at the input of the receive antenna array. The matrices F (k) and

G (k) are precoding and decoding matrices, respectively. In the following we will drop the

index of the subcarrier k for simplicity reasons, except where necessary to denote the joint

processing of a group of subcarriers.

In a MU MIMO scenarioMT antennas are located at the base station andMRi
antennas

are located at the ith user terminal, i = 1, 2, . . . ,K. There are K users (or UTs) in the
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system. The total number of antennas at the user terminals is equal to

MR =
K∑

i=1

MRi
.

We will use the notation {MR1 , . . . ,MRK
}×MT to describe the antenna configuration

of the system. The MIMO channel to user i is denoted as Hi ∈ C
MRi

×MT .

We will use this notation for the users’ channel matrices, the number of antennas at

the base station and the number of antennas at the user terminals for both the uplink and

the downlink.

The combined MU MIMO channel matrix is given by

H =
[

HT
1 HT

2 · · · HT
K

]T
∈ C

MR×MT . (2.14)

A block diagram of a MU MIMO downlink system is depicted in Fig. 1.1. The downlink

input-output signal model can be written as

y = G (HFx + n) (2.15)

where y, F , G, and n are given by

x =
[

xT
1 · · · xT

K

]T
∈ Cr×1

y =
[

yT
1 · · · yT

K

]T
∈ Cr×1

n =
[

nT
1 · · · nT

K

]T
∈ CMR×1

G =




G1 · · · 0

...
. . .

...

0 · · · GK


 ∈ Cr×MR (2.16)

F =
[

F1 · · · FK

]
∈ CMT×r

The vectors xi ∈ Cri×1 and yi ∈ Cri×1 are the transmitted and the received data vectors

of the ith user, respectively. ri ≤ rank(Hi) ≤ min(MRi
,MT ) is the number of spatially

multiplexed information data streams transmitted to the ith user. The total number of

data streams transmitted is r =
∑K

i=1 ri. Samples of the white additive Gaussian noise

at the input of the ith user’s antenna array are given in ni ∈ C
MRi

×1. The matrices

Fi ∈ CMT×ri and Gi ∈ C
ri×MRi are the ith user’s precoding and decoding matrices.
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The discrete input-output data model on the uplink, depicted in Fig. 1.2, is given by:

y = D
(
HT Qx + n

)
(2.17)

Similar to the downlink, the vectors x ∈ Cr×1 and y ∈ Cr×1 are the transmit and receive

data vectors, and n ∈ CMT×1 is the vector of sampled additive white Gaussian noise at

the input of the BS antenna array. The matrices D and Q are given by

D =
[

D1
T · · · DK

T
]T

∈ Cr×MT

Q =




Q1 · · · 0

...
. . .

...

0 · · · QK


 ∈ CMR×r (2.18)

where Qi ∈ C
MRi

×ri and Di ∈ Cri×MT are the ith user’s precoding and decoding matrices

on the uplink.
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Chapter 3

Capacity region of multi-user

MIMO channels

In this chapter we focus on single-user and multi-user MIMO channel capacities in the

Shannon theoretic sense. The Shannon capacity of a time-invariant channel is defined

as the maximum mutual information between the channel input and output. This is the

maximum data rate that can be transmitted over the channel with arbitrarily small error

probability. When the CSI is perfectly known at both the transmitter and the receiver, the

transmitter can adapt its transmission strategy relative to the instantaneous channel state.

If the channel is time variant, the ergodic capacity is the maximum mutual information

averaged over all channel states. The ergodic capacity is typically achieved using an

adaptive transmission policy where the power and data rate vary relative to the channel

state variations.

In a multiple user scenario, MU MIMO allows the reuse of time and frequency resources.

Due to the scattering in different scenarios, the users’ wavefronts may have large angle

spreads and random signatures. Therefore, even users that are well separated in angle may

have potentially overlapping subspaces spanned by left singular vectors of their channel

matrices. Separability of their subspaces is much more difficult to achieve.

In a single-user MIMO system the link is point-to-point with a defined capacity. In a

multi-user MIMO system, the link is a multiple access channel on the uplink and broadcast

channel on the downlink. The achievable rates are characterized in this case in terms of

a sum rate region. SU MIMO suffers only a small penalty in information rate without

CSI at the transmitter. MU MIMO has a much larger penalty on the downlink. In a SU

MIMO system, precoding at the transmitter and decoding at the receiver can be done with
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full cooperation between the collocated antennas. In a MU MIMO system, the antennas

can cooperate at the base station for precoding on the downlink and for decoding on the

uplink. However, the users cannot cooperate in decoding on the downlink or during the

precoding on the uplink. In a MU MIMO system, cooperation between the users may

be possible in terms of power rates assigned to the users. In a SU MIMO system, the

information rate is identical on the uplink and downlink for the same transmit power if

the channel is known at the transmitter and the receiver.

3.1 Single-user MIMO capacity

When the channel is constant and known perfectly at the transmitter and the receiver,

the capacity of the system defined by (2.13) is

CSU = max
F :Tr(FRxFH)≤PT

log
det
(
Rn + HFRxF HHH

)

det (Rn)
(3.1)

where Rx and Rn are the input data correlation matrix and the noise correlation matrix.

PT is the maximum transmit power.

It was shown in [2], that the optimum strategy to achieve maximum information rate is

to convert the MIMO channel to parallel, non-interfering SISO channels through a singular

value decomposition (SVD) of the channel matrix. The SVD yields min (MR,MT ) parallel

channels with gains corresponding to the singular values of H.

Let us assume from now on that the elements of x and n in (2.13) are independent,

identically distributed (i.i.d.) random variables and

E {xi} = 0,
1

2
E
{
|xi|2

}
= 1 (3.2)

E {ni} = 0,
1

2
E
{
|ni|2

}
= σ2

n (3.3)

If the SVD of the channel matrix is H = UΣV H , the channel is decomposed into a

set of parallel subchannels by choosing F as

F = MΦ (3.4)

where M ∈ CMT×MT is a unitary matrix and M = V , [2], [9]. The matrix Φ ∈ RMT×r is

a non-negative power loading matrix. The optimal solution for the power loading matrix
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Φ is found via the water-pouring algorithm

ϕ2
i,i =

(
µ− 1

σ2
i

)

+

, i = 1, . . . , r (3.5)

such that
r∑

i=1

ϕ2
i,i = PT

where µ is a constant, r ≤ min (MR,MT ) is the rank of the channel matrix and σi is the

ith singular value of H. The values of ϕi,i are calculated using an iterative algorithm

[9]. The important point to note is that the modal decomposition achieves the maximum

information rate when CSI is available at the transmitter and the receiver.

If H is random, the channel capacity is a random variable too, and can vary from

zero to infinity. The statistics of the channel capacity are captured by its cumulative

distribution function (CDF). The X% outage capacity is the rate that the channel can

support with (100 −X) % probability. If we use very large block (packet) size, and capacity

achieving codes, the block error probability (BLER) will be always binary. The block is

always decoded successfully if the rate is at or below actual instantaneous capacity, and is

always in error if the rate exceeds the instantaneous capacity. Therefore, if the transmitter

does not know the CSI, the BLER will equal the outage probability for that signaling rate,

i.e. outage capacity.

If the exact CSI is not known at the transmitter, the information rate maximization can

now be performed only in terms of the outage or ergodic capacity. The ergodic capacity

of a MIMO channel (2.13) is given by

CSU = max
F :Tr(FFH)≤PT

E
{
log det

(
IMR

+ σ−2
n HFF HHH

)}
(3.6)

It has been shown that the maximum information rate can be achieved by Gaussian signals

aligned along the eigenvectors of the correlation matrix Rt = E
{
HHH

}
, i.e., M = V

where Rt = V HΛV . The capacity achieving power allocation is harder to compute. It

was shown that depending on the transmit correlation matrix Rt, there is a range of

signal-to-noise ratios (SNRs) for which the optimal strategy is to direct all the power in

only the dominant eigenmode of Rt, [9].
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3.2 Capacity region of MAC channel

The union of achievable rates under all transmission strategies is called the capacity region

af the multi-user system. It defines the limit of error-free communications given certain

channel characteristics and it is used as the ultimate measure of channel capacity.

Let us denote the rate that can be reliably, i.e., error free, transmitted for the ith user

by Ri in bits per second per Hertz (bps/Hz) and assume Gaussian signaling for each user.

We consider joint decoding of the users’ signals. Joint decoding means that decoding of all

signals is performed simultaneously. The MU MAC capacity region with joint decoding

and with individual power constraints P1, . . . , PK on each user has been shown to satisfy

[36], [37]

∑K
i=1Ri ≤ maxtr(QiQ

H
i )≤Pi

log det
(
IMT

+ σ−2
n HT QQHH∗

)

= maxtr(QiQ
H
i )≤Pi

log det
(
IMT

+ σ−2
n

∑K
i=1 HT

i QiQ
H
i H∗

i

) (3.7)

While maximum likelihood (ML) decoding is optimal, the MU MAC sum-rate capacity

can also be achieved via an MMSE receiver with successive interference cancellation (SIC).

This can be seen if we rewrite the equation (3.7) as

log det
(
IMT

+ σ−2
n HT

1 Q1Q
H
1 H∗

1 + σ−2
n

∑K
i=2 HT

i QiQ
H
i H∗

i

)

= log det
(
IMT

+ σ−2
n

∑K
i=2 HT

i QiQ
H
i H∗

i

)
+ (3.8)

log det

(
IMT

+
(
σ2

nIMT
+
∑K

i=2 HT
i QiQ

H
i H∗

i

)−1
HT

1 Q1Q
H
1 H∗

1

)

The objective function in (3.7) is a convex function of the uplink precoding matrices Qi

and the constraints are separable because there is an individual trace constraint on each

correlation matrix QiQ
H
i . In such situations, it is generally sufficient to optimize with

respect to the first variable while holding all other variables constant, then optimize with

respect to the second variable, etc., in order to reach a globally optimum point. This is

referred to as the block-coordinate ascent algorithm and convergence can be shown under

relatively general conditions [24].

Successive interference cancellation means that users are decoded sequentially, and

that the user to be decoded treats all the other users to be decoded as interference, and

subtracts out the symbols transmitted by the users already decoded from the received

codeword. Since each user is transmitting at an arbitrarily small bit error rate, the users
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already decoded can be subtracted without introducing additional errors.

The optimal iterative water pouring algorithm was first proposed in [10]. At each step

of the algorithm, one user optimizes his precoding matrix while treating the signals from

all other users as interference. In the next step, the next user in numerical order optimizes

his precoding matrix while treating all other users, including the updated precoding matrix

of the previous user, as interference. The optimal ordering of users is independent of the

channel state [38].

3.3 Capacity region of BC channel

The MU MIMO downlink channel in general belongs to the class of non-degraded Gaussian

channels. The sum-rate capacity of a Gaussian broadcast channel, for multiple-users each

having multiple antennas, has been shown to satisfy [13]

CBC = min
Rn>0,[Rn]k,k=σ2

n

(
max

tr(FFH)≤PT

log
det
(
Rn + HFF HHH

)

det (Rn)

)
(3.9)

This is Sato’s upper bound on the capacity region of general broadcast channels, which is

the capacity of a system where the users in the downlink can cooperate. The Sato bound

is not tight in general, but by introducing noise correlation at the different receivers, we

can get a much stronger bound [39], [40].

The downlink problem at the BS is to broadcast the user signals with appropriate

processing and spatial weighting, such that each user receives a maximum or desired

signal-to-interference and noise ratio (SINR), information rate or BER. Antennas at the

base station can cooperate during the encoding phase. Cooperation between the users

might either entail cooperative management of the rates or SINR at each user.

The capacity region of the general non-degraded broadcast channels is unknown. How-

ever, in [11] it was shown that Costa’s ”dirty-paper” coding is optimal in achieving the

sum-rate capacity, by demonstrating that the achievable rate meets the Sato upper bound.

The basic premise of DPCs is that if the transmitter has perfect, non-causal knowledge

of additive Gaussian interference in the channel, then the capacity of the channel is the

same as if there was no additive interference. DPC allow non-causally interference to be

”pre-subtracted” at the transmitter, but in such a way that the transmit power is not

increased.

Let π(·) denote a permutation of the user indices and
(
FkF

H
k

)
, k = 1, . . . ,K, is a set
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of positive semi-definite correlation matrices with tr
(∑K

k=1 FkF
H
k

)
≤ PT , where PT is

maximum total transmit power. Under DPC, if the π(1)th user signal is encoded first,

followed by the π(2)th user, etc., then the following rate is achievable:

Rπ(i) = log
det
(
IMR

+ σ−2
n Hπ(i)

(∑
k≥i Fπ(k)F

H
π(k)

)
HH

π(i)

)

det
(
IMR

+ σ−2
n Hπ(i)

(∑
k>i Fπ(k)F

H
π(k)

)
HH

π(i)

) , i = 1, . . . ,K (3.10)

The capacity region is the convex hull of the union of all such rates over all permutations

and all positive semi-definite correlation matrices satisfying the sum power constraint:

CDPC (PT ,H) = maxPK
k=1 tr

�
Fπ(k)F

H
π(k)

�
≤PT

K∑

i=1

Rπ(i) (3.11)

where Rπ(i) is given in the previous equation. The DPC implies that the user signals are

uncorrelated.

3.3.1 Achievable sum rate BC capacity and UL/DL duality

It is easily seen that the objective function for the DPC sum-rate capacity region is not

a convex function of the correlation matrices. Thus, numerically finding the maximum is

not a trivial problem and requires a brute force search over the entire space of correlation

matrices that meet the power constraint. However, by establishing the duality between

the uplink and the downlink, it was shown that it is possible to obtain the maximum

achievable sum-rate capacity of the broadcast channel from the dual uplink channel [37].

The channel capacity is different for the uplink and the downlink due to the funda-

mental differences between these channels. However, the fact that the downlink and the

uplink channels look like mirror images of each other implies that there is a duality be-

tween these channels that allows the capacity region of either channel to be obtained from

the capacity region of the other.

The equivalence between the performance of receive and transmit strategies when the

roles of transmitters and receivers are reversed for vector Gaussian channels has been

observed in many different situations. In a point-to-point communication, the capacity is

unchanged when the role of transmitters and receivers is interchanged. In case of downlink

linear processing followed by SU receivers at the UTs, the choice of transmit and receive

matrices is closely related to a virtual uplink problem. Finally, the capacity region of

degraded Gaussian channels is the same as the capacity region of the corresponding MAC
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with the transmit power constraint of the BC translated to the sum of powers in the MAC

[41], [15].

The difference between the uplink and the downlink channel is that on the downlink

there is an additive noise term associated with each user terminal, while on the uplink

there is only one. Another important difference is that on the downlink there is a single

power constraint associated with the transmitter, whereas on the uplink there is a different

power constraint associated with each user. Finally, on the downlink both the signal and

interference associated with each user travel through the same channel, whereas on the

uplink these signals travel through the different channels.

We say that the downlink and uplink channels are duals of each other if the channel

impulse responses for each user are the same in the downlink and the uplink, each receiver

in the downlink has the same noise statistics and these statistics are the same as those

of the receiver noise in the uplink, and the power constraint PT on the downlink equals

the sum of individual power constraints PTk
, k = 1, . . . ,K on the uplink. The set of BC

correlation matrices FkF
H
k , k = 1, . . . ,K, is found using the duality principle from the

dual MAC channel that use the same sum power constraint [41]. We assume that in the

uplink the first user is decoded first, then the second, etc. In the downlink we assume that

the users are precoded in the reverse order, i.e, the Kth user is precoded first, then the

(K − 1)th, etc. Then the rate achieved by the kth user in the uplink is given by

RUL
k = log det


IMT

+

(
σ2

nIMT
+
∑

i>k

HT
i QiQ

H
i H∗

i

)−1

HT
k QkQ

H
k H∗

k


 (3.12)

and in the downlink by

RDL
k = log det


IMRk

+

(
σ2

nIMRk
+ Hk

(
∑

i<k

FiF
H
i

)
HH

k

)−1

HkFkF
H
k HH

k


 (3.13)

Let us introduce the following auxiliary matrices [41]

Ak =
(
σ2

nIMRk
+ Hk

(∑
i<k FiF

H
i

)
HH

i

)

Bk =
(
σ2

nIMT
+
∑

i>k HH
i Q∗

i Q
T
i Hi

)

23



The equation (3.13) can be now rewritten as

RDL
k = log det

(
IMRk

+ A−1
k HkFkF

H
k HH

k

)

= log det
(
IMRk

+ A
−1/2
k HkFkF

H
k HH

k A
−1/2
k

)

= log det
(
IMRk

+ A
−1/2
k HkB

−1/2
k B

1/2
k FkF

H
k B

1/2
k B

−1/2
k HH

k A
−1/2
k

)
(3.14)

and equation (3.12) using the property det (X) = det
(
XT

)
as

RUL
k = log det

(
IMT

+ B−1
k HH

k Q∗
kQ

T
k Hk

)

= log det
(
IMT

+ B
−1/2
k HH

k Q∗
kQ

T
k HkB

−1/2
k

)

= log det
(
IMT

+ B
−1/2
k HH

k A
−1/2
k A

1/2
k Q∗

kQ
T
k A

1/2
k A

−1/2
k HkB

−1/2
k

)
(3.15)

The definition of the matrix square root is the same as in Section 2.2.1.

Treating A
−1/2
k HkB

−1/2
k as the effective channel of the system, we note that when

we take the Hermitian of this channel we have the effective channel of the uplink channel

B
−1/2
k HH

k A
−1/2
k . This suggests that in this case we can use the same logic as in case of

point-to-point system where the capacity on the uplink and the downlink channel are the

same under the previously given conditions, i.e., we can write that RDL
k = RUL

k . Therefore,

we can now use the same transformation of correlation matrices as for the point-to-point

system in order to transform the MAC channel correlation matrices into BC correlation

matrices. Let us define the SVD of the effective channel as A
−1/2
k HkB

−1/2
k = Uek

Σek
V H

ek
,

then it follows [41]

FkF
H
k = B

−1/2
k Vek

UH
ek

A
1/2
k Q∗

kQ
T
k A

1/2
k Uek

V H
ek

B
−1/2
k (3.16)

Thus, the achievable sum-rate capacity of BC is equal to the sum-rate capacity of the

dual MAC, i.e.

CMAC = maxP
i tr(QiQ

H
i )≤PT

log det

(
IMT

+ σ−2
n

K∑

i=1

HT
i QiQ

H
i H∗

i

)
(3.17)

where the optimization is performed over uplink correlation matrices QkQ
H
k , k = 1, . . . ,K

subject to the same sum power constraint PT . This allows us to substitute non-convex

rate functions of the user correlation resulting from the BC region with the dual MAC

where the rates are convex functions of the covariance matrices. Using the transformation

given in (3.16) we map the transmit uplink correlation matrices QkQ
H
k , k = 1, . . . ,K to
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the downlink transmit correlation matrices FkF
H
k , k = 1, . . . ,K that achieve the same

rates under the same sum power constraint.

An iterative water-pouring algorithm was proposed in [24] to compute the correlation

matrices of a dual MAC channel. This algorithm is based on the iterative water-pouring

algorithm for the conventional MAC problem, which finds the sum-rate capacity of MAC

with individual power constraints on each user [42]. The difference from (3.17) is only in

the structure of the power constraint. In such situations, the optimization is performed

using a block-coordinate ascent algorithm, i.e., by optimizing with respect to the first

variable while holding all other variables constant, then optimize with respect to the second

variable, etc., in order to reach a globally optimum point. In other words, at each step of

the algorithm one user optimizes his correlation matrix while treating the signals from all

other users as noise including the users with previously updated correlation matrices. In

case of the dual MAC there is a sum power constraint, i.e., the water level of all users must

be equal. Unlike in the conventional MAC, with sum power constraint we must update

all correlation matrices simultaneously to maintain a constant water-level.

This algorithm is complex and requires numerous calculations of SVDs and the water-

pouring algorithm. By using the Hadamard inequality we find an upper bound which is

not always as tight as the previous one but which requires less computational effort.

The equation (3.17) can be rewritten as

CMAC = max
tr(QiQ

H
i )≥0,

P
i tr(QiQ

H
i )≤PT

log det
(
Ir + σ−2

n QHH∗HT Q
)

(3.18)

The expression in equation (3.18) can be written in a block matrix form as

QHH∗HT Q =




QH
1 H∗

1HT
1 Q1 · · · QH

1 H∗
1HT

KQK

...
. . .

...

QH
KH∗

KHT
1 Q1 · · · QH

KH∗
KHT

KQK


 (3.19)

Using the Hadamard inequality det (A) ≤ ∏i ai,i, where ai,i are the diagonal elements of
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A, we can write

log det
(
Ir + σ−2

n QHH∗HT Q
)

≤ log
K∏

k=1

det
(
Irk

+ σ−2
n QH

k H∗
kHT

k Qk

)
(3.20)

=
K∑

k=1

log det
(
Irk

+ σ−2
n QH

k H∗
kHT

k Qk

)

The equality holds for Qk = U∗
kΦk, where the columns of Uk are the basis of the column

space of Hk = UkΣkV
H

k , and Φk is diagonal power loading matrix.

The comparison of the DPC sum rate capacity bound of the BC and the previously

introduced very simple (VS) BC sum rate capacity bound is shown in Figures 3.1 and 3.2.

The first VS BC sum rate capacity bound is obtained using the equation (3.20) which

corresponds to the capacity of the MU MIMO channel where all users are orthogonal in

space. However, the influence of MUI which is neglected is too big and as a result this

bound is too loose. The other option is to substitute the precoding matrices Qk obtained

by maximizing (3.20) in the expression for dual MAC in (3.18). As it can be seen from

Figure 3.1, in case of low MUI, i.e., when the total number of antennas at the user terminals

is less or equal to the number of antennas at the base station, the second approximate VS

bound, when the interference between the users is also taken into account when calculating

the system capacity, is the same as the DPC bound. In case of high MUI, i.e., when the

number of antennas at the user terminals is greater than the number of antennas at the

base station, the approximate VS BC sum rate capacity bound is very close to the DPC

bound and at high SNRs it matches the DPC bound. The antenna configuration of the

system in Figures 3.1 and 3.2 is: at the base station we have 6 antennas, and there are

three users in the system. In the first figure all users are equipped with 2 antennas and in

the second figure all users are equipped with 4 antennas each.
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Figure 3.1: Broadcast channel upper bounds. 10 % Outage capacity. MR ≤MT case.
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Chapter 4

Single-user MIMO optimum

precoder and decoder

The MIMO capacity gain in the single-user case is roughly min(MT ,MR) times that of

single-input single-output systems, where MT is the number of transmit antennas and MR

is the number of receive antennas. Multiple antennas at the transmitter and receiver can

provide different gains.

The diversity gain manifests itself in increasing the magnitude of the slope of the

symbol error rate (SER) curve. On the other hand, the coding gain shifts the error rate

curve to the left. Diversity provides the receiver with multiple (ideally independent) looks

at the same transmitted signal. Each look constitutes a diversity branch. If the MTMR

links comprising the MIMO channel fade independently and the transmitted signal is

suitably constructed, the receiver can combine the arriving signals such that the resultant

signal exhibits considerably reduced amplitude variability in comparison to a SISO link

and we get MTMR
th order diversity. Extracting the spatial diversity gain in the absence of

channel knowledge at the transmitter is possible using suitably designed transmit signals.

The array gain is the average increase in signal power at the receiver or transmitter

or both. The array gain is proportional to the number of receive antennas in single-input

multiple-output (SIMO) system, and to the number of transmit antennas in multiple-

input single-output (MISO) system. The array gain in MIMO system is a function of the

dominant eigenmode of the channel.

A system is said to have array gain A and diversity order D if the average symbol

error rate is asymptotically
1

A
SNR−D
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The array gain shifts the symbol error rate curve, while the diversity gain determines its

slope.

The spatial multiplexing gain is the increase in the transmission rate. It is proportional

to the min(MT ,MR). This gain is realized by transmitting independent data signals from

the individual antennas or over singular vectors.

The spatial interference suppression gain exploits the difference between the spatial

signatures of the desired signal and co-channel signals to reduce interference. Interference

reduction requires knowledge of the desired signal’s channel. Exact knowledge of the inter-

ferer’s channel may not be necessary. Interference reduction allows aggressive frequency

reuse and thereby increases multi-cell capacity.

What kind of a gain and how much of a certain gain can be exploited depends largely

on the quality of the MIMO channel state information and/or channel quality information

(CQI) available at the transmitter and receiver and the type of processing techniques used

to precode and decode users’ data. Regardless of the user terminal speed, we can assume

that the instantaneous (or short-term) channel state information is always available at

the receiver. The channel state information at the transmitter may be, however, hard

to obtain. Type and quality of channel state information at the transmitter depends on

various factors, like the speed of the user terminal, type of duplexing, feedback/feedforward

overhead, etc.

One possible classification of spatial processing techniques could be done according to

the availability of the channel state and/or quality information at the transmitter. We can

classify all MIMO techniques as those that require some type of the channel knowledge at

the transmitter and those that do not require any channel knowledge at the transmitter.

In this chapter we will give an overview of the most representative techniques and type

of gains they have in single user, point-to-point (P2P), communication systems.

4.1 MIMO processing without CSI at the transmitter

In case no channel state information is available at the transmitter we extract some of the

gains offered by MIMO processing by appropriately coding data symbols over space, time

and/or frequency. Vertical Bell Labs Layered SpaceTime (V-BLAST) [6], where every

antenna transmits its own independent substream of data, has been shown to have a good

performance and simple encoding and decoding. Yet V-BLAST suffers from its inability

to work with fewer receive antennas than transmit antennas. This deficiency is especially
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important for modern cellular systems, where a base station typically has more antennas

than the user terminals. Furthermore, because V-BLAST transmits independent data

streams on its antennas it is very sensitive to deep fades from any given transmit antenna.

On the other hand, there are many previously proposed STCs that have good fading

resistance and simple decoding, but these codes generally have poor performance at high

data rates or with many antennas. A framework for generalized designs of STBCs is given

in [5] under the name linear dispersion codes (LDC). LDCs can handle any configuration

of transmit and receive antennas and can reduce to both V-BLAST and many proposed

space-time block codes as special cases. Frame based design of LDCs was introduced in

[43].

4.1.1 Orthogonal space-time block codes

The objective of space-time block coding (STBC) is to extract the total available spa-

tial diversity in the MIMO channel through appropriate construction of the transmitted

space-time codewords. As example we consider a specific diversity coding technique, the

Alamouti scheme [4].

Consider a MIMO system with 2 transmit antennas and MR receive antennas. The

Alamouti transmission technique is as follows: two different data symbols x1 and x2 are

transmitted simultaneously from antennas 1 and 2, respectively, during the first symbol

period, followed by symbols −x∗2 and x∗1 that are launched from antennas 1 and 2, respec-

tively. Note that spatial rate for the Alamouti scheme is equal to 1 since two independent

data symbols are transmitted over two symbol periods.

We assume that the channel is independent identically distributed (i.i.d.) frequency-

flat fading and remains constant over (at least) two consecutive symbol periods. Appro-

priate processing at the receiver reduces the vector channel into a scalar channel for either

of the transmitted data symbols such that

yi = ‖H‖2
F xi + ñi (4.1)

where yi is the received signal corresponding to transmitted symbol xi and ñi is a complex

random Gaussian distributed additive noise, ñi ∼ CN
(
0, ‖H‖2

F σ
2
n

)
.

Even though channel knowledge is not available to the transmitter, the Alamouti

scheme extracts 2MR
th order diversity. We note, however, that array gain is realized only

at the receiver. The Alamouti scheme may be extended to channels with more than two
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transmit antennas through orthogonal space-time block coding (OSTBC) [44], albeit at a

loss in spatial rate, which is then less than 1. However, the low decoding complexity of

OSTBC renders this technique highly attractive for practical applications. Another STC

for more than 2 antennas at the transmitter was proposed in [45]. It results in a rate

1 orthogonal code but with reduced diversity order. The ABBA code [46] provides full

diversity with rate 1 but at the price of detriment of the orthogonality of the code.

4.1.2 Open loop spatial multiplexing

Spatial multiplexing (SMUX) techniques transmit simultaneously different data streams

from different antennas in order to increase the capacity of the system. Any receiver

technique such as zero-forcing (ZF), minimum mean square error estimation and opti-

mal maximum-likelihood detection (MLD) can be applied directly. MLD gives the best

performance with a high computational complexity. ZF and MMSE are less expensive

techniques. In case of ZF, complexity reduction comes, however, at the expense of noise

enhancement which in general results in a significant performance degradation (compared

to the ML decoder). The diversity order achieved by each of the individual data streams

equals MT −MR + 1. The MMSE receiver balances interstream interference mitigation

with noise enhancement and minimizes the total error. If we assume that the elements of

x and n in (2.13) are i.i.d. random variables and

E {xk} = 0,
1

2
E
{
|xk|2

}
= Pt (4.2)

E {nk} = 0,
1

2
E
{
|nk|2

}
= σ2

n (4.3)

then the MMSE receive filter is given by

G = HH

(
HHH +

σ2
n

Pt
IMR

)−1

(4.4)

At low SNRs the MMSE receiver approximates a matched filter and is near optimal. It

outperforms the ZF receiver that continues to enhance noise. At high SNRs, the MMSE

receiver approaches ZF and therefore realizes the same diversity order as ZF for each data

stream [9].

A higher diversity order is achieved by successive MMSE detection and interference

cancellation as in V-BLAST. The key idea in a successive interference cancellation (SIC)

receiver is layer peeling where the individual data streams are successively decoded and
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stripped away from the received data vector layer-by-layer by selecting the stream with

the highest signal-to-interference and noise ratio (SINR) at each decoding stage. Upon

detection of the chosen symbol, its contribution from the received data vector is subtracted

and the procedure is repeated until all symbols are detected.

4.2 Optimum design of linear precoder and decoder

When channel state information is available at both transmitter and receiver sides, channel

dependent precoding and detection of data streams improves the system performance.

Channel state information can be acquired at the transmitter either if a feedback channel

is present or when the transmitter and receiver operate in time division duplex (TDD) so

that the time-invariant MIMO channel transfer function is the same in both ways.

The precoder is a matrix with complex elements and can add redundancy to the

input symbol streams to improve system performance. The precoder output is launched

into the MIMO channel through MT transmit antennas. The signal is received by MR

receive antennas and processed by the linear decoder, which is optimized for the fixed and

known channel. The linear decoder also operates in the complex domain and removes any

redundancy that has been introduced by the precoder.

Generalized designs of a jointly optimum linear precoder and decoder for a single user

(SU) MIMO system, using a mean-squared error (MSE) criterion are given in [7] and

[8]. The framework presented in these papers is general and addresses several optimiza-

tion criteria like minimum MSE (MMSE), minimum bit error rate (BER), and maximum

information rate.

The paradigm of linear precoding and decoding exploits the channel eigenmode decom-

position in constructing the optimal precoder F and decoder G. The different solutions

are characterized by how the power is loaded on each channel eigenmode.

Let us start from the input-output signal model given in (2.13)

y = G (HFx + n) .

The linear precoding and decoding matrices are designed by minimizing a function of the

MSE matrix that is given by [8]

MSE (F ,G) = E
{

(y − x) (y − x)H
}

(4.5)
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The optimum decoding matrix Gopt that minimizes the whole MSE (F ,G) is the MMSE

(Wiener) receiver [47] which is known to minimize the tr (MSE (F ,G)) and is given as-

suming (4.2) and (4.3) by

Gopt = F HHH

(
HFF HHH +

σ2
n

Pt
IMR

)−1

(4.6)

If we substitute G in equation (4.5) with Gopt from equation (4.6) we have

MSE(F ) = σ2
n

(
HFF HHH +

σ2
n

Pt
IMR

)−1

(4.7)

Let us introduce the following singular value decomposition

H = UΣV H (4.8)

The column vectors of U and V are the left and right singular vectors, respectively. The

matrix Σ is a diagonal matrix with non-negative singular values σk, k ≤ min(MT ,MR),

on the main diagonal arranged in decreasing order.

The optimum precoding matrix F under the transmit power constraint

Pt · tr
(
FoptF

H
opt

)
≤ PT , (4.9)

is given by (4.3)

Fopt = V Φ, (4.10)

where Φ is an MT ×MT diagonal power loading matrix, Pt is the power of one complex

data symbol xk and PT is the maximum transmit power. The values on the main diagonal

of Φ will depend on the specific optimization criterion.

The MMSE precoder is obtained as a solution to the optimization problem

Fopt = arg min
F

tr (MSE(F )) , s.t : Pt · tr
(
FoptF

H
opt

)
≤ PT , (4.11)

as in (4.10) with the elements of Φ given by [8]

|ϕi,i|2 =

(
PT +

∑N̄
k=1 σ

−2
k

Pt
∑N̄

k=1 σ
−1
k

σ−1
k − 1

Ptσ
−2
k

)+

(4.12)

where (x)+ := max(x, 0) and N̄ < N is such that |ϕk,k|2 > 0 for k = 1, . . . , N̄ and
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|ϕk,k|2 = 0 for all other k.

The maximum information rate precoder is obtained as a solution to the following

optimization problem

Fopt = arg min
F

det (MSE(F )) , s.t : Pt · tr
(
FoptF

H
opt

)
≤ PT , (4.13)

Here, the power loading matrix Φ, given in equation (4.10), is identical to the one obtained

using the water-pouring algorithm in (3.5).

The weighted MMSE design is introduced in [7] in order to take into account different

QoS requirements over different spatially multiplexed data streams.

The dominant eigenmode transmission (DET) is performed by choosing Φ as

Φ =




1 0 · · · 0

0 0 · · · 0
...

... · · · ...

0 0 · · · 0




(4.14)

The dominant eigenmode transmission is motivated by the need to have maximum signal-

to-noise ratio at the receiver. This leads to full MTMR order diversity for the Hw channel.

The array gain is given by E
{
σ2

max

}
, where σmax is the maximm singular value of the

matrix H. Since
∑r

i=1 σ
2
i = ‖H‖2

F , where σi, i = 1, . . . , r are the singular values of H

and r is the rank of H, σ2
max may be upper- and lower-bounded according to

‖H‖2
F

r
≤ σ2

max ≤ ‖H‖2
F (4.15)

Using the dominant eigenmode transmission we achieve an array gain that is equal to or

greater than the array gain achievable with STBCs. The dominant eigenmode transmission

results in the maximum signal-to-noise ratio at the receiver which leads to minimum

bit error rate. With channel state information available at the transmitter, the optimal

strategy in order to achieve the maximum SNR at the receiver is to transmit on the

dominant eigenmode with all power [9].

An important point to note is the optimality of modal decomposition of the channel

matrix in the presence of channel state information at the transmitter and receiver, and

that this strategy is optimal for a broad set of design criteria.
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Chapter 5

Multi-user MIMO communications

It has been shown that time division multiple access (TDMA) systems cannot achieve a lin-

ear increase of the sum-rate capacity of multi-user (MU) MIMO systems in the number of

transmit antennas [48], [49]. The solution to this problem is to serve users simultaneously

using space-division multiple access (SDMA).

The information theoretic results in [14], [11], [12], [16], [17] have shown that it is nec-

essary to use some kind of Costa’s ”dirty-paper” coding (DPC) or Tomlinson-Harashima

precoding to reach the sum capacity of a multi-user MIMO downlink system. DPCs

achieve the maximum sum rate of the system and provide the maximum diversity order.

The sum rate capacity of the multi-user MIMO uplink system is achieved via an MMSE

receiver with successive interference cancellation.

The sum-rate capacity of a downlink multi-user MIMO system employing DPC and an

uplink multi-user MIMO system employing successive interference cancellation is at most

min(MT ,K) times larger than the maximum achievable sum rate capacity of a system

using TDMA [48], [49].

Motivated by the need for cheap user terminals with low power consumption, we focus

on systems where the computationally demanding signal processing is performed at the

base station. This means that one user will not be aware of other users sharing the same

time and frequency resources and that the base station will have the task of reducing the

multi-user interference. In this chapter we will address the problem of generalized designs

of the precoding and decoding matrices in a multi-user MIMO communication system.

The focus will be put on the multi-user MIMO downlink system, since in this case it

is harder to define the cost function for system optimization and because most of the

solutions for the downlink can be applied on the uplink in a straightforward way. Another

35



reason for this is that by using the same or similar MU MIMO processing techniques

on both the uplink and the downlink we can reduce the cost of hardware at the base

station. Moreover, having in mind the complexity of DPCs and their inability to combine

instantaneous and long-term channel state information at the transmitter for precoding,

we will give preference in our investigations to the linear precoding techniques. Beside

their lower complexity than DPCs and their ability to combine instantaneous and long-

term channel state information, they are also capable of reaching the achievable sum-rate

capacity of the broadcast channel [23]. In the future it is very likely that the user terminals

will be also equipped with more than one antenna which makes the scenario where the

total number of receive antennas at the user terminals is greater than the number of

antennas at the base station more likely. In this scenario, linear techniques have shown

to be more effective than non-linear precoding techniques and they can also reach the

sum-rate capacity of the multi-user downlink system.

As it was shown in the previous chapters, channel state information at the transmitter

allows us to exploit the benefits of having multiple antennas at the base station and

the user terminals to the maximum. Channel state information can be acquired at the

transmitter either if a feedback channel is present or when the transmitter and receiver

operate in time division duplex (TDD) so that time-invariant MIMO channel transfer

function is the same in both ways. It was shown in [50] that the most practical duplexing

scheme in indoor, hotspot and micro cellular scenarios is TDD. The cost of acquiring the

channel state information at the transmitter is much lower in a TDD system, where it is

possible to exploit the estimated uplink channel for the downlink transmission due to the

reciprocity principle than in a frequency division duplex (FDD) system, where we have to

rely on the feedback of the channel state information.

On the downlink the base station will use any channel state information available to

mitigate or ideally completely eliminate multi-user interference through linear or non-

linear (DPC or THP) precoding, which leads to significant information rate gains. The

user terminal estimates the effective channel and transmits data in the next uplink frame.

The effective channel is equal to the combined network channel after the precoding at the

base station. However, on the uplink the base station has the possibility to use successive

interference cancellation, so the effective channel on the uplink that includes the spatial

processing does not have to be the same as on the downlink. Therefore, it is wise to assume

that user terminals have no CSI available on the uplink which suggests the use of open-
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loop MIMO techniques on the uplink. Thus, on the uplink we can identify two possible

cases. In the first case, the user terminal encodes data using OSTBCs. In the second case,

the users’ precoding matrices on the uplink are generated at the base station and then

feedforwarded to the user terminals. The diversity gains of MIMO are more desirable than

spatial multiplexing gains if we take into account the limited power available at the user

terminal and therefore it is enough that the base station transmits to the user terminal

only the dominant singular vector of the uplink effective channel.

The framework for the generalized design presented in [8] and [7] is limited only to

point-to-point communication where the transmitter and the receiver are able to perform

a joint processing over all of the transmit and the receive antennas. There are a lot of

results in the literature which address the optimization of multi-user MIMO downlink

systems using different optimization criteria. However, there is no general solution like

in the case of point-to-point communications. For the optimization of such systems it is

often assumed that the users are equipped with only one antenna, [51], [22], [52], [16],

[17]. Solutions that consider an arbitrary number of antennas at the user terminals often

assume zero multi-user interference which imposes a constraint regarding the total number

of antennas at the base station and the user terminals, [53], [25], [54], [27]. The solutions

that overcome this dimensionality constraint, i.e., when the number of receive antennas

is greater than the number of antennas at the base station either use only a subset of

antennas or a subset of eigenmodes [25], [55], and usually require a large control overhead

in order to feedback the decoding matrices to the user terminals.

In Chapter 5.4 a new approach will be introduced which will be used to derive a

general framework for MU MIMO precoding and decoding design so we can target any

optimization criteria with one universal algorithm like in the case of single-user MIMO

processing.

5.1 Previous work on MU MIMO precoding

5.1.1 Zero forcing precoding

Since the base station has no influence on the noise at the user terminals, the most intuitive

approach for precoding is a zero forcing filter (ZF) which eliminates all interference at the

user terminals. ZF precoding for single antenna receivers was investigated extensively in

the literature [56], [9].
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Assuming single antenna terminals, the decoding matrix becomes G = IK and MR =

K. Let us define the precoding matrix F as F = βFa. The precoding matrix Fa and the

scaling factor β result from the following optimization

Fa = arg min
Fa

E
{
‖HFax − x‖2

F

}
, s.t. : HFa = IK (5.1)

The parameter β is chosen such that the total transmit power is β2 ‖Fax‖2
F ≤ PT . We

assume that the complex data symbols are i.i.d. uniformly distributed random variables

and that the samples of the additive noise at the input of receive antennas are i.i.d. complex

Gaussian white random variables with mean and variance as in (4.2),(4.3), respectively.

The average power of the complex data symbols is set to

Pt = 1.

The solution to the optimization problem given in (5.1) is a pseudo-inverse of the combined

channel matrix H:

Fa = HH
(
HHH

)−1
, β =

√
PT

‖Fa‖2
F

(5.2)

In the same way as the decoding ZF filter, the transmit ZF filter also suffers from the

noise enhancement problem and requires increased transmit power. It is sub-optimal and

results in a significant performance degradation. The diversity order and array gain of

each stream is proportional to MT −MR + 1, [9].

5.1.2 Minimum mean-square-error precoding

The ZF precoder completely eliminates multi-user interference at the expense of noise

enhancement. The minimum mean-square-error (MMSE) precoder balances the multi-

user interference mitigation with noise enhancement and minimizes the total error. Unlike

the ZF precoder, the MMSE precoder cannot be designed in such a straightforward way.

A key to design of the MMSE precoder is to scale the transmit vector such that the total

transmit power has the predefined level [51], i.e.

Fa = arg min
Fa

E
{∥∥β−1y − x

∥∥2

F

}
, s.t. : β2 ‖Fax‖2

F ≤ PT (5.3)
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Figure 5.1: Uncoded BER performance of ZF and MMSE precoders. Flat fading, Hw

channel. K = 3, MT = 4.

The MMSE precoder is defined as

Fa =
(
HHH + αIMT

)−1
HH (5.4)

where the parameters α and β are equal to

α =
σ2

nK

PT
and β =

√
PT

‖Fa‖2
F

(5.5)

The total transmit power is PT and the number of user terminals is K.

The MMSE precoder, in the same way as the receive spatial MMSE filter, approximates

a matched filter at low SNRs and is near optimal. At high SNRs, the MMSE precoder

converges to a ZF precoder and we can expect it to extract MT −MR + 1 order diversity.

In Figure 5.1 we compare the uncoded bit error performance (BER) of a ZF precoder

and an MMSE precoder. A flat fading Hw channel with MT = 4 antennas at the base

station and K = 3 single antenna user terminals is assumed. As it can be seen from the

previous figure, the MMSE precoder is always superior to the ZF precoder.
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5.1.3 Block diagonalization

Block diagonalization (BD) is a ZF precoding technique that was first proposed in [53]. It

was proposed to solve either the problem of maximizing the total system throughput under

a transmit power constraint or to minimize the total transmit power for a predefined QoS

level. It is restricted to channels where the number of transmit antennas MT is not smaller

than the total number of receive antennas in the network MR. As it was shown in [25],

the ZF precoding filter defined in (5.2) is suboptimal since each user is able to coordinate

the processing of its own receiver outputs. Another difference is that BD, unlike ZF and

MMSE precoders, allows also the option that the user terminals can also be equipped with

more than one antenna.

Using BD, we can find the precoding matrix F such that all multi-user interference

is zero by choosing a precoding matrix Fi such that it lies in the null space of the other

users’ channel matrices. Thereby, a multi-user MIMO downlink channel is decomposed

into multiple parallel independent single-user MIMO channels [25], [54].

If we define H̃i as

H̃i =
[

HT
1 · · · HT

i−1 HT
i+1 · · · HT

K

]T
∈ C

(MR−MRi
)×MT (5.6)

the zero MUI constraint forces Fi to lie in the null space of H̃i. From the singular value

decomposition of H̃i whose rank is L̃i

H̃i = ŨiΣ̃i

[
Ṽ

(1)
i Ṽ

(0)
i

]H
(5.7)

we choose the last right MT − L̃i singular vectors Ṽ
(0)

i ∈ CMT×MT−eLi which form an

orthogonal basis for the null space of H̃i. The effective channel of user i after eliminating

the MUI is identified as HiṼ
(0)

i , whose dimension is MRi
×
(
MT − L̃i

)
and is equivalent

to a system with MT − L̃i transmit antennas and MRi
receive antennas. Each of these

effective single-user MIMO channels has the same properties as a conventional single-user

MIMO channel. Define the SVD

HiṼ
(0)

i = UiΣi

[
V

(1)
i V

(0)
i

]H
(5.8)

and let the rank of the ith user’s effective channel matrix be Li. The product of the

first Li singular vectors V
(1)

i and Ṽ
(0)

i produces an orthogonal basis of dimension Li and
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Figure 5.2: Information sum rate of BD,ZF and MMSE in a system with configuration
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represents the transmission vectors that maximize the information rate for user i subject to

the zero MUI constraint. The demodulation matrix of the ith user is chosen as Gi = UH
i .

It can be easily verified that assuming the Hw channel, the ith user can extract maxi-

mum MRi
×
(
MT − L̃i

)
order diversity.

In Figure 5.2 we compare the information sum rate of the systems employing BD, ZF

and MMSE precoding. We assume a flat fading Hw channel with MT = 4 antennas at

the base station. There are K = 4 users in the system equipped with MRi
= 1 antenna

each. BD clearly provides higher information rate than ZF. However, at low SNRs MMSE

outperforms both BD and ZF. The real advantage of BD can be seen when the users are

equipped with multiple antennas too. In this case, BD outperforms ZF and MMSE at

high SNRs.

5.1.4 Tomlinson-Harashima precoding

Tomlinson-Harashima precoding (THP) was first developed for SISO multipath channels,

where it was used to overcome the error propagation problem of decision feedback equal-

ization (DFE) by moving the DFE block to the transmitter side, [18], [19]. In [20] it is

proposed for the spatial equalization of multi-user interference in MIMO systems.

The THP precoder can be interpreted as a one-dimensional implementation of DPCs

and also requires that the channel state information is available at the transmitter. The
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block diagram of a system employing THP at the transmitter side is shown in Figure 5.3.

At each step k of the precoding in a THP system, only the non-causal interference from

the previously encoded data symbols xi, i < k, is pre-subtracted from the data symbol

encoded at this step xk. It does not take into account the future side information xi, i > k.

By using THP at the transmit side we significantly increase the transmit power. That is

why we have to introduce the modulo operator at the transmitter and the receiver in order

to reduce the constellation size into certain boundaries. If we assume that the first data

symbol x1 is encoded first, than the second data symbol x2, etc., then the THP feedback

matrix B is equal to the lower triangular part of GHF . The kth data symbol at the

output of the THP precoder is equal to

zk = mod

(
xk −

k−1∑

i=1

bk,izi

)

τ

(5.9)

where mod (•)τ is the modulo operator and τ is the constant which depends on the con-

stellation size of the used modulation alphabet. The modulo operation is defined as

mod (x)τ = x−
⌊
x

τ
+

1

2

⌋
τ

where the floor operator ⌊•⌋ gives the integer number smaller than or equal to the argu-

ment. The modulo operation is done on a symbol-by-symbol basis, producing an output

that is uniformly distributed between −τ and τ . This uniform distribution corresponds

to a cubic shape, thus incurring a shaping loss when compared to the spherical shape of

an optimal Gaussian code [20].

The exact formula for the capacity of the ZF THP temporal equalizer and the upper

and lower bound for the capacity of the MMSE THP temporal equalizer were derived in

[57]. The same approach was used in [58] to derive the exact capacity formula for ZF

THP spatial precoding. As it was shown in these papers, the optimum information rate

maximizing strategy is not Gaussian but uniformly distributed which is direct consequence
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of the use of the modulo operator at the transmitter and the receiver. Following the

analysis in [57], it is not hard to derive the achievable rate of the kth user as

Rk = log2 (2τ) − h (mod (ñk)τ ) (5.10)

where ñk is the filtered noise at the input of the kth user’s antenna and h (•) denotes the

differential entropy function.

5.1.5 MMSE THP precoding

In [21] THP precoding is performed at the transmitter, whereas the receiver still performs

linear filtering. In [22], both feedforward and feedback filters are deployed at the trans-

mitter which results in a significant reduction of the computational load at the receiver

side.

The MMSE THP precoding filter is derived from the linear transmit MMSE precoding

optimization by neglecting the contribution of the elements of the lower triangular part of

HFa to the overall MSE:

Fa = arg min
Fa

E
{∥∥β−1y − x

∥∥2

F

}
, s.t. : β2 ‖Fax‖2

F ≤ PT , [HFa]i,j = 0, i > j,∀i, j (5.11)

where [•]i,j denotes the element in the ith row and the jth column of the matrix HFa. The

interference remaining after the precoding using F from these lower triangular matrix is

eliminated using THP. The algorithm described in [22] is iterative and requires a certain

ordering of the users. First, a precoding matrix Fa is defined column by column starting

from user K. The column corresponding to the ith user is obtained as the ith column of

the precoding matrix calculated using only the first i rows of the network channel matrix

H and equation (5.4). Let us introduce the matrix

Ĥi =




H1

...

Hi−1

Hi




which contains the first i rows of the matrix H. Then the ith column of the precoding
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matrix Fa is given by

[Fa](:,i) =

[(
ĤH

i Ĥi + αIMT

)−1
ĤH

i

]

(:,i)

(5.12)

The parameters α and β are given in equation (5.5). After this, the users are encoded

in the reverse order from the one in which their precoding matrices are generated, i.e.,

starting from the first user, then the second, etc. Using THP we eliminate the multi-user

interference to the ith user originating from the previous i− 1 users. The ordering of the

users is based on a heuristic approach, by choosing in every step of the algorithm the user

with the minimum MSE.

The performance of this algorithm can be further improved by introducing the weight-

ing which favors the stronger users. The additional gain from weighting is less than 2 dB

[59]. However, the problem of precoding the users equipped with more than one antenna

still remains.

5.2 BD MMSE THP precoding

A combination of BD and MMSE THP precoding was introduced in [26] that provides

better performance for the users equipped with one antenna than BD and better perfor-

mance for the users equipped with multiple antennas than MMSE, which results in the

improvement of the overall system performance. By using BD only for multiple antenna

users we effectively eliminate the interference that these users generate to single antenna

users. Then by using MMSE THP only for the single antenna users we improve their and

the overall system performance.

First we group the single- and the multiple-antenna users. For users with multiple

receive antennas we use BD, and for single antenna users we use MMSE THP. The modu-

lation matrices for multiple antenna users are chosen to lie in the null space of the channel

matrices of the other users including the single antenna users. In this way the effective

channel for the single antenna users looks as if there were no multiple antenna users.

Thereby we improve the diversity of these users which influences their BER performance

with different degrees of CSI at the transmitter. MMSE THP is applied only on the com-

bined network channel corresponding to these single antenna users. The data transmitted

to the multiple antenna users is also precoded using THP in order to eliminate the MUI

which in this case only originates from the single antenna users.
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Figure 5.4: Graphical representation of the effective network channel matrix for BD MMSE
THP with the configuration {1, 1, 2, 2} × 6. Crosses represent MUI elements that will be
eliminated using THP.

By using THP at the transmit side we significantly increase the transmit power. That

is why we need to introduce the modulo operator at the transmitter and the receiver in

order to reduce the constellation size into certain boundaries. The single antenna users

multiply the received signal by 1/β from equation (5.5) and multiple antenna users with

the corresponding eigenvalue in Σ so that the constellation boundaries at the receiver are

the same as at the transmitter. The matrix Σ is defined as

Σ =




Σ1

Σ2

. . .

ΣK




where the Σi are defined in equation (5.8).

The effective channel matrix for the system with the configuration {1, 1, 2, 2}×6, after

precoding, is depicted in Figure 5.4. The first two rows correspond to the two single

antenna users and the last four to the two users equipped with two antennas each. By

using BD, all elements in the last four columns above and below the block matrices on

the diagonal are set to zero. Crosses in the figure represent the MUI that is generated by

the single-antenna users due to the MMSE processing. By using THP the elements in the

first two columns below the main diagonal are set to zero. If we used BD for these users

too, this interference would also be equal to zero. With the circles we denote the elements

of the effective network channel matrix that contain the gains of the channel for each data

stream.

The performance of this technique is better than BD or MMSE THP, however, the fol-

lowing precoding techniques outperform BD MMSE THP and provide higher information
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rate and BER performance. The only advantage of BD MMSE THP is its simplicity.

5.3 Successive optimization THP precoding

As mentioned before, by applying BD on the combined channel matrix of all users the

MU MIMO channel can be transformed into a set of parallel single-user MIMO channels.

However, there is an information rate loss due to the cancellation of overlapping row

subspaces of different users. In [53], the authors propose a successive optimization (SO)

precoding algorithm in order to define a simplified solution to the problem of minimizing

the total transmit power while achieving a predefined QoS level for each user in the

network and to the near-far problem. By allowing a certain amount of interference, this

algorithm reduces the data rate loss due to the subspace cancellation. It can yield better

results in some situations but its performance in general is very poor and depends on

the power allocation and the order in which the users’ signals are pre-processed. A novel

technique that combines SO and THP in order to reduce the information rate loss due to

the overlapping of different users’ row subspaces and to eliminate the MUI was introduced

in [27]. After the precoding, the resulting effective combined channel matrix of all users

is again block diagonal. This also facilitates the definition of a new ordering algorithm.

Unlike in [11], [22], [51], this technique allows more than one antenna at the user terminals

and has no performance loss due to the cancellation of interference between the signals

transmitted to two closely spaced antennas at the same terminal.

First, we have to assume or determine a certain optimum ordering of the users, similar

to V-BLAST [6] or MMSE THP [22]. Using SO, the modulation matrix for each user

is designed in such a way that it lies only in the null space of the channel matrices of

previous users. As a consequence, only they will generate the interference to this user.

Let us define the previous i− 1 users’ combined channel matrix as

Ĥi =
[

HT
1 HT

2 · · · HT
i−1

]T

and its corresponding SVD as

Ĥi = ÛiΣ̂i

[
V̂

(1)
i V̂

(0)
i

]H
. (5.13)

If the rank of Ĥi is L̂i, then V̂
(0)

i contains MT − L̂i right singular vectors. As in the

BD solution, we force the modulation matrix Fi to lie in the null space of Ĥi by setting
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for i = 1 : K

Hi = UiΣi

[
V

(1)
i V

(0)
i

]H
;

Fmax,i = V
(1)

i ;
Cmax,i = log2det

(
I + R−1

n,iHiFmax,iF
H
max,iH

H
i

)
;

end;
S = {1, . . . ,K} ;
Haux = H;
for i = K : 1[

P1, . . . Pi, U1, . . . Ui

]
= BD (Haux) ;

for k = 1 : i

Ck = log2det
(
I + R−1

n,kHkPkP H
k HH

k

)
;

end;
ki = arg mink∈S (Cmax,k − Ck) ;
Fi = Pki

;
Gi = UH

ki
;

S = S\{ki};
Haux =

[
HT

1 . . . HT
ki−1 HT

ki+1 . . . HT
K

]T
;

end;
F =

[
F1 . . . FK

]
;

G =




G1

. . .

GK


 ;

B = lower triangular
(
GHF · diag

(
[GHF ]

−1
ii

))
;

Table 5.1: SO THP algorithm.

Fi = V̂
(0)

i F ′
i for some choice of F ′

i . Thereby, the ith user does not see any interference

from any subsequent user (i+ 1, . . . ,K).

The combination of SO and THP (SO THP) is performed by successively calculating

the BD, the reordering of users, and in the end precoding with THP. Instead of examining

all K! possibilities for ordering to minimize the total information rate loss in the system,

we propose a heuristic simplification to minimize the information rate loss of each user in

the presence of the other co-channel users separately.

The whole SO THP algorithm is summarized in Table 5.1. We use the following

notation: BD () is BD as explained before, Pk is an auxiliary matrix where we store the

precoding matrices generated using BD, S is a set of indices of the users to be processed,

Gk is the kth user demodulation matrix obtained by using the BD algorithm and B is the

THP feedback matrix.

We first calculate the information rate that an individual user can achieve assuming

there are no other users in the system. Then, we look for the user for whom the difference

between its information rate when there are no other users and its BD information rate is

minimum and generate the precoding matrix of this user such that it lies in the null space
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Figure 5.5: 10 % outage information rate of SO THP and MMSE THP in bps/Hz as a
function of the SNR.

of the remaining users’ channel matrices. In each step we find the user with the minimum

information rate loss and place it as the last one. Afterwards, we form the new combined

channel matrix Haux without this user’s channel matrix Hki
. We repeat these steps until

the combined channel matrix is empty.

The order of the users is the reverse of the order in which their precoding matrices are

generated. With this reordering of the users we achieve that the effective combined channel

matrix after precoding and demodulation is lower triangular with the singular values on

the main diagonal. The lower triangular feedback matrix B, used in THP precoding [22],

is generated from this effective combined channel matrix after the elements in each row

are divided by the elements on the main diagonal, i.e., the corresponding singular values,

as it can be seen from the last equation in Table 5.1.

By using THP at the transmit side we significantly increase the transmit power. That

is why we have to introduce the modulo operator at the transmitter and the receiver in

order to reduce the constellation size into certain boundaries. Before applying the modulo

operator at the receiver we have to divide each data stream by the corresponding singular

value so that the constellation boundaries at the receiver are the same as at the transmitter

[22].

In Figure 5.5 we compare the 10 % outage information rate of MMSE THP in a system

with configuration {1, 1, 1, 1} × 4 and SO THP in a system with configuration {2, 2} × 4.
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We also present capacity results for a TDMA system and the DPC bound as a comparison.

MMSE THP fails to reach the DPC bound and SO THP provides higher information sum

rate when the users are equipped with multiple antennas. This can be also seen from

the next figure, where we compare the BER performance of MMSE THP and SO THP

in system with configuration {2, 2, 2} × 6. In a MMSE THP system each data stream

transmitted over different antennas is modulated using BPSK and in a SO THP system

data is modulated using QAM modulation. Throught this thesis we use Gray mapping.

SO THP, which is a ZF technique, performs better than MMSE THP at low SNRs and has

the same diversity order as a consequence of optimum processing at the user terminals.

As we could see, SO THP is a ZF sum-rate capacity achieving technique. However, it

has the same disadvantages as other ZF techniques and as BD it also has a dimensionality

constraint that the total number of receive antennas at the user terminals has to be less

than or equal to the number of antennas at the base station. Therefore, the applicability

and gains that this and similar techniques can bring are very limited.
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5.4 Generalized design of MU MIMO precoding and decod-

ing matrices

MMSE THP precoding is optimum when all users in the system are equipped with only

one antenna. MMSE balances the MUI in order to reduce the performance loss while the

THP is used to eliminate the part of the MUI and improves the diversity. However, MMSE

THP suffers a performance loss when it attempts to mitigate the interference between two

closely spaced antennas as in the case when the user terminal is equipped with more than

one receive antenna. It was shown through simulations that SO THP approaches the

sum-rate capacity of the broadcast channel and can support multiple antennas at the user

terminals but has the dimensionality and noise enhancement problem.

Our goal is to perform MIMO precoding in such a way that the loss due to the multi-

user interference mitigation is reduced, to better use multiple antennas at the user termi-

nals and to remove any constraint regarding the number of antennas at the user terminals.

In order to facilitate the generalized design of the precoding matrix in a MU MIMO

scenario as in the SU MIMO case, we use a different approach. We separate the MUI

suppression and the system performance optimization. Therefore, the precoder design is

performed in two steps. In the first step we balance the MUI suppression which is achieved

by reducing the overlap of the row spaces spanned by the effective channel matrices of

different users and any MIMO processing gain which requires that the users use as much as

possible the available subspaces. In the second step we optimize the system performance

assuming parallel SU MIMO channels. Thus, the precoding matrix in equation (2.16) is

factored as

F = βFa · Fb, (5.14)

where

Fa =
[

Fa1 Fa2 · · · FaK

]
∈ C

MT×Mx , (5.15)

and

Fb =




Fb1 0 · · · 0

0 Fb2 · · · 0

...
...

. . .
...

0 0 · · · FbK



∈ C

Mx×r, (5.16)

with Fai
∈ C

MT×Mxi and Fbi
∈ C

Mxi
×ri , Mxi

≤ r, and Mx =
∑K

i=1Mxi
depending on the
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specific choice of the precoding algorithm. The matrix Fa is used to suppress the MUI

interference first, and then the matrix Fb is used to optimize the system performance ac-

cording to a specific criterion assuming that the MU MIMO channel has been transformed

into a set of parallel SU MIMO channels. Finally, the parameter β is chosen to set the

total transmit power to PT .

In the same way as for the precoding, the receive MU MIMO matrix D on the UL is

factored as

D = DbDa (5.17)

where matrix

Da =




Da1

Da2

...

DaK



∈ C

Mx×MT , (5.18)

and

Db =




Db1 0 · · · 0

0 Db2 · · · 0

...
...

. . .
...

0 0 · · · DbK



∈ C

r×Mx , (5.19)

with Dai
∈ C

Mxi
×MT and Dbi

∈ C
ri×Mxi , Mxi

≤ r, and Mx =
∑K

i=1Mxi
depends on

the specific choice of the receive algorithm. The matrix Da is used to suppress the MUI

interference first, and then the matrix Db is used to optimize the system performance ac-

cording to a specific criterion assuming that the MU MIMO channel has been transformed

into a set of parallel SU MIMO channels.

In the following sections we will introduce two classes of precoding techniques which

are defined by two different cost functions. These cost functions are based on the modified

MMSE optimization criterion. As a consequence these two classes of precoding techniques

will have different performance.
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5.5 Successive MMSE filtering

5.5.1 Successive MMSE precoding

A new algorithm was proposed in [28], that deals with the disadvantages of MMSE pre-

coding by successively calculating the columns of the precoding matrix Fa that correspond

to different receive antennas.

The successive MMSE (SMMSE) precoding filter Fa is derived from the linear transmit

MMSE precoding optimization by neglecting the contribution of interference between the

signals at one user’s antenna array to this user’s MSE. Since each user can coordinate the

processing over all of its antennas, we can combine the signals at the different antennas of

one user in order to extract higher diversity and array gain. The interference of other co-

channel users to the signal arriving at the ith user’s jth antenna is suppressed independently

from the other antennas at the same terminal. This is done for each antenna at the same

user terminal successively. Therefore, the jth column of the ith user’s precoding matrix

Fai
, corresponding to the ith user’s jth receive antenna, is equal to the first column of the

matrix Fai,j
which is obtained from the following optimization

Fai,j
= arg min

Fai,j

E





∥∥∥∥∥H
(j)
i Fai,j

z
(j)
i +

n
(j)
i

β
− z

(j)
i

∥∥∥∥∥

2

F



 (5.20)

such that β2 ‖FaFbx‖2
F ≤ PT . The matrix H

(j)
i and the vectors z

(j)
i and n

(j)
i corre-

sponding to the ith user’s, i = 1, . . . ,K, jth receive antenna, j = 1, . . . ,MRi
, are defined

as

H
(j)
i =




hT
i,j

H1

...

Hi−1

Hi+1

...

HK




, z
(j)
i =




zi,j

z1

...

zi−1

zi+1

...

zK




, and n
(j)
i =




ni,j

n1

...

ni−1

ni+1

...

nK




where hT
i,j is the jth row of the ith user’s channel matrix Hi, zi,j is the jth element of the

ith user’s vector zi ∈ C
MRi

×1 and ni,j is the noise at the input of the ith user’s jth receive

antenna. The elements of the vector zi are zero mean, unit variance i.i.d. complex uniform

random variables. The elements of the vector ni are zero mean complex Gaussian random
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variables with variance σ2
n. Note that the vectors zi = Fbi

xi, i = 1, . . . ,K, are the ith

user’s precoded data. The statistical properties of the elements of the vector zi, in general

depend on the matrix Fbi
. However, when we generate matrices Fai

we assume that the

matrices Fbi
are unitary. This assumption is true if each user is receiving independent data

streams with the same power over all of the receive antennas. In that case the statistics

of the elements of the vectors zi are the same as the statistics of the elements of the

vectors xi. By assuming that the matrix Fbi
is unitary we assign the same priority for

data transmission to all eigenmodes of the ith user’s effective channel HiFai
.

The columns of the precoding matrix Fai
, each corresponding to one receive antenna,

are calculated successively. The corresponding column of the precoding matrix Fai
is equal

to the first column of the following matrix:

Fai,j
=
(
H

(j) H
i H

(j)
i + αIMT

)−1
H

(j) H
i (5.21)

The parameter α is equal to α = σ2
nK/PT as in the equation (5.5).

After calculating the precoding vectors for all receive antennas in this fashion, the

effective combined channel matrix of all users is equal to HFa ∈ CMR×MR after the

precoding. For high SNR ratios and when MR ≤ MT , this matrix is also block diagonal.

We can now apply any other previously defined SU MIMO technique on the ith user’s

effective channel matrix HiFai
. After the precoding using the matrix Fai

, we first perform

the singular value decomposition (SVD) and then, if we want to maximize the capacity of

the system we use water-pouring on the eigenmodes of all users or if we want to extract

the maximum diversity and array gain, we transmit only on the dominant eigenmode of

the users’ effective channels. Dominant eigenmode transmission provides maximum SNR

at the receiver and minimum BER performance. The complexity of this algorithm is

only slightly higher than the one of BD. By using this algorithm we efficiently improve the

array and diversity gains of the system by introducing MUI and by eliminating inter-stream

interference. Following the same analysis as for MMSE, we expect that at high SNRs, in

case of a Hw channel, SMMSE extracts a diversity order of MRi
(MT −MR +MRi

).
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5.5.2 SMMSE THP precoding

SMMSE deals with the problem of performance loss due to inter-stream interference can-

cellation of MMSE by successively calculating the columns of the precoding matrix Fai

for each of the receive antennas separately. In this way it provides a higher diversity and a

higher array gain. Here, the diversity is further improved by combining SMMSE and THP.

By doing so we also improve the information rate of an SMMSE system and as we will see

later for low SNRs approach the sum rate capacity bound of the broadcast channels.

The ith user’s SMMSE THP precoding matrix Fai
is designed similarly to the SMMSE

precoding filter under the assumption that the interference from the remaining users,

i+1, . . . ,K is pre-subtracted using THP. Then, the jth column of the ith user’s precoding

matrix Fai
, corresponding to the ith user’s jth receive antenna, is equal to the first column

of the matrix Fai,j
which is obtained from the following optimization

Fai,j
= arg min

Fai,j

E





∥∥∥∥∥H
(j)
i Fai,j

z
(j)
i +

n
(j)
i

β
− z

(j)
i

∥∥∥∥∥

2

F



 (5.22)

such that β2 ‖FaFbx‖2
F ≤ PT . The matrix H

(j)
i , and the vectors z

(j)
i and n

(j)
i are defined

in this case as

H
(j)
i =




hT
i,j

H1

...

Hi−1



, z

(j)
i =




zi,j

z1

...

zi−1



, and n

(j)
i =




ni,j

n1

...

ni−1




where hT
i,j is the jth row of the ith user’s channel matrix Hi, zi,j is the jth element of

the ith user’s vector zi ∈ C
MRi

×1 and ni,j is the noise at the input of the ith user’s jth

receive antenna. The elements of the vector zi are zero mean, unit variance i.i.d. complex

uniform random variables. The elements of the vector ni are zero mean complex Gaussian

random variables with variance σ2
n. In the same way as in the case of SMMSE, the vectors

zi, i = 1, . . . ,K, are auxiliary vectors used only for the design of the matrices Fai
.

The columns in the precoding matrix Fai
, each corresponding to one receive antenna,

are calculated successively using SMMSE in the following way. The corresponding column

of the precoding matrix Fai
is equal to the first column of the following matrix:

Fai,j
=
(
H

(j) H
i H

(j)
i + αIMT

)−1
H

(j) H
i (5.23)
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Haux = H;
for i = K : 1[

P1, . . . Pi, mse1, . . . msei

]
= SMMSE (Haux) ;

ki = arg mink∈S msek;
Fi = Pki

;

Gi = F H
i HH

i

(
HiFiF

H
i HH

i + σ2
nIMRi

)−1
;

S = S\{ki};
Haux =

[
HT

1 . . . HT
ki−1 HT

ki+1 . . . HT
K

]T
;

end;
F =

[
F1 . . . FK

]
;

G =




G1

. . .

GK


 ;

B = lower triangular
(
GHF · diag

(
[GHF ]

−1
ii

))
;

Table 5.2: SMMSE THP algorithm.

where α = MRσ
2
n/PT , PT is the total transmit power, and σ2

n is the variance of a zero

mean additive white Gaussian noise. The MSE corresponding to this antenna disregarding

the interference from the other antennas collocated at the same user terminal is equal to:

msei,j =

[(
H

(j)
i H

(j) H
i + αIMR−MMRi

+1

)−1
]

1,1

(5.24)

where the index 1, 1 denotes the matrix element and the total per antenna MSE of the ith

user is:

msei =
∑

j

msei,j (5.25)

From the SVD of HiFai
= UiΣiV

H
i the matrix Fbi

is calculated as Fbi
= ViΦi, where

Φi is the ith user’s power loading matrix. As in the case of SMMSE, the choice of Φi will

depend on the specific optimization criterion.

The combination of SMMSE and THP (SMMSE THP) is performed by successively

calculating SMMSE, the reordering of users, and in the end precoding with THP. In every

step we use a heuristic approach and minimize the total per antenna MSE of each user.

The whole SMMSE THP algorithm is summarized in Table 5.2.

In Table 5.2, we use the following notation: SMMSE (•) is the SMMSE function as

explained in the previous section, Pk is an auxiliary matrix where we store the precoding

matrices generated using SMMSE, S is a set of indices of the users to be processed, Gi

is the ith user’s demodulation matrix and B is the THP feedback matrix. In each step

we find the user with the minimum total per antenna MSE and place it as the last one.
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Figure 5.7: BER performance of SMMSE, SMMSE THP and BD as a function of the
SNR.

Afterwards, we form the new combined channel matrix Haux without this user’s channel

matrix Hki
. We repeat these steps until the combined channel matrix is empty.

We compare the performance of systems employing SMMSE, SMMSE THP and BD.

To do so, we take into account a purely stochastic channel Hw and a frequency selective

MIMO channel with the power delay profile as defined by IEEE802.11n - D with non-

line of sight conditions [60]. We assume data transmission using an OFDM system with

N = 64 order discrete Fourier transform (DFT), subcarrier spacing of 150 kHz and cyclic

prefix Npre = 4 samples long. The data is encoded using the convolutional code rate 1/2

(561, 753)oct. After coding the data is mapped using QAM or 16QAM modulation. Coded

and modulated symbols are transmitted using Nc = 48 subcarriers and Nsymb = 2 OFDM

symbols.

We also consider the antenna correlation at the BS and UTs. Antenna correlation is

modeled in the delay domain using the Kronecker model. The channel of each user’s lth

path component is modeled as described in Section 2.2.1.

In Figure 5.7 we compare the BER performance of SMMSE, SMMSE THP and BD. By

introducing MUI, SMMSE provides a higher diversity and array gain than BD. SMMSE

THP has a higher diversity gain than SMMSE and outperforms SMMSE at high SNRs.

Therefore, it is an attractive solution for high SNRs and high data rates.

In Figure 5.8 we compare the information rate of SMMSE, SMMSE THP and BD.
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SMMSE provides higher information rate than BD at low SNRs, while BD has higher

information rate than SMMSE at high SNRs. By combining SMMSE and THP we ap-

proach the sum-rate capacity of the broadcast channels at the low SNRs. We also show in

this figure the capacity of a SMMSE THP system with antenna configuration {4, 4, 4}×6.

Unlike BD or SO THP, SMMSE and SMMSE THP do not have the dimensionality prob-

lem, i.e. the total number of receive antennas at the user terminals can be larger than

the number of antennas at the base station. However, the number of users in the system

K has to be K ≤ rank(H). Therefore, the SMMSE and SMMSE THP information rate

improves as the number of antennas at the user terminals increases.

5.5.3 SMMSE successive interference cancellation decoding

As it was said before, in order to achieve a linear increase of the MU MIMO system

capacity with the number of antennas we need to spatially multiplex users and multiple

data streams to each user. A high throughput on the multi-user uplink can be achieved

via an MMSE receiver with successive interference cancellation (SIC), [9]. However, as

before, this introduces a loss if we try to mitigate the interference between the data

streams transmitted from two closely spaced antennas located at the same user terminal.

Techniques, like V-BLAST that transmit independent data streams from all or just a group

of antennas, are suboptimum since they do not allow the full coordination of processing
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at the antennas at the user terminals. In order to improve the system performance we

can use the same approach as in SMMSE. Here, a new algorithm is introduced that deals

with this problem analogous to SMMSE by successively calculating the rows of the receive

matrix for each of the transmit antennas separately [30]. By applying SIC we additionally

improve the diversity, similar to the SMMSE THP, but with one difference. On the uplink

we do not need to use a modulo operator which gives a small advantage to SIC over THP.

The SMMSE SIC decoding filter is derived from the linear MMSE receive filter opti-

mization by neglecting the contribution of interference between the signals from one users

antenna array to this user’s MSE and the influence of the previously decoded users. Let

us assume that the users are ordered in such a way that the first user is decoded first, then

the second one, etc. When the users’ precoding matrices on the uplink Qi, i = 1, . . . ,K,

are defined, the receive MMSE filter Di is obtained using the following optimization

Di = arg min
Di

E

{∥∥∥Di

(
H

T
i Qixi + n

)
− xi

∥∥∥
2

F

}
. (5.26)

The matrices H i, Qi and the vector xi are defined in this case as

H i =




Hi

Hi+1

...

HK



, Qi =




Qi 0 · · · 0

0 Qi+1 · · · 0

...
...

. . .
...

0 0 · · · QK




and xi =




xi

xi+1

...

xK




where Hi, Qi and xi are the ith user’s channel matrix, uplink precoding matrix and data

vector, respectively.

In equation (5.26) we have included the processing at the user terminals in the op-

timization criterion. However, in a multi-user scenario, the user terminals estimate the

effective channel on the downlink that includes also the processing performed at the base

station. Since the processing at the base station is not necessarily the same on the up-

link and the downlink, it is reasonable to assume that the user terminals do not have the

exact channel state information. We can distinguish two situations. In the first case the

users transmit using one of the techniques that do not require CSI at the transmitter. In

the second case the base station generates the optimum precoding matrices Qi and then

feedforwards them to the user terminals. Having in mind the limited power available at

the user terminals, the diversity gains are more desirable than spatial multiplexing gains.
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Therefore, we assume that users transmit data either using STCs or using the dominant

right singular vectors of the users’ uplink effective channels. In either case the decod-

ing matrix Da is generated at the base station row by row under the assumption that

Qi = IMRi
, ∀i, and in the following we will always use this assumption.

In the same way as for the downlink, the interference from the co-channel users to the

signal transmitted from the ith user’s jth antenna is suppressed independently from the

other collocated antennas. Therefore, the jth row of the ith user’s decoding matrix Dai
,

corresponding to the ith user’s jth transmit antenna is equal to the first row of the matrix

Dai,j
which is designed such that

Dai,j
= arg min

Dai,j

E

{∥∥∥Dai,j

(
H

(j) T
i z

(j)
i + n

)
− z

(j)
i

∥∥∥
2

F

}
, ∀i, j. (5.27)

The matrix H
(j)
i and the vector z

(j)
i are defined in this case as

H
(j)
i =




hT
i,j

Hi+1

...

HK




and z
(j)
i =




zi,j

zi+1

...

zK




where hT
i,j is the jth row of the ith user’s channel matrix Hi, and zi,j is the jth element of

the ith user’s auxiliary vector zi ∈ C
MRi

×1, where zi = Qixi. The vector n ∈ CMT×1 is

the noise at the input of the receive antenna array at the base station. The elements of

the vector zi are assumed for the same reason as in the case of SMMSE to be zero mean,

unit variance i.i.d. complex uniform random variables. The elements of the vector n are

complex Gaussian random variables with zero mean and variance σ2
n.

The rows in the receive matrix Dai
, each corresponding to one transmit antenna, are

calculated successively. The jth row of the receive matrix Dai
is equal to the first row of

the following matrix:

Dai,j
= H

(j) ∗
i

(
H

(j) T
i H

(j) ∗
i + σ2

nIMT

)−1
(5.28)

where σ2
n is the variance of the zero-mean additive white Gaussian noise at the input of

one receive antenna.

In order to define the ordering of users we will use the same heuristic approach as for

SMMSE THP. The mean-square error (MSE) corresponding to the jth transmit antenna
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Haux = H;
for i = 1 : K[

P1, . . . Pi, mse1, . . . msei

]
= SMMSED (Haux) ;

ki = arg mink∈S msek;
Di = Pki

;
S = S\{ki};
Haux =

[
HT

1 . . . HT
ki−1 HT

ki+1 . . . HT
K

]T
;

end;

D =
[

DT
1 . . . DT

K

]T
;

Table 5.3: SMMSE SIC algorithm.

of the ith user is equal to

msei,j = σ2
n

[(
H

(j) T
i H

(j) ∗
i + σ2

nIMT

)−1
]

1,1

(5.29)

Let us define the total mean square error of the ith user as

msei =

MRi∑

j=1

msei,j (5.30)

We look for the user with the minimum msei, demodulate its data and then subtract the

reconstructed signal from the received signal. Afterwards, we form the new combined

channel matrix H
(j)
i without this user’s channel matrix and use it in equation (5.28). We

repeat these steps until the combined channel matrix H
(j)
i is empty.

The whole SMMSE SIC algorithm is given in Table 5.3. We use the following notation:

SMMSED (•) is the SMMSE decoding function as it was previously described, Pk is an

auxiliary matrix where we store the decoding matrices generated using a receive SMMSE

filter and S is a set of indices of the users to be processed. In each step we find the user

with the minimum total per antenna MSE and place it as the first one. Afterwards, we

form the new combined channel matrix Haux without this user’s channel matrix Hki
. We

repeat these steps until the combined channel matrix is empty.

In Figure 5.9 we compare the performance of SMMSE SIC and V-BLAST in a system

with the antenna configuration {2, 2} × 6. In case of SMMSE SIC each user terminal can

transmit data using either STC or on the dominant singular vector of the effective channel.

In the first case, each user assumes no CSI at the transmitter and encodes the data using

an Alamouti space-time code. In the second case, the base station calculates and sends

back to the ith user terminal the dominant right singular vector of the ith user’s effective

channel Dai
HT

i , ∀i. The matrices Dbi
and Qi are chosen as the dominant left and right
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Figure 5.9: BER performance of V-BLAST and SMMSE SIC in combination with Alam-
outi STC and feddback of user uplink precoding vectors.

singular vectors of the matrix Dai
HT

i , respectively. When SMMSE SIC is used at the base

station the data is encoded using the QAM modulation. In case of V-BLAST since we

have two data streams per user, each data stream is modulated using BPSK. Information

data is encoded using convolutional code rate 1/2. As we can see from the figure, SMMSE

SIC in both cases provides higher diversity than V-BLAST. When we transmit data on

the left dominant singular vector of each users’ effective channel, in the system with this

antenna configuration we obtain an additional 2 dB SNR gain.

5.6 Regularized block diagonalization

As it was shown in the previous section, SMMSE and SMMSE THP manage to provide

higher array and diversity gain and in simulations reach the sum-rate capacity of the

broadcast channel at the low SNRs. However, they fail to extract full array gain, diversity

gain and sum-rate capacity.

In this section we will use the same approach introduced in the Section 5.4 to de-

sign the precoding matrix. The approach used for the design of the precoding matrix

is general and the resulting algorithm can address several optimization criteria with an

arbitrary number of antennas at the user terminals. This has been achieved by designing

the precoding matrices in two steps. In the first step we minimize the overlap of the row
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spaces spanned by the effective channel matrices of different users. To this end we separate

the transmission to the different users using a new cost function that includes multi-user

interference suppression and the avoidance of noise enhancement. In the next step, we op-

timize the system performance with respect to the specific optimization criterion assuming

a set of parallel single-user MIMO channels. The new technique is called regularized block

diagonalization (RBD) since at high signal-to-noise ratios (SNRs) and under the condition

that the total number of antennas at the user terminals is less or equal to the number

of antennas at the base station, the effective combined channel matrix is block diagonal.

In addition to this linear technique we also present several variants that extract full gain

provided by multiple antennas.

5.6.1 RBD precoding

It has been shown that the best performance for the single antenna receivers, r = K = MR,

is achieved by designing the precoding matrix F using the MMSE criterion [22]. Let us

define the precoding matrix F as F = βFa. The precoding matrix Fa and the scaling

factor β result from the following optimization

Fa = min
Fa

E
{∥∥β−1y − x

∥∥2

F

}
= min

Fa

E

{
‖(HFa − IMR

)x‖2
F +

‖n‖2
F

β2

}
(5.31)

where the parameter β is used to fulfill the transmit power constraint. This can be

interpreted as choosing the matrix Fa to minimize the Frobenius norm of the off-diagonal

elements of the effective channel HFa at the high SNRs, while the elements on the main

diagonal should converge to 1.

Let us rewrite here the matrix H̃i from equation (5.6)

H̃i =
[

HT
1 · · · HT

i−1 HT
i+1 · · · HT

K

]T
∈ C

(MR−MRi
)×MT (5.32)

First we address the design of the matrix Fa. The effective combined channel matrix of

all users after the precoding is equal to

HFa =




H1Fa1 H1Fa2 · · · H1FaK

H2Fa1 H2Fa2 · · · H2FaK

...
...

. . .
...

HKFa1 HKFa2 · · · HKFaK




(5.33)
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where the ith user’s effective channel is given by HiFai
and the interference that this user

generates to the other users is determined by H̃iFai
.

The Frobenius norm of the matrix H̃iFai
is related to the level of the overlap of the

row subspaces of the effective channels of different users HiFai
, i = 1, . . . ,K. Analogous

to (5.31), the matrix Fa is chosen such that the off-diagonal block matrices converge to

zero as the SNR increases. The specific optimization of the block matrices on the main

diagonal is addressed in the next step where we design the matrix Fb. We rewrite the

optimization criterion in (5.31) as

Fa = min
Fa

E

{
K∑

i=1

∥∥∥H̃iFai

∥∥∥
2

F
+

‖n‖2
F

β2

}
(5.34)

where vector n ∈ CMR×1 contains the samples of a zero mean additive white Gaussian

noise at the input of the receive antennas and β is chosen to fulfill the transmit power

constraint β2 ‖FaFbx‖2
F ≤ PT . We assume that the noise at the input of different receive

antennas is uncorrelated with the same variance σ2
n. Therefore, the matrices Fai

are

obtained by minimizing the Frobenius norm of the effective channels between different

users and the Frobenius norm of the scaled noise vector. The parameter β is a function

of Fa and Fb, and it influences the receive SNR, [22].

The power of the transmission of the ith user into the subspace spanned by the rows

of the other users’ channel matrices is
∥∥∥H̃iFai

∥∥∥
2

F
. The matrix Fa is designed to minimize

the power of this interference plus noise. The optimization crtierion in equation (5.34)

can be rewritten similarly as

Fa = minFa
E
{∑K

i=1 tr
(
H̃iFai

F H
ai

H̃H
i

)
+

‖n‖2
F

β2

}

= minFa

∑K
i=1

(
tr
(
H̃iFai

F H
ai

H̃H
i

)
+ E

{
‖n‖2

F

β2

})

= minFa

∑K
i=1

(
tr
(
H̃iFai

F H
ai

H̃H
i

)
+ MRσ2

n

β2

)
(5.35)

The parameter β is chosen to set the total transmit power to PT

β2E

{
K∑

i=1

‖Fai
Fbi

xi‖2
F

}
≤ PT (5.36)

where the vector x =
[
xT

1 , . . . ,x
T
K

]T ∈ Cr×1 is a collection of all data vectors xi trans-
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mitted to the users. We can write

β2E

{
K∑

i=1

‖Fai
Fbi

xi‖2
F

}
= β2E

{
K∑

i=1

tr
(
Fai

Fbi
xix

H
i F H

bi
F H

ai

)
}

(5.37)

If we assume that the users’ data are uncorrelated, uniformly distributed, with zero mean

and unit power, E
{
xix

H
i

}
= Iri

and that Fbi
is unitary, which is justified if we assume

that we use all eigenmodes of the effective channel HiFai
for transmission with an equal

power distribution, we have

β2E

{
K∑

i=1

tr
(
Fai

Fbi
xix

H
i F H

bi
F H

ai

)
}

= β2
∑K

i=1 tr
(
Fai

F H
ai

)
≤ PT

⇒ β2 = PTPK
i=1 tr(Fai

FH
ai

)
. (5.38)

From the previous equation we see that the matrix Fa is a function of the matrix Fb, and

vice versa, the matrix Fb is a function of the matrix Fa. In order to design the matrix Fa

independently from the matrix Fb we have initially assumed that the matrix Fb is unitary.

This assumtion means that when we design the matrix Fa we assume that each user uses

all singular vectors of the effective channel HiFai
for data transmission with equal priority,

i.e., he uses all of his available subspace. If later, a user does not use all of the available

subspace, the performance can be improved by iterating the closed form solution for RBD

as it will be explained later.

By substituting β2 from (5.38) in (5.35), we get

min
Fa

K∑

i=1

(
tr
(
H̃iFai

F H
ai

H̃H
i

)
+
MRσ

2
n

PT
tr
(
Fai

F H
ai

))

= min
Fa

K∑

i=1

tr

(
H̃H

i H̃iFai
F H

ai
+
MRσ

2
n

PT
Fai

F H
ai

)

= min
Fa

K∑

i=1

tr

((
H̃H

i H̃i +
MRσ

2
n

PT
IMT

)
Fai

F H
ai

)

= min
Fa

K∑

i=1

tr

(
F H

ai

(
H̃H

i H̃i +
MRσ

2
n

PT
IMT

)
Fai

)
. (5.39)

If the SVD of H̃i is given by

H̃i = ŨiΣ̃iṼ
H

i ∈ C
(MR−MRi

)×MT (5.40)
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then

min
Fa

K∑

i=1

tr

(
F H

ai

(
H̃H

i H̃i +
MRσ

2
n

PT
IMT

)
Fai

)

= min
Fa

K∑

i=1

tr

(
F H

ai
Ṽi

(
Σ̃T

i Σ̃i +
MRσ

2
n

PT
IMT

)
Ṽ H

i Fai

)
(5.41)

Using the results from [61], the expression in (5.41) is minimized by choosing Fai
as

Fai
= Mai

Φai
(5.42)

and

Mai
= Ṽi ∈ C

MT×MT , (5.43)

Then (5.41) reduces to

min
Φai

K∑

i=1

tr

((
Σ̃T

i Σ̃i +
MRσ

2
n

PT
IMT

)
Φ2

ai

)
(5.44)

Since the elements on the main diagonal of
(
Σ̃T

i Σ̃i + MRσ2
n

PT
IMT

)
are greater than zero,

the matrices Φai
have to be positive definite if we would like to find a nontrivial solution.

Using the results from [8] (Appendix F), the solution to (5.44) is

Φai
=

(
Σ̃T

i Σ̃i +
MRσ

2
n

PT
IMT

)−1/2

(5.45)

so that the minimum and maximum eigenvalues of (5.44) coincide. Note that there is no

additional constraint regarding the values of Φai
except that it is positive definite.

From equations (5.42),(5.43) and (5.45) we can see that the cost function in equation

(5.34) is minimized if each user transmits in the space spanned by the combined matrix

of all other users with the power that is inversely proportional to the singular values of

the combined channel matrix of these users H̃i. As a result, at high SNRs and MR ≤MT

each user transmits only in the null space of all other users as in BD.

The effective combined channel matrix of all users after the first step of the precoding

is equal to HFa ∈ CMR×KMT . For high SNRs and MR ≤ MT , this matrix will also be

block diagonal. We can now apply any other previously defined SU MIMO technique on

the ith user’s effective channel matrix HiFai
.

After we have suppressed MUI using Fa we optimize the system performance by op-
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timizing each SU MIMO channel separately under the total transmit power constraint.

Now we use the results presented for the generalized design of SU MIMO precoding and

decoding matrices [8]. The matrix Fbi
has the form Fbi

= Mbi
·Φbi

where Mbi
∈ CMT×MT

is a unitary matrix and Φbi
∈ RMT×MT is a diagonal power loading matrix, with elements

on the main diagonal greater or equal to zero, [8]. If the BS transmits ri data streams to

the ith user, then only ri elements on the diagonal of Φbi
will be greater than zero. The

optimum Mbi
is obtained from the SVD of the ith user’s effective channel

HiFai
= UiΣiV

H
i (5.46)

as Mbi
= Vi [8], [9]. The choice of the power loading matrix Φbi

depends on the optimiza-

tion criteria.

Power loading

Let us define the matrix Σe as

Σe =




Σ
(r1)
1 0 · · · 0

0 Σ
(r2)
2 · · · 0

...
...

. . .
...

0 0 · · · Σ
(rK)
K



∈ R

r×r, (5.47)

where Σ
(ri)
i is a diagonal matrix containing the largest ri values of Σi which is obtained

from the SVD given in equation (5.46). By applying the water-pouring (WP) algorithm

on this matrix we can maximize the system information rate.

The maximum signal-to-noise ratio (SNR) at the user terminals is obtained by trans-

mitting only over the strongest eigenmode, i.e., ri = 1, i = 1, . . . ,K.

To minimize the average BER in the system we introduce a new power loading algo-

rithm. Here we rely on the fact that the overall system BER performance is limited by

the performance of the weakest user, i.e., the one with the highest BER. Therefore, we

assign the power to users in such a way as to balance the SNR over all users, average the

BER performance and improve the system BER. Thus, we first introduce a power loading

matrix for which we use the term ”MMSE” power loading (PL):

ΦMMSE =
(
ΣT

e Σe + αIr

)−1
ΣT

e =
(
Σ2

e + αIr

)−1
Σe ∈ R

r×r (5.48)
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where α = σ2
nMR/PT . Additive noise is the dominant source of interference at the low

SNRs. Thus, no power loading (No PL)

Φbi
=


 Iri

0

0 0


 ∈ R

MT×MT ,

reduces the BER, while at high SNRs, MMSE power loading yields a lower BER. For this

reason, we introduce an improved diversity power loading which adapts from no power

loading at low SNRs to MMSE power loading at high SNRs. Therefore, we define the

improved diversity (impD) precoding matrix as

ΦimpD =
(
Σ2

e + αIr

)−1
Σe

(
Ir −

(
Σ2

e + αIr

)−1
α
)

+
(
Σ2

e + αIr

)−1
α. (5.49)

These power loading matrices are used to redistribute the total transmit power over the

eigenmodes. After we have generated the matrices Fa and Fb, the parameter β is used to

set the total transmit power to PT , i.e., β2 = PT / ‖FaFbx‖2.

5.6.2 RSO THP precoding

In this section we introduce a combination of RBD and THP which we call regularized

successive optimization THP (RSO THP). We combine RBD and THP in order to reach

the maximum sum rate capacity of the Gaussian broadcast channel.

We assume that a certain optimum/suboptimum ordering of users is done beforehand.

Let us define the previous i− 1 users’ combined channel matrix as

Ĥi =




H1

...

Hi−1




and its corresponding SVD as

Ĥi = ÛiΣ̂iV̂
H

i . (5.50)

The optimization of the RSO THP precoding filter is written as:

Fa = min
Fa

E

{
K∑

i=1

∥∥∥ĤiFai

∥∥∥
2

F
+

‖n‖2
F

β2

}
(5.51)

where n is the vector of the additive noise at the input of all receive antennas and the
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parameter β is chosen to fulfill the transmit power constraint (5.36).

The combination of RBD and THP is performed by successively calculating RBD,

then the reordering of users, and in the end precoding with THP. Instead of examining

all K! possibilities for ordering to maximize the total information rate in the system, we

use the same heuristic simplification as in SO THP, where we minimize the information

rate difference when we precode all users jointly and when the users are served separately.

Using RBD, the modulation matrix for each user is designed in such a way that it lies only

in the row space of the effective channel matrices of previous users. As a consequence,

only they will generate the interference to this user.

Using RBD, the precoding matrix Fai
of the ith user is calculated as Fai

= Mai
Φai

,

where

Mai
= V̂i and Φai

=

(
Σ̂T

i Σ̂i +
MRσ

2
n

PT
IMT

)−1/2

. (5.52)

The whole RSO THP algorithm is summarized in Table 5.4. We use the following notation:

RBD (•) is RBD as previously explained, Pk is an auxiliary matrix where we store the

precoding matrices generated using RBD, S is a set of indices of the users to be processed,

Gi is the ith user’s demodulation matrix and B is the THP feedback matrix. Note that

the matrices Ui are given in (5.46). In short, we first calculate the information rate that

an individual user can achieve assuming there are no other users in the system. Then,

we look for the user with the minimum difference between its information rate when

it is served alone and its information rate when it is served jointly with other users and

generate the precoding matrix of this user. In each step we find the user with the minimum

information rate loss and place it as the last one. Afterwards, we form the new combined

channel matrix Haux without this user’s channel matrix Hki
. We repeat these steps until

the combined channel matrix is empty. The order of the users is the reverse of the order

in which their precoding matrices are generated. The strictly lower triangular feedback

matrix B, used in THP precoding, is generated from the effective combined channel matrix

after the elements in each row are divided by the elements on the main diagonal, as it can

be seen from the last equation in Table 5.4.

The individual users’ channel matrices and demodulation matrices are grouped in the

matrices H and G. The feedback matrix B, generated in the last step of the RSO THP

algorithm, is now used to precode the users’ data streams starting with the data stream

of the first user whose precoding matrix F1 was generated as the last one.

Again, by using THP at the transmit side we significantly increase the transmit power
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for i = 1 : K

Hi = WiΣi

[
V

(1)
i V

(0)
i

]H
;

Fmax,i = V
(1)

i ;
Cmax,i = log2det

(
I + σ−2

n HiFmax,iF
H
max,iH

H
i

)
;

end;
S = {1, . . . ,K} ;
Haux = H;
for i = K : 1[

P1, . . . Pi, U1, . . . Ui

]
= RBD (Haux) ;

for k = 1 : i
Ck = log2det

(
I + σ−2

n HkPkP H
k HH

k

)
;

end;
ki = arg mink∈S (Cmax,k − Ck) ;
Fi = Pki

;
Gi = UH

ki
;

S = S\{ki};
Haux =

[
HT

1 . . . HT
ki−1 HT

ki+1 . . . HT
K

]T
;

end;
F =

[
F1 . . . FK

]
;

G =




G1

. . .

GK


 ;

B = lower triangular
(
GHF · diag

(
[GHF ]

−1
ii

))
;

Table 5.4: Regularized successive optimization THP (RSO THP) algorithm.

and therefore a modulo operation is introduced at the transmitter and the receiver in order

to limit the constellation size.

5.6.3 Iterative RBD

The performance of RBD can be further improved by exploiting the row subspace that

remains unused after the precoding. In RBD, the precoding matrix for each user is gener-

ated under the assumption that the other user terminals use all the available right singular

vectors for transmission. However, after the power loading some singular values remain

unused and they can be exploited to improve the system performance.

We can identify two cases. In the first case, if the number of the transmitted data

streams of the ith user ri is less than the rank of the ith user’s channel matrix, then other

users could also transmit in this unused subspace without causing additional interference.

In the second case, when MT ≤ MR and K ≤ MT , users must leave a part of their own

subspaces unused in order to reduce the overall MUI.
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Iterative RBD is defined as a solution to the following optimization problem:

F (l)
a = min

F
(l)
a

E

{
K∑

i=1

∥∥∥H̃(l)
i F (l)

ai

∥∥∥
2

F
+

‖n‖2
F

β2

}
(5.53)

where F
(l)
a is the precoding matrix obained in the lth iteration. The modified combined

channel matrix of interfering users in the lth iteration is defined as

H̃
(l)
i =




H
(l)
1

...

H
(l)
i−1

H
(l)
i+1

...

H
(l)
K




∈ C
(r−ri)×MT (5.54)

where r ≤ MT is the total number of the spatially multiplexed data streams and ri is

the number of data stremas transmitted to the ith user. The ith user’s effective channel

matrix in the lth iteration is equal to:

H
(l)
i = U

(ri) (l−1) H
i Hi (5.55)

where U
(ri) (l−1)
i contains the first ri vectors of U

(l−1)
i which is obtained from the following

SVD

HiF
(l−1)
ai

= U
(l−1)
i Σ

(l−1)
i V

(l−1) H
i . (5.56)

The first ri vectors of U
(l−1)
i correspond to the ri strongest singular values of HiF

(l−1)
ai .

Following the analysis from Section 5.6, the solution to the optimization problem given in

(5.53) is equal to

F (l)
ai

= Ṽ
(l)

i

(
Σ̃

(l) T
i Σ̃

(l)
i +

MRσ
2
n

PT
IMT

)−1/2

(5.57)

where MR is the total number of receive antennas at the user terminals, PT is the transmit

power, σ2
n is the variance of the additive noise at the input of the receive antennas, and

matrices Ṽ
(l)

i and Σ̃
(l)
i are obtained from the following EVD:

H̃
(l) H
i H̃

(l)
i = Ṽ

(l)
i Σ̃

(l) T
i Σ̃

(l)
i Ṽ

(l) H
i . (5.58)

The whole IRBD algorithm is sumarized in Table 5.5. We assume a random ordering
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U
(0)
i = IMRi

,∀i;
for l = 1 : Niterat

for i = 1 : K

H
(l)
i = U

(l−1) H
i Hi;

end;
for i = 1 : K

H̃
(l)
i =

[
H

(l) T
1 . . . H

(l) T
i−1 H

(l) T
i+1 . . . H

(l) T
K

]T
;

H̃
(l) H
i H̃

(l)
i = Ṽ

(l)
i Σ̃

(l) T
i Σ̃

(l)
i Ṽ

(l) H
i ;

F
(l)
ai

= Ṽ
(l)

i

(
Σ̃

(l) T
i Σ̃

(l)
i +

MRσ2

n

PT

IMT

)−1/2

;

H
(l)
i F

(l)
ai

= UΣV H ;

U
(l)
i = U(:,1:ri);

end;
end;

F
(Niterat)
a =

[
F

(Niterat)
a1

. . . F
(Niterat)
aK

]
;

Table 5.5: Iterative RBD (IRBD) algorithm.

of the users since simulation results have shown that the performance of the algorithm

does not depend on the user ordering. In iterative RBD (IRBD), the precoding matrices

Fai
are calculated by repeatedly performing RBD. The difference to RBD is that after

calculating Fai
for the ith user, for all other users we use U

(ri) (l−1) H
i Hi instead of the

channel matrix Hi to generate the matrix H̃
(l)
j , j 6= i, where H̃

(l)
j is defined in equation

(5.54) and U
(ri) (l−1)
i is a matrix containing the first ri singular vectors of the matrix

U
(l−1)
i which is given in equation (5.56).

Similar iterative solutions were previously introduced as, for example, coordinated

beamforming [25]. However, the difference compared to our proposal is that the authors

assume cooperation between UTs and the BS which requires that a large portion of the

system throughput is used for the transmission of demodulation matrices from the UTs

back to the BS. In our case, the matrices Ui are calculated using only the CSI available at

the BS. The optimum receive MIMO processing at the UTs is still MMSE spatial filtering

of the effective channel HiFi, where Fi = βFai
Fbi

.

5.6.4 Joint processing in space, time and frequency

Joint multi dimensional RBD (JRBD) exploits the other two dimensions, time and fre-

quency, to reduce the overlap of the row subspaces of users’ channel matrices. Let us

assume that MR ≤ MT . At high SNRs, RBD will in this case reduce to regular BD as

described in [25]. If the rank of H̃i is L̃i, the dimension of the ith user’s effective channel

is MRi
×
(
MT − L̃i

)
and is equivalent to a system with MT − L̃i transmit antennas and
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MRi
receive antennas. The maximum diversity order that this system can provide is then

MRi

(
MT − L̃i

)
. By increasing the number of transmit antennas we could reduce the

diversity loss. However, an increase of the number of antennas is very expensive so we

have to consider other solutions.

This problem can be avoided by combining the channel matrices in equation (2.14)

from several OFDM symbols and subcarriers. However, if we use channel matrices from

adjacent subcarriers and consecutive OFDM symbols this grouping will not result in any

performance improvement since the channel matrices are correlated. This is equivalent to

the scaling of the vector basis. Another option is to use channel matrices from subcarriers

that are separated in frequency by more than the coherence bandwidth and in time by more

than the coherence time interval. The third option is to perform subspace perturbation

on the adjacent subcarriers and consecutive OFDM symbols. The subspace perturbation

is performed at the UTs by multiplying the channel matrices on different subcarriers and

OFDM symbols with pseudo-random sequence. For example, we precode jointly the signals

over SP adjacent subcarriers in one OFDM symbol by using

Ȟi =
[
c1H

T
i (1) · · · cSP

HT
i (SP )

]T
∈ C

MR×SP MT (5.59)

instead of Hi in (2.14). Hi (k) is the ith user’s channel matrix on the kth subcarrier, and
[
c1 · · · cSP

]
is the pseudo-random sequence of length SP . After substituting Ȟi for

Hi in (2.14) the precoding is performed in the same manner as described previously.

The difference between JRBD and multi-carrier CDMA (MC-CDMA) is that in MC-

CDMA, MIMO processing is performed on every subcarrier separately and then the data

is spread over a group of adjacent subcarriers. In JRBD every channel matrix is multiplied

with one chip of a pseudo random sequence, and then these matrices are grouped into one

big channel matrix. This matrix is used for precoding.

5.6.5 Simulation results on RBD family of precoding algorithms

In this section we compare the performance of systems employing the precoding techniques

introduced in this section to SMMSE, SMMSE THP, BD, SO THP and TDMA. To this end

we simulate a purely stochastic spatially white channel Hw and the second is a frequency

selective MIMO channel with a power delay profile as defined by IEEE802.11n - D with

non-line of sight conditions [60]. The elements of the channel matrices on each subcarrier

are zero mean, unit variance complex Gaussian variables. We assume data transmission
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Figure 5.10: 10 % outage information rate of BD, SMMSE and RBD as a function of SNR.

using an OFDM system with DFT size N = 64, a subcarrier spacing of 150 kHz and a

cyclic prefix that is Npre = 4 samples long. The data is encoded using the convolutional

code rate 1/2 (561, 753)oct. After coding the data is mapped using QAM or 16 QAM

modulation. Coded and modulated symbols are transmitted using Nc = 48 subcarriers

and Nsymb = 2 OFDM symbols.

In the second channel model we also consider antenna correlation at the BS and UTs.

Antenna correlation is modeled in the delay domain using the Kronecker model defined in

Section 2.2.1.

In Figure 5.10 we show the 10 % outage information rate as a function of the ratio

of the total transmit power PT and the power of additive white Gaussian noise at the

input of every antenna, σ2
n. The information rate is calculated using the results on the

information rate of MIMO broadcast channels in [14]. We also present capacity results

for a TDMA system as a comparison. As this figure shows, SMMSE provides higher

information rate than BD at low SNRs while BD is better at high SNRs. RBD practically

adapts to different levels of noise, allowing more MUI at low SNRs and canceling MUI at

high SNRs to improve the information rate of the system. When MT > MR RSO THP

approaches the maximum achievable sum rate capacity of the MU MIMO downlink system

as it can be seen from Figure 5.11. RBD and IRBD have a loss in this scenario of around

5 bps/Hz.

If the subspaces of the users’ channel matrices significantly overlap, e.g., if MR > MT ,
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Figure 5.11: 10 % outage information rate of RBD, RSO THP and IRBD as a function of
SNR. MR ≤MT .
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Figure 5.13: BER performance comparison of RBD with different power loading algorithms
with BD, SMMSE and SMMSE THP.

MUI will substantially degrade the system information sum rate. In a system with K = 3

users each equipped with MRi
= 4 antennas and with MT = 4 antennas at the BS,

RSO THP fails to reach the DPC bound. However, IRBD with dominant eigenmode

transmission approaches this bound as the number of iterations increases. From Figure

5.12 we see that after 11 iterations, IRBD reaches the DPC bound.

In Figure 5.13 we compare the BER performance of BD, SMMSE, SMMSE THP, RBD

and IRBD. By introducing MUI, SMMSE outperforms BD, and its diversity order can be

further improved by combining it with THP. The performance of RBD depends on the

power loading algorithm being used. No power loading produces better results at low SNRs

and MMSE power loading is more advantageous at high SNRs. By combining these two

power loading strategies, RBD, which is a linear precoding technique, provides an SNR

gain of more than 3 dB over SMMSE THP which is a non-linear precoding technique.

IRBD with only 3 iterations provides a further improvement and a higher diversity than

RBD.

In Figure 5.14 we show the BER performance of RBD, IRBD, JRBD, MC-CDMA and

the BER curve for a similar ”genie aided” system where the users are assumed perfectly

orthogonal in order to show the diversity inherent in this type of system. In MC-CDMA

spatial processing is done on each subcarrier separately. Unlike in Figure 5.13, IRBD has

a better performance than RBD only at very high SNRs. JRBD outperforms both RBD
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Figure 5.14: BER performance of RBD, IRBD, JRBD and MU MIMO system with or-
thogonal users in configuration {2, 2, 2} × 8.
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MIMO system with orthogonal users in configuration {4, 4, 4} × 4.

and IRBD at very high SNRs. However, both JRBD and IRBD manage to provide the

full diversity of the system. The difference between these precoding techniques becomes

more visible in case of high MUI as shown in Figure 5.15. In this case both SMMSE and

RSO THP experience an error floor. By using IRBD we provide an additional gain of

2 dB in comparison with RBD, and by further increasing the computational complexity

using JRBD we manage to reduce the loss compared to the ”genie aided” system to only

2 dB.

In Figure 5.16 we investigate the asymptotic performance at high SNRs of SMMSE,

RBD, RSO THP and IRBD relative to a ”genie aided” system. The antenna configuration

of the system is {4, 4, 4}× 4. As we can see, SMMSE, RBD and RSO THP experience an

error floor at high SNRs due to the high MUI. However, IRBD performs very good in this

case and extracts full antenna diversity gain inherent in the system.

77



5.7 Precoding using instantaneous and long-term channel

state information

It has been shown in [2] that the capacity of a MIMO system increases linearly with

the minimum out of the number of receive and transmit antennas. Fading correlation

reduces the system capacity, especially when there is no channel knowledge available at

the transmitter [35]. If it is impossible to acquire instantaneous CSI at the base station,

the spatial channel correlation can nevertheless be used to effectively eliminate or reduce

the multi-user interference. In this section we introduce the equivalent channel which

facilitates the use of MU MIMO precoding techniques when there is either instantaneous

CSI or long-term CSI available at the base station. This will help us apply the same linear

precoding techniques requiring instantaneous channel state information at the transmitter

also if we only have the information on the transmit correlation matrices. But instead

of using the exact channel knowledge we will use the equivalent channel, which will be

introduced later.

If we assume that the channel is varying too rapidly to track its mean, the information

regarding the relative geometry of the propagation paths is captured by a colored spatial

correlation matrix. This problem is also addressed in [25] where the authors assume that

each user’s channel matrix can be represented as Hi = AiBi where the transmitter has

the information about the matrix Bi ∈ Cri×MT but not Ai ∈ C
MRi

×ri , ri ≤ MRi
. The

multi-user interference in the system can be set to zero by performing BD on the matrices

Bi. This solution corresponds to beamforming based on the long-term beams with the

additional constraint that the ith user’s long-term beams are in the null space of all other

users’ long-term beams.

Let us introduce the ith user’s average correlation matrix R
(k)
i over the kth chunk, where

the chunk represents the smallest time-frequency resource allocation unit. The dimensions

of a chunk in a OFDM-MIMO system are defined by the number of consecutive OFDM

symbols in the time dimension and the number of adjacent subcarriers in the frequency

direction. Thus, the ith user’s average correlation matrix over the kth chunk R
(k)
i is defined

as

R
(k)
i =

1

Nchunk

∑

j

H
(k,j) H
i H

(k,j)
i (5.60)
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and its singular value decomposition as

R
(k)
i = V

(k)
i Λ

(k)
i V

(k) H
i (5.61)

where H
(k,j)
i is the ith user’s channel matrix on the jth symbol of the kth chunk and Nchunk

is the number of complex symbols in one chunk.

The equivalent channel is defined based on the matrix R
(k)
i as follows:

Ĥ
(k)
i = Λ

1/2
i V

(k) H
i (5.62)

It can easily be shown that the solution proposed in [25] is similar to the solution obtained

by applying BD on the matrices Ĥ
(k)
i . Unlike in [25] where the authors address only

the cancellation of the multi-user interference without the optimization of the isolated

single-user performance, the approach based on (5.62) completely defines the modulation

matrices. It was shown that when only the channel correlation matrix is available at

the transmitter, the optimum strategy is to transmit on the long-term eigenmodes of the

matrix R
(k)
i [9].

We will use the matrix Ĥ
(k)
i defined in (5.62) as a long-term equivalent channel and

perform the precoding on this matrix as if it represented the actual channel. The matrices

Ĥ
(k)
i , i = 1, 2, . . . ,K, contain all the information about the long-term subspace of each

user available at the transmitter, in this case the base station. To illustrate this fact we

look at zero-forcing (ZF) precoding that is defined as the pseudo-inverse of the channel.

The pseudo-inverse of the matrix Ĥ
(k)
i is equal to

(
Ĥ

(k) H
i Ĥ

(k)
i

)−1
Ĥ

(k) H
i =

(
V

(k)
i Λ

(k)
i V

(k) H
i

)−1
V

(k)
i Λ

(k) 1/2
i = ViΛ

(k) −1/2
i .

From the previous equation we can see that the pseudo-inverse of the matrix defined in

(5.62) also results in a transmission on the scaled long-term beams V
(k)

i of the channel.

This means that we could apply the same linear precoding techniques requiring perfect

channel state information at the transmitter also if we only have the information on the

transmit correlation matrices, but instead of using the exact channel knowledge we will

use the matrix in (5.62). By using the equivalent channel Ĥ
(k)
i we facilitate an easier

adaptation from instantaneous channel state information to the long-term channel state

information. Since we use the equivalent channel in the same way as the instantaneous

channel knowledge we allow the combination of these two types of channel knowledge for
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precoding.

Next, we will compare the 10 % outage information rate of IRBD, SMMSE and BD

when we use the equivalent channel for precoding. We assume flat fading channel which is

modeled as in equation (2.9). There are three users in the system, each equipped with two

antennas and there are six antennas at the base station. All users have the same speed,

equal to 70 km/h. As a comparison we show the 10 % outage information rate of these

precoding techniques when we assume perfect channel knowledge at the base station. We

also introduce the assumption that the communication is done using TDD. Each frame

consists of a downlink transmission interval followed by an uplink transmission interval.

With downlink:uplink asymmetry 1:1, the TDD slot consists of 15 downlink OFDM sym-

bols followed by 15 uplink OFDM symbols. The equivalent channels are calculated by

averaging the correlation matrices over 15 OFDM symbols. The delay from the time slot

when the equivalent channels are calculated to the time slot when they are used for the

precoding is equal to one frame, i.e., 30 OFDM symbols. This is denoted with (15+30+1).

As we can see from the Figure 5.17, the performance of these techniques when we use the

equivalent channel for precoding is close to the curves obtained assuming perfect channel

knowledge at the base station. It can be seen that BD is very sensitive to channel corre-

lation and that IRBD provides the best performance among these three. At high SNRs

IRBD also has an information rate loss. However, this point when the information rate of

IRBD using long-term channel state information breaks away from the information rate of

IRBD based on the perfect channel state information can be further shifted to the higher

SNR values by increasing the number of iterations.

How well IRBD performs with only long-term channel state information at the trans-

mitter can also be seen from Figure 5.18. As it can be seen from the figure, the performance

of IRBD is the same as in the case when the precoding is done using instantaneous CSI.

In this case we again have three users in the system, each equipped with two antennas

and with six antennas at the base station. All users have the same speed of 50 km/h. The

channel is frequency selective and it is modeled as described in Section 2.2.1. The power

delay profile is defined by IEEE802.11n - D with non-line of sight conditions [60]. We

assume data transmission using an OFDM system with DFT size N = 64, a subcarrier

spacing of 312.5 kHz and a cyclic prefix that is Npre = 16 samples long. The data is en-

coded using the convolutional code rate 1/2 (561, 753)oct. After coding the data is mapped

using QAM modulation. Coded and modulated symbols are transmitted using Nc = 48
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Figure 5.17: 10 % outage information rate of IRBD, SMMSE and BD with long-term CSI
at the transmitter as a function of the SNR. Each user is equipped with two antennas.

subcarriers and Nsymb = 2 OFDM symbols. Note that until now we did not perform

grouping of spatially low correlated users. Again, even without spatial scheduling IRBD

is able to achieve the same performance as with perfect knowledge of the instantaneous

CSI.

The previous results are obtained using the average correlation matrix on one chunk.

However, if we assume that the averaging window is long enough, then this average cor-

relation matrix is the estimate of the transmit correlation matrix given in equation (2.7)

in Section 2.2.1. The performance of BD and SMMSE in the system with configuration

{4, 4}×4 can be seen in Figure 5.19. We assume flat fading channel modeled as in equation

(2.9). Unlike in the case when we have perfect CSI available at the transmitter, in the

case where long-term CSI is available BD is not limited by the number of receive anten-

nas. This is the consequence of the fact that we perform the precoding on an equivalent

channel. When the channel is rank deficient like it is the case in the wide area scenario,

the dimension of the equivalent channel is different from the actual and the dimensionality

restriction is met if the rank of the transmit correlation matrix is less than the number of

receive antennas. We should note here that the performance of these precoding techniques

does not change significantly compared to the case when there is perfect CSI available at

the transmitter, which is a consequence of the smart scheduling assumption [62], [63]. If

designed well a scheduling algorithm selects the users that are well separated in space. In
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this case even the knowledge about the transmit correlation of the channel allows us to

completely eliminate multi-user interference at high SNRs. The more antennas there are

at the base station, the greater are the benefits of multi-user MIMO precoding.

5.8 Calibration and transceiver front-end impairments

In order to reduce the overhead required to acquire the channel state information at

the base station or access point we rely on the reciprocity principle so we could use the

channel measurements on the uplink to perform the spatial processing on the downlink.

Various degrees of channel state information at the base station can help us to significantly

improve system performance especially in multi-user scenarios. The major advantage of

channel state information at the transmitter based on the channel reciprocity assumption,

compared to introducing a feedback link, is that it is a low complexity solution.

When the channel is estimated on the uplink, the downlink channel matrix is just

the transpose of the uplink matrix, assuming the channel is reciprocal. However, the

channel is actually made up of the propagation channel, the antennas and the transceiver

radio-frequency (RF) and baseband circuits at both sides of the link. The transceiver

circuits are usually not reciprocal, so since the channel estimation and spatial processing

are performed in the baseband, it is necessary to calibrate the amplitude and phase errors

between the branches of the antenna array due to individual differences in the RF circuits

of the receivers and the transmitters. The main sources of imbalance in the channel

reciprocity are analog-to-digital converter (ADC), baseband filter, in phase/quadrature

(IQ) imbalance, phase noise, and amplifiers.

We consider an MU OFDM-MIMO system, where MT transmit antennas are located

at the base station and MRi
receive antennas are located at the ith user’s terminal, i =

1, . . . ,K. All users downlink over-the-air propagation channel matrices on one subcarrier

are grouped in one combined network channel matrix given in equation (2.14). The uplink

overall channel between the base station and the user terminals that is estimated at the

base station on one subcarrier is equal to:

HUL = ΨTx,UT HΨRx,BS ∈ C
MR×MT (5.63)

83



and the overall channel on the downlink estimated at the user terminals equals

HDL = ΨRx,UT HΨTx,BS ∈ C
MR×MT (5.64)

The matrices ΨTx,UT ∈ CMR×MR , ΨRx,UT ∈ CMR×MR , ΨTx,BS ∈ CMT×MT , and ΨRx,BS ∈
CMT×MT are complex perturbation matrices containing the user terminals and the base

station transmit and receive front-end frequency response on the specific subcarrier, re-

spectively. These matrices are diagonal, which implies that they can be inverted and that

their products are commutative. The elements of these matrices are slowly varying in

time.

The combined overall network channel matrix on the downlink can be rewritten as

HDL = ΨRx,UTΨ−1
Tx,UTΨTx,UT HΨRx,BSΨ−1

Rx,BSΨTx,BS

= ΨRx,UTΨ−1
Tx,UT HULΨ−1

Rx,BSΨTx,BS (5.65)

where we assume that based on the measurements at the base station we have the

perfect knowledge of the uplink channel HUL. The two matrices ΨRx,UTΨ−1
Tx,UT and

Ψ−1
Rx,BSΨTx,BS represent calibration errors at the user terminals and the base station,

respectively. The calibration matrices are defined as

KBS = Ψ−1
Tx,BSΨRx,BS

KUT = ΨTx,UTΨ−1
Rx,UT (5.66)

Using these calibration matrices, the reciprocity of the over-the-air channel can be ex-

ploited to achieve the reciprocity of the overall channel including RF front-end effects on

both sides and the free space channel.

Several approaches can be used for calibration:

• By estimating the effective channel at the receiver, which includes also the contribu-

tion of spatial processing at the transmitter, the system is more robust to channel

and calibration errors than in the case when the receiver estimates the exact channel.

• RF approaches: each of the RF imperfections is compensated specifically, or the

front-ends are designed to be reciprocal. One can re-use the IQ mixer, the low-noise

amplifier (LNA), and power amplifier (PA) in the TDD receive and transmit mode,

since the terminal never transmits and receives simultaneously. By using an RF
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transfer switch, the direction of the active components, being the LNA and PA,

can be reversed. Moreover, the IQ mixer can be reused, both as a modulator and

a demodulator. Provided that no imperfection occurs, in particular that in- and

output impedances of the LNA and PA are respectively the same and that the IQ

mixer has no imbalance, the RF front-end can be regarded as inherently reciprocal

and it needs no calibration.

• A self calibration approach in which the transmitter and the receiver estimate and

compensate independently the distortions;

• A global approach proposed by Qualcomm [64], in which the knowledge of the chan-

nel in both directions is used to pre-compensate the distortions (whatever their

origin). The BS observes a MIMO pilot from the UT and derives an estimate of the

channel between the UT and the BS. In response, the BS transmits a MIMO pilot,

which is observed by the UT and used to derive an estimate of the channel between

the BS and the UT. Then, the UT transmits the quantized estimated channel to the

BS. The BS can now determine the diagonal calibration matrices. Finally, the BS

sends one diagonal calibration matrix to the UT, then each end of the link has its

own calibration matrix.

We will focus on the self calibration approach since it does not require any communi-

cation protocol modifications as the global approach and it is less complex than the RF

approach. One possible approach to perform self calibration at the transceiver (user termi-

nal or base station) is proposed in [65]. As an example we will consider the calibration at

the base station. Before calibration, the carrier frequency and all transceiver parameters

that have an effect on the amplitude or phase response of the transmit and/or receive

chain are set. Once the parameters are set, the frequency responses are assumed static.

The calibration is achieved in two steps: measurement of ΨRx,BSΨTx,BS and measurement

of ΨRx,BS .

In order to measure the product ΨRx,BSΨTx,BS , the signal from the output of the

ith transmitter is fed to the input of the ith receive branch. In each antenna branch, a

suitable known signal s is generated L times. The jth frequency domain received signal,

j = 1, . . . , N , is

rj = ΨRx,BSΨTx,BSs + nj (5.67)

where s =
[
s1 · · · sMT

]T
, MT is the number of antennas at the base station and nj
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is a noise vector. The signal s should have a low peak to average power ratio. The product

ΨRx,BSΨTx,BS is estimated by averaging the L values of rj .

a =
1

L

L∑

j=1

rj ./s ∼= diag (ΨRx,BSΨTx,BS) (5.68)

where ./ stands for element-wise division, and diag (•) is the function that extracts the

elements on the main diagonal.

In the second step the receiver is isolated from both the transmitter and the antenna.

At the input of each receive branch we apply the same reference noise source whose power

exceeds the thermal noise power by 20 dB or more. The signal is sampled and measured at

baseband in the receiver of all antenna branches simultaneously. The received frequency

domain signal is

rj = ΨRx,BS (nrefI + nj) (5.69)

where nref is the reference noise. Since nref is a multiplicative term, ΨRx,BS cannot be

extracted directly, and the signal in the first antenna branch rj,1 is taken as a reference.

After averaging over L measurements we will have

c =
1

L

L∑

j=1

1

rj,1
rj

∼= 1

ψRx,BS,1
diag (ΨRx,BS) (5.70)

which is a vector containing the frequency responses of the receiver branches with a com-

plex error coefficient, common to all antenna branches. The estimation of K−1
BS is obtained

as

a./c2 = (ψRx,BS,1)
2 diag

(
Ψ−1

Rx,BSΨTx,BS

)
= (ψRx,BS,1)

2 diag
(
K−1

BS

)
(5.71)

It is the relative difference in the UL/DL blocks that is important when considering the

channel reciprocity assumption. For instance, if the UL filter differs from the DL filter,

then so will the channels. In fact, even if both filters correspond to the same product

device, they will never have exactly the same characteristics due to the production spread

of the device used.

It is very important to take into account RF impairments in order to quantify their

impact on the performance of multi-user MIMO algorithms. In our investigations we will

use the model of RF impairments that was introduced in [65].

We assume that the self-calibration is performed only at the base station in order to
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Figure 5.20: Influence of the calibration errors on the performance of IRBD and SMMSE.
The antenna system configuration is {3, 3, 3} × 6.

keep the user terminals as simple as possible. Thus, the precoding at the base station

is done under the assumption that the matrix ΨRx,UTΨ−1
Tx,UT is an identity matrix and

that the calibration is performed only at this end of the link. We assume that the mobile

stations have perfect channel knowledge of the effective channel after the precoding.

In the simulations, the amplitude and phase of each element of matrices ΨRx,UTΨ−1
Tx,UT

and Ψ−1
Rx,BSΨTx,BS are modelled as a Gaussian random variable with mean 1 and variance

0.0839 (0.7 dB at 1 sigma) and a uniform random variable on [−5◦, 5◦], respectively.

In Figure 5.20 we show the influence of calibration errors on the performance of IRBD

and SMMSE. We assume data transmission using an OFDM system with DFT sizeN = 64,

the chunk size is Nc = 48 subcarriers × Nsymb = 2 OFDM symbols, the cyclic prefix is

Npre = 16 samples long, and the subcarrier spacing is 312.5 kHz. The propagation channel

is frequency selective, spatially correlated with a power delay profile as defined by the IEEE

802.11n D channel model. Spatial correlation is modeled using the Kronecker model as

defined in Section 2.2.1. Information is coded using the convolutional code (561, 753)oct

and modulated using QAM. PT denotes the total transmit power at the base station, and

σ2
n is the AWGN variance at the input of each receive antenna.

As it can be seen from Figure 5.20 when the calibration errors are modeled using [65],

the performance of IRBD is close to perfect. However, in case of SMMSE at high SNRs we

have a smaller diversity in the presence of calibration errors. These results show that the
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base station does not need the information about the calibration matrices at the mobile

stations in order to perform the precoding. The base station and the mobiles can perform

the calibration independently.

5.9 Channel estimation errors

An important issue in a multi-user MIMO transmission is the impact of imperfect channel

state information on the general system performance.

The delay between the moment when the channel state information is estimated to

the moment when it is used for multi-user MIMO processing or scheduling and adaptive

coding and modulation might cause a serious problem from the adaptation point of view.

When the channel is fast varying in the time domain, it is important that the CSI is

estimated and used within a time period that is shorter than the coherence time of the

channel.

For channel estimation purposes in OFDM MIMO systems, two types of pilots could

be used. Pilot patterns may be generated in the frequency domain by using a scattered

pilot grid. Alternatively, pilot patterns may be generated in the time domain, in the form

of short training blocks time-multiplexed with data blocks.

Channel estimation by interpolation in time and frequency based on a scattered pilot

grid is considered to be an efficient solution for an OFDM-based radio interface.

For multi-antenna transmission, a combination of dedicated pilots per flow, common

pilots per cell/sector, common pilots per antenna and common pilots per beam are re-

quired. Especially in case of dedicated pilots, purely pilot aided techniques may have

severe limitations. Conventional channel estimation by interpolation may then require a

pilot boost and/or a significant degree of over-sampling. Advanced solutions, such as iter-

ative channel estimation, aim to make a pilot boost redundant, at the expense of increased

complexity.

Adaptive transmission requires channel prediction for use in the resource allocation.

Channel prediction can be based on common pilot symbols that are also used for other

purposes. It should utilize the channel correlation in time and frequency.

In [66], [67] a simple and easy to implement model for channel estimation errors is

proposed. The estimation error is approximated by white Gaussian noise. This model is

well suited for pilot aided channel estimation schemes. For decision directed techniques

this is a reasonable approximation for high SNRs, where decision errors are negligible.
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The estimation error can be separated into an error caused by the noise and an inter-

polation or lag error. In low SNR regions the MSE is dominated by the error due to the

noise. Hence, the MSE linearly decreases with the SNR. The ratio GCSI = 1/(SNR · MSE)

is the channel estimator gain. It is seen that the estimator gain is in the range from 5

to 10 dB, [67]. The interpolation error, on the other hand, is independent of the SNR.

Therefore, the MSE curve experiences an error floor at high SNRs, which is around -30 dB.

Unfortunately, both the noise and the interpolation error are dependent on the subcarrier

index. In particular, near the beginning and the end of the frequency range, edge effects

result in an increased estimation error.

The influence of the channel estimation errors at the base station on the performance

of multi-user MIMO precoding techniques is investigated using a parametric channel esti-

mation error model. The performance of an estimator can be approximated by modeling

the channel estimation error as an additional noise source with variance σ2
e and a mean

corresponding to the bias of the estimator. A good estimator should have a small bias, so

in most cases it is justified to assume that the conditional mean of the channel estimation

error is zero. We assume that the channel estimation error is a zero mean Gaussian ran-

dom variable with variance equal to the MSE. The MSE is proportional to the SNR and

is modeled as

σ2
e =





σ2
n/(Pt GCSI), σ2

n/(Pt GCSI) > −30 dB

−30 dB, σ2
n/(Pt GCSI) ≤ −30 dB

(5.72)

where GCSI defines the estimator gain. Hence, the MSE linearly decreases with the SNR.

The estimator gain is set to 10 dB, but may vary depending on the number of users,

antennas and on the preamble design.

The MIMO channel is modeled as

Hest = H + E (5.73)

where H denotes the combined network channel matrix, Hest is the channel estimate, and

E is a channel estimation error matrix. Each element of the matrix E is modeled as a

zero mean Gaussian random variable with variance σ2
e .

The influence of the channel estimation errors on the BER performance of IRBD and

SMMSE is shown in Figure 5.21. As it can be seen, the channel estimation errors cause

an SNR loss of about 3 dB for both precoding techniques.

The influence of the channel estimation errors is much higher at the user terminals than
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Figure 5.21: Influence of the channel estimation errors on the performance of IRBD and
SMMSE. Antenna system configuration is {3, 3, 3} × 6.

at the base station due to the processing and power limits. In order to reduce the influence

of the channel estimation errors on the performance of the precoding techniques we can

either invest in more processing power to implement more efficient channel estimation

techniques or increase the pilot overhead. By using a denser pilot grid at the bandwidth

edges we can reduce the MSE [67]. One more straightforward way of reducing the channel

estimation errors is to increase the transmit power or antenna gain. Values of the transmit

power and the antenna gain are set by the government regulations so there we do not

have too many options. Therefore, a logical conclusion is that if we cannot improve the

estimator performance by increasing the processing power, then the other option is to

either increase the number of antennas or to reduce the number of spatial data streams.

As we will see in the chapter on system level investigations, the last approach gives very

good results.
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5.10 Implementation and complexity of MU MIMO

processing techniques

Clearly spatial processing has an impact on system and terminal complexity, which are

important criteria for system design. Some algorithms are very powerful, yet complex that

might be impractical for current systems. We can investigate the baseband and the radio

frequency (RF) complexity of a system independently.

RF complexity arises from the number of antennas, the number of separate RF chains,

and whether the signal paths of the different RF chains need to be calibrated for phase

coherency. One beneficial side effect from using multiple antennas is that the total trans-

mitted power is distributed over several RF chains, relaxing the requirements in terms of

peak transmitted power for the high power amplifiers, thus enabling the use of cheaper

high power amplifiers (HPA). As Dirty RF effects, i.e., RF non-linearities (such as phase

noise, I/Q imbalance, etc.), can be expected to worsen as systems are designed for higher

carrier frequencies, lower supply voltages and higher SNR regions, such effects should be

taken into account when designing multi-antenna systems.

The baseband complexity is related to the relative energy and cycle count required for

one run of the algorithm. The results presented in this section constitute only a rough

estimation of the baseband complexity of different precoding and decoding techniques.

The details of the general methodology for complexity assessment are described in [68].

The focus in the following assessments is on power consumption and delay only.

It is reasonable to classify the operations required for a run of a transceiver algorithm

according to their complexity as follows: Simple arithmetic operations (add, abs, shift,

max, etc), multiplications, divisions, square roots, and non-linear functions in general.

The cost related to these functions, in terms of energy and cycle count are shown in Table

5.6, [68].

Simple operation Multiplication Division Square root Non-linear function

Relative energy cost 1 10 40 50 60
Relative cycle count 1 1 4 5 6

Table 5.6: Relative energy and processing time costs

The cost in terms of energy and cycle count will be equal whenever we require only

simple arithmetic operations for the execution of the algorithm. Processors can usually

be designed to have the same cycle delay for addition and multiplication, at the expense

of large area and energy consumption. Divisions and other non-linear functions are imple-
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for i = 1 : K

H̃i =
[

HT
1 . . . HT

i−1 HT
i+1 . . . HT

K

]T
;

(1) A = H̃H
i H̃i;

(2) A = A +
σ2

n
MR

PT

IMT
;

for j = 1 : MRi

(3) B = h∗

i,jh
T
i,j ;

(4) P = (A + B)−1[
hT

i,j

H̃i
];

Fa = [ Fa P (:, 1) ];
end;

end;

Table 5.7: SMMSE algorithm.

mented via iterative interpolations, explaining the higher cost for these operations. Energy

consumption is mostly of interest for the user terminal, since power consumption is usually

not a limiting factor at the base station.

As an example we will show the relative energy and cycle count for SMMSE and IRBD.

SMMSE and IRBD consist of two steps. First, the multi-user interference is suppressed

using Fa and then in the second step the independent processing of the users’ effective

channel matrices is performed. In this section we consider only the first step when we

generate the matrix Fa and evaluate its complexity. The SMMSE algorithm is summarized

in Table 5.7 and IRBD algorithm is given in Table 5.10.

The number of cycles and the relative energy count for operations (1) and (2) are given

in Table 5.7 and for operations (3) and (4) are given in Tables 5.8 and 5.9, respectively.

Matrix multiplication (1) +addition (2)

Real ADD M2
T (2(2(MR −MRi

) − 1) +MT

Real MUL 4M2
T (MR −MRi

) +MT

Real DIV −
Total cycle count M2

T (8(MR −MRi
) − 2) + 2MT

Total energy consumption M2
T (44(MR −MRi

) − 2) + 11MT

Table 5.8: Relative energy and processing time costs for steps (1) and (2) of SMMSE
algorithm given in Table 5.7.

Outer product (3)+matrix inversion (4)

Real ADD
M3

T

2 +
3M2

T

2 + 3MT

4 + (MR −MRi
+ 1)(M2

T −MT ) + 2M2
T

Real MUL
M3

T

2 + MT

4 + (MR −MRi
+ 1)(M2

T −MT ) + 4M2
T

Real DIV 2MT + (MR −MRi
+ 1)MT

Total cycle count M3
T + 7.5M2

T + 9MT + 2(MR −MRi
+ 1)(M2

T +MT )
Total energy consumption 5.5M3

T + 43.5M2
T + 83.25MT + (MR −MRi

+ 1)(11M2
T + 29MT )

Table 5.9: Relative energy and processing time costs for steps (3) and (4) of SMMSE
algorithm given in Table 5.7.
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for i = 1 : no iterations
for i = 1 : K

H̃i =
[

HT
1 . . . HT

i−1 HT
i+1 . . . HT

K

]T
;

(1) H̃i = ŨΣ̃Ṽ H ;

(2) S = sqrt(Σ̃T Σ̃ +
σ2

n
MR

PT

IMT
);

(3) Fai
= Ṽ S;

(4) HiFai
= UΛV H ;

(5) Hi = U (ri) HHi;
end;

end;

Table 5.10: IRBD algorithm.

SVD

Real ADD 18(MR −MRi
)M2

T + 4M3
T

Real MUL 24(MR −MRi
)M2

T + 16
3 M

3
T

Total cycle count 42(MR −MRi
)M2

T + 28
3 M

3
T

Total energy consumption 258(MR −MRi
)M2

T + 172
3 M3

T

Table 5.11: Relative energy and processing time costs for step (1) in the first iteration of
IRBD algorithm given in Table 5.10.

SVD

Real ADD 18(r − ri)M
2
T + 4M3

T

Real MUL 24(r − ri)M
2
T + 16

3 M
3
T

Total cycle count 42(r − ri)M
2
T + 28

3 M
3
T

Total energy consumption 258(r − ri)M
2
T + 172

3 M3
T

Table 5.12: Relative energy and processing time costs for step (1) in iterations after the
first one of IRBD algorithm given in Table 5.10.

The IRBD algorithm is summarized in Table 5.10. Note that the dimensions of the

matrices H̃i and Hi are (MR −MRi
) ×MT and MRi

×MT only in the first iteration. In

the following iterations their dimensions are (r−ri)×MT and ri×MT , respectively, where

r ≤ rank(H) is the total number of data streams and ri is the number of data streams

transmitted to the ith user. Therefore, the baseband complexity of the first iteration

will be the highest. In order to estimate the number of cyclic counts and relative power

consumption of SVD operations in steps (1) and (4) of the algorithm, we will use the

results reported in [69].

The complexity of the SVD in step (1) in the first iteration is given in Table 5.11. In

every following iterations, the complexity of the SVD in step (1) is given in Table 5.12.

The complexity of steps (2), (3), (4) and (5) is given in Tables 5.14, 5.15 and 5.16.

From the tables given in this section we can see that the complexity of IRBD is higher

than the complexity of SMMSE. The higher complexity of IRBD is the price that we have
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Scaling matrix S

Real ADD rank(H̃i)

Real MUL rank(H̃i)
Real SQRT MT

Total cycle count 2rank(H̃i) + 5MT

Total energy consumption 11rank(H̃i) + 50MT

Table 5.13: Relative energy and processing time costs for step (2) of IRBD algorithm given
in Table 5.10.

Matrix multiplication

Real MUL 2M2
T

Total cycle count 2M2
T

Total energy consumption 20M2
T

Table 5.14: Relative energy and processing time costs for step (3) of IRBD algorithm given
in Table 5.10.

SVD

Real ADD 18MRi
M2

T + 4M3
T

Real MUL 24MRi
M2

T + 16
3 M

3
T

Total cycle count 42MRi
M2

T + 28
3 M

3
T

Total energy consumption 258MRi
M2

T + 172
3 M3

T

Table 5.15: Relative energy and processing time costs for step (4) of IRBD algorithm given
in Table 5.10.

Matrix multiplication

Real ADD riMT (4MRi
− 2)

Real MUL 4riMRi
MT

Total cycle count riMT (8MRi
− 2)

Total energy consumption riMT (44MRi
− 2)

Table 5.16: Relative energy and processing time costs for step (5) of IRBD algorithm given
in Table 5.10.

to pay for a much better performance of IRBD than SMMSE. In order to achieve the same

or a similar performance of SMMSE and IRBD we have to deploy more antennas at the

base station while in case of IRBD we can use less antennas which reduces the difference

between these two techniques. This trade off will depend on a specific deployment scenario

and the target performance. The gain that IRBD provides compared to SMMSE is so

significant that it justifies the higher baseband cost.
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Chapter 6

System level performance

investigations

For a comprehensive assessment of multi-antenna techniques, it is mandatory to consider

the performance at system level, since many effects of spatial processing, like multi-user

precoding, the impact of spatially-colored interference, and the benefits of interference

management techniques are not tractable at the link level. In this chapter, we will investi-

gate the performance of MU MIMO techniques in a system that was proposed within the

WINNER project [67].

Major requirements for the next generation of wireless systems include among others

high performance, robustness and adaptability to a wide range of scenarios and terminal

classes. WINNER (Wireless World Initiative New Radio) is one of the most ambitious

international research projects aiming at the development of a ubiquitous radio system

concept providing wireless access for a wide range of services and applications across

all environments from indoor/hotspot to wide area suburban and rural with one single

scalable and adaptive system concept for all envisaged radio environments. The system

concept proposed in [67] is a packet-oriented user-centric always-best concept.

Advanced multi-antenna solutions are an integral part of the future wireless communi-

cation systems. The WINNER overall system requirements mandate a single ubiquitous

radio access system concept that is able to adapt to a comprehensive range of mobile

communication scenarios with scalability in complexity. Under the constraint of low de-

ployment effort and cost, it aims at complete coverage, while at the same time providing

significant performance enhancements compared to legacy systems and their evolutions.

Some of the goals of WINNER for the future wireless systems are:
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• Improved spectral efficiency and increased user peak data rate

• Increased range or coverage in a cost-efficient manner

• Enhanced interference management

• Adaptivity to scenario and channel conditions.

Three different types of scenarios have been identified within the WINNER project: wide

area, metropolitan area and local area. These three scenarios are illustrated in Figure 6.1.

In general there is a trade-off between different types of gains that multiple-antenna

processing can provide. A specific processing at the transmitter and/or receiver is needed

in order to leverage them, and the exact link gains depend critically on the properties

of the radio channel and the amount of channel knowledge available at the receiver and

transmitter.

Channel knowledge is typically described with two sorts of measures; channel state in-

formation and channel quality indicators (CQI). The term CSI usually refers to knowledge

of the complex valued radio channel, while CQI, on the other hand, is rather a real valued

measure of the quality of the channel, for example an SINR after receiver processing that

may be used to adapt the code rate, modulation order, and spreading at the transmitter.

The amount of channel knowledge dictates which methods are applicable and the potential

benefits of spatial processing techniques.

For wide-area scenarios only long-term channel state information (CSI) seems to be

reasonable for spatial processing in the majority of cases, most favorably combined with

short-term channel quality information (CQI) for link adaptation. In all other scenarios,

we assume that the instantaneous CSI is available, either due to reduced mobility or even

fixed point-to-(multi)point connections.

TDD supports a high degree of adaptivity to actual propagation conditions with rea-

sonable signaling overhead and is thus a key technique to reach the targets of future

wireless communication systems. More important is the fact that using the reciprocity

principle, in a TDD system it is possible to use the estimates of the uplink channel to per-

form precoding on the downlink. This significantly reduces the cost of acquiring the CSI

at the base station and allows the use of more advanced MU MIMO precoding techniques

for spatial processing.

MU MIMO precoding and decoding facilitates the simultaneous transmission of multi-

ple data streams (SMUX) to multiple users (SDMA) which results in a significant through-
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Figure 6.1: WINNER scenarios.

put improvement. In the previous chapter we have introduced several linear and non-linear

precoding techniques.

Non-linear precoding techniques provide higher diversity than linear techniques at

high SNRs. However, the point where non-linear precoding techniques become better

than linear depends on the specific antenna configuration of the system, e.g., the number

of antennas at the base station and the number of user terminals and antennas at the

user terminals. Linear precoding techniques can achieve the sum-rate capacity bound of

the broadcast channel when the number of users in the system is large and appropriate

spatial scheduling of users is performed or when the total number of antennas at the user

terminals is greater than the number of antennas at the base station. This was illustrated

with the example of IRBD in Section 5.6. Furthermore, linear precoding techniques allow

the combination of instantaneous CSI for some users and long-term CSI for others, unlike

non-linear precoding techniques which require the exact CSI in order to be able to pre-

subtract the non-causal interference. Together with a lower computational complexity this

renders linear precoding techniques more favorable for practical implementation than non-

linear precoding techniques. Therefore, we will focus only on the system level performance

of linear precoding techniques. Based on the link level investigations the most promising

technique is IRBD. This linear precoding techniques can be used on the downlink and

with minor modifications also on the uplink which will have a big impact on the lower

complexity of the base station hardware.

Scenarios that will be considered describe the relevant characteristics of a selection of
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environments where a system will be operated. Our focus will be on an indoor/hotspot

scenario where the MU MIMO processing is expected to provide the maximum throughput

gains due to the low user mobility and availability of the channel-state information at

the base station. We will also investigate a micro cellular scenario where MU MIMO

processing will be used with the combination of instantaneous and long-term CSI. In [70]

it is proposed that in the indoor hotspot scenario the TDD physical layer mode and 100

MHz bandwidth at 5 GHz should be used, and in the urban micro-cellular scenario the

TDD physical layer mode and 100 MHz bandwidth at 3.95 GHz should be used. Micro

cellular deployment envisage smaller cells for more dense usage in a typical Manhattan

deployment whereas indoor/hotspot considers isolated cells or a couple of isolated cells for

home or small office coverage.

Metropolitan area scenarios consider large urban environments and should provide

contiguous outdoor coverage especially in city centers of large and medium size cities. It

should support high user density, high system throughput, and mobility up to reasonable

velocities in urban environments, e.g., 50 km/h. In urban scenarios base stations and

relays are placed clearly below the rooftop level. Spatial schemes in the metropolitan

area have to cope with these challenging radio propagation conditions, and must be able

to meet the high throughput requirements. The limited mobility makes availability of

instantaneous CSI at the transmitter possible [70].

Local area scenarios cover few cells, isolated sites, and peer-to-peer communication in

an indoor/hotspot scenario. They are characterized by high data rates and a high traffic

demand. Low mobility (up to 5 km/h) allows the estimation of short-term CSI at the

transmitter based on the uplink measurements and the reciprocity principle.

For in-home scenarios the WINNER base station controls a single cell, encountering

limited interference from other systems as it can be assumed that the house represent

a well protected environment. In hot-spot scenarios, the coverage area is larger than in

the home deployment. Several WINNER base stations may be required and thus the

assumption of limited interference may not be valid any more. However, if an appropriate

wire-line infrastructure already exists, it is possible to interconnect the base stations with a

central unit in order to allow the full cooperation between them. The cooperation between

distributed antenna arrays or base stations provides a significant additional throughput

gain.
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Figure 6.2: Manhattan grid. The buildings are represented with squares. The dots mark
the positions of the base stations. The cell of interest is denoted in the center of the grid.

6.1 Simulation setup

The environment specific characteristics that will be used later for system level investi-

gations are given in the Table 6.1, [70]. The channel is modeled using the parameters

reported in [34].

Metropolitan area Local area

Environment Two-dimensional regular One floor of a building
characteristics grid of buildings (”Manhattan grid”) with regular grid of rooms

and corridors, three dimensional
User distribution Number of users is a variable Number of users is a variable

model parameter parameter
All users are uniformly distributed 90% of users are uniformly

in the streets distributed in rooms and
10% of users are uniformly

distributed in corridors

Table 6.1: Environment specific parameters.

The considered deployment scenario in the metropolitan area is a two-dimensional

regular grid of buildings, the so-called Manhattan grid, where the users are located in

the streets only. In the local area we consider the three-dimensional deployment scenario

which is one floor of a building with rectangular grid of rooms and corridors. These two

deployment scenarios are illustrated in the Figure 6.2 and Figure 6.3, respectively. In our

simulations we use WINNER channel model A1 for indoor scenario and WINNER channel

model B1 for metropolitan area, [34], [71].

In the Manhattan grid, the base stations are placed in the center of the streets, in
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Figure 6.3: Small office scenario. There are two corridors with 10 offices on each side of
the corridors.

the center of blocks. The streets are 30 m wide, and the blocks are 200×200 m. Each

base station covers one cell, and is equipped with a cross-polarized 8-element uniform

linear array (ULA) with omni-radiating elements. The UTs are equipped with two cross-

polarized antennas.

In the small office scenario we consider one floor 50×100 m, room size 10×10 m and

with 2 corridors of size 100×5×3 m. The base station and the UTs are equipped with

linearly polarized ULAs with omni-radiating elements.

The physical channel structure proposed within WINNER divides the available time-

frequency resources into chunks, each chunk consisting of a set of (orthogonal) waveforms.

The chunks are considered two-dimensional, and for the downlink, each chunk consists of

a number of subcarriers and a number of consecutive OFDM symbols. When multiple

antennas are introduced, the spatial dimension is added to the chunks. The chunks may

thus be viewed as three dimensional, and the third dimension will be referred to as a layer.

The chunk durations and frame durations are short, to ensure a low transmission delay

over the radio interface (below 1 ms). The chunks are organized into frames, and for the

TDD mode each frame contains a downlink transmission interval followed by an uplink

transmission interval, referred to as slots. A super-frame consists of a preamble, which is

transmitted in a commonly available frequency band, followed by 8 frames.

A number of different users are scheduled and concurrently use the available resources.

In the most general case, the multiple access can use the time, frequency, code, and space

domain.

In our simulations we will adopt a simplified traffic model based on the full queue

assumption without detailed modeling of packets. The investigations will be based on

snapshots without short-term evolution of the individual and uncorrelated drops of large-

scale parameters (like user location, channel realization, etc). Users have fixed positions,
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Figure 6.4: WINNER super frame, frame and chunk configuration.

and the users’ channels vary only due to the fast fading in one snapshot by considering

Doppler spread.

Conceptually the full buffer model is most closely related to traffic like ftp. For a given

number of users per cell, the full queue traffic model offers maximum multi-user diversity.

As a performance measure we use user and cell throughput.

The user throughput is defined as the ratio of correctly received information bits on

one link to one user to the total simulation time (i.e., the time that elapses in the real

system) for this link. Statistics are collected from all links within the evaluation area (e.g.,

center cell or original cells in case of a simulator using the wrap-around technique). The

cumulative distribution function (CDF) of these user throughput values is provided and

comparisons are based on the corresponding percentiles.

The cell throughput is defined as the aggregate number of correctly received informa-

tion bits within one cell per simulation time step. Samples are taken at each time step

from all cells within the evaluation area. From these samples the CDF of the cell through-

put is calculated. Cells are defined as the parts of a site with a fixed allocation of antenna

resources. A site itself is the location of the base station hardware.

Frame and deployment specific parameters are listed in the Tables 6.2, 6.3 and 6.4,

[70].
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Metropolitan area Local area

duplexing (asymmetry) TDD (1:1) TDD (1:1)
carrier frequency fc 3.95 GHz 5 GHz
system bandwidth 100 MHz 100 MHz

BS max. transmit power 37 dBm 24 dBm
number of antennas at BS 8 8, 16, 24
BS antenna configuration ULA ULA

cross polarized linearly polarized
antenna element spacing 0.5 λ 0.5 λ

azimuth antenna omni omni
element pattern directional directional
BS receiver noise 5dB 5dB

figure
UT max transmit power 24 dBm 21 dBm

number of antennas at UT 2 2
UT antenna configuration ULA ULA

cross polarized linearly polarized
antenna element spacing 0.5 λ 0.5 λ

azimuth antenna omni omni
element pattern directional directional

UT receiver noise 7 dB 7 dB
figure

Table 6.2: Deployment specific parameters.

DFT size 2048
Subcarriers used 1664

Subcarrier spacing f0 48828.125 Hz
Useful symbol duration T0 20.48 µs

Gurad interval Tpre 1.28 µs (128 samples)
Total symbol duration Ts 21.76 µs

Table 6.3: OFDM parameters.

The evaluation of the associated control overhead of each technique in the downlink

and uplink and its impact on the user and cell throughput is an important part of the

assessment process. We will assume that 12 symbols in each chunk are used for channel

estimation and 8 symbols are used for transmission of the control information. We use 2

pilot symbols out of 12 in each chunk to estimate the channel from one transmit antenna.

This implies that by using 12 pilot symbols per chunk we can estimate the channel from

6 transmitting antennas in total.

Channel estimation errors at the receiver cause a degradation in the decoding perfor-

mance of the current data. Robustness needs in particular to be investigated for spatial

processing techniques using instantaneous channel knowledge at the transmitter, like most

precoding techniques. To obtain a first insight into this topic, a simple Gaussian error

model is used to generate the erroneous channel estimates. Additionally, we use the out-

dated CSI which is estimated in the previous uplink transmission to perform the precoding.
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Overall frame length 0.6912 ms
Number of OFDM symbols 30

per frame
Chunk dimension in 5 × 16

symbols × subcarriers
Pilot and signalling overhead 20

per chunk (in number of
resource elements)

Number of chunks per frame 6 × 104
(in time and frequency direction)

Duplex guard time 2 × 19.2 µs

Table 6.4: Environment specific parameters.

The relative performance loss compared to the ideal case is used to characterize robustness

with respect to channel estimation and CSI feedback errors. We also include the influence

of calibration errors at the base station and the user terminals on the performance of the

system.

6.2 Antenna multiplexing and complexity reduction

The main issue with the spatial processing is how to estimate the information required

for their implementation. In case of precoding it is the problem of estimating the exact

channel at the BS and the exact and/or effective channel at the mobile terminals. In order

to do this we need to multiplex the sufficient number of pilots to estimate the channel from

all of the transmitting antennas or spatial streams. In the current WINNER proposal [67],

[70] for the metropolitan and local area scenario, TDD duplexing with the asymmetry 1:1

is used and here we rely on the reciprocity assumption in order to acquire the CSI at the

BS necessary to perform the multi-user MIMO precoding.

The proposed 12 pilots in the adaptive mode per one chunk are not enough to multiplex

the number of users necessary to exploit the multi-user diversity. Therefore, here we rely

on the assumption that the channel is slowly varying, almost constant over one frame.

Since there are 3 time slots in the frame, we can multiplex in every time slot pilots

from the different antennas regardless of whether these antennas are located at the same

terminal or not. We assume that one user transmits using only one fourth of the available

bandwidth, and in this way we can multiplex pilots from a total of 72 different antennas if

we multiplex 12 pilot symbols per chunk. Assuming that in the system there are 20% users

equipped with one antenna, 40% equipped with 2 and 40% equipped with 4 antennas, we

can multiplex on the average 72/(1 · 0.2 + 2 · 0.4 + 4 · 0.4) = 27.7 users.
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The MU MIMO precoding should be performed on every subcarrier in every OFDM

symbol. However, this results in high computational load. In order to reduce the com-

plexity we will not perform the precoding on every subcarrier and symbol in the chunk

but only once per chunk by using the equivalent channel as defined in Section 5.7. More-

over, if we multiplex pilots from different antennas as described in the previous paragraph

we will use the same channel estimate, i.e., the precoding matrix, for all three time slots

which further reduces the complexity. This means that in every frame the precoding is

performed only 104 times. The same approach can be used on the uplink also.

6.3 Simulation results

In this section we present the system level simulation results of a WINNER system down-

link with IRBD precoding.

The number of users in the system is variable and it depends on the pilot overhead

assumed. We assume 12 pilot tones per chunk which facilitates the estimation of the

channel from 6 antennas. The frequency band is divided in 4 contention bands. If we

have 12 pilot tones per chunk, we can estimate the channel from 6 antennas per chunk,

i.e., from 18 antennas per contention band in total (3 chunks × 6 antennas). If we assume

that every user is equipped with 2 antennas this means that we can estimate the channel

from 18/2 = 9 users per contention band. It is assumed that all users on one floor are

assigned a unique, orthogonal pilot pattern for the channel estimation.

The maximum number of spatially multiplexed users Kmax is fixed. This results in a

3-D resource that will be allocated to the users prior to transmission. Users are scheduled

for transmission using the round-robin algorithm. More advanced adaptation, scheduling

and resource allocation algorithms that take into account the spatial dimension and SINR

which results in a better performance.

First we simulate assuming perfect CSI at the base station and user terminals. In order

to investigate more realistic system performance we introduce channel estimation errors

and calibration errors that are modeled as described in Sections 5.9 and 5.8, respectively.

We assume an interpolation error floor of 30 dB and a channel estimator gain of 10 dB.

We compare the cell and user throughput with the SISO system. In case of SISO

communication, we assume that there are 6 pilot symbols per chunk used to estimate the

signals from 3 users.

The solid curves are simulated assuming perfect CSI at the base station and the user
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terminals. The dashed curves are simulated assuming channel estimation errors and cali-

bration errors at the base station and the user terminals.

6.3.1 Isolated cell indoor scenario

In this section the complementary cumulative distribution functions (CCDF) of the cell

and the user throughput when there is one base station in the middle of one floor will be

presented. We compare the system performance when there are 8, 16 and 24 antennas.

The base station is in the center of the floor. The base station transmits one data stream

per user, (ri = 1).

In case when there are 8 antennas at the base station the maximum number of spatial

layers is set to Kmax = 5. Note the high sensitivity of the system to the channel estimation

errors and RF impairments.

In Figures 6.7 and 6.8 we present system level results when there are 16 antennas at

the base station. In Figures 6.9 and 6.10 we present system level results when there are 24

antennas at the base station. The maximum number of spatial streams is fixed to 6 and

9 when there are 16 and 24 antennas at the base station, respectively. By deploying more

antennas at the base station the sensitivity of the system to the calibration and channel

estimation errors has been reduced.

In Figures 6.11 and 6.12 we investigate what happens when users have more than two

antennas. In this case we have assumed that 60% of the users are equipped with two

antennas and that 40% of the users are equipped with four antennas. By deploying more

antennas at the user terminals we significantly improve the user throughput. However,

since the number of the antennas from which we can estimate the signals is limited, the

number of users and consequently the number of data streams will be lower. This reflects

on the cell throughput which is slightly reduced. Note, that by using more antennas at

the receiver we also reduce the sensitivity of the system to the calibration and channel

estimation errors.

In Tables 6.5 and 6.6 we summarize the 90%, 50% and 10% cell and user throughput

gains relative to the SISO system.
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Figure 6.5: CCDF of cell throughput. IRBD precoding. Number of antennas at the base
station MT = 8. Isolated cell.
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Figure 6.6: CCDF of user throughput. IRBD precoding. Number of antennas at the base
station MT = 8. Isolated cell.
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Figure 6.7: CCDF of cell throughput. IRBD precoding. Number of antennas at the base
station MT = 16. Isolated cell.
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Figure 6.8: CCDF of user throughput. IRBD precoding. Number of antennas at the base
station MT = 16. Isolated cell.
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Figure 6.9: CCDF of cell throughput. IRBD precoding. Number of antennas at the base
station MT = 24. Isolated cell.
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Figure 6.10: CCDF of user throughput. IRBD precoding. Number of antennas at the
base station MT = 24. Isolated cell.
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Figure 6.11: CCDF of cell throughput. IRBD precoding. Number of antennas at the base
station MT = 16. Isolated cell.
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Figure 6.12: CCDF of user throughput. IRBD precoding. Number of antennas at the
base station MT = 16. Isolated cell.
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Number of antennas X% Outage cell throughput/SISO throughput
90% 50% 10%

8 (MRi
= 2) 3.2036 (1.2515) 4.2335 (2.8545) 4.5449 (4.4970)

16 (MRi
= 2) 4.8503 (3.4832) 5.4027 (5.1208) 5.5170 (5.5170)

24 (MRi
= 2) 7.1798 (4.5955) 8.1685 (8.1724) 8.2135 (8.2135)

16 (MRi
= 2, (60%)) 4.5302 (3.4161) 5.4161 (5.2416) 5.5170 (5.5170)

(MRi
= 4, (40%))

Table 6.5: Outage cell throughput relative to SISO system throughput. Small office
scenario. Isolated cell.

Number of antennas X% Outage cell throughput/SISO throughput
90% 50% 10%

8 (MRi
= 2) 3.3385 (0.8154) 3.8660 (3.1414) 5.3505 (3.9895)

16 (MRi
= 2) 5.7302 (3.6154) 3.9072 (3.9072) 7.9684 (7.7835)

24 (MRi
= 2) 10.169 (6.2308) 7.9684 (7.6804) 8.0105 (8.0105)

16 (MRi
= 2, (60%)) 5.8615 (5.5846) 7.9474 (7.7010) 7.8454 (7.8454)

(MRi
= 4, (40%))

Table 6.6: Outage user throughput relative to SISO system throughput. Small office
scenario. Isolated cell.

6.3.2 Cellular large office scenario

In this section we investigate the system level performance of IRBD in a small office

scenario when there are NBS = 4 base stations in the system. The position and the

orientation of the antenna arrays at the base stations are shown in Figure 6.13. We

assume that the base stations are connected to the central unit via a high-speed wireline

network. The channel estimates are sent to the central unit where the spatial processing

is performed. The precoding matrices are then sent back to the base stations. We assume

that the base stations are perfectly synchronized.

In Figures 6.14 and 6.15 we show the CCDFs of the cell and the user throughput when

there are MT = 4 antennas at each base station. When there is perfect CSI available in

the system, by placing smaller antenna arrays that can cooperate, 90% cell throughput is

greater than 90% cell throughput of a system where all antennas are placed in the center

of the floor, which is shown in Figure 6.7, by more than 1 Gbps. In presence of calibration

and channel estimation errors 90% cell throughput is 500 Mbps greater.

In Figures 6.16 and 6.17 we show the CCDFs of the cell and the user throughput

when there are MT = 6 antennas per base station. In this case, when there is perfect

CSI available at the BS we combine SDMA and SMUX by allowing approximately 50%

of the users to transmit ri = 2 data streams. As a consequence the peak cell throughput

is close to 4 Gbps and the peak user throughput is close to 140 Mbps. When we include
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Figure 6.13: Position of the antenna arrays in a small office scenario.

both calibration and channel estimation errors it is not possible to transmit more than

one data stream per user. However, by using the distributed antenna arrays that can

fully cooperate, the cell and user throughput in presence of channel estimation errors and

calibration errors are almost the same as in the case when we have one big antenna array

in the center of the floor and perfect CSI which is shown in Figure 6.9. Combination of

SDMA and SMUX provides higher peak cell and user throughputs. However, when we

take into account hardware impairments SDMA is more favorable since it is more resistant

to the calibration and channel estimation errors due to the higher diversity.

The 90%, 50% and 10% outage cell and user throughput are given in Tables 6.7 and

6.8. As a result of base station cooperation, we have larger cell and user throughput and

a reduced sensitivity to the calibration and channel estimation errors.

Number of antennas per BS X% Outage cell throughput/SISO throughput
90% 50% 10%

4 7.5169 (4.5955) 8.3563 (7.0230) 8.4023 (8.1954)

6 6.6418 (6.4925) 10.723 (8.1692) 12.283 (8.1642)

Table 6.7: Outage cell throughput relative to SISO system throughput. Small office
scenario. Distributed MIMO.

Number of antennas per BS X% Outage cell throughput/SISO throughput
90% 50% 10%

4 10.630 (5.8000) 7.9684 (6.7113) 7.8454 (7.8842)

6 6.0476 (5.7937) 7.9474 (7.8842) 8.0105 (8.0105)

Table 6.8: Outage user throughput relative to SISO system throughput. Small office
scenario. Distributed MIMO.
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Figure 6.14: CCDF of cell throughput. IRBD precoding. Number of antennas at the base
station MT = 4. Number of base stations NBS = 4.
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Figure 6.15: CCDF of cell throughput. IRBD precoding. Number of antennas at the base
station MT = 4. Number of base stations NBS = 4.
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Figure 6.16: CCDF of cell throughput. IRBD precoding. Number of antennas at the base
station MT = 6. Number of base stations NBS = 4.
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Figure 6.17: CCDF of user throughput. IRBD precoding. Number of antennas at the
base station MT = 6. Number of base stations NBS = 4.
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6.3.3 Manhattan scenario

In this section we show the results of the system level simulations of a MU MIMO cellu-

lar system employing IRBD for downlink precoding. We compare the cell and the user

throughput of this system to the cell and the user throughput of a SISO system. All users

have the same speed. User speed is fixed during one simulation run and it is equal to 3

km/h and 50 km/h.

As it can be seen from Figures 6.18 and 6.19, when users are slowly moving, MU MIMO

processing provides around 60 % higher average cell and user throughput. However, when

users are moving fast, 90 % cell and user throughput are even worse than in case of SISO

transmission. This is the consequence of the precoding based on the long-term CSI. We

have assumed perfect channel estimation and calibration. Similar to the isolated/hotspot

scenario, the performance of the MU MIMO precoding in a cellular scenario when users

are fast moving should improve if we deploy more antennas at the base station. By using

more antennas at the base station it becomes easier to separate users’ left signal subspaces

which results in an improved performance.
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Figure 6.18: CCDF of cell throughput. IRBD precoding. Number of antennas at the base
station MT = 8. Manhattan scenario.
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Figure 6.19: CCDF of user throughput. IRBD precoding. Number of antennas at the
base station MT = 8. Manhattan scenario.
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Chapter 7

Conclusions

In this thesis we have addressed the problem of designing multi-user MIMO processing

techniques. The goal was to define one technique that can target several optimization

criteria, a technique that will be able to adapt to different qualities of channel state

information and that can combine instantaneous and long-term channel state information.

Information theoretic results have shown that the linear increase of capacity in a multi-

user MIMO system is possible to obtain only by spatially multiplexing users and by sending

multiple data streams to each user. It is known that the maximum sum-rate capacity in

a multi-user uplink system is achieved by MMSE decoding and successive interference

cancellation. In order to achieve high data rates foreseen by the information theoretic

investigations in a multi-user downlink system, it is necessary to use ”dirty paper” codes

(DPCs). A simple example for such a code is Tomplinson-Harashima precoding (THP).

Except THP, DPCs are in general very complex and almost impossible to implement.

On the other hand, it was shown in the literature that it is possible to approach the

sum-rate capacity of a multi-user downlink system either by combining linear precoding

techniques with THP or by using smart resource allocation and user scheduling. We have

also shown through simulations that linear techniques can approach the DPC sum-rate

capacity bound when the total number of antennas at the user terminals is greater than

the number of antennas at the base station.

As it was previously reported in the literature, when user terminals are equipped with

one antenna, MMSE in combination with successive interference cancellation is optimum

on the uplink, while MMSE precoding in combination with THP is optimum on the down-

link. However, MMSE suffers from a performance loss when users are equipped with more

than one antenna. Block diagonalization (BD), on the other hand, is a zero forcing tech-
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nique that can serve users with an arbitrary number of antennas under the condition that

the total number of antennas at the user terminals is less than or equal to the number of

antennas at the base station.

The first new technique that we have introduced in this thesis is BD MMSE THP

which combines BD for users that are equipped with multiple antennas and MMSE THP

for users equipped with a single antenna. This technique is very simple and provides better

performance in a mixed antenna scenario compared to MMSE THP or BD. SO THP is a

technique that combines BD and THP. In simulations it approaches the sum-rate capacity

of the multi-user MIMO downlink system. However, both BD MMSE THP and SO THP

still suffer from the dimensionality problem that the total number of antennas at the user

terminals has to be less than or equal to the number of antennas at the base station.

The design of the precoding matrix introduced in this thesis is general and can target

several optimization criteria like maximum information rate, maximum receive SNR, min-

imum BER, etc. We have achieved this by separating the problems of MUI suppression

and optimization. In the first step, we minimize the overlap of the row spaces spanned

by the effective channels of different users. In the next step, we optimize the system per-

formance with respect to the specific optimization criteria assuming that we have a set of

parallel single user MIMO channels.

The two MU MIMO processing techniques that result from the two different MSE

criteria are successive MMSE (SMMSE) and regularized block diagonalization (RBD).

The only limitation in this case is that the total number of users in the system has to be

less than or equal to the rank of the combined network channel matrix of all users.

Successive MMSE precoding and decoding techniques are designed by using the modi-

fied MSE cost function. As a result, by using SMMSE we do not suppress the interference

between two or more antennas at the same user terminal but combine their signal which

results in a higher array and diversity gain. In combination with THP, on the down-

link we are able to approach the maximum sum rate capacity at low SNRs. SMMSE in

combination with SIC on the uplink provides higher diversity gain than V-BLAST.

Regularized block diagonalization is balancing the overlap of the row spaces spanned

by the effective channel matrices of different users and MIMO gains by minimizing the

Frobenius norm of the effective channels between different users and the Frobenius norm

of the scaled noise vector. We separate the transmission to the different users using a new

cost function that includes multi-user interference suppression and the avoidance of noise
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enhancement. The new technique is called regularized block diagonalization since at high

signal-to-noise ratios and under the condition that the total number of antennas at the

user terminals is less than or equal to the number of antennas at the base station, the

effective combined channel matrix is block diagonal. In addition to this linear technique we

also present several variants. The first variant of this technique is a non-linear alternative

where we combine RBD with THP (RSO THP). RSO THP approaches the maximum sum-

rate capacity in simulations for low multi-user interference, i.e., when the total number

of antennas at the user terminals is less than or equal to the number of antennas at the

base station. The other way to improve the system performance is to iterate the closed

form solution or perform joint processing over a group of multi-user MIMO channels in

different frequency and time slots. Performance gains that result from iterative (IRBD) or

joint processing (JRBD) are especially visible when the total number of antennas at the

user terminals is greater than the number of antennas at the base station which leads to

high multi-user interference. By iterating the closed form solution with appropriate power

loading we are able to extract the full diversity in the system and empirically approach the

maximum sum-rate capacity in case of high multi-user interference. Joint processing of

MIMO channels yields maximum diversity regardless of the level of multi-user interference.

As these techniques rely on the fact that there is either instantaneous or long-term

channel state information (CSI) available at the base station to perform precoding and

decoding, it is very important to investigate the influence of the transceiver front-end

imperfections and channel estimation errors on their performance. The CSI at the trans-

mitter can be acquired either through feedback of the channel coefficients or by using the

estimates of the channel transfer function and the reciprocity principle. In a TDD system

the reciprocity principle allows us to use the estimates of the channel on the uplink to

perform precoding on the downlink. This significantly reduces required feedback needed

to acquire the channel state information at the transmitter. However, in this case the

problem of the influence of the radio front-end characteristics on the performance of the

system arises. This is a consequence of the fact that the transfer functions of the transmit

RF chain and the receive RF chain in general are not identical. In order to cope with the

RF front-end impairments and to meet the conditions so that reciprocity principle holds,

it is necessary to either perform calibration or use reciprocal transceivers.

We have shown in our simulations that channel estimation errors result in an SNR

loss and that by using the self-calibration methods reported in the literature only at the
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base station, the influence of the calibration errors on the system performance is almost

negligible.

Another important issue is the complexity of the multi-user MIMO precoding and

decoding techniques. RF complexity is directly related to the number of antennas, the

number of separate RF chains, and whether the signal paths of different RF chains need

to be calibrated for phase coherency. The baseband complexity is related to the relative

energy and cycle count required for one run of the multi-user MIMO processing algorithm.

Non-linear precoding techniques provide higher diversity than linear techniques at the

high SNRs. However, the point where non-linear precoding techniques become better than

linear techniques depends on the specific antenna configuration of the system, e.g., the

number of antennas at the base station and the number of user terminals and antennas at

the user terminals. Linear precoding techniques can approach the sum-rate capacity bound

of the broadcast channel when the number of users in the system is large and appropriate

spatial scheduling of users is performed or when the total number of antennas at the user

terminals is greater than the number of antennas at the base station. Furthermore, linear

precoding techniques can adapt from instantaneous CSI to the long-term CSI and allow the

combination of instantaneous and long-term CSI unlike non-linear precoding techniques

which require the exact CSI in order to be able to pre-subtract the non-causal interference.

Together with a lower computational complexity this renders linear precoding techniques

more favorable for practical implementation than non-linear precoding techniques.

System level investigations have shown that MU MIMO precoding techniques provide

several times higher data rates than SISO systems with only slightly increased pilot and

control overhead. The biggest problem is the influence of user mobility, and calibration

and channel estimation errors on their performance. A straightforward way to reduce the

sensitivity of these techniques to real-life impairments is to deploy more antennas at the

base station or to jointly process the signal from a group of spatially distributed antenna

arrays. Distributed antenna arrays are capable of providing very large spectral efficiencies

with reduced sensitivity to the real-life impairments at the cost of increased complexity.

Finally, we can conclude that multi-user MIMO processing is capable of providing

high spectral efficiencies and thus will be an important part of the next generation wireless

systems. However, special care must be taken during the system design, in order to account

for the deployment scenario characteristics, hardware imperfections and limitations that

might reduce their gain.
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