65,004 research outputs found

    A Comparative Taxonomy of Parallel Algorithms for RNA Secondary Structure Prediction

    Get PDF
    RNA molecules have been discovered playing crucial roles in numerous biological and medical procedures and processes. RNA structures determination have become a major problem in the biology context. Recently, computer scientists have empowered the biologists with RNA secondary structures that ease an understanding of the RNA functions and roles. Detecting RNA secondary structure is an NP-hard problem, especially in pseudoknotted RNA structures. The detection process is also time-consuming; as a result, an alternative approach such as using parallel architectures is a desirable option. The main goal in this paper is to do an intensive investigation of parallel methods used in the literature to solve the demanding issues, related to the RNA secondary structure prediction methods. Then, we introduce a new taxonomy for the parallel RNA folding methods. Based on this proposed taxonomy, a systematic and scientific comparison is performed among these existing methods

    COMPUTER METHODS FOR PRE-MICRORNA SECONDARY STRUCTURE PREDICTION

    Get PDF
    This thesis presents a new algorithm to predict the pre-microRNA secondary structure. An accurate prediction of the pre-microRNA secondary structure is important in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs (NCM), to predict RNA secondary structure, we propose and implement a Modified NCM (MNCM) model with a physics-based scoring strategy to tackle the problem of pre-microRNA folding. Our microRNAfold is implemented using a global optimal algorithm based on the bottom-up local optimal solutions. It has been shown that studying the functions of multiple genes and predicting the secondary structure of multiple related microRNA is more important and meaningful since many polygenic traits in animals and plants can be controlled by more than a single gene. We propose a parallel algorithm based on the master-slave architecture to predict the secondary structure from an input sequence. The experimental results show that our algorithm is able to produce the optimal secondary structure of polycistronic microRNAs. The trend of speedups of our parallel algorithm matches that of theoretical speedups. Conserved secondary structures are likely to be functional, and secondary structural characteristics that are shared between endogenous pre-miRNAs may contribute toward efficient biogenesis. So identifying conserved secondary structure is very meaningful and identifying conserved characteristics in RNA is a very important research field. After the characteristics are extracted from the secondary structures of RNAs, corresponding patterns or rules could be dug out and used. We propose to use the conserved microRNA characteristics in two aspects: to improve prediction through knowledge base, and to classify the real specific microRNAs from pseudo microRNAs. Through statistical analysis of the performance of classification, we verify that the conserved characteristics extracted from microRNAs’ secondary structures are precise enough. Gene suppression is a powerful tool for functional genomics and elimination of specific gene products. However, current gene suppression vectors can only be used to silence a single gene at a time. So we design an efficient poly-cistronic microRNA vector and the web-based tool allows users to design their own microRNA vectors online

    Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark

    Get PDF
    Ribonucleic acid (RNA) secondary structure prediction continues to be a significant challenge, in particular when attempting to model sequences with less rigidly defined structures, such as messenger and non-coding RNAs. Crucial to interpreting RNA structures as they pertain to individual phenotypes is the ability to detect RNAs with large structural disparities caused by a single nucleotide variant (SNV) or riboSNitches. A recently published human genome-wide parallel analysis of RNA structure (PARS) study identified a large number of riboSNitches as well as non-riboSNitches, providing an unprecedented set of RNA sequences against which to benchmark structure prediction algorithms. Here we evaluate 11 different RNA folding algorithms’ riboSNitch prediction performance on these data. We find that recent algorithms designed specifically to predict the effects of SNVs on RNA structure, in particular remuRNA, RNAsnp and SNPfold, perform best on the most rigorously validated subsets of the benchmark data. In addition, our benchmark indicates that general structure prediction algorithms (e.g. RNAfold and RNAstructure) have overall better performance if base pairing probabilities are considered rather than minimum free energy calculations. Although overall aggregate algorithmic performance on the full set of riboSNitches is relatively low, significant improvement is possible if the highest confidence predictions are evaluated independently

    Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design.</p> <p>Results</p> <p>RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%.</p> <p>Conclusion</p> <p>To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (<it>ViennaPackage </it>– 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU.</p

    Prediction of secondary structures for large RNA molecules

    Get PDF
    The prediction of correct secondary structures of large RNAs is one of the unsolved challenges of computational molecular biology. Among the major obstacles is the fact that accurate calculations scale as O(n⁴), so the computational requirements become prohibitive as the length increases. We present a new parallel multicore and scalable program called GTfold, which is one to two orders of magnitude faster than the de facto standard programs mfold and RNAfold for folding large RNA viral sequences and achieves comparable accuracy of prediction. We analyze the algorithm's concurrency and describe the parallelism for a shared memory environment such as a symmetric multiprocessor or multicore chip. We are seeing a paradigm shift to multicore chips and parallelism must be explicitly addressed to continue gaining performance with each new generation of systems. We provide a rigorous proof of correctness of an optimized algorithm for internal loop calculations called internal loop speedup algorithm (ILSA), which reduces the time complexity of internal loop computations from O(n⁴) to O(n³) and show that the exact algorithms such as ILSA are executed with our method in affordable amount of time. The proof gives insight into solving these kinds of combinatorial problems. We have documented detailed pseudocode of the algorithm for predicting minimum free energy secondary structures which provides a base to implement future algorithmic improvements and improved thermodynamic model in GTfold. GTfold is written in C/C++ and freely available as open source from our website.M.S.Committee Chair: Bader, David; Committee Co-Chair: Heitsch, Christine; Committee Member: Harvey, Stephen; Committee Member: Vuduc, Richar

    Ab initio RNA folding

    Full text link
    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, experimental determination of RNA structures through X-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.Comment: 28 pages, 18 figure

    Crumple: A Method for Complete Enumeration of All Possible Pseudoknot-Free RNA Secondary Structures

    Get PDF
    The computing for this project was performed at the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma (OU). OSCER director Henry Neeman and OSCER staff provided valuable technical expertise. The authors acknowledge and appreciate the discussions about this work with Dr. Changwook Kim, Adam Heck, Sean Lavelle, and Jui-wen Liu.Conceived and designed the experiments: SB SJS. Performed the experiments: SB JWS. Analyzed the data: SB JWS SJS. Wrote the paper: SB JWS SJS.The diverse landscape of RNA conformational space includes many canyons and crevices that are distant from the lowest minimum free energy valley and remain unexplored by traditional RNA structure prediction methods. A complete description of the entire RNA folding landscape can facilitate identification of biologically important conformations. The Crumple algorithm rapidly enumerates all possible non-pseudoknotted structures for an RNA sequence without consideration of thermodynamics while filtering the output with experimental data. The Crumple algorithm provides an alternative approach to traditional free energy minimization programs for RNA secondary structure prediction. A complete computation of all non-pseudoknotted secondary structures can reveal structures that would not be predicted by methods that sample the RNA folding landscape based on thermodynamic predictions. The free energy minimization approach is often successful but is limited by not considering RNA tertiary and protein interactions and the possibility that kinetics rather than thermodynamics determines the functional RNA fold. Efficient parallel computing and filters based on experimental data make practical the complete enumeration of all non-pseudoknotted structures. Efficient parallel computing for Crumple is implemented in a ring graph approach. Filters for experimental data include constraints from chemical probing of solvent accessibility, enzymatic cleavage of paired or unpaired nucleotides, phylogenetic covariation, and the minimum number and lengths of helices determined from crystallography or cryo-electron microscopy. The minimum number and length of helices has a significant effect on reducing conformational space. Pairing constraints reduce conformational space more than single nucleotide constraints. Examples with Alfalfa Mosaic Virus RNA and Trypanosome brucei guide RNA demonstrate the importance of evaluating all possible structures when pseduoknots, RNA-protein interactions, and metastable structures are important for biological function. Crumple software is freely available at http://adenosine.chem.ou.edu/software.html.Yeshttp://www.plosone.org/static/editorial#pee

    McGenus: A Monte Carlo algorithm to predict RNA secondary structures with pseudoknots

    Get PDF
    We present McGenus, an algorithm to predict RNA secondary structures with pseudoknots. The method is based on a classification of RNA structures according to their topological genus. McGenus can treat sequences of up to 1000 bases and performs an advanced stochastic search of their minimum free energy structure allowing for non trivial pseudoknot topologies. Specifically, McGenus employs a multiple Markov chain scheme for minimizing a general scoring function which includes not only free energy contributions for pair stacking, loop penalties, etc. but also a phenomenological penalty for the genus of the pairing graph. The good performance of the stochastic search strategy was successfully validated against TT2NE which uses the same free energy parametrization and performs exhaustive or partially exhaustive structure search, albeit for much shorter sequences (up to 200 bases). Next, the method was applied to other RNA sets, including an extensive tmRNA database, yielding results that are competitive with existing algorithms. Finally, it is shown that McGenus highlights possible limitations in the free energy scoring function. The algorithm is available as a web-server at http://ipht.cea.fr/rna/mcgenus.php .Comment: 6 pages, 1 figur

    On the combinatorics of sparsification

    Get PDF
    Background: We study the sparsification of dynamic programming folding algorithms of RNA structures. Sparsification applies to the mfe-folding of RNA structures and can lead to a significant reduction of time complexity. Results: We analyze the sparsification of a particular decomposition rule, Λ\Lambda^*, that splits an interval for RNA secondary and pseudoknot structures of fixed topological genus. Essential for quantifying the sparsification is the size of its so called candidate set. We present a combinatorial framework which allows by means of probabilities of irreducible substructures to obtain the expected size of the set of Λ\Lambda^*-candidates. We compute these expectations for arc-based energy models via energy-filtered generating functions (GF) for RNA secondary structures as well as RNA pseudoknot structures. For RNA secondary structures we also consider a simplified loop-energy model. This combinatorial analysis is then compared to the expected number of Λ\Lambda^*-candidates obtained from folding mfe-structures. In case of the mfe-folding of RNA secondary structures with a simplified loop energy model our results imply that sparsification provides a reduction of time complexity by a constant factor of 91% (theory) versus a 96% reduction (experiment). For the "full" loop-energy model there is a reduction of 98% (experiment).Comment: 27 pages, 12 figure
    corecore