
PREDICTION OF SECONDARY STRUCTURES FOR
LARGE RNA MOLECULES

A Thesis
Presented to

The Academic Faculty

by

Amrita Mathuriya

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
Computer Science

Georgia Institute of Technology
May, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4724111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PREDICTION OF SECONDARY STRUCTURES FOR
LARGE RNA MOLECULES

Approved by:

Professor David A. Bader, Advisor
College of Computing
Georgia Institute of Technology

Professor Christine E. Heitsch, Co-Advisor
School of Mathematics
Georgia Institute of Technology

Professor Richard Vuduc
College of Computing
Georgia Institute of Technology

Professor Stephen C. Harvey
School of Biology
Georgia Institute of Technology

Date Approved: December 19, 2008



To My Family.

iii



ACKNOWLEDGEMENTS

I thank my advisor Professor David A. Bader for his helpful support and guidance in

research and course work throughout my MSCS degree. I am deeply grateful to him

for providing the great opportunity of working in High Performance Computing area

and supporting financially from the beginning to the end, inspite of being a Masters

student, so that I could focus on the research work entirely. He always encouraged

me, either be it a difficult situation or an accomplishment. I am thankful to him for

developing my continued interest in this interdisciplinary area of research. He will

continue be an ideal role model for my professional career.

I would like to thank my Co-advisor Professor Christine E. Heitsch for guiding

me throughout the entire course of this research. I am grateful to her for helping

me in developing the understanding of a new interdisciplinary research area. She

is the principal investigator of the NIH grant supporting this work. She devoted

significant time for discussing the difficulties, I faced during the work. Her course on

“Discrete Mathematical Biology” introduced me to the mathematical aspects of this

work and also to the other computationally and mathematically challenging biological

problems.

I am thankful to Professor Stephen C. Harvey for introducing me to the biological

aspects of the RNA molecules and their secondary structures. His inputs were really

helpful for making the work useful for biological community. Discussions with him

provided me the most fruitful directions for proceeding ahead. I am grateful to him

for being always available for the discussions.

David, Christine and Steve play a very important role in establishing this work

as a successful research and it was not possible to have this work done without their

iv



support and guidance.

I am grateful to Professor Richard Vuduc for discussing various approaches for

parallelization of GTfold and serving as a committee member. The discussion and

his guidance were very helpful in making progress. His course on “Parallel Numer-

ical Algorithms” increased my understanding of handling various issues involved in

parallelization.

I would like to express my gratitude towards students in the RNA research group

Minmin Pan, Yingying Zeng, Emily Rogers, Swathi Bhat and Mustafa Burak Boz for

listening to my presentations and giving comments to improve the work. Discussions

in the research group on various aspects of the problem contributed to this research

with significant inputs.

Last but not the least, I thank my wonderful friends Asad Malik, Asha Sharma

and Fabio Cunial, summer interns from IIT Roorkee Nitesh Agrawal and Manoj Soni,

and my lab mates Aparna Chandramowlishwaran, David Ediger, Kamesh Madduri,

Karl Jiang, Manisha Gajbe, Seunghwa Kang, Swathi Bhat and Virat Agarwal for

discussing research related questions and making my stay memorable in Atlanta. I

thank my parents, sisters Anjali and Akanksha and brothers Akash and Aryan for

always giving me strength and support to proceed in any kind of difficult situations.

In the end, I forward my greatest regards to God.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 RNA Secondary Structure Prediction using Free Energy Minimization 2

1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II PREVIOUS WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

III BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 RNA Secondary Structures . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Thermodynamic Prediction Algorithm . . . . . . . . . . . . . . . . 11

3.3 Complexity Analysis and Parallelism . . . . . . . . . . . . . . . . . 13

IV PSEUDOCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

V INTERNAL LOOP SPEEDUP ALGORITHM . . . . . . . . . . . . . . 24

5.1 Extension Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.3 Claim 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.4 Claim 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

VI GTFOLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Dependencies and Access Patterns . . . . . . . . . . . . . . . . . . 36

6.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



6.2.1 Parallelism at individual functions . . . . . . . . . . . . . . 39

6.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3.1 Cache locality . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4.1 Energy and Structure Comparison . . . . . . . . . . . . . . 41

6.4.2 Running Time Comparison . . . . . . . . . . . . . . . . . . 45

VII CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . 54

7.1 Suboptimal Secondary Structures . . . . . . . . . . . . . . . . . . . 55

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vii



LIST OF TABLES

1 Free energy (in Kcal/mole) comparison of GTfold, UNAFold and RNAfold
for 16S rRNA sequences . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Accuracy comparison (in percent) of GTfold, UNAFold and RNAfold
for 16S rRNA sequences of Table 1. Here Sens. stands for sensitivity
and Spec. stands for specificity. . . . . . . . . . . . . . . . . . . . . . 43

3 Free energy (in Kcal/mole) comparison of GTfold, UNAFold and RNAfold
for 23S rRNA sequences . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Accuracy comparison (in percent) of GTfold, UNAFold and RNAfold
for 23S rRNA sequences of Table 3. Here Sens. stands for sensitivity
and Spec. stands for specificity. . . . . . . . . . . . . . . . . . . . . . 44

5 Free energy (in Kcal/mole) comparison of GTfold, UNAFold and RNAfold
using GTfold energy function for 16S rRNA sequences of Table 1.
Columns “UNAfold” and “RNAfold” contain the energy values recalcu-
lated using the GTfold energy function and columns “UNAf (T)” and
“RNAf (T)” contain the actual energy values predicted by UNAfold
and RNAfold respectively. . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Free energy (in Kcal/mole) comparison of GTfold, UNAFold and RNAfold
using GTfold energy function for 23S rRNA sequences of Table 3.
Columns “UNAfold” and “RNAfold” contain the energy values recal-
culated using the GTfold energy function and columns “UNAf(T)” and
“RNAf(T)” contain the actual energy values predicted by UNAfold and
RNAfold respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Accuracy comparison (in percent) of GTfold and Evolutionary Algo-
rithms. Here, Sens. stands for sensitivity and Spec. stands for Specificity. 50

viii



LIST OF FIGURES

1 Showing the 3D structure of Pariacoto virus [26]. . . . . . . . . . . . 2

2 The optimal secondary structure of an HIV-1 virus with 9,781 nu-
cleotides predicted using GTfold in 84 seconds using 16 dual core CPUs.
The minimum free energy of the structure is -2,879.20 Kcal/mole. . . 3

3 A sample RNA secondary structure with 79 nucleotides. . . . . . . . 11

4 Showing various cases of including dangling interaction energy. . . . . 17

5 Extension of internal loop from (i, j) to (i− 1, j + 1) for the first base
case of the closing base pair (i, j) for c = 3. The length of both sides
increases from (c, c) to (c + 1, c + 1). . . . . . . . . . . . . . . . . . . 27

6 2D plane ip − jp for an arbitrary base pair (i, j) showing the special
cases and extendable regions graphically. . . . . . . . . . . . . . . . . 30

7 Showing the plane i − j. Point (x + 1, y − 1) situated on line j =
i + 2c + k − 2 extends its base case g = k − 5, k − 6 to the point (x, y)
situated on line j = i + 2c + k. . . . . . . . . . . . . . . . . . . . . . 33

8 The implicit dependency of point (i, j) on the elements present in the
triangle T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 The access pattern of V BI(i, j) for the internal loop speedup algorithm 37

10 Showing the pattern of computation implemented in GTfold . . . . . 38

11 Comparison of running times for predicting the RNA secondary struc-
tures of 11 picornaviral sequences. The sequences are arranged in in-
creasing order of length from 7124 to 8214 nucleotides. . . . . . . . . 46

12 Comparison of running times for predicting the RNA secondary struc-
ture of the HIV-1 virus. The dashed horizontal lines represent the
sequential running time of UNAFold and RNAfold. . . . . . . . . . . 47

13 GTfold running time statistics for a Homo sapiens 23S ribosomal RNA
sequence with accession number J01866/M11167 using the Internal
Loop Speedup Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 48

14 Running time of GTfold with 32 threads for 22 HIV sequences of length
from 9022 to 10269 nucleotides used in Hofacker et al. [12] . . . . . . 51

15 Speedups obtained by GTfold with the heuristic algorithm for the HIV-
1 virus and with the internal loop speedup algorithm for the Homo
sapiens ribosomal RNA sequence. Speedup is with respect to GTfold
running on one processor for each series. . . . . . . . . . . . . . . . . 53

ix



SUMMARY

The prediction of correct secondary structures of large RNAs is one of the un-

solved challenges of computational molecular biology. Among the major obstacles is

the fact that accurate calculations scale as O(n4), so the computational requirements

become prohibitive as the length increases. We present a new parallel multicore and

scalable program called GTfold, which is one to two orders of magnitude faster than

the de facto standard programs mfold and RNAfold for folding large RNA viral se-

quences and achieves comparable accuracy of prediction. We analyze the algorithm’s

concurrency and describe the parallelism for a shared memory environment such as

a symmetric multiprocessor or multicore chip. We are seeing a paradigm shift to

multicore chips and parallelism must be explicitly addressed to continue gaining per-

formance with each new generation of systems.

We provide a rigorous proof of correctness of an optimized algorithm for internal

loop calculations called internal loop speedup algorithm (ILSA), which reduces the

time complexity of internal loop computations from O(n4) to O(n3) and show that the

exact algorithms such as ILSA are executed with our method in affordable amount of

time. The proof gives insight into solving these kinds of combinatorial problems. We

have documented detailed pseudocode of the algorithm for predicting minimum free

energy secondary structures which provides a base to implement future algorithmic

improvements and improved thermodynamic model in GTfold. GTfold is written in

C/C++ and freely available as open source from our website.

x



CHAPTER I

INTRODUCTION

RNA molecules perform a variety of different biological functions including the role of

“small” RNAs (with tens or a few hundred of nucleotides) in gene splicing, editing, and

regulation. At the other end of the size spectrum, the genomes of numerous viruses are

lengthy single-stranded RNA sequences with many thousands of nucleotides. These

single-stranded RNA sequences base pair to form secondary and tertiary structures.

Secondary structures of viruses like dengue [5], ebola [29], and HIV [30] are known

to have functional significance. Thus, predicting correct secondary structures, and

identifying and disrupting functionally significant base pairings in RNA viral genomes

becomes a potential method for treating or preventing many RNA-related diseases.

RNA folding is different than DNA folding, in which DNA molecule forms a double

stranded helix, whereas RNA molecule remains single stranded and folds in it to have

structural forms called secondary and tertiary structures. RNA folding is also very

different than protein folding, as RNA molecules have only four kinds of nucleotides,

while protein molecules are formed of 20 different amino acids. In comparison to

protein folding, the secondary structural elements of RNAs can be separated from

tertiary interactions [28] and secondary structures can be helpful for various pur-

poses such as recognizing functionally significant base pairings, predicting tertiary

structures etc.

Figure 1 shows the 3D structure of pariacoto virus [26]. Though, the virus is

known to form a dodecahedral cage in the views identified using crystallography, but

how the RNA genomes reside into the cage is not yet known. Experimental methods

for finding out the structures of RNA molecules are too expensive and time taking and

1



therefore, the computational methods to predict secondary structures are required.

Comparative sequence analysis [9, 10] is a computational method for determining

secondary structures which predicts highly accurate structures and whose accuracy

has been proven using high resolution crystal structures. However, the method needs

large datasets for finding a consensus alignment to predict secondary structures. The

applicability of this method is limited by the available datasets for many classes of

RNAs and other computational methods which predict secondary structures using a

single sequence are applied in this situation.

Figure 1: Showing the 3D structure of Pariacoto virus [26].

1.1 RNA Secondary Structure Prediction using Free En-

ergy Minimization

Viral sequences range in length from about 1,000 to over 1,000,000 nucleotides in the

recently discovered virophage. Length of the viral sequences poses significant com-

putational challenges for the current computer programs. Free energy minimization

excluding pseudoknots is a conventional approach for predicting secondary structures

2
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Figure 2: The optimal secondary structure of an HIV-1 virus with 9,781 nucleotides
predicted using GTfold in 84 seconds using 16 dual core CPUs. The minimum free
energy of the structure is -2,879.20 Kcal/mole.
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from a given sequence. The mfold [19, 37] and RNAfold [13] programs are the stan-

dard programs used by the molecular biology community for the last several decades.

Recently, other folding programs such as simfold [1] have been developed. These

programs predict structures with good accuracy for the RNA molecules having fewer

than 1,000 nucleotides. However, for longer RNA molecules, prediction accuracy is

very low [7].

According to the thermodynamic hypothesis, the structure having the minimum

free energy (MFE) is predicted as the secondary structure of the molecule. The op-

timization is performed using the dynamic programming algorithm given by Zuker

and Stiegler in 1981 [39] which explores the entire search space and finds out the

MFE structure. One of the reasons for lower accuracies of the predicted secondary

structures as pointed by Mathews and Turner in [17], is the approximations involved

in structure prediction algorithms. For example, currently available software mfold,

RNAfold and simfold adopt a heuristic option of limiting the size of internal loops to a

constant, and simplified energy function for multiloops, to avoid huge computational

requirements. While, the incorporation of exact algorithms and advanced thermo-

dynamic model has potential to increase the accuracy of the predicted structures, it

also drastically increases running time and space needs for the execution.

1.2 Our Contribution

Current programs use heuristics and approximations to satisfy the computational

requirements. We use shared memory parallelism to overcome the computational

challenges of the problem. We have designed and implemented a new parallel and

scalable program called GTfold for predicting secondary structures of RNA sequences.

Our program runs one to two orders of magnitude faster than the current sequential

programs for large viral sequences on an IBM P5 570, 16 core dual CPU symmetric

multiprocessor system. Figure 2 shows the optimal secondary structure obtained from
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GTfold of an HIV-1 sequence (accession number Z11530) having 9,781 nucleotides

executed on the system with 32 threads. Structures predicted with GTfold achieves

accuracy comparable to the structures predicted with RNAfold and UNAfold which

supersedes mfold, for a diverse set of ribosomal RNA sequences having known struc-

tures found by more reliable method comparative sequence analysis [9, 10].

We have parallelized the dynamic programming algorithm at a coarse-grain and

the individual functions which calculate the free energy of various loops at a fine-grain.

GTfold provides an option for internal loop calculations to select from internal loop

speedup algorithm (ILSA) or heuristic options. We demonstrate that GTfold executes

exact algorithms in an affordable amount of time for large RNA sequences. GTfold

takes just minutes (instead of 9 hours) to predict the structure of a Homo sapiens

23S ribosomal RNA sequence with 5,184 nucleotides with the ILSA option. The

algorithm has complicated data dependencies among various elements, including five

different 2D arrays. The energy of the subsequences of equal length can be computed

independently of each other without violating the dependencies pattern introduced

by the dynamic programming with a set of five tables. Our approach calculates the

optimal energy of the equal length sequences in parallel starting from the smallest

to the largest subsequences and finally the optimal free energy of the full sequence.

Development of GTfold opens up the path for applying essential improvements in the

prediction programs to increase the accuracy of the predicted structures.

The minimization recursion formulas describing the dynamic programming algo-

rithm have been mentioned at various places [2, 16, 18, 19]. Hofacker et al. [13]

described a brief pseudocode of the algorithm for predicting MFE structures. In this

thesis, we document the entire pseudocode of the algorithm which includes thermody-

namic details. Pseudocode provided here gives the complete picture of the algorithm

and serves as a base for doing performance improvements and incorporating advanced

thermodynamic model in GTfold.
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Currently, internal loop calculations are the most time consuming part of the whole

computation. The naive way of iterating over all possible internal loops to find out the

optimal one for every closing base pair has O(n4) time and O(n2) space complexities.

The optimized algorithm ILSA reduces the time complexity from O(n4) to O(n3) with

the same space requirements. Lyngsø et al. gave an intuitive proof of the correctness

for the algorithm [15] by first simplifying the algorithm to be implemented in O(n3)

space and then arguing that the simplified algorithm is same as the speedup algorithm

except for the order in which array elements were computed.

In the thesis, we analyze the algorithm in a simplified manner giving the pseu-

docode and providing a rigorous mathematical proof of the correctness for the algo-

rithm. We explain the algorithm by introducing a concept of gap length which is

equal to the length of the subsequence closed by the enclosed base pair. Describing

the algorithm with the variable gap instead of the length of internal loops simplifies

the explanation of pseudocode and helps describing the proof in a clear way. Our

proof starts by sketching the graphical regions in the 2D space of ip− jp where (ip, jp)

is the enclosed base pair, for an arbitrary closing base pair (i, j) showing the special

cases which are to be taken care of separately and the region where the extension

principle can be applied. We argue that with the algorithm we cover all gap length

values for every closing base pair and then for every gap length, we cover all possi-

ble enclosed base pairs (ip, jp). The proof gives us insight into solving such kinds of

algorithmic problems combinatorial in nature and motivates us to do same type of

algorithmic improvements for multiloop energy calculations.
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CHAPTER II

PREVIOUS WORK

Several parallel and sequential approaches have been taken for RNA secondary struc-

ture prediction. There are approaches such as Pfold [14] using stochastic context-free

grammars which take many related sequences as input for the prediction. Our fo-

cus is on the prediction approaches which predict structures from a single sequence.

An another approach contrafold [6] predicts secondary structures using learned ther-

modynamic parameters from the database of known secondary structures instead

of experimentally determined physics based parameters. The approach has outper-

formed MFE prediction methods for single structure prediction accuracy. However,

the parameters learned using the known secondary structures of ribosomal RNAs or

other classes may not be suitable for the unrelated class of viral sequences.

Nakaya et al. [20] presented an approximation algorithm for generating secondary

structures with the minimum free energy criterion. The parallel approach enumerates

all stacking regions of an RNA sequence and combines the ones which can coexist

together to produce multiple secondary structures. Another approximation algorithm

by Taufer et al. [27] samples the RNA sequence systematically and extensively, and

rebuilds the whole structure by combining the structures of the chunks according to

various criteria. Statistical approaches such as RDfolder [35, 36] which builds the

secondary structure by combining helical regions based upon probabilistic criteria

have also been applied. However, most of these approaches assume the minimum

length of a helix equal to three to avoid combinatorial explosion while the helices of

length one and two are observed in the real structures. Also, the applicability of all

these approaches is limited to sequences shorter than thousand nucleotides.

7



Evolutionary algorithms(EAs) have also been applied for predicting RNA sec-

ondary structures [11, 25, 31, 32, 33]. EAs are in general easily parallelizable. Shapiro

et al. in 2000 [25] applied massively parallel genetic algorithm for RNA secondary

structure prediction on modern workstations. EAs do not explore entire possibili-

ties and may not be able to find the optimal secondary structures. Also, solution

quality depends upon various parameters selected for crossover and mutation opera-

tors. Performance results of run time and accuracy of these algorithms are presented

only for sequences shorter than thousand nucleotides [25, 32, 33, 31]. Here, we are

interested in the exact optimization problem of finding the minimum free energy sec-

ondary structures of RNA molecules. Exact optimization allows us to explore the

entire suboptimal space within a specified energy range during the traceback. In the

experimental section we will compare the accuracy of the evolutionary algorithms

with GTfold.

Several distributed memory implementations [4, 8, 12, 13] for RNA secondary

structure prediction have been developed which parallelize the exact dynamic pro-

gramming algorithm. Hofacker et al. [12, 13] partition the triangular portion of 2D

arrays into equal sectors that are calculated by different processors in order to mini-

mize the space requirements and data is reorganized after computing each diagonal.

In this implementation the arrays are not stored permanently and because of this,

traceback for all suboptimal secondary structures is not possible. Fekete et al. [8]

uses a similar technique to parallelize the folding procedure and increases the com-

munication to store the arrays in order to facilitate the full traceback. However,

these implementations may not be portable to current parallel computers and also

the implementation of the optimized algorithms such as internal loop speedup algo-

rithm whose access pattern differs from the general access pattern become complex

for distributed memory environment.

Zhou and Lowenthal studied a parallel out of core distributed memory algorithm
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for RNA Secondary structure prediction problem including pseudoknots. However

the underlying dynamic programming algorithm for secondary structure prediction

involves working only with a similar single data dependency pattern in comparison to

the complex dependency pattern of the free energy minimization approach and also

computational requirements of the two problems are different. In [12], the authors

observe that to fold the HIV virus, memory of 1 to 2GB is required, dictating the use

distributed memory supercomputers; yet in our work, we demonstrate that this can

now be solved efficiently on most personal computers. In our work, for the first time,

we give scientists the ability to solve very large folding problems on their desktop by

leveraging multicore computing.
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CHAPTER III

BACKGROUND

3.1 RNA Secondary Structures

RNA molecules are made up of A, C, G, and U, nucleotides which can pair up ac-

cording to the rules in {(A,U), (U,A), (G,C), (C,G), (G,U), (U,G)}. Nested base

pairings of an RNA sequence can be presented in a 2D plane, which is called sec-

ondary structure. We take care of only nested base pairings and pseudoknots are

not allowed in our model. Pairings among bases form various kinds of loops, which

are classified based on the number of branches present in them. Nearest neighbor

thermodynamic model (NNTM) provides a set of functions and sequence dependent

parameters to calculate the energy of various kinds of loops. The free energy of a

secondary structure is calculated by adding up the energy of all loops and stacking

present in the structure.

Figure 3 shows an MFE secondary structure predicted using GTfold of an artificial

sequence of 79 nucleotides. Various loops annotated in the figure are named as hairpin

loops, internal loops, multiloops, stacks, bulges and external loops. Loops formed with

two consecutive base pairs are called stacks. Loops having one enclosed base pair and

one closing base pair are called internal or interior loops. Internal loops with length

of one side as zero are called bulges. Loops with two or more enclosed base pairs and

one closing base pair are called multiloops or multibranched loops. The open loop

which is not closed by any base pair is called an external or exterior loop. Structures

having more than one base pairs present in the external loop are called multidomain

structures.
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Figure 3: A sample RNA secondary structure with 79 nucleotides.

3.2 Thermodynamic Prediction Algorithm

Prediction of secondary structures with the free energy minimization is an opti-

mization problem like the Smith-Waterman local alignment algorithm. There is a

well-defined scoring function which can be optimized via dynamic programming, and

structures achieving the optimum can be found through traceback. However, while

sequence alignment can be performed with one table and a relatively simple pro-

cessing order, RNA secondary structure prediction requires five tables with complex

dependencies. Each class of loop has a different energy function which is dependent

upon the sequence and parameters. For the internal loops and multiloops with one

or more branches, all enclosed base pairs need to be searched which makes the loop

optimal for the closing base pair.

The algorithm can be defined with recursive minimization formulas. Lyngsø et

al. [16] described simplified recursion formulas which are reproduced here for conve-

nience. Consider an RNA sequence S = s1s2 . . . sN and free energy of the subsequence

s1s2 . . . sj to be W (j). Note that the W (N) is the free energy of S and W (j) is given
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by the following formula:

W (j) = min{W (j − 1), min
1≤i<j

{V (i, j) + W (i− 1)}} (1)

In Eq. (1), V (i, j) is the optimal energy of the subsequence sisi+1 . . . sj assuming

(i, j) forms a base pair and is defined by

V (i, j) = min



































eH(i, j)

eS(i, j) + V (i + 1, j − 1)

V BI(i, j)

V M(i, j).

(2)

Eq. (2) considers various types of loops that a base pair (i, j) can close. The

eH(i, j) function returns the energy of a hairpin loop closed by base pair (i, j). Func-

tion eS(i, j) returns the energy of a stack formed by base pairs (i, j) and (i+1, j−1).

V BI(i, j) and V M(i, j) are the optimal free energies of the subsequence sisi+1 . . . sj in

the case when the (i, j) base pair closes an internal loop or a multiloop, respectively.

V BI(i, j) = min
i<i′<j′<j

{eL(i, j, i′, j′) + V (i′, j′)} (3)

where, i′− i + j − j′− 2 > 0. We consider bulge loops as the special cases of internal

loops so, the function eL(i, j, i′, j′) also takes care of these. The formulation of the

multiloop energy function has linear dependence upon the number of single stranded

bases present in the loop. The standard is to introduce a 2D array WM to facilitate

the calculation of V M array. Eq. (4) and (5) shows calculations of WM(i, j) and

V M(i, j) respectively.

WM(i, j) = min



































V (i, j) + b

WM(i, j − 1) + c

WM(i + 1, j) + c

mini<k≤j{WM(i, k − 1) + WM(k, j)}

(4)
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V M(i, j) = min
i+1<k≤j−1

{WM(i + 1, k − 1) + WM(k, j − 1) + a} (5)

3.3 Complexity Analysis and Parallelism

The dynamic programming algorithm is computationally intensive both in terms of

running time and space. Its space requirements are of O(n2) as it uses four 2D ar-

rays named V (i, j), V BI(i, j), V M(i, j) and WM(i, j) that are filled up during the

algorithm’s execution. The main issue is running time rather than memory require-

ments. For instance, GTfold has memory footprints of less than 2GB (common in

most desktop PCs) even for sequences with 10,000 nucleotides.

The arrays filled up using dynamic programming are traced in the backward di-

rection to determine the secondary structures. The traceback for a single structure

takes far less time than filling up these arrays. Time complexity of the dynamic

programming algorithm is O(n3) with the currently adopted thermodynamic model.

The two indices i and j are varied over the entire sequence, and every type of loop

for every possible base pair (i, j) is calculated. This results in the asymptotic time

complexity of O(n2)× maximum time complexity of any type of loop for a base pair

(i, j).

Computations of internal loops and multiloops are the most expensive parts of the

algorithm. We can see from Eq. (3) that, in the calculation of V BI(i, j), all possible

internal loops with the closing base pair (i, j) are considered by varying indices i′ and

j′ over the subsequence from i+1 to j−1 such that i′ < j′. This results in the overall

time complexity of O(n4). To avoid large running time, a commonly used heuristic is

to limit the size of internal loops to a threshold k usually set as 30. This significantly

reduces running time from O(n4) to O(k2n2). The heuristic is adopted in most of the

standard RNA folding programs.

Lyngsø et al. [16, 15] suggest that the limit is a little bit small for predictions
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at higher temperatures and give an optimized and exact algorithm for internal loop

calculations which has the time complexity of O(n3) with the same O(n2) space. The

algorithm searches for all possible internal loops closed by base pair (i, j). Practically,

this algorithm is far slower than the heuristic. Choosing one of the options is a tradeoff

of running time versus accuracy. In GTfold we provide an option for the user to select

the heuristic or internal loop speedup algorithm. Also, our parallelization scheme is

valid for both the options.

The thermodynamics of multiloops are still not understood fully, but improve-

ments continue to be made. Searching for an optimal multiloop closed by a base pair

(i, j) requires searching for all enclosed base pairs which make the loop optimal. To

make the multiloop energy function feasible to compute, it may be approximated in

O(n3) time. This function has linear dependence upon the number of single stranded

bases in the multiloop. Time complexity of the algorithm to implement a relatively

more realistic multiloop energy function having logarithmic dependence upon the sin-

gle stranded bases in the loop is exponential. Also, many other advanced thermody-

namic details such as coaxial dangling energies are not implemented in the multiloop

energy calculations during the optimization, as it significantly increases the running

time.

Both running time and space needs are expected to increase with the use of better

thermodynamic models. While memory requirements can be satisfied with today’s

high-end servers with 256GB or more memory, running time will continue to play as

a major prohibitive factor in solving these grand challenge problems. Our paralleliza-

tion strategy in GTfold is designed for reducing the running time and it takes the

same amount of space as the sequential algorithm.
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CHAPTER IV

PSEUDOCODE

The RNA secondary structure prediction algorithm with free energy minimization is

composed of two steps. The fill step is the dynamic programming algorithm given by

Zuker and Stiegler [39] which finds out the optimal energy score that can be achieved

by a possible secondary structure. The traceback step finds out the optimal structure

corresponding to the score. Note that there may be one or more possible secondary

structures having the same energy score depending upon the sequence contents and

thermodynamic parameters. Here we give a detailed pseudocode of the entire algo-

rithm implemented in GTfold for the fill step. Pseudocode of the GTfold algorithm

does not implement coaxial stacking energies. The formulas including coaxial stacking

energies for multiloops are presented by Mathews et al. [18] in the supporting infor-

mation. The algorithm for optimal and complete suboptimal traceback is described

by Wuchty et al. [34].

The minimization formulas presented in section 3.2 can be implemented recur-

sively as well as iteratively. We implement an iterative formulation of the algo-

rithm. The implementation uses various 1D and 2D arrays corresponding to W (j)

and V (i, j), V BI(i, j), V M(i, j), WM(i, j) values. Also we use calcW (j), calcV (i, j),

calcV BI(i, j), calcV M(i, j) and calcWM(i, j) functions to calculate the values of

W (j), V (i, j), V BI(i, j), V M(i, j) and WM(i, j) array elements. The MFE score

of the whole sequence is computed using the function calculate() shown in algo-

rithm 1 with the sequence length as input argument. Computation of other functions

calcV BI(i, j), calcWM(i, j), calcV M(i, j), calcV (i, j) and calcW (j) is performed as

shown in algorithms 2, 3, 4, 5 and 6 respectively. Also pseudocode for internal loop
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calculations using the heuristic option is given algorithm 7 and using the speedup

algorithm is given in algorithms 8, 9 and 10.

We assume that the free energy of an unfolded sequence is infinity which is rep-

resented by a large positive constant INF and all array elements are initialized with

INF . In the starting, readEnergyTables() and readSequence() functions read the

thermodynamic parameters and sequence as inputs. The function auPen(i, j) returns

a constant penalty, if (i, j) is not a G-C or C-G pair otherwise, it returns zero. The

function dangle−5′(i, j, i+1) function returns the dangling interaction energy of the

single stranded nucleotide si+1 with (i, j) base pair assuming that the nucleotide si+1

is at the 5’ end of the base pair. Similarly, dangle−3′(i, j, j−1) returns the dangling

interaction energy of single stranded nucleotide sj−1 with (i, j) base pair assuming

nucleotide sj−1 to be at the 3’ end of the base pair. Please refer to the practical guide

by Zuker et al. [38] for the details of functions eH(i, j), eL(i, j), eS(i, j).

One trickier part of including thermodynamic details in the simplified formulas

is to include dangling interaction energies. In case of multiloops and external loop,

dangling energies are included for the interaction among the base pairs and the ad-

jacent single stranded nucleotides in the loop if they are present. If there is only

one single stranded nucleotide between two base pairs then only the lower energy

contribution (more negative) is added, i.e. the dangling energy contribution of the

single nucleotide is added only for the base pair which contributes lesser free energy.

Multiloop contained in the secondary structure shown in Figure 4 have three cases of

including dangling energies where 0, 1 and 2 single stranded nucleotides are present

between two base pairs. For the base pair (5, 29) nucleotide s28 is paired and nu-

cleotide s6 is unpaired. There are two single stranded nucleotide s6 and s7 between

base pairs (8, 18) and (5, 29). Therefore, for the base pair (5,29) the dangling energy

contribution is added for nucleotide s6 and not for nucleotide s28.
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Base pair (8, 18) has single stranded nucleotides present at both the ends. Dan-

gling energy of base pair (8, 18) with single stranded nucleotide s7 is added for sure

and dangling energy of base pair (8, 18) with single stranded nucleotide s19 is added

only in the case if this is more negative than the dangling energy of base pair (20, 28)

with single stranded nucleotide s19. Base pair (20, 28) have single stranded nucleotide

only at one side and the corresponding dangling energy will be taken care of similar

to the case of base pair (8, 18).

input : Sequence of length N

output: Optimal energy of the sequence
begin

readEnergyTables();
readSequence();

for i← 1 to N do

for j ← 1 to N do
V BI(i, j)← INF ;
V M(i, j)← INF ;
V (i, j)← INF ;
WM(i, j)← INF ;

end

W (i)← INF ;
end

for b← 0 to N − 1 do

for i← 1 to N − b do
j ← i + b;
calcVBI(i, j);
calcVM(i, j);
calcV(i, j);
calcWM(i, j);

end

calcW(b + 1);
end

return W (N);
end

Algorithm 1: Function calculate(N), main function for calculating the free
energy.
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input : Base indices i and j

output: V BI(i, j)
begin

for ip ← i + 1 to j − 2 do

for jp ← ip + 1 to j − 1 do
V BI(i, j)← MIN( V BI(i, j), eL(i, j, ip, jp) + V (ip, jp));

end

end

return V BI(i, j);
end

Algorithm 2: Function calcV BI(i, j), n̈aive way of calculating internal
loops.

input : Base indices i and j

output: WM(i, j)

begin

// b and c are helix penalty and free base penalty for

multiloops.

WMij ← V (i, j)+auPen(i, j)+b;

WMidj ← V (i + 1, j)+dangle-3’(j, i + 1, i)+auPen(i + 1, j)+b + c;

WMijd ← V (i, j − 1)+dangle-5’(j − 1, i, j) + auPen(i, j − 1)+b + c;

WMidjd ← V (i + 1, j − 1)+dangle-3’(j − 1, i + 1, i)
+dangle-5’(j − 1, i + 1, j) + auPen(i + 1, j − 1)+b + 2c;

WM(i, j)← MIN(WMij , WMidj , WMijd, WMidjd);
for h← i to j − 1 do

WM(i, j)← MIN(WM(i, j), WM(i, h) + WM(h + 1, j));
end

WM(i, j)← MIN( WM(i + 1, j) + c, WM(i, j − 1) + c, WM(i, j)) ;
return WM(i, j);

end

Algorithm 3: Function calcWM(i, j)

19



input : Base indices i and j

output: V M(i, j)

begin
V Mij = V Midj = V Mijd = V Midjd = INF ;
// a, b, c are multiloop offset, helix penalty and free base

penalty.

for h← i + 2 to j − 1 do
V Mij ← MIN( V Mij , WM(i + 1, h− 1) + WM(h, j − 1));

end

for h← i + 3 to j − 1 do
V Midj ← MIN(V Midj , WM(i + 2, h− 1) + WM(h, j − 1));

end

V Midj ← V Midj+dangle-5’(i, j, i + 1)+c;

for h← i + 2 to j − 2 do
V Mijd ← MIN(V Mijd, WM(i + 1, h− 1) + WM(h, j − 2));

end

V Mijd ← V Mijd + dangle-3’(i, j, j − 1) + c;

for h← i + 3 to j − 2 do
V Midjd ← MIN(V Midjd, WM(i + 2, h− 1) + WM(h, j − 2));

end

V Midjd ← V Midjd + dangle-5’(i, j, i + 1) + dangle-3’(i, j, j − 1) +2c;

V M(i, j)← MIN( V Mij , V Midj , V Mijd, V Midjd);

V M(i, j)← V M(i, j) + a + b + auPen(i, j);
return V M(i, j);

end

Algorithm 4: Function calcV M(i, j)

input : Base indices i and j

output: V (i, j)
begin

V (i, j)← MIN( eH(i, j), eS(i, j) +V (i + 1, j − 1), V BI(i, j), V M(i, j));
return V (i, j);

end

Algorithm 5: Function calcV (i, j)
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input : Base index j

output: Optimal Energy of the sequence sisi+1 . . . sj, W (j)

begin

for i← 1 to j − 1 do
wim1← MIN(0, W (i− 1))

Wij ← V (i, j)+auPen(i, j)+wim1;

Widj ← V (i + 1, j)+dangle-3’(j, i + 1, i)+auPen(i + 1, j)+wim1;

Wijd ← V (i, j − 1)+dangle-5’(j − 1, i, j)+auPen(i, j − 1)+wim1;

Widjd ← V (i + 1, j − 1)+dangle-3’(j − 1, i + 1, i)+dangle-5’(j −
1, i + 1, j)+auPen(i + 1, j − 1)+wim1;

W (j)← MIN(W (j), Wij , Widj , Wijd, Widjd);
end

W (j)=MIN( W (j), W (j − 1));
return W (j);

end

Algorithm 6: Function calcW (j)

input : Base indices i and j

output: V BI(i, j)
begin

Maxloop← 30;
for ip ← i + 1 to i + Maxloop + 1 do

for jp ← j −Maxloop − 1 + (ip − i− 1) to j − 1 & jp > ip do
V BI(i, j)← MIN( V BI(i, j), eL(i, j, ip, jp) + V (ip, jp));

end

end

return V BI(i, j);
end

Algorithm 7: Function calcV BI(i, j) using the heuristic - limiting the size
of internal loops to a constant Maxloop.
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input : Indices i and j

output: V BI(i, j)

begin
c← 3;
// bases ip and jp forms the interior base pair

// Case 1: When first side < c

for ip ← i + 1 to i + c do

for jp ← ip + 1 to j − 1 do
V BI(i, j)← MIN(V BI(i, j),eL(i, j, ip, jp)+ V (ip, jp));

end

end

// Case 2: When first side >= c, and second side < c

for ip ← i + c + 1 to j − 2 do

for jp ← j − c to j − 1 & jp > ip do
V BI(i, j)← MIN(V BI(i, j),eL(i, j, ip, jp) + V (ip, jp));

end

end

// case 3: General Cases - includes three subcases

// case 3.1: When both sides=c

ip = i + c + 1;
jp = j − c− 1;
V BI(i, j)← MIN(V BI(i, j), eL(i, j, ip, jp)+ V (ip, jp));
extend1(i, j, ip, jp);

// case 3.2: When First side=c+1, second side=c

ip = i + c + 2;
jp = j − c− 1;
E1 ← eL(i, j, ip, jp)+ V (ip, jp);

// subcase 3.3: When First side=c, second side=c+1

ip1 = i + c + 1;
jp1 = j − c− 2;
E2 ← eL(i, j, ip1, jp1)+ V (ip1, jp1);
V BI(i, j)← MIN(V BI(i, j), E1, E2);
if E1 > E2 then

ip = i + c + 1;
jp = j − c− 2;

end

extend2(i, j, ip, jp);
return V BI(i, j)

end

Algorithm 8: Function calcV BI(i, j) - Calculate internal Loops using
Speedup Algorithm, ILSA
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input: Variable i, j, ip, jp

begin
iv ← i + c + 1;
jv ← j − c− 1;

for b← 1 to MIN(i− 1,N − j) do
V BI(i− b, j + b)← MIN(V BI(i− b, j + b), eL(i, j, ip, jp)+ V (ip, jp));

// Two more options

if V BI(i− b, j + b) > eL(i, j, iv + b, jv + b) + V (iv + b, jv + b) then
ip ← iv + b;
jp ← jv + b;
V BI(i− b, j + b)← eL(i, j, ip, jp)+ V (ip, jp) ;

end

if V BI(i− b, j + b) > eL(i, j, iv − b, jv − b)+ V (iv − b, jv − b) then
ip ← iv − b;
jp ← jv − b;
V BI(i− b, j + b)← eL(i, j, ip, jp) + V (ip, jp) ;

end

end

end

Algorithm 9: Function extend1(i, j, ip, jp)

input: Variable i, j, ip, jp

begin
iv ← i + c + 1;
jv ← j − c− 1;

for b← 1 to MIN(i− 1,N − j) do
V BI(i− b, j + b)← MIN(V BI(i− b, j + b), eL(i, j, ip, jp)+ V (ip, jp));

// Two more options

if V BI(i− b, j + b) > eL(i, j, iv + b + 1, jv + b) +
V (iv + b + 1, jv + b) then

ip ← iv + b + 1;
jp ← jv + b;
V BI(i− b, j + b)← eL(i, j, ip, jp)+ V (ip, jp)

end

if V BI(i− b, j + b) > eL(i, j, iv − b, jv − b− 1)+
V (iv − b, jv − b− 1) then

ip ← iv − b;
jp ← jv − b− 1;
V BI(i− b, j + b)← eL(i, j, ip, jp) + V (ip, jp);

end

end

end

Algorithm 10: Function extend2(i, j, ip, jp)
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CHAPTER V

INTERNAL LOOP SPEEDUP ALGORITHM

An internal loop is associated with the four parameters. Calculating all internal loops

with a straight forward approach of searching (ip, jp) naively for every (i, j) as shown

in algorithm 2 takes O(n4) amount of time and O(n2) space. This makes searching

for all possible internal loops practically infeasible. Internal loop speedup algorithm

(ILSA) described by Lyngsø et al. [16, 15], takes the advantage of the current form of

internal loop energy function and has been shown to be implementable in O(n3) time

complexity and O(n2) space for finding all possible internal loops. Also, the algorithm

reduces the asymptotic time complexity of the commonly adopted heuristic of limiting

the size of internal loops to a constant from O(k2n2) to O(kn2). Here, we explain

the algorithm in a simplified manner and provide a sound mathematical proof of

its correctness. Our proof gives an insight into solving such kind of combinatorial

problems.

Let say the sequence length is N and first side of the internal loop has n1 and the

second side has n2 lengths respectively. Also, b is a positive integer varying from 1

to min(i − 1, N − j) for a closing pair (i, j) which will be used later. The energy

function for internal loops depends upon the following terms:

1. Size penalty, where size is n1 + n2

2. Asymmetry penalty

3. Stacking energy of the closing base pair (i, j) with the adjacent mismatched

base pair in the loop

4. Stacking energy of the enclosed base pair (ip, jp) with the adjacent mismatched
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bases pair in the loop.

Asymmetry Penalty asym(n1, n2) is following:

asym(n1, n2) = min{Emax, |n1 − n2|.f(m)} (6)

Here Emax is the maximum asymmetry penalty and f is a function of m where

m = min{n1, n2, c1}, and c1 is a small constant. The value of c1 is given as 5 in [23]

and for currently used thermodynamic parameters, it is set to 1 in [24]. For all n1 ≥ c1

and n2 ≥ c1, we can prove that

asym(n1, n2) = asym(n1 + 1, n2 + 1) (7)

The subsequence si+1si+2 . . . sj−1 can be divided in three parts, si+1si+2 . . . sip,

sip+1sip+2 . . . sjp−1 and sjp
sjp+1 . . . sj−1. Length of first and third parts are n1 + 1 and

n2 + 1 respectively. We define the length of the second part with a variable gap g

with the following relation:

(j − i− 1) = g + n1 + n2 + 2 (8)

The gap g is also equal to jp − ip − 1. Considering g, instead of size of internal

loops makes the algorithm and proof easier to understand. Note that for an arbitrary

closing base pair (i, j), we can vary enclosed base pair (ip, jp) while keeping g fixed,

resulting in the internal loops of size of (n1 + n2). This method of keeping the length

of the internal loops fix is equivalent to keeping the gap length fixed.

In the current thermodynamic model small internal loops of sizes 1*1, 1*2, 2*1,

2*2 and bulges do not follow the above described form of energy function and are

treated specially. Assuming that constant c1 in Eq. (6) is 1, we can safely apply the

extension principle discussed here to the internal loops having both the sides greater

than 2. Internal loops with one or both sides shorter than c = 3 are calculated

naively, treated as special cases and extension principle is applied for others. From

now onwards, we will talk only about internal loops that have both sides greater than

or equal to c = 3. The pseudocode of ILSA is given in algorithm 8, 9 and 10.
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5.1 Extension Principle

Consider an arbitrary closing base pair (i, j) and two candidates for the enclosed base

pair (ip, jp) and (i′p, j
′
p) having same values of g, meaning

jp − ip = j′p − i′p. (9)

Let’s assume that for the closing base pair (i, j), the enclosed base pair (ip, jp)

gives the more stable structure in comparison to the other choice (i′p, j
′
p). With this

assumption, it can be proved [16] that with the above specified energy function and

Eq. (7) and (9), the enclosed base pair (ip, jp) will also be better than (i′p, j
′
p) for all

possible closing base pairs of the form (i− b, j + b). Note that here, while going from

(i, j) to (i− b, j + b) we keep the asymmetry penalty and gap g fixed and increase the

size of the loop. While going from (i, j) to (i− b, j + b) for both of the enclosed base

pairs, size of the internal loop increases with the same amount, asymmetry penalty

terms cancel out due to Eq. (7) and terminal stacking energy of the closing base pair

changes in the same manner.

5.2 Algorithm

Using the principal described above, if we know the best enclosed base pair (ip, jp) for

the closing base pair (i, j), then we can find out the best enclosed base pair (ip1, jp1)

for the loop closed by (i− 1, j + 1) in constant time for the same value of gap g. We

use this result to evaluate new internal loops using previously computed values. In

the algorithm, when we know which enclosed base pair is best for the closing base pair

(i, j), we also evaluate internal loops with closing base pair of the form (i− b, j + b)

for the same value of g at the same time.

To extend the result of smaller internal loops to the bigger loops and take care of

all possible internal loops, we define two base cases for every closing base pair (i, j).

The first base case corresponds to the internal loops having both sides equal to c, i.e.
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g = j − i− 2c− 3. There is only one possible internal loop for this case. The second

case corresponds to the two internal loops having one of the sides of length c and the

other side of length c + 1, i.e. g = j − i − 2c − 4. Note, that g = j − i − 2c − 3 is

the maximum possible value of gap for a closing base pair (i, j). These base cases are

extended for all closing base pairs of the form (i− b, j + b). This way, at the time of

function call for (i, j), all bigger internal loops have already been evaluated and we

can find the optimal internal loop by comparing the previous value of V BI(i, j) with

the two base cases.
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Figure 5: Extension of internal loop from (i, j) to (i−1, j +1) for the first base case
of the closing base pair (i, j) for c = 3. The length of both sides increases from (c, c)
to (c + 1, c + 1).

Figure 5 shows the extension of an internal loop having (i, j) closing base pair

to the internal loop with (i − 1, j + 1) closing base pair for the same enclosed base

pair (ip, jp) for the first base case. To understand how the extensions of the two base

cases of (i, j) to (i−1, j +1) can be done in constant time, let’s consider an arbitrary

closing base pair (x, y) and say that g = G1, G1− 1 are the base cases for this, where

G1 = j − i− 2c− 3. While extending the internal loop for (x− 1, y + 1) for G1, the

length of the internal loop increases by 2. Therefore, two new candidates of enclosed
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base pairs namely (x + c, y− c− 2) and (x + c + 2, y− c) are possible for closing base

pair (x − 1, y + 1) with gap G1 for which the resultant internal loops have one side

of length c and the other of length c+2. Note that the two candidates were not valid

enclosed base pairs for closing base pair (x, y). This way we can get the best enclosed

base pair for [(x− 1, y +1), G1] by comparing the energies of the loops corresponding

to the best enclosed base pair for [(x, y), G1] and the two new candidates. Similarly,

the best enclosed base pair for [(x− b, y + b), G1] can be found in constant amount of

time with the best enclosed base pair of [(x − (b − 1), y + (b − 1)), G1] and two new

options which are introduced while extending the loop size from 2c+2b−2 to 2c+2b

for G1. This extension corresponds to the for loop in algorithm 9.

The base case of G1 − 1 for closing base pair (x, y) corresponds to two internal

loops that have length of 2c + 1, in which one of the sides is c and the other side

is c + 1. Similar to the case described above, while extending the internal loop for

[(x − 1, y + 1), G1 − 1] with the help of [(x, y), G1 − 1], the two new enclosed base

pairs namely (x + c, y − c − 3) and (x + c + 3, y − c) are possible. They correspond

to internal loops with length of one of the sides equal to c and the other equal to

c + 3, which were not possible earlier. Therefore, we can get the best enclosed base

pair for the [(x − 1, y + 1), G1 − 1] with the help of the best enclosed base pair for

[(x, y), G1−1] and the two newly introduced options. Similarly, the best internal loop

for [(x − (b − 1), y + (b − 1)), G1 − 1] can be extended to find out the best internal

loop for [(x − b, y + b), G1 − 1] in constant amount of time. This whole extension

corresponds to the for loop in algorithm 10.

For a closing base pair (i, j), subsequent values of g = 3, 4, . . . , j − i− 2c− 4, j −

i − 2c − 3 are considered by previous extensions and its own base cases. This way

the internal loops for closing base pair (i, j) are considered in the increasing order of

gap length g from smallest to largest. The largest values of g are j − i− 2c− 4 and

j − i − 2c − 3 which correspond to its base cases. At every base pair (i, j), its base
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cases are extended for all base pairs of the form (i− b, j + b). At this time all internal

loops with g values corresponding to the base cases are considered for all base pairs

(i−b, j+b). This way, we do not need to store the enclosed base pairs for each closing

base pair (i, j) and ILSA can be implemented in O(n2) storage. Also, it results in

O(n) computation time for an arbitrary (i, j) and O(n3) time for computation of all

internal loops for every (i, j). Next, we prove that the algorithm computes all possible

internal loops.

5.3 Proof of Correctness

5.3.1 Constraints

Now, we are concentrating on the problem of computing the internal loops having

both sides at least c. The problem has following constraints:

1 ≤ i < ip < jp < j ≤ N (10)

3 ≤ g ≤ j − i− 2c− 3 (11)

ip ≥ i + c + 1 (12)

jp ≤ j − c− 1 (13)

A valid base pair (i, j) satisfies j > i, and indices i and j vary over the entire

sequence for computing all possible internal loops. Also, base pair (ip, jp) is enclosed

within the internal loop closed by base pair (i, j), which results into constraint in

Eq. 10. The minimum allowed size of a hairpin loop is 3 which might be enclosed

by base pair (ip, jp) and we assume that the minimum size of an internal loop is 2c

leading to constraint in Eq. 11. Constraints in Eq. 12 and 13 result from the condition

of having both sides greater than or equal to c.

Figure 6 shows a 2D graph formed with ip and jp as X and Y axis respectively for

an arbitrary closing base pair (i, j). In the graph, the following two regions bounded
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(N, N)

jp

ip
(1, 1) (N, 1)

(1, N)

(i+c+1, j−c−1)

(i+c, j−c)

jp=j−c−1

jp=ip+4 (g=3)

jp=ip

jp=j−1
(i, j)

ip=i+1

ip=i+c+1

Figure 6: 2D plane ip − jp for an arbitrary base pair (i, j) showing the special cases
and extendable regions graphically.
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by the given lines are taken as special cases and calculated separately.

ip = i + 1

ip = i + c

jp = ip + 4

jp = j − 1

and

jp = j − 1

jp = j − c

jp = ip + 4

ip = i + c + 1

The lines are marked in the figure. The first region corresponds to the values of ip

and jp for which the first side of the internal loop is 0 to c − 1 and the second side

has all allowable sizes. The second region has first side greater than or equal to c and

the second side is from 0 to c− 1. These two regions are taken care of in the case 1

and case 2 of the algorithm 8.

The region corresponding to the “extendable” loops i.e. loops having both the

sides greater than or equal to c, is bounded by the following lines.

ip = i + c + 1

jp = j − c− 1

jp = ip + 4

5.3.2 Outline

To show the correctness of the algorithm, we prove that we are calculating all internal

loops closed by an arbitrary base pair (i, j). This can be established by the following

two steps.
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1. We consider all possible values of g for every possible closing base pair (i, j).

2. We consider all possible enclosed base pairs (ip, jp) for every possible value of

g.

5.3.3 Claim 1

Prove that the algorithm considers every possible value of g, i.e. 3 to j − i − 2c− 3

for every possible point (i, j).

To show our claim we first prove that all possible points (i, j) corresponding to

valid closing base pairs are situated on one of the lines of the form

j = i + 2c + k, with k ≥ 6 and is an integer (14)

Consider the region bounded by the following lines, as shown in Figure 7.

i = 1

j = N

j = i + 2c + 6

(15)

Assuming the minimum value of g = 3, all possible points lie in the region specified

above. It is clear that any point (x, y) lying in this region where x and y are integers,

satisfies the constraint y ≥ x+2c+k, where k ≥ 6 and is an integer. Also the extreme

point (1, N) corresponds to the k = N − 1− 2c.

We have shown that all possible points (i, j) lie on one of the lines of the form of

Eq. (14), where values of k are taken from 6 to N − 1− 2c. We will prove that the

algorithm considers every possible value of g, for any point situated on one of these

lines. Figure 7 shows the i− j plane. Let’s take an arbitrary value of the closing base

pair (i, j) as (x, y) such that it is situated on the line below as shown in Figure 7.

j = i + 2c + k, with k ≥ 6

This line corresponds to the two base cases for the point (x, y) with g = k−3 and

k − 4. Consider an another line in the i− j plane
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j

i

j = i + 2c + 6

i = N

( 1, 1 ) ( N, 1 )

( 1, N ) ( N, N )j = N 

g  = 3, 2 

g = k−3, k−4

k >= 6

j = i + 2c + k

j = i + 2c + k − 2
g = k−5, k−6

(x, y)

(x+1, y−1)

Figure 7: Showing the plane i−j. Point (x+1, y−1) situated on line j = i+2c+k−2
extends its base case g = k−5, k−6 to the point (x, y) situated on line j = i+2c+k.
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j = i + 2c + k − 2

The point (x+1, y−1) is situated on this line and it corresponds to the base cases

of g = k− 5, k− 6, for this point. At point (x+1, y− 1), the algorithm extends these

base case g = k−5, k−6 for the point (x, y). This way the subsequent lines situated

below this one, will extend their base cases for the point (x, y) either going through

g = 4, 3 or g = 3, 2. This proves that the algorithm covers all allowable values of g

for an arbitrary point (i, j).

5.3.4 Claim 2

Given (i, j) and a possible value of g = G1, the algorithm covers all possible values

of enclosed base pairs (ip, jp), or equivalently every possible values of n1 and n2.

Let say that an internal loop closed by a base pair (i, j) with gap G1 is extended

from a point (i + B, j − B) for a particular value of b = B such that G1 is one of

the two base cases for (i + B, j−B). Thus, one of the two constraints given below is

satisfied:

(j −B) = (i + B) + 2c + 3 + G1

or

(j −B) = (i + B) + (2c + 1) + 3 + (G1)

The first constraint comes from the base case where both sides of the internal loop

are equal to c and second case comes from the base case having one of the sides of

the internal loop equal to c and other as c + 1.

First case:

In this case, point (i+B, j−B) has two base cases as G1 and G1−1 and the optimal

internal loop closed by base pair (i, j) for gap G1 is extended from the base case

corresponding to both sides equal to c. The extended internal loop’s both sides are

equal to c + B. We represent this case as [c + B, c + B]. There are 2B + 1 possible

internal loops for closing base pair (i, j) with gap G1, which we can get by varying

length of both sides to the minimum value c. At every iteration in the for loop of
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algorithm 9 for point (i + B, j − B), we consider two new options and the loop runs

2B times for the closing base pair (i, j). At every step the two new options are taken

care of. They correspond to {[c+(B−1), c+(B +1)], [c+(B +1), c+(B−1)]}, {[c+

(B−2), c+(B +2)], [c+(B +2), c+(B−2)]}, . . . , {[c, c+2B], [c+2B, c]}. Therefore,

all 2B + 1 options of possible enclosed base pairs are considered including the base

case for (i + B, j −B).

Second case:

In this case, point (i+B, j−B) has two base cases as G1 +1 and G1 and the optimal

internal loop closed by base pair (i, j) for gap G1 is extended from the base case

corresponding to one of the sides equal to c and other equal to c + 1. This resultant

internal loop has one side as c+B and other side as c+B +1 which is represented as

[c+B, c+B +1] and [c+B +1, c+B]. This case has total number of 2B +2 distinct

possible internal loops for the closing base pair (i, j) with gap G1. On each subsequent

iterations of the for loop in algorithm 10 for point (i + B, j − B), we consider two

new cases and there are 2B iterations for point (i, j). This way all subsequent cases

{[c+B−1, c+B +2], [c+B +2, c+B−1]}, {[c+B−2, c+B +3], [c+B +3, c+B−

2]} . . . , {[c, c + 2B + 1], [c + 2B + 1, c]} are taken care of. Therefore, we consider all

2B + 2 cases including the two internal loops corresponding to the second base cases

of (i + B, j − B).

All these claims lead to the result that we are covering every possible internal loop

for every possible closing pair (i, j).
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CHAPTER VI

GTFOLD

6.1 Dependencies and Access Patterns

Figure 8 shows a general ij plane. A valid base pair is defined as (i, j) where j > i.

Thus, only the upper right triangle is valid for the problem definition. Secondary

structures can have only nested base pairings, meaning if there are two base pairs

(i, j) and (i′, j′) such that i < i′ < j then the constraint i < i′ < j′ < j is also

satisfied. This assumption of nested base pairings results in the general dependency

of point (i, j) on the points in the triangle T as shown in Figure 8. To find the optimal

loop formed by a base pair (i, j), we need to search for all enclosed base pairs over

the subsequence from i + 1 to j − 1. In the case of internal loops we need to search

for one enclosed base pair while for a multiloop we need to search for more than one

base pair. In this fashion, the computation of all types of loops for an element (i, j)

follows the above dependency pattern.

The speedup algorithm for internal loop calculations ILSA, follows the same gen-

eral technique but its access pattern differs. It updates the elements outside the

dependency triangle T shown in Figure 8 for the point (i, j). The access pattern of

this algorithm is shown in Figure 9 excluding the calculation of special cases which

belong to internal loops having one or both sides lesser than c. At point (i, j), ILSA

updates elements of V BI array of the form (i− b, j + b), where b is a positive integer

from 1 to min(i− 1, n− j).
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i

j

T

(i’, j)

(i, j’) (i, j)

Figure 8: The implicit dependency of point (i, j) on the elements present in the
triangle T.

j

i

Figure 9: The access pattern of V BI(i, j) for the internal loop speedup algorithm
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6.2 Approach

In the region of ij plane having j > i, a point (i, j) corresponds to the computation

of energy of the subsequence sisi+1 . . . sj. The dependency pattern shown in Figure 8

allows the calculation of all the elements existing on a line j−i = k to be independent

of each other, where k is in the set {0, 1, 2, . . . , N − 1}. This way the computation on

the line j− i = k can be performed in parallel, and the whole space can be computed

by considering subsequent lines from k = 0 to k = N − 1. Note that the points on

one of the lines correspond to the equal length subsequences.

i

j

Figure 10: Showing the pattern of computation implemented in GTfold

Algorithm 11 arranges the nested for loops to compute in the manner described

above. The first for loop runs for different lines starting from j = i to j = i + N − 1

and the second for loop calculates all the points on one line in parallel. Figure 10

shows the sequence of these computations. This parallelization strategy is suitable for

future improvements to the thermodynamic model or to optimizations for computing

the various energy functions. This coarser level of parallelism enables us to exploit

more concurrency while offering compatibility for possible future improvements.

There are other orderings of the computation that cover the whole space without
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violating the dependency pattern. One way is to compute the elements column-wise,

starting from j = 1 to j = N . On one column the computation is done for the

increasing values of j − i i.e. from row i = j to row i = 1. A second way is to

compute the elements row-wise, starting from i = N to i = 1. On one row the

computation is done for the increasing values of j − i, i.e. from column j = i to

column j = N . These two ways achieve a higher degree of spatial locality but they

are inherently sequential.

input : Sequence of Length N

output: Optimal Energy of the sequence
begin

for b← 0 to N − 1 do
#pragma omp parallel for schedule (guided)
for i← 1 to N − b do

j ← i + b;
calcVBI(i, j);
calcVM(i, j);
calcV(i, j);
calcWM(i, j);

end

calcW(b + 1);
end

return W (N);
end

Algorithm 11: Main function to compute the secondary structure of an
RNA sequence

6.2.1 Parallelism at individual functions

Parallelism can also be exploited at the finer level of individual functions which com-

pute the energies for the various kinds of loops for a closing base pair (i, j). The

general pattern of different functions for calculating the energy of these kinds of

loops is the same except for the function that computes internal loop energies using

the speedup algorithm. The pattern is to consider various possible options of the

corresponding type of loop and select the option that gives the minimum energy.

In simplified terms, this pattern of calculation performs minimization over several
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possible values. These types of calculations are easily done in parallel by assigning

equal-sized chunks of minimization work to all threads, collecting the results, and

taking the global minimum over all values.

The ILSA for internal loop calculations can be parallelized for special cases simi-

larly. The computation of general internal loops is done using the extension principal.

The for loops of algorithm 9 and 10 involve forwarding result from a previous itera-

tion to the next iteration and are sequential in nature. However the generally adopted

heuristic option for internal loops as shown in algorithm 2 has the general minimiza-

tion pattern, is easily parallelizable, and uses two nested for loops which results in a

complexity of O(k2) for a particular (i, j). Multiloop calculations also follow the gen-

eral minimization pattern for the WM and V M arrays shown in algorithms 3 and 4

respectively, have O(n) time complexity for an element (i, j), and are also amenable

to parallelization.

6.3 Implementation Details

We use OpenMP [21] to implement shared memory parallelism. All the subsequent

diagonals are considered with the upper for loop and parallelism is implemented

by applying an OpenMP for loop pragma over the inner for loop to parallelize the

computation on the diagonal in consideration as shown in Algorithm 11. The guided

scheduling strategy works best for this parallelization. This is because there may not

be equal amounts of work for every point on the diagonal. If the bases i and j are

not able to make a pair then it is not necessary to carry out the whole calculation. In

this case, for the heuristic option of internal loop calculations, only WM(i, j) needs

to be calculated and for ILSA V BI(i, j) also needs to be calculated with WM(i, j).

We explore the function level parallelism for the last few diagonals by deciding a

threshold variable A with experiments. The parallelism is implemented at the higher

level for the diagonals up to j−i = A and the function level parallelism is implemented
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starting from the diagonal j − i = A + 1 to j − i = N − 1. This facilitates the use of

more threads to exploit more parallelism at the time when there are not enough points

on the diagonals. However this technique did not give us a performance advantage.

6.3.1 Cache locality

For this algorithm the ratio of computation to the memory accesses is low. Energy of

a secondary structure is calculated by adding up the energies of various loops present

in the structure. Energy of a structure is the sum of various energy terms of which

some are read directly from the energy tables and others are calculated by the pro-

gram. Therefore, large cache sizes and locality in reference for accessing various data

elements play an important role in reducing the running time of GTfold. Comput-

ing the elements row-wise or column-wise as described in Section 6.2 provides better

cache locality than computing the elements on the subsequent diagonals. However,

these two ways are inherently sequential.

6.4 Experimental Results

We have performed several experiments to establish that GTfold runs faster than

competing folding programs such as mfold and RNAfold and achieves comparable

accuracy. For the running time and accuracy comparisons, we are using RNAfold

distributed with Vienna RNA Package version 1.7.2 and UNAFold version 3.6, which

supersedes mfold.

6.4.1 Energy and Structure Comparison

To establish the accuracy of GTfold, we compare the structures obtained from GTfold,

mfold, and RNAfold, with the correct structures determined with the more reliable

method of comparative sequence analysis [9, 10]. Comparative sequence analysis

requires large data sets for the prediction of secondary structures, and therefore, its

application is limited by the availability of the required datasets.
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Doshi et al. [7] take a phylogenetically diverse dataset of ribosomal RNA sequences

and compare the optimal secondary structures predicted using mfold 2.3 and mfold

3.1 with the correct structures. Here we are using the 16S and 23S ribosomal RNA

sequences from Figure 1 and Table 4 of their study [7] for accuracy comparisons which

are taken from the Gutell database [3]. For predicting structures with UNAFold and

RNAfold their command line default options are used. Accuracy of the structures is

calculated in the same manner as in [7] with one difference, we include non-canonical

base pairs in the comparison instead of excluding them. Accuracy measurement of all

three programs is affected in the same manner by excluding non-canonical base pairs

because the programs are unable to predict them due to the lack of thermodynamic

parameters. We are using sensitivity and specificity as the measures of accuracy.

Sensitivity is the percentage of correctly predicted base pairs out of the total base

pairs present in the correct secondary structure. Specificity is defined as the number

of correctly predicted base pairs out of the total base pairs present in the predicted

secondary structure.

Table 1: Free energy (in Kcal/mole) comparison of GTfold, UNAFold and RNAfold
for 16S rRNA sequences

Sequence Length GTfold UNAFold RNAfold
X00794 1962 -741.90 -722.70 -746.60
X54253 701 -149.00 -141.30 -149.03
X54252 697 -142.50 -137.50 -142.52
Z17224 1550 -564.80 -549.10 -565.12
X65063 1432 -582.00 -570.80 -581.94
Z17210 1435 -761.90 -626.60 -762.70
X52949 1452 -802.70 -794.50 -804.40
X98467 1295 -487.00 -460.00 -489.31
Y00266/M24612 1244 -325.60 -317.30 -328.80
X59604 1701 -573.00 -491.40 -574.70
K00421 1474 -687.00 -682.10 -687.01

Table 1 shows the optimal free energy of various 16S ribosomal RNA sequences
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Table 2: Accuracy comparison (in percent) of GTfold, UNAFold and RNAfold for
16S rRNA sequences of Table 1. Here Sens. stands for sensitivity and Spec. stands
for specificity.

GTfold UNAfold RNAfold
Sequence

Sens. Spec. Sens. Spec. Sens. Spec.
X00794 30.33 22.19 31.65 23.96 27.91 20.65
X54253 25.67 22.12 20.32 18.54 25.13 21.76
X54252 21.16 18.69 21.64 18.60 21.16 18.60
Z17224 26.03 21.88 24.57 21.49 24.57 20.49
X65063 24.09 21.28 22.02 19.27 23.83 20.96
Z17210 24.46 19.98 25.98 21.35 24.71 20.10
X52949 15.07 12.45 16.08 13.42 15.07 12.45
X98467 17.09 16.26 10.97 11.05 16.33 15.65
Y00266/M24612 19.19 18.73 17.30 17.11 18.11 17.82
X59604 27.49 23.22 24.83 20.10 27.49 23.35
K00421 76.42 72.61 75.76 72.44 76.42 72.61

predicted with GTfold, UNAFold and RNAfold. Table 2 shows the accuracy compar-

ison for the three programs for the sequences of Table 1. Similarly Table 3 shows the

optimal free energy obtained using the programs for 23S ribosomal RNA sequences,

and Table 4 shows the accuracy comparison for the sequences of Table 3.

Table 3: Free energy (in Kcal/mole) comparison of GTfold, UNAFold and RNAfold
for 23S rRNA sequences

Sequence Length GTfold UNAFold RNAfold
X14386 3105 -791.30 -775.10 -792.65
X54252 953 -180.20 -173.50 -179.71
X52392 1621 -395.80 -389.70 -397.85
J01527 3273 -700.60 -684.60 -702.87
K01868 3514 -1328.50 -1294.30 -1333.95
X53361 4052 -1693.60 -1665.60 -1696.49
X52949 2850 -1707.90 -1689.20 -1709.80
M67497 3029 -1666.10 -1647.10 -1668.12

Energy comparisons presented in Tables 1 and 3 show slight differences in the

energy obtained from GTfold, RNAfold and UNAfold and our energy scores for the

various sequences lie in the very small range of these standard programs. To explain

this, we recalculate free energies of the optimal secondary structures obtained from
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Table 4: Accuracy comparison (in percent) of GTfold, UNAFold and RNAfold for
23S rRNA sequences of Table 3. Here Sens. stands for sensitivity and Spec. stands
for specificity.

GTfold UNAfold RNAfold
Sequence

Sens. Spec. Sens. Spec. Sens. Spec.
X14386 21.77 19.87 18.79 17.25 18.32 16.54
X54252 23.74 18.25 21.92 15.48 23.29 16.50
X52392 24.44 20.96 25.56 22.20 24.16 20.48
J01527 24.72 17.19 30.11 20.78 25.14 17.49
K01868 20.67 13.96 22.01 15.02 17.85 12.10
X53361 22.21 18.09 16.59 13.56 15.44 12.48
X52949 34.44 29.23 31.24 26.96 26.69 22.55
M67497 64.05 56.58 63.60 56.92 63.94 56.31

RNAfold and UNAfold with the GTfold energy function, shown in Tables 5 and 6.

These comparisons show that the optimal structures obtained from UNAfold and

RNAfold achieve higher score than the score of the GTfold’s optimal structure using

the energy function of GTfold. In summary, we can say that all three programs

are trying to minimize three different objective functions. Details of these objective

functions are associated with algorithmic issues and thermodynamic policies chosen

by them.

Accuracy comparisons shown in Tables 2 and 4 establish that GTfold achieves

accuracy comparable with UNAFold and RNAfold for the diverse dataset chosen.

These comparisons for various ribosomal sequences show that in general accuracy

of the prediction programs are very low. The prediction accuracy is expected to

increase with the inclusion of advanced thermodynamic details that are not presently

incorporated due to high computational cost. The development of GTfold facilitates

the implementation of these improvements.

Wiese et al. [31] took 19 sequences of varying length of different RNA classes

and computed the accuracy of their prediction program called RNApredict which

uses evolutionary algorithms (EAs). Table 7 compares the accuracy of GTfold and

RNApredict for those sequences. The results show that there is no clear argument of
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Table 5: Free energy (in Kcal/mole) comparison of GTfold, UNAFold and RNAfold
using GTfold energy function for 16S rRNA sequences of Table 1. Columns “UN-
Afold” and “RNAfold” contain the energy values recalculated using the GTfold energy
function and columns “UNAf (T)” and “RNAf (T)” contain the actual energy values
predicted by UNAfold and RNAfold respectively.

Sequence Length GTfold UNAfold RNAfold UNAf (T) RNAf (T)
X00794 1962 -741.90 -727.6 -737.2 -722.70 -746.60
X54253 701 -149.00 -143.1 -149.0 -141.30 -149.03
X54252 697 -142.50 -138.7 -142.5 -137.50 -142.52
Z17224 1550 -564.80 -552.6 -558.5 -549.10 -565.12
X65063 1432 -582.00 -574.0 -579.7 -570.80 -581.94
Z17210 1435 -761.90 -708.4 -760.2 -626.60 -762.70
X52949 1452 -802.70 -794.4 -800.0 -794.50 -804.40
X98467 1295 -487.00 -461.2 -484.6 -460.00 -489.31
Y00266/M24612 1244 -325.60 -318.8 -323.3 -317.30 -328.80
X59604 1701 -573.00 -518.1 -571.8 -491.40 -574.70
K00421 1474 -687.00 -684.0 -687.0 -682.10 -687.01

better accuracy for one software versus other. For some of the sequences GTfold per-

forms better and for others RNApredict does. Larger sequences are usually predicted

better with RNApredict. However the comparisons involved are not enough to give

any judgment for the accuracy of the two approaches.

6.4.2 Running Time Comparison

GTfold implements parallelism for shared memory multiprocessor and multicore sys-

tems. Running time experiments are performed on an IBM P5-570 server with 16

dual core 1.9 GHz CPUs and 256 GB of main memory with L2 cache of 1.9 MB

per CPU. GTfold is compiled with IBM xlC compiler Enterprise Edition 7.0, with

-q64 option for the 64 bit compilation, -O3 level of optimization and -qsmp=omp

option for OpenMP support. RNAfold and UNAFold are compiled with their default

compiler and compilation options. An additional flag -maix64 is set while compiling

UNAFold and RNAfold due to the runtime memory limitations on the system for

32-bit compilations.
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Figure 11: Comparison of running times for predicting the RNA secondary struc-
tures of 11 picornaviral sequences. The sequences are arranged in increasing order of
length from 7124 to 8214 nucleotides.
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Figure 12: Comparison of running times for predicting the RNA secondary structure
of the HIV-1 virus. The dashed horizontal lines represent the sequential running time
of UNAFold and RNAfold.
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Figure 13: GTfold running time statistics for a Homo sapiens 23S ribosomal RNA
sequence with accession number J01866/M11167 using the Internal Loop Speedup
Algorithm

48



Table 6: Free energy (in Kcal/mole) comparison of GTfold, UNAFold and RNAfold
using GTfold energy function for 23S rRNA sequences of Table 3. Columns “UN-
Afold” and “RNAfold” contain the energy values recalculated using the GTfold energy
function and columns “UNAf(T)” and “RNAf(T)” contain the actual energy values
predicted by UNAfold and RNAfold respectively.

Sequence Length GTfold UNAfold RNAfold UNAf (T) RNAf (T)
X14386 3105 -791.30 -779.6 -784.6 -775.10 -792.65
X54252 953 -180.20 -173.4 -179.7 -173.50 -179.71
X52392 1621 -395.80 -394.3 -394.5 -389.70 -397.85
J01527 3273 -700.60 -689.7 -699.6 -684.60 -702.87
K01868 3514 -1328.50 -1301.4 -1316.5 -1294.30 -1333.95
X53361 4052 -1693.60 -1672.1 -1678.0 -1665.60 -1696.49
X52949 2850 -1707.90 -1695.3 -1699.9 -1689.20 -1709.80
M67497 3029 -1666.10 -1654.0 -1664.1 -1647.10 -1668.12

Palmenberg and Sgro in 1997 [22] investigated the optimal and suboptimal sec-

ondary structures of 11 picornaviral RNA sequences using mfold version 2.2. The

length of the sequences varies from 7124 to 8214 nucleotides. They report that each

sequence required 5-7 days of CPU time using a modern workstation so that all 11

sequences took 2 to 3 months of time. In stark comparison, GTfold finishes the

execution of this set of sequences in approximately 8 minutes using 32 threads. In

Figure 11 we compare the running time of GTfold with 32 threads, UNAFold, and

RNAfold, for all the picornaviral sequences on the same IBM machine. We can see

that GTfold runs one to two orders of magnitude faster than the standard sequential

programs UNAFold and RNAfold.

Hofacker et al. in 1996 [12] performed minimum free energy calculations for 22

full length HIV sequences on a modern distributed memory supercomputer using

their parallel program reporting the running time of the order of 35 minutes. The se-

quences are arranged in the order of increasing lengths which range from 9022 to 10269

nucleotides. Accession numbers of these sequences are M38431, U43141, M22639,

M17451/M12508, M27323, L02317, K03454/X04414, M62320, M26727, K02013, K03456,

M38429, D10112/D00917, M93258, M19921, M93259, K03455/M38432, K02007, M17449,
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Table 7: Accuracy comparison (in percent) of GTfold and Evolutionary Algorithms.
Here, Sens. stands for sensitivity and Spec. stands for Specificity.

Sens. Spec.
Sequence Type Length

GTfold EA GTfold EA
AJ251080 5S rRNA 117 65.8 60.5 73.5 69.7
X67579 5S rRNA 118 89.2 89.2 80.5 84.6

V00336 5s rRNA 120 25.0 25.0 26.3 25.6
AF034620 5S rRNA 122 76.3 71.1 85.3 90.0

X01590 5S rRNA 123 62.5 82.5 71.4 91.7

AE002087 5S rRNA 124 67.5 62.5 81.8 75.8
AF197120 Group I intron, 23S rRNA 394 61.7 62.5 63.2 62.0
AB058310 Group I intron, 16S rRNA 454 78.6 68.3 69.7 62.8
AF197122 Group I intron, 23S rRNA 456 21.7 47.8 18.2 40.7

U40258 Group I intron, 16S rRNA 468 38.9 60.2 35.5 51.9

L19345 Group I intron, 16S rRNA 543 34.0 57.2 27.2 49.1

U02540 Group I intron, 16S rRNA 556 51.9 61.8 39.1 50.3

AF342746 Group I intron, 16S rRNA 605 60.3 52.1 39.2 41.2

X54252 16S rRNA 697 21.2 29.1 18.6 27.2

X05914 16S rRNA 784 15.9 27.9 15.5 26.9

X84387 16S rRNA 940 18.5 28.5 21.2 32.5

M27605 16S rRNA 945 36.7 37.1 36.7 38.8

J01415 16S rRNA 954 33.1 33.5 34.3 35.6

Y08511 16S rRNA 964 17.0 30.9 19.6 33.9

L20587, L20571, X61240/X16109 in the order. Fig. 14 shows the running time of GT-

fold with 32 threads for all these 22 sequences on the same IBM machine. GTfold

takes from 61 to 90 seconds for different sequences and the average running time is

70 seconds.

Figure 12 compares the running time of GTfold, UNAFold, and RNAfold, for an

HIV-1 sequence (accession number Z11530) with 9,781 nucleotides. The secondary

structure predicted with GTfold of the viral sequence is shown in Figure 2. All three

programs implement the heuristic option and limit the internal loop size to 30. It

is clear from the graph that GTfold with one thread performs much better than

UNAfold and is comparable with RNAfold. The running time of GTfold decreases

with the increasing number of threads. Even with two threads GTfold runs 2.06 times

faster than RNAfold. GTfold folds the entire HIV viral sequence in 84 seconds with
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Figure 14: Running time of GTfold with 32 threads for 22 HIV sequences of length
from 9022 to 10269 nucleotides used in Hofacker et al. [12]
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32 threads in comparison to UNAFold and RNAfold which take approximately 2.4

hours and 27 minutes, respectively.

GTfold also implements an exact algorithm for finding the optimal internal loops

called Internal Loop Speedup Algorithm (ILSA). Though internal loops with sizes

longer than 30 are observed, they are usually rare. ILSA can catch these exceptional

cases occurring with rarity in nature. It is far more expensive to run this algorithm

than the commonly used heuristic. Figure 13 shows the running time of GTfold with

the varying number of threads for a 5,184 length 23S Ribosomal RNA sequence of

Homo sapiens with accession number J01866/M11167. GTfold is able to reduce the

running time from 512 minutes (approximately 9 hours) to 21.5 minutes by using 32

threads. This way, we show that optimized algorithms such as internal loop speedup

algorithm can be executed with GTfold in an affordable time. Please note that

UNAFold and RNAfold do not implement the ILSA algorithm and can miss the rare

possibilities.

Figure 15 shows the speedup achieved using 2, 4, 8, 16, and 32, threads for GTfold

using the internal loop speedup algorithm (ILSA) option for the sequence with acces-

sion number J01866/M11167 and the heuristic options with an HIV viral sequence.

The maximum speedup achieved in the first and second cases is approximately 23.8

and 19.8, respectively. We have achieved slightly superlinear speedups for 2, 4, and

8, threads in the case of the heuristic option due to the better cache locality when

the number of threads is more than one.
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Figure 15: Speedups obtained by GTfold with the heuristic algorithm for the HIV-1
virus and with the internal loop speedup algorithm for the Homo sapiens ribosomal
RNA sequence. Speedup is with respect to GTfold running on one processor for each
series.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

We have developed GTfold, a parallel and multicore code for predicting RNA sec-

ondary structures that achieves 19.8 fold speedups over the current best sequential

program for large, important RNA sequences and has accuracy comparable to the

existing standard folding programs. GTfold facilitates the implementation of more

accurate thermodynamic model and exploring the entire search space. It helps re-

ducing the running time which is the major prohibiting factor for more accurate

secondary structure prediction of large RNA sequences, without increasing the space

requirements.

Compared to an earlier study [22] for 11 picornaviral sequences which took ap-

proximately 2 months of time, GTfold folds these sequences in just 8 minutes. Also,

GTfold takes the average running time of 70 seconds for folding 22 HIV sequences

used in an another study [12] which took on the order of 35 minutes. GTfold includes

an option to select the method of internal loop computations from the heuristic ap-

proach of limiting the size of internal loops to a constant and an optimized algorithm,

ILSA. We have shown that exact algorithms such as ILSA can be executed in afford-

able amount of time with GTfold. We analyze computational requirements of the

problem and document the detailed pseudocode of the algorithm, which provides a

base for incorporating improved thermodynamic model and implementing optimized

algorithms. We have given a sound mathematical proof of correctness of ILSA with

the simple explanation. The proof gives us insight into solving such kind of combi-

natorial problems.

As pointed out in the experimental section, accuracy of the optimal structures
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predicted with folding programs is very low. Improved thermodynamic model needs

to be incorporated in the algorithm for predicting more accurate secondary structures.

For example coaxial dangling energies for multiloops and external loop should be

added and simplified multiloop energy function should be replaced with the function

having logarithmic dependence on single stranded nucleotides. Also, capabilities such

as forcing and prohibiting some base pairs to form should be provided in GTfold.

7.1 Suboptimal Secondary Structures

The minimum free energy (MFE) structure predicted by computer programs may not

be the native structure of the molecule. The MFE score is found by exploring all the

possibilities and it may correspond to more than one completely different secondary

structures. The thermodynamic parameters are experimentally determined and are

not precisely accurate. Intermolecular interactions among RNA and protein molecules

provide additional stability and also tertiary interactions among the secondary struc-

tural elements play a role in stabilization. Due to all these reasons, native secondary

structure of the molecule may correspond to one of the suboptimal folds within a

small energy range of MFE. To find the native structure of the molecule, secondary

structures which fall within ∆∆G a small energy range of MFE are predicted. These

structures are called suboptimal secondary structures.

Enumerating all secondary structures within a given energy range is a very en-

abling capability for scientists who want to study the ensemble characteristics. Re-

search in this direction may lead to the knowledge of surprising characteristics of the

ensemble of secondary structures. The main problem in producing all suboptimal

folds is that the number of structures grows exponentially with the sequence length

and the energy range [34]. We are currently working in the direction of developing

a new technique to capture the macroscopic information contained in the entire en-

semble of secondary structures. Development of GTfold is providing us a base for

55



implementing new techniques for suboptimal secondary structure prediction.
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