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ABSTRACT

Ribonucleic acid (RNA) secondary structure predic-
tion continues to be a significant challenge, in partic-
ular when attempting to model sequences with less
rigidly defined structures, such as messenger and
non-coding RNAs. Crucial to interpreting RNA struc-
tures as they pertain to individual phenotypes is the
ability to detect RNAs with large structural dispari-
ties caused by a single nucleotide variant (SNV) or
riboSNitches. A recently published human genome-
wide parallel analysis of RNA structure (PARS) study
identified a large number of riboSNitches as well as
non-riboSNitches, providing an unprecedented set of
RNA sequences against which to benchmark struc-
ture prediction algorithms. Here we evaluate 11 dif-
ferent RNA folding algorithms’ riboSNitch prediction
performance on these data. We find that recent al-
gorithms designed specifically to predict the effects
of SNVs on RNA structure, in particular remuRNA,
RNAsnp and SNPfold, perform best on the most rig-
orously validated subsets of the benchmark data. In
addition, our benchmark indicates that general struc-
ture prediction algorithms (e.g. RNAfold and RNAs-
tructure) have overall better performance if base pair-
ing probabilities are considered rather than mini-
mum free energy calculations. Although overall ag-
gregate algorithmic performance on the full set of ri-
boSNitches is relatively low, significant improvement
is possible if the highest confidence predictions are
evaluated independently.

INTRODUCTION

Accurate RNA structure prediction remains a contempo-
rary challenge in the field of bioinformatics (1–3). The most
common approach for predicting RNA structure is mini-
mizing a free energy function derived from thermodynamic

parameters for base pairing and stacking energies (4–6). Ex-
tensive benchmarking of such algorithms has contributed
to significant advances in our ability to correctly predict
the secondary structure of RNA (7–9). Most improvements
in RNA structure prediction have focused on highly struc-
tured transcripts, i.e. RNAs that have evolved to adopt a
narrow range of well-defined conformations often confer-
ring a specific activity such as self-splicing (10–13).

Many messenger RNAs (mRNAs) and non-coding
RNAs (ncRNAs) are not evolved to adopt rigidly defined
structures, in general adopting an ensemble of diverse con-
formations. Minimum free energy (MFE) structure predic-
tion strategies are therefore not well suited for these types
of RNAs (14,15). Accurate prediction of the accessibility of
specific sequence motifs in transcripts plays a decisive role
in understanding post-transcriptional regulation, as tran-
script secondary structure can impact the binding of RNA
binding proteins, ribosomes and miRNAs (16–21). How-
ever, given that these RNAs adopt a wide range of struc-
tures, traditional structural benchmarking is complicated
by the fact that experimental techniques to determine an
ensemble of structures do not exist for large RNAs. An al-
ternative strategy is to benchmark folding algorithms’ per-
formance in predicting the perturbation on the structural
ensemble by particular mutations (22). A comprehensive
and consistent RNA structure data set on a large number
of mutations in mRNA transcripts was not available until
very recently (23).

The advent of transcriptome wide RNA structure prob-
ing, and in particular the development of PARS (parallel
analysis of RNA structure), provides us with the most com-
prehensive mRNA and ncRNA benchmark data set avail-
able to date (24,25). PARS gathers RNA sequencing reads
from transcripts processed by one of the two nucleases with
diametric affinities for structured versus unstructured re-
gions of RNA. The information from the two nucleases is
combined to produce scores reflecting the degree of base
pairing at single nucleotide resolution (24). While other im-
portant studies have probed RNA structure at a large scale
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(26–29), the recent PARS data set is the first to have detected
riboSNitches genome wide (23). The comparative structural
analysis of a human family trio’s (mother, father, child) tran-
scriptome structure by PARS has identified almost 2000 ri-
boSNitches (23) in the human transcriptome. A riboSNitch
is an element of RNA that changes structure if a specific
single nucleotide variant (SNV) is present (14–15,22–23,30).
Although the majority of riboSNitches have no known phe-
notypic consequence, specific examples of changes in tran-
script structure near regulatory regions in mRNAs are as-
sociated with human disease (14–15,30).

Accurately predicting the extent to which an SNV or mu-
tation disrupts RNA structure is important for the inter-
pretation of personal genomes, since the structural conse-
quences of sequence variants on an individual’s transcripts
can impact overall phenotypic characteristics (31,32). Even
though the vast majority of riboSNitches will likely have
limited phenotypic consequences, a structural prediction in-
terpreted in the context of known functional motifs in a
transcript can predict function (14,23,30). A series of al-
gorithms have recently been proposed to tackle this chal-
lenge (15,33–35). Traditional MFE class algorithms can
also be used to predict riboSNitches, although previous
benchmarks on in vitro transcribed structured RNAs sug-
gest they overestimate the potential structural disruption of
an SNV (22,36–37). The most recent algorithms for predict-
ing the structural disruption of an SNV have therefore fo-
cused on analyzing changes in base pairing probability ma-
trix (BPPM) computed from partition function analysis of
the Boltzmann suboptimal ensemble (38–40). The bench-
mark carried out below uses the PARS data set to iden-
tify the best algorithmic practices for riboSNitch detection.
Furthermore, the performance trends of all prediction algo-
rithms on subsets of differentially validated riboSNitches
reveal the relative importance of thermodynamically con-
trolled base pairing in mRNA structure change. Our analy-
sis illustrates the significant remaining computational chal-
lenge of riboSNitch prediction and the importance of bio-
logical context when making these predictions.

MATERIALS AND METHODS

The benchmark data set

The PARS data set tested a total of 12233 specific SNV-
transcript pairs, with 1907 of these determined to be ri-
boSNitches. For consistency in benchmarking algorithms
we considered the 50 bases 5′ and 3′ around each SNV as
standard input sequence for folding prediction, or 101 bases
total. SNV-transcript pairs that contain less than 50 nu-
cleotides between the SNV and the transcription start site
were excluded. In many cases, one SNV tested with several
different transcripts has the same surrounding sequence in
each isoform. These SNVs were condensed into one entry
to ensure a set of non-redundant sequences. This curated
set of SNV-transcript pairs contains 1058 riboSNitches and
5469 non-riboSNitches. RiboSNitches were organized into
‘symmetric’ and ‘asymmetric’ categories based on whether
or not pairwise comparisons between mother, father and
child consistently indicated a riboSNitch in the presence of
different genotypes. RiboSNitches that were further vali-
dated with allele-specific mapping were also added to the

‘validated’ category, and riboSNitches that were validated
with chemical probing were added to the ‘probed’ category.
For sequences corresponding to multiple SNV-transcript
pairs, the presence of one pair qualifying as a riboSNitch
was enough to consider the sequence of a riboSNitch in
this benchmark. Likewise, an SNV-transcript pair catego-
rized as a ‘symmetric’, or ‘validated’ or ‘probed’ riboSNitch
was sufficient to place the sequence into those categories.
Sequences for riboSNitches and the matched 1058 non-
riboSNitches are provided as text files. RiboSNitch se-
quences are organized according to category.

Benchmark design and distance metrics

Structure prediction programs were tested on the sequences
containing each allele for every riboSNitch and non-
riboSNitch. Non-riboSNitch sets were matched in size to
each riboSNitch set to reduce computational costs. As a
strategy for matching non-riboSNitches and riboSNitches
in terms of their experimental validation, a non-riboSNitch
set was matched to a riboSNitch set of size n by select-
ing the top n non-riboSNitches according to their false
discovery rate (FDR)-adjusted P-values from PARS com-
parisons. Since each RNA has P-values on three potential
comparisons––mother versus father, mother versus child
and father versus child––the P-value used here is the aver-
age of the comparisons.

The Unix commands used for each algorithm are listed
in Supplementary Table S4. The ‘specialized’ algorithms di-
rectly score the distance between sequence pairs. SNPfold
(14) scores with a Pearson correlation coefficient, RNAsnp
(34) returns a P-value on Euclidean distance, remuRNA
(35) measures the relative entropy between two RNAs and
RNAmute (41) measures the edit distance between MFE
structures. For algorithms that do not intrinsically com-
pare the structures of sequences between two RNA vari-
ants, predictions on dot bracket structures or BPPMs were
compared for each allele. All the general algorithms ex-
cept CONTRAfold (42) and CentroidFold (43) return an
MFE structure as their dot bracket structure, so for sim-
plicity dot bracket structures are referred to as MFE struc-
tures in this benchmark. CentroidFold, CONTRAfold,
RNAfold (6), RNAstruture (44) and UNAFold (45) are ca-
pable of returning both MFE structures and BPPMs. MC-
Fold (46) and RNAmutants (47) return only MFE struc-
tures. MFE structures were compared with the RNAdis-
tance function from ViennaRNA 2.1.1 and BPPMs were
compared with RNApdist. The RNApdist function used
here is a modified version of the RNApdist function im-
plemented by ViennaRNA (6,48). Essentially, base pairing
probability differences are summed without performing an
alignment of the BPPMs. The distance between base pair
probability matrices of sequences 1 and 2 is given by

n∑
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pi j is the probability of base i being paired with base j.
p(

i , p)
i and p◦

i are the probabilities of base i being upstream
paired, downstream paired and unpaired, respectively, for
BPPMs 1 and 2. Note that this modification on RNApdist
assumes that the sequences being compared have the same
length. The ViennaRNA implementation of the RNApdist
function was used for benchmarking RNAfold (which is the
main folding algorithm in the ViennaRNA package).

Receiver operator curve analysis

The distance scores predicted for a riboSNitch set and
matched non-riboSNitch set were compared with receiver
operating characteristic analysis. Receiver operator curves
(ROCs) were constructed and their areas measured using
the R package pROC version 1.7.3 (49). ROC curves were
constructed in this way for every RNA folding algorithm
across all riboSNitch categories.

Twenty five and five percent subsets of all riboSNitches
were selected based on riboSNitches with the lowest av-
erage FDR-adjusted P-values. Non-riboSNitch sets were
matched to these subsets using the method applied to the
other riboSNitch categories described above. ROC analysis
was performed on these subsets as before. Results are shown
in Supplementary Table S1.

To test the n% tails of a riboSNitch category––25% and
5% tails tested here––all of a program’s scores from ri-
boSNitches and non-riboSNitches were combined to de-
termine the threshold values that mark the middle 100-n%
of the distribution. Scores above and below these thresh-
old values were then selected from riboSNitch and non-
riboSNitch score sets separately. ROC analysis was then
performed on these selected values as described previously.
Score distributions and 5% tails for every algorithm are il-
lustrated in Supplementary Figures S3A and B. Distribu-
tions were graphed with the density function in R 3.1.1.

The 95% confidence interval was calculated for each area
under the curve (AUC) value using the DeLong method in
the pROC package (49,50). Essentially, 95% confidence in-
tervals are calculated as AUC±1.96s, where s is the stan-
dard deviation of the given AUC. Any comparisons between
AUC values generating a P-value were completed with the
pROC package roc.test function conducting a one-tailed
test with DeLong’s test for two ROC curves (49,50).

An ROC curve’s ‘best’ point was considered to be the
point closest to the top left corner of the graph. The thresh-
old yielding the best point as well as the specificity and sen-
sitivity values of the point were listed for every ROC curve
(Supplementary Table S2). These were determined with the
pROC R package coords function (49). Thresholds in the
‘probed’ category could be reasonably used as cutoff scores
for riboSNitch detection.

Figure 1. (A) Genome-wide experimental riboSNitch discovery using
PARS data on a family trio (father, mother, child) as carried out in (23).
PARS scores near loci with different genotypes between individuals are
quantitatively compared to identify significant differences in structure
around the SNV. (B) Diagrams reflect the format in (A), where genotypes
refer to the genotypes of the mother, father and child at a single locus.
‘Yes’ and ‘No’ indicate whether or not local PARS score comparisons be-
tween the individuals indicated a structural difference––a riboSNitch. Two
classes of riboSNitches are defined, ‘symmetric’ and ‘asymmetric’. In the
‘symmetric’ class, all genotypic differences correspond to structural differ-
ences in the PARS data, indicating consistent RNA structure changes. The
‘symmetric’ riboSNitch therefore has a higher degree of experimental con-
fidence than its ‘asymmetric’ counterpart. (C) An additional level of vali-
dation is possible for riboSNitches for which the parents are homozygous
different by carrying out allele-specific mapping in the heterozygous child.
This validation involves assigning PARS reads (gray bars) from the child
in an allele-specific manner to confirm the transcript structural profile dif-
ference between the alleles. (D) SHAPE (Selective 2′ Hydroxyl Acylation
by Primer Extension) chemical probing validation by in vitro SHAPE of
a 150-nucleotide fragment of the 5′ UTR of MRPS21 (Mitochondrial Ri-
bosomal Protein S21) indicates different reactivity profiles for the A and
C alleles of rs1050818. Fifteen nucleotides 5′ and 3′ of the SNV are shown
in the gel and corresponding quantification of the data. Such independent
chemical probing was previously performed on 11 RNAs and provides the
highest confidence riboSNitches for our benchmark data set.

RESULTS

Experimental benchmark criteria

The experimental data for the benchmark are based on a
PARS analysis of three related individuals (mother, father
and child) from the 1000 Genomes Project (23). PARS mea-
sures the differential reactivity of each nucleotide in a folded
RNA to the V1 and S1 RNases which selectively cleave
double- and single-stranded regions, respectively (51). Thus
the PARS score for each nucleotide is correlated with the ex-
tent of base pairing (24). By comparing the PARS scores
at loci in individuals with different alleles (Figure 1A) it
is possible to detect riboSNitches. Given that these experi-
ments are carried out in a genome-wide manner, thousands
of putative riboSNitches were identified (37). The precise
number of riboSNitches identified in such a genome-wide
screen depends on the threshold in PARS scores used to
call a structural difference. A careful analysis of PARS score
differences identified 1907 loci in the human genome as ri-
boSNitches and 10326 loci where no significant change was
observed (non-riboSNitches) (23). These data form the ba-
sis for our benchmark study.

A riboSNitch in the context of the PARS data set was
identified by pairwise comparison of PARS score profiles
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for transcripts from two individuals in the family trio. Three
individual-to-individual comparisons are therefore possible
as illustrated in Figure 1B. We used this redundancy to iden-
tify subsets of riboSNitches with differing levels of experi-
mental confidence. In the most consistent case, the ‘symmet-
ric’ riboSNitch, PARS score profiles are significantly differ-
ent in all cases comparing individuals with different geno-
types. In certain cases, however, not every genotypic differ-
ence results in a significant PARS profile difference; we con-
sider these cases ‘asymmetric’ riboSNitches.

An alternative approach for validating a riboSNitch us-
ing the PARS data involves allele-specific mapping at het-
erozygous loci in the child data set. This type of valida-
tion was performed at loci where the parents are homozy-
gous different with a necessarily heterozygous child, as di-
agramed in Figure 1C. Successful validation also requires
that the significant structure change be 3′ of the SNV. This
is a consequence of PARS library preparation, in which only
fragments 5′ of the endonuclease cut site are sequenced;
only sequencing reads that include the SNV can be mapped
in an allele-specific manner. Allele-specific analysis of the
PARS data validated 115 riboSNitches (23) and we refer to
these riboSNtiches as ‘validated’. The most rigorous form
of validation is independent chemical and enzymatic struc-
ture probing on in vitro transcribed constructs for each al-
lele, as illustrated on Figure 1D (52–54). This involves a
separate experiment, and 11 riboSNitches were further val-
idated in this way (23). This set of riboSNitches is referred
to as ‘probed’ for the purposes of this benchmark. The cate-
gorization proposed here yields subsets of riboSNitches for
use in our benchmark with differing levels of experimental
validation. We refer to the entire set of riboSNitches as the
‘all’ data set or category. Additional filtering was applied
to the ‘all’ set of 1907 reported (23) riboSNitches to ensure
a completely non-redundant data set. A riboSNitch in the
PARS data set is identified as an SNV in a specific transcript
isoform. In this study, we use sequences centered on these
SNVs to test folding algorithms. However, many transcripts
have isoforms with the same window (±50 nt) of sequence
around a particular SNV. As a result, we benchmarked on
the 1058 unique sequence subset of the 1907 reported ri-
boSNitches. The numbers of unique riboSNitches and cor-
responding non-riboSNitches for each level of experimen-
tal validation are reported in Table 1. Non-riboSNitch set
sizes were matched to each riboSNitch category size in or-
der to reduce computational costs as well as to match non-
riboSNitches and riboSNitches in terms of their experimen-
tal validation (methods).

Algorithmic performance analysis

Given the unprecedented number of riboSNitches discov-
ered in the human genome, our benchmark has the poten-
tial to broadly evaluate the performance of prediction al-
gorithms. A general strategy for riboSNitch prediction and
our approach to benchmarking is summarized in Figure
2. A structure prediction is made on RNA sequences con-
taining both alleles (Figure 2A) for subsequent compari-
son. To benchmark the algorithms, predictions are made
for sequences identified as riboSNitches and those where
no experimental structure change is observed. For exam-

Figure 2. RiboSNitch prediction and benchmarking strategy. (A) To
benchmark, all the prediction algorithms estimate structure features for
both alleles of an RNA. This is done for both the riboSNitch sets and non-
riboSNitch sets. The riboSNitch in this example is the sequence flanking an
SNV in the 3′ UTR of SUB1 (activated RNA polymerase II transcriptional
co-activator p15 or SUB1 homolog) that yields a differential PARS score
between alleles. The non-riboSNitch is the sequence flanking an SNV in the
3′ UTR of PARP1 (poly [ADP-ribose] polymerase 1) where no significant
PARS score differences were measured. Alleles are color-coded with green
and red for the T and A riboSNitch alleles and green and yellow for the
T and C non-riboSNitch alleles. (B) RNAfold (6) predicted minimum free
energy structures and base pairing probability matrices for the riboSNitch
and non-riboSNitch alleles. In this example, the prediction is correct in
that the riboSNitch T (green) and A (red) alleles show a large difference
in predicted base pairing probabilities while the non-riboSNitch T (green)
and C (yellow) alleles do not. (C) The difference between alleles’ structures
is measured to produce a distance score. Whether the riboSNitch is consid-
ered a True Positive (TP) or False Negative (FN) and the non-riboSNitch a
True Negative (TN) or False Positive (FP) depends upon the score thresh-
old used. The distance scores between alleles are used as thresholds to per-
form receiver operator curve (ROC) analysis (57) and evaluate predictive
performance.

ple, in Figure 2A, a T/A SNV in the 3′ untranslated region
(UTR) of SUB1 (activated RNA polymerase II transcrip-
tional co-activator p15 or SUB1 homolog) is a riboSNitch
since PARS scores differ at this locus, indicating a struc-
ture difference between the two alleles. The T/C SNV in
the 3′ UTR of PARP1 (poly [ADP-ribose] polymerase 1)
does not alter structure in the PARS data and is therefore
a non-riboSNitch. The structures of each variant are com-
pared (Figure 2B), and, in this example, RNAfold (6) cor-
rectly predicts that the base pairing probabilities computed
for each allele are very different for the riboSNitch, and
nearly identical for the non-riboSNitch (Figure 2B, left ver-
sus right panel).

In choosing RNA structure prediction algorithms to test
in the benchmark we opted for a variety of algorithms. We
differentiate prediction algorithms into two broad classes:
specialized (i.e. algorithms specifically engineered to predict
the effects of mutations on RNA structure) and general (i.e.
algorithms that are developed to predict RNA structure).
Specialized algorithms generally report a score (or confi-
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Table 1. The size of riboSNitch sets and non-riboSNitch sets in each category

Probed Validated Symm Asymm All 25% tailsa 5% tailsa

riboSNitch 11 63 223 835 1058 260–288 47–59
Non-riboSNitch 11 63 223 835 1058 240–268 46–79

aSet sizes from the MFE algorithms were not included in this range.

dence) for a predicted difference between mutant RNAs.
For non-specialized algorithms a scoring metric to com-
pare base paring probabilities or MFE predictions is re-
quired. We used RNAdistance and a custom implementa-
tion of RNApdist, algorithms implemented in the Vien-
naRNA package, to carry out these comparisons and quan-
tify structural distances (6,55–56). This allows us to define
a variable threshold over predictions on riboSNitches and
non-riboSNitches for each algorithm (Figure 2C) and per-
form ROC analysis to benchmark performance (57). By per-
forming ROC analysis for each algorithm on the subsets of
riboSNitches with differing levels of experimental evidence
(Figure 1), we are also able to indirectly evaluate the rela-
tive importance of the different types of experimental vali-
dation.

Representative ROC curves for the five different levels
of experimental riboSNitch validation are shown in Fig-
ure 3A–E, respectively. Large differences in performance are
observed between algorithms (especially with the ‘probed’
riboSNitches; Figure 3A); the specialized algorithms in
most cases outperform the general class of algorithms (Ta-
bles 2 and 3). This is unsurprising given that the general
algorithms were not specifically designed for riboSNitch
prediction; however, some of the general algorithms still
show comparable performance to the specialized (Table 3,
bold values). The best prediction performance is observed
on the most highly validated subset of riboSNitches, i.e.
those validated independently by in vitro chemical and en-
zymatic probing. The prediction performance of the spe-
cialized algorithms on the in vitro validated (or ‘probed’)
data is on par with, and in some cases higher than, what
was observed in a previous benchmark on structured RNAs
performed in 2012 (22). Recent algorithmic developments,
and in particular the analysis of local structure change per-
formed in RNAsnp, appear to improve riboSNitch predic-
tions for mRNA and ncRNAs (35).

Performance benchmarks for all algorithms tested are
summarized in Tables 2 and 3 along with 95% confidence in-
tervals. While the intervals are often wide due to small sam-
ple sizes, a few consistent patterns are apparent throughout.
The majority of algorithms perform best on the most exper-
imentally validated data set. This is true of both generalized
and specialized prediction algorithms. In addition, aggre-
gate prediction accuracy of all algorithms decreases with
lower levels of experimental validation. None of the algo-
rithms have good performance on the ‘asymmetric’ and ‘all’
data sets (Figure 3E), yielding AUC values slightly greater
than 0.5 (Tables 2 and 3). This is expected to some ex-
tent since the experimental FDR increases with lower lev-
els of experimental confidence. However, it could also re-
sult from a population of RNAs in the data that are ri-
boSNitches only in vivo and not purely driven by thermo-
dynamic changes in base pairing probabilities. Since the

Figure 3. Representative ROC curves for best (black), mid (dark gray)
and low (light gray) performing algorithms on different categories of
riboSNitches in the benchmark data. (A) Representative performance
riboSNitches validated with in vitro chemical probing. (B) Represen-
tative performance on allele-specific PARS mapped riboSNitches or
‘validated’ riboSNitches. (C) Representative performance on ‘symmet-
ric’ riboSNitches. (D) Representative performance on ‘asymmetric’ ri-
boSNitches. (E) Representative performance on all riboSNitches.

PARS experiment was carried out on in vivo transcribed
RNAs, it has the potential to detect such riboSNitches
(23). RNA structure in the cell may differ from that in
the tube for a number of reasons. Co-transcriptional fold-
ing may encourage certain structures over others (58) and
small RNA (miRNA and siRNA) and protein binding to
transcripts may stabilize or induce certain structural ele-
ments (59). Folding is known to depend on solvent condi-
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Table 2. ROC resultsa for specialized algorithms designed to predict riboSNitches

Software
Prediction
programb Probed Validated Symm Asymm All 25% tails 5% tails

remuRNA (35)
03Nov2012

McCaskill-
remuRNA

0.736
(0.514–0.957)

0.557
(0.456–0.658)

0.543
(0.49–0.597)

0.524
(0.497–0.552)

0.537
(0.513–0.562)

0.574
(0.525–0.622)

0.567
(0.455–0.679)

RNAmute (41)
1.0

RNAfold 1.4 0.512
(0.258–0.767)

0.568
(0.469–0.667)

0.516
(0.464–0.568)

0.517
(0.49–0.544)

0.511
(0.487–0.535)

0.510
(0.484–0.536)

0.503
(0.487–0.519)

RNAsnp (34)
1.1

RNAfold 1.1 0.777
(0.573–0.98)

0.583
(0.483–0.684)

0.568
(0.515–0.621)

0.529
(0.501–0.557)

0.533
(0.508–0.558)

0.583
(0.535–0.631)

0.658
(0.556–0.761)

SNPfold (14)
1.01

RNAfold 2.1.1 0.703
(0.466–0.939)

0.581
(0.48–0.681)

0.571
(0.518–0.624)

0.520
(0.493–0.548)

0.528
(0.504–0.553)

0.591
(0.543–0.639)

0.736
(0.638–0.835)

aResults are reported as the area under the curve (AUC) for each ROC curve with 95% confidence intervals underneath. Top performers are in bold.
bThe underlying program that this software bases its structure prediction on.

Table 3. ROC resultsa for general RNA folding algorithms

Software
Structure
typeb Probed Validated Symm Asymm All 25% tails 5% tails

CentroidFold (43)
00.0.9

BPPM 0.579
(0.324–0.833)

0.561
(0.46–0.662)

0.569
(0.516–0.622)

0.529
(0.502–0.557)

0.532
(0.507–0.556)

0.596
(0.548–0.645)

0.637
(0.528–0.746)

MFE 0.512
(0.257–0.768)

0.574
(0.474–0.674)

0.575
(0.523–0.627)

0.524
(0.497–0.552)

0.534
(0.51–0.558)

0.540
(0.509–0.57)

0.510
(0.489–0.531)

CONTRAfold (42)
2.02

BPPM 0.463
(0.195–0.73)

0.562
(0.461–0.664)

0.567
(0.514–0.62)

0.528
(0.500–0.556)

0.535
(0.510–0.559)

0.562
(0.513–0.612)

0.613
(0.504–0.72)

MFE 0.347
(0.098–0.596)

0.557
(0.456–0.658)

0.548
(0.495–0.601)

0.513
(0.485–0.54)

0.515
(0.490–0.539)

0.514
(0.479–0.549)

0.511
(0.485–0.537)

MC-Fold (46)
17Mar2008

BPPM NA NA NA NA NA NA NA

MFE 0.424
(0.135–0.712)

0.460
(0.331–0.589)

0.478
(0.417–0.539)

0.497
(0.465–0.53)

0.493
(0.464–0.522)

0.493
(0.459–0.531)

0.493
(0.474–0.53)

RNAfold (6) 2.1.1 BPPM 0.686
(0.441–0.931)

0.597
(0.498–0.697)

0.581
(0.528–0.634)

0.525
(0.497–0.553)

0.534
(0.509–0.559)

0.589
(0.540–0.637)

0.707
(0.606–0.808)

MFE 0.471
(0.21–0.732)

0.554
(0.455–0.654)

0.531
(0.48–0.585)

0.515
(0.487–0.541)

0.519
(0.493–0.541)

0.518
(0.491–0.545)

0.503
(0.485–0.521)

RNAmutants (47)
2.0

BPPM NA NA NA NA NA NA NA

MFE 0.517
(0.255–0.778)

0.474
(0.374–0.574)

0.504
(0.451–0.556)

0.510
(0.483–0.537)

0.509
(0.485–0.533)

0.501
(0.475–0.528)

0.493
(0.476–0.51)

RNAstructure (44)
5.6

BPPM 0.612
(0.358–0.865)

0.578
(0.478–0.678)

0.567
(0.513–0.62)

0.527
(0.499–0.554)

0.536
(0.511–0.560)

0.553
(0.504–0.602)

0.622
(0.514–0.731)

MFE 0.413
(0.152–0.674)

0.545
(0.444–0.645)

0.533
(0.481–0.585)

0.525
(0.498–0.552)

0.527
(0.503–0.551)

0.535
(0.508–0.561)

0.510
(0.493–0.527)

UNAFold (45) 3.8 BPPM 0.471
(0.21–0.732)

0.537
(0.435–0.639)

0.548
(0.494–0.601)

0.524
(0.496–0.551)

0.526
(0.502–0.551)

0.528
(0.478–0.577)

0.578
(0.467–0.688)

MFE 0.343
(0.093–0.593)

0.574
(0.474–0.673)

0.526
(0.474–0.579)

0.519
(0.492–0.546)

0.512
(0.488–0.536)

0.519
(0.492–0.547)

0.499
(0.481–0.517)

aResults are reported as the area under the curve (AUC) for each ROC curve with 95% confidence intervals underneath. Top performers are in bold.
bStructure distances were measured by comparing base pairing probability matrices (BPPMs) and/or minimum free energy (MFE) structures.

tions and could thus be influenced by conditions in the cell
like salt concentration, pH and molecular crowding. Post-
transcriptional RNA sequence modifications could allow
for additional structure disruptions that are unique to the
cell environment and detectable by PARS. The thermody-
namic prediction algorithms used here likely fail to predict
large structure changes for riboSNitches that result from
these environmental contributors.

The variation of structure predictions with sequence
length is an important factor to consider in interpreting
these results. We found that AUC values do vary with
sequence length, but are robust within certain ranges of
lengths (Supplementary Figure S1). Even though AUC val-
ues can have high variance, especially in the smaller cat-
egories of riboSNitches, the general trend of AUC values
decreasing from highly validated riboSNitch categories to
the lowest is still evident across a range of sequence lengths,
tested from 21 to 201 nucleotides (Supplementary Figure
S2). Furthermore, the 95% confidence intervals on algo-
rithms’ AUC values (Tables 2 and 3) capture most of the
variation in performance observed with different sequence
lengths (Supplementary Figures S1 and S2).

Improving riboSNitch prediction performance

Both riboSNitch prediction and experimental validation re-
quire defining a threshold for what is and is not a significant
change in structure. Experimentally, the threshold is based
on whether the PARS signal is measurably different between
genotypes (23). Our benchmark shows that higher levels of
experimental validation correlate with improved prediction
accuracy for most algorithms (Tables 2 and 3), indicating
that the FDR in the data decreases with increasing valida-
tion. To address this possible higher FDR in the category
of all riboSNitches, we tested ROC analysis on subsets of
riboSNitches with the lowest P-values, as determined by
their PARS scores. Subsets used were the best 25% and the
best 5% out of all riboSNitches. The resulting ROC curves
show little to no improvement in their AUC values (Supple-
mentary Table S1). This argues against false positives as the
main cause of poor predictions in the ‘all’ category. It sug-
gests instead that a prohibitive number of the experimen-
tally predicted riboSNitches are in fact environmental ri-
boSNitches that do not show large structure changes driven
purely by base pairing thermodynamics.
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Figure 4. Schematic on isolating the n% tails of riboSNitch and non-
riboSNitch score distributions. (A) riboSNitch and non-riboSNitch dis-
tance scores from a particular algorithm are temporarily combined into
one larger set. (B) Scores that delineate the middle 100-n% of the com-
bined distribution are determined, shown here as �L and �H. (C) Scores
that are lower than �L and higher than �H (shaded gray) are selected from
the original riboSNitch and non-riboSNitch score sets for ROC analysis.

All algorithms in this benchmark predict the extent of
structural change caused by an SNV. They differ in the
metric used to quantify the structural change and/or the
specific free-energy functions used for the prediction. The
specialized algorithms report a score for each structure
comparison, while for the generalized algorithms we eval-
uate the change in either the predicted MFE structures or
BPPMs (Figure 2B). These scores are a proxy for the ex-
tent of structural disruption by the SNV. Though all the
algorithms predict very similar score distributions for ri-
boSNitches and non-riboSNitches, in many cases the non-
riboSNitch score distribution is more skewed toward low
distance scores or strong non-riboSNitches (Supplemen-
tary Figure S3). Consequently, the largest differences be-
tween riboSNitch and non-riboSNitch distance score dis-
tributions lie at the extremes. We therefore evaluated perfor-
mance of the algorithms with just their extreme-valued pre-
dictions on the ‘all’ data set. We propose that such a strategy
will mitigate some of the experimental thresholding issues
that make genome-wide prediction of riboSNitches diffi-
cult. In practical terms, the algorithm is allowed to ‘opt-out’
of making a prediction if the riboSNitch predicted score is
not at one of the extremes of its score distribution.

To evaluate performance on these extreme-valued pre-
dictions we combined riboSNitch and non-riboSNitch dis-
tance scores from the ‘all’ category for each algorithm in
order to pick the values that mark the tails occupying n%
of the distribution (Figure 4A and B). Both 25% and 5%
tails were tested, where the range of set sizes from scores
selected in this way is listed in the last two columns of Ta-
ble 1. Scores between the marker values were removed from
the riboSNitch and non-riboSNitch scores to make filtered
score sets for ROC analysis (Figure 4C). As can be seen in
the ROC curves in Figure 5 and Tables 2 and 3, this strat-
egy generally improves AUCs and in some cases results in
prediction performance equivalent to that obtained on the
‘probed’ riboSNitch subset. RNAfold and SNPfold in par-
ticular benefit from this method, with 95% confidence inter-
vals on their 5% tail AUC values completely outside of the
confidence intervals on their ‘all’ category AUC values. In-
terestingly, this approach does not improve the performance
of MFE-based predictions as much as BPPM-based pre-
dictions for any of the algorithms. The score distributions
taken from MFE structure distances are not diverse, i.e.

Figure 5. Example improvements with the n% tails strategy. (A) ROC
curves for RNAstructure on all riboSNitches (light gray), 25% tails
(medium gray) and 5% tails (black). (B) ROC curves for SNPfold on all
riboSNitches (light gray), 25% tails (medium gray) and 5% tails (black).

many of the scores are zeros, rendering this sort of filtering
ineffective. However, this ‘opt-out’ method is still highly ef-
fective with BPPM-based algorithms and represents a sim-
ple strategy to improve predictions on genome-wide data
sets and to identify the highest-confidence predictions.

DISCUSSION

RNA folding is a complex process that is driven by both
thermodynamic and kinetic factors (60–62). In the cell, ex-
ogenous factors including protein chaperones and small
molecules interact with the RNA, further altering the fold-
ing behavior (59,63–66). In addition, RNA necessarily folds
co-transcriptionally, adding another layer of kinetic com-
plexity to the problem of accurate structure prediction
(67–70). The genome-wide discovery of riboSNitches us-
ing PARS enzymatic structure probing provides an unprece-
dented experimental analysis of RNA structure and can sig-
nificantly contribute to our understanding of the relative
importance of these various factors in defining conforma-
tion (37).

Aside from CONTRAfold (42) the algorithms used in
this benchmark model RNA structure relying on param-
eters derived from thermodynamic analysis of base pair-
ing and base-stacking (4,71–72). Although these energy
functions are still being refined, they do capture a major-
ity of the thermodynamically important features that are
known to drive RNA folding (4,72–73). The primary focus
of this benchmark is to determine the best algorithms for
riboSNitch prediction, though the consistent differences in
performance of most algorithms on the subsets of differ-
entially validated data reveal important lessons for RNA
structure prediction in general.

Our benchmark shows that a majority of the algorithms
best predict ‘probed’ category riboSNitches (Figure 3A and
Tables 2 and 3). This category of validation involves inde-
pendent in vitro transcription and folding of the RNA prior
to chemical probing. Thus all sequences in the ‘probed’
data set are riboSNitches detected both in vitro and in vivo.
The small size of the ‘probed’ category makes it difficult
to demonstrate significant improvement compared to the
other categories with a given algorithm. Nevertheless, the
highest scoring algorithms have ‘probed’ category AUC val-
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ues that are significantly greater than the AUC values de-
rived from other categories. The remuRNA ‘probed’ AUC
value is greater than its ‘asymmetric’ and ‘all’ AUC values
(P-val = 0.039 and 0.047, respectively) and the RNAsnp
‘probed’ AUC is significantly greater than its ‘symmetric’,
‘asymmetric’ and ‘all’ AUC values (P-val = 0.032, 0.014 and
0.015, respectively). The aggregate performance of algo-
rithms on allele-specific-validated riboSNitches (‘validated’
category) is lower than the ‘probed’ set but still consistently
better than predictions on all riboSNitches (Figure 3A and
B and Tables 2 and 3). ‘Symmetric’ riboSNitches are better
predicted than ‘asymmetric’ (Figure 3C and D and Tables
2 and 3). These results immediately suggest that higher lev-
els of experimental validation reduce the FDR in the PARS
data, since the algorithmic prediction accuracy is likely con-
stant. However, it may also suggest that the increasingly val-
idated categories correspond to RNAs whose folding is gov-
erned more by thermodynamic changes in base pairing over
other cellular factors. The presence of a class of thermo-
dynamic, versus environmental, riboSNitches is more con-
sistent with our results. Environmental riboSNitches would
be poorly predicted by RNA folding algorithms, and in this
benchmark, they likely blur the difference in score distri-
butions between riboSNitches and non-riboSNitches. The
‘asymmetric’ data set, which yields the worst folding pre-
diction performance on average, is likely enriched in RNAs
whose folding is determined more by cellular environment
and genetic background than by sequence-based folding dy-
namics, as individual variation in environment can cause
RNAs to fold differently. We also cannot exclude the pos-
sibility that some of the false-positive and negative predic-
tions are due to post-transcriptional editing (74).

RNAsnp (34) is the highest performing algorithm on the
‘probed’ data set (Table 2). This algorithm analyzes local
structure changes between mutant structures, while other
algorithms measure structure change over the entire length
of the sequence. This result is, perhaps, unsurprising given
that the riboSNitches used in this benchmark had been de-
tected by comparing PARS scores in a small region (5 nt)
around each SNV (23). While RNAsnp surpasses some of
the other algorithms only marginally, considering its com-
parable performance, it is clear that considerations of local
structure change can be successful in riboSNitch prediction.

Despite fair performance of some of the algorithms on
the ‘probed’ category, performance in other categories re-
mains poor. Two strategies were attempted to improve the
performance on the ‘all’ riboSNitch category, as good per-
formance on the most comprehensive data sets should be
the ultimate goal of prediction algorithms. The first, making
predictions only on riboSNitches with PARS score P-values
in the bottom 25% and 5% of all riboSNitches, resulted in
few improvements (Supplementary Table S1). This suggests
that a higher experimental FDR is not solely responsible for
the poor performance on the ‘all’ data set. However, we can-
not exclude that the P-value from structural differences in
the PARS data may be a poor indicator of confidence in a
riboSNitch. It is important to note that the lack of improve-
ment in AUC values with these subsets of the ‘all’ category
also verifies that smaller sample sizes do not superficially
improve results. Thus the better performance in the more

validated categories is not simply due to their smaller sam-
ple size.

The second strategy, ROC analysis on the 5% (and 25%)
tail values of riboSNitch and non-riboSNitch score distri-
butions, resulted in marked improvements. In some cases,
as in the case of SNPfold and RNAfold, performance with
the 5% tails is on par with that of the chemically probed
category and is significantly greater than the correspond-
ing ‘all’ category performance (P-val = 5.28e-05 and 7.53e-
04, respectively). The algorithms that did not improve were
those that only predict MFE structures. Closer examination
of MFE distance scores for ‘all’ category riboSNitches and
non-riboSNitches showed sparse score distributions (i.e. a
lot of zeros). Based on these results we suggest that users can
make the most of genome-wide predictions by using just the
top and bottom 5% of BPPM-based distance scores to in-
dicate riboSNitches and non-riboSNitches, respectively.

It is interesting to note that changing the metric used
to measure structure differences can result in better perfor-
mance. All the specialized algorithms essentially apply new
metrics to existing RNA folding algorithms, so by bench-
marking the specialized algorithms we are testing a number
of different metrics. For instance, SNPfold takes its struc-
ture predictions from RNAfold, but measures structure dif-
ferences with a Pearson correlation coefficient between base
pairing probabilities instead of with one of the RNAfold
distance functions. Remarkably, SNPfold performs better
than RNAfold (BPPM) on average with its simpler distance
metric. Some of the other BPPM folding algorithms also
exhibit better scores when switched to using a correlation
coefficient, namely CentroidFold and CONTRAfold, while
RNAstructure and UNAFold exhibit slightly lower scores
(Supplementary Table S3). Different folding parameter op-
tions may affect results as well. In this study we used de-
fault parameters for many of the algorithms, but users may
boost performance with specifically tailored options. For
example, RNAsnp is based on the assertion that measuring
local structure changes is essential for riboSNitch predic-
tion. To this end, RNAsnp provides an option to define the
minimum size of local intervals in which to measure struc-
ture change. In this benchmark we used a minimum inter-
val length of 10, but users may choose to change this based
on their sequence length or the expected scope of structural
change.

Choosing BPPM predictions over MFE structure predic-
tion results in large improvements in performance among
the general algorithms. In particular, RNAfold’s ‘probed’,
‘symmetric’, ‘all’, 25% tails and 5% tails categories were
all significantly greater with BPPM AUC values than MFE
(P-val = 0.044, 8.9e-03, 0.047, 6.2e-03 and 9.0e-05, respec-
tively). RNAstructure BPPM AUC values were significantly
greater than MFE values in the ‘probed’ and 5% tails cate-
gories as well (P-val = 0.014 and 0.024, respectively). Fur-
thermore, MFE-based predictions on structure disruption
have been shown to underperform BPPM-based predictions
previously (22). Based on inspection of MFE-based dis-
tance score distributions, many of the non-riboSNitch sets
yielded distance scores just as high as their matched ri-
boSNitch sets, indicating a tendency to over-predict struc-
ture changes. However, MFE predictions on both the ri-
boSNitch and non-riboSNitch sets often contain an abun-
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dance of zero-valued structure distance scores, representing
a tendency to under-predict as well. Predictions based on
MFE structures appear to be too reductive, that is, MFE
predictions do not capture enough information about RNA
structural ensembles to be useful for structure comparisons.
Unlike other thermodynamic folding algorithms, Centroid-
Fold does not return true MFE structures, instead choos-
ing the structure that optimally agrees with a sequence’s
predicted base paring probability matrix. Interestingly, the
MFE predictions from CentroidFold have the highest AUC
values out of all the algorithms’ MFE results. Improved per-
formance from representative dot bracket structures chosen
in this way further underscores the importance of consider-
ing the entire Boltzmann ensemble in RNA structure pre-
diction.

Recommendations

Based on this benchmark we propose the following best
practices for riboSNitch prediction and experimental val-
idation.

(i) For single riboSNitch prediction we recom-
mend using one of the BPPM-based specialized
algorithms––remuRNA, RNAsnp or SNPfold.

(ii) For genome-wide prediction, performance will be
greatly improved if only the top and bottom 5% of
SNPfold and/or RNAfold (BPPM) predictions on the
particular data set are used to indicate riboSNitches
and non-riboSNitches.

(iii) Experimentally, if a structural disruption is consis-
tently observed in multiple individuals and by allele-
specific mapping, it is likely that thermodynamic
changes are driving the observed structure change.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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