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Abstract

The diverse landscape of RNA conformational space includes many canyons and crevices that are distant from the lowest
minimum free energy valley and remain unexplored by traditional RNA structure prediction methods. A complete
description of the entire RNA folding landscape can facilitate identification of biologically important conformations. The
Crumple algorithm rapidly enumerates all possible non-pseudoknotted structures for an RNA sequence without
consideration of thermodynamics while filtering the output with experimental data. The Crumple algorithm provides an
alternative approach to traditional free energy minimization programs for RNA secondary structure prediction. A complete
computation of all non-pseudoknotted secondary structures can reveal structures that would not be predicted by methods
that sample the RNA folding landscape based on thermodynamic predictions. The free energy minimization approach is
often successful but is limited by not considering RNA tertiary and protein interactions and the possibility that kinetics
rather than thermodynamics determines the functional RNA fold. Efficient parallel computing and filters based on
experimental data make practical the complete enumeration of all non-pseudoknotted structures. Efficient parallel
computing for Crumple is implemented in a ring graph approach. Filters for experimental data include constraints from
chemical probing of solvent accessibility, enzymatic cleavage of paired or unpaired nucleotides, phylogenetic covariation,
and the minimum number and lengths of helices determined from crystallography or cryo-electron microscopy. The
minimum number and length of helices has a significant effect on reducing conformational space. Pairing constraints
reduce conformational space more than single nucleotide constraints. Examples with Alfalfa Mosaic Virus RNA and
Trypanosome brucei guide RNA demonstrate the importance of evaluating all possible structures when pseduoknots, RNA-
protein interactions, and metastable structures are important for biological function. Crumple software is freely available at
http://adenosine.chem.ou.edu/software.html.
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Introduction

Amidst a flood of RNA sequence information and a tidal wave

of new roles for small noncoding RNAs, successful exploration and

navigation of the RNA world requires effective tools to evaluate

structure and function from sequence. Many RNA structure

prediction methods sample possible alternative structures in

addition to computing the lowest free energy structure [1–5],

but none rigorously explore all the conformational possibilities.

The Crumple algorithm provides a method to compute completely

and efficiently all possible non-pseudoknotted secondary structures

for a given RNA sequence without consideration of thermody-

namic parameters. Traditional free energy minimization methods

do not consider stabilizing RNA tertiary interactions, RNA-

protein interactions, or the possibility that kinetics rather than

thermodynamics determines the functional structure. Crumpling

an RNA sequence, like crumpling a piece of paper, is a fast and

indiscriminate way of folding. Efficient parallel computing and

effective experimental filters make the complete enumeration of all

structures for an RNA sequence a reasonable approach. Exper-

imental filters from chemical or enzymatic probing, phylogenetic

analysis, crystallography, or cryoelectron microscopy can reduce

the conformational space without overlooking structures that may

be stabilized by tertiary and quaternary interactions.

The complete enumeration of the possible non-pseudoknotted

pairings for a given RNA sequence is useful for defining the folding

landscape, analysis of folding trajectories, and evaluation of

experimental constraints. A set of possible folds from the output

of the Wuchty [6] or Crumple algorithms is useful for mapping

possible folding trajectories using programs such as BarMap [7].

Crumple can provide a larger set of structures that may allow

additional insights into folding pathways. Crumple can also

provide input for programs such as Sliding Windows and

Assembly when the assumption of local cotranscriptional folding

may apply [8,9]. Complete enumeration of all possible solutions to

the RNA folding problem allows a mathematically rigorous

perspective. With a complete set of solutions for the folding

problem, some hypotheses can be nullified. For example, the result

that no possible solution exists for a given set of constraints can be

computationally verified with mathematically complete methods.

The effect of constraints on folding can also be evaluated in a more

quantitative way with complete enumeration of possible RNA

folds. Varying the application of constraints can provide new
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insights into the fundamental physical forces directing RNA

folding.

Pipas and McMahon developed the first method to compute all

possible folds for an RNA sequence [10]. In three steps, the

method computed all possible helices of at least three pairs with at

least a three-nucleotide turn, computed all possible combinations

of those helices without allowing pseudoknot or non-nested

interactions, and then ranked the resulting structures using free

energy predictions. The Wuchty algorithm computes all possible

structures within a given free energy window [6]. The algorithm

does not limit the pairs in a helix, but rather limits the range of free

energies of computed structures. In many cases, constraining the

conformational space to a small thermodynamic range allows

analysis of longer RNA sequences. The Helix Find&Combine

program [8] computes all possible combinations of a defined helix

length. Rather than use thermodynamics to constrain space, Helix

Find&Combine uses minimum helix length with perfect pairing as

a filter and allows non-nested pseudoknot interactions. In the case

of satellite tobacco mosaic virus, this mathematically complete

enumeration approach was used to nullify the hypothesis that the

encapsidated RNA had 30 helices of 9 perfect pairs [8].

The Crumple algorithm is designed to compute efficiently all

possible non-pseudoknotted pairings for an RNA sequence and

allow flexible application of diverse experimental filters. For

example, with efficient parallelization, complete enumeration of

RNA sequences 50–60 nucleotides without any filters can be

computed in 48 hours, the maximum time allotment on the

Sooner supercomputer, an Intel Xeon E5405 2.0 GHz Linux MPI

cluster. Filters such as covarying base pairs, chemical or enzymatic

probing, no lonely pairs (single pairs without an adjacent stacking

pair), the minimum number and length of helices, or thermody-

namic stability can be incorporated into scoring functions.

Comparisons of the effects of different filters demonstrate that

pairing constraints reduce space more than unpaired single

nucleotide constraints. Several examples with biological RNAs

highlight cases when filters other than thermodynamic parameters

identify important functional RNA conformations.

Algorithm and Software Development and
Methods

Crumple Algorithm
It is natural to see the problem of producing every possible

structure of a sequence as a recursive one; breaking a sequence

into smaller and smaller parts does not change the nature of the

problem. A subsequence can be treated like a complete shorter

sequence. Combinations of base pairs create helices, and

combinations of helices and unpaired regions create secondary

structures. In order to reduce the complexity of the RNA folding

problem for longer sequences, pseudoknot pairs, which involve

pairs outside of the interval being considered in the recursion, are

not considered.

In the Crumple algorithm, a secondary structure is defined to be

a set of pairs of bases. The use of set theory notation facilitates the

verification of completeness. The curly brackets define a set.

Double curly brackets define a set of sets. Parentheses indicate a

set where the interval boundaries are not included. Square

brackets indicate a set where the boundary interval is included.

The bold indicates the union of sets. The underlined question

mark indicates the set to be determined. For example (Figure 1),

{(0, 9), (1, 8), (2, 7) … }.

A set of structures, then, is a set of sets of pairs of bases. Given a

sequence s, the set of all possible structures formed in the

subsequence between a base i and a base j is written in this way

where i,j: Cs(i,j). This set can be broken into two parts: the

subset in which base i is paired, and the subset in which i remains

unpaired i.e. Cs(i,j)~Cs(iz1,j)|?, where ‘?’ represents the

subset in which base i pairs. In order to construct this subset an

additional binary set operator is necessary and is equivalent to

union mapped over cross product:

X 0Y~
[
x[X

[
y[Y

(x|y)

The set of all bases between i and j that can legally pair with j

must also be defined:

pairs(i, j).

The set where i pairs, then is.

[
k[pairs(i,j)

Cs(iz1,k{1)0Cs(kz1,j)0 i,jð Þf gf g

Which allows the definition of Cs to be completed:

Cs(i,j)~Cs(iz1,j)|
[

k[pairs(i,j)

Cs(iz1,k{1)0Cs(kz1,j)0 i,jð Þf gf g
" #

And so the full funnel of structures for a sequence s of length n

isCs(i,n).

However, while this is an extremely terse definition, a

computational process based strictly on this recursion would

rapidly exhaust its working memory: the size of the set Cs returns is

exponentially related to the length of the subsequence, and the

whole set of secondary structures must be held in working memory

before it can be completed and saved to disk.

Exponential working memory is not fundamental to the

problem, however. By a slight rearrangement, this definition can

become an algorithm which is rapid but consumes memory

linearly, completing structures one by one and saving them

directly to disk.

Let I be a stack of ranges [i, j); each range is a segment of the

sequence that has not yet been examined (the range includes the

base at i but excludes the base at j). S is a partially formed

secondary structure. S and I together will be referred to as a

‘‘state’’. All the states that result from further crumpling of a state

are ‘‘children’’. The originating state is the ‘‘parent’’. Then,

(noting that the symbol+appends two lists):

crumple(I, S):

if |I| = 0:

save S.

else:

pop (i, j) from I.

if i = = j:

crumple(I, S).

for each possible canonical pairing (k, j) where i,k,j.

crumple(([i, k21), [k+1, j21))+I, S U {(k, j)}).

crumple(([i, j21))+I, S).

crumple([1, |S|+1), 0).

Note that this pseudocode asks whether nucleotide j pairs with

k, rather than i. This does not change the output, only the order in

which it is created. This change was made to facilitate filtering

structures that contain lonely pairs.

Crumple: Enumerating All Non-Pseudoknot RNA Folds
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Filters
Filters can be applied in several ways to help prune the

enumeration of all possible structures and reduce both time and

excessive output. Many filters simply check a partial structure to

verify it contains no constraint violations, or check a potential pair

to verify that it passes constraints. In implementation, even

canonical Watson-Crick pairing rules are defined as a filter,

preventing enumeration of structures containing illegal pairs.

A brief discussion of the lonely pair filter is an illustration of the

way filters may be added to Crumple. Lonely pairs are isolated

pairs surrounded by unpaired nucleotides. First, imagine that an

additional step has been added to the very beginning of Crumple(I,

S):

if lonely_pairs(S):

return.

Many filters can be added in this way and still separate folding

and filtering functions.

lonely_pairs (S) could be implemented naively, examining each

entire partial structure and looking for lonely pairs. This approach

works, but is slow because it reexamines many perfectly acceptable

pairs many times over. The simplicity of the Crumple implemen-

tation allows a more sophisticated approach to the lonely pair filter

without creating unwieldy complexity in the code.

Each time a new pair is created, an interval is made inside that

pair. The interval will be represented by the structure between

[and ]:

….([………])….

(Note that there will be another interval created as well, along

with all the pre-existing intervals, none of which are shown here.)

At this moment, it is impossible to tell whether that pair will be

lonely or not, and so there is no reason to examine it. In addition,

the lonely-or-not condition of the pairs elsewhere in the sequence

has not changed. In fact, the only moment when a pair can change

its loneliness (lonely, stacked, or undetermined) is when an interval

shrinks to length 0:

….([]………)….

At that moment, no more pairs can be made, and the pair

immediately to the right of the shrunken interval moves from

being indeterminate to (in this case) lonely.

Checking a single pair has a constant cost, while checking every

pair becomes more costly as the length increases. Checking that

single pair infrequently, i.e. only when the interval within reaches a

length of 0, is more efficient.

Parallelization
In implementation, the Crumple algorithm has been further

transformed into a completely iterative process, and then

parallelized, for the sake of speed.

Non-shared-memory parallelization presents two concerns:

ensuring every process does a balanced amount of work, and

minimizing the number of costly messages between processes. In

the recursive version of Crumple, much of the potential work (i.e.

the folding that has not yet been done) is implicit in the call stack.

The only work that can easily be passed to another process is the

work involved in completing the most recently created state. This

represents a very small amount of the total potential work

concealed in the call stack. That state represents the smallest unit

of work extant in the process. Shuffling small amounts of work

many times will result in good load-balancing, but it fails the

second criterion: too many messages are sent, and the result does

not scale well for many processes.

The greatest amount of work any single process has available is

the parent state, from which emerges all the work to which the

process has access. To use that knowledge, the recursion must be

reified, making the whole set of partially completed states explicitly

available (note: the number of states in this set is limited linearly

with respect to the length of the sequence; therefore all necessary

memory can be allocated initially, yielding a fortuitous increase in

speed).

A ’continuation’ state – one that has produced some, but not all,

of its children – can be cleaved into two, according to two rules:

1. If there are still children to be examined from both the ’j pairs’

case and the ’j remains unpaired’ case of the current interval,

produce one state that sires ONLY those children where base i

pairs, and one state that produces only those children where i

remains unpaired.

2. If there are only unexamined children from the ’j pairs’ case

(this can only result from a previous split due to rule 1), then

divide the remaining pairing cases in half, and produce two

states that each examine opposing halves.

While these two rules do not perfectly divide a process’

remaining work in half, the approximation adequately satisfies

the constraints of load balancing and minimal message passing.

Table 1 shows efficient load-balancing in an example Crumple

calculation with a guide RNA sequence.

In implementation, the individual parallel processes have been

arranged in a ring graph (Figure 2). Each process communicates

only with its neighbors, accepting requests-for-work from one side,

and passing requests on to the other. Any process that receives a

request for work must, if it has states available, cleave its root state,

Figure 1. A. RNA Secondary Structure. Circles represent nucleotides. Solid lines indicate covalent phosphodiester bonds, and dashed lines
indicate hydrogen-bonded base pairs. B. All possible non-pseudoknot pairs for the simple sequence 59CCCAAAAGGG are listed below. Parentheses
indicate pairs, and dots represent nonpaired nucleotides. C. An example of one step of the algorithm. Dashes indicate nucleotides that have not yet
been examined. Dots indicate unpaired nucleotides. Parentheses indicate paired nucleotides. Nucleotide pairing follows Watson-Crick and GU pair
rules. S is an RNA secondary structure or partial structure represented by a set of pairs (i,j). I is a stack of ranges (i,j]. Each range is a segment of the
sequence that has yet to be examined. D. An empty list is defined as I = (). Adding an element X to a list is defined as I = X.I. Removing the most
recently added element to the list, i.e. pop an element from the list, is defined as pop(I) = = X, so that I = = ().
doi:10.1371/journal.pone.0052414.g001

Table 1. Work Distribution in Parallel Computations.

Number of
Processes Real Time (s)

Average Percent Work Per
Process

4 42264 19.996610.001

8 21118 11.10763.956

16 10774 5.87861.488

32 5630 3.20660.570

64 3171 1.53360.285

128 1926 0.77160.180

256 999 0.38460.073

The sequence in this example is a 48-nucleotide guide RNA. The computations
were done in parallel on the Sooner supercomputer (Intel Xeon E5405 2.0 GHz
Linux MPI cluster).
doi:10.1371/journal.pone.0052414.t001
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and send that work directly to the addressee. If no work is

available, the work request must be sent along to the next node in

the ring. Recognizing the halting-state is accomplished with a

message passing algorithm reproduced directly from Dijkstra’s

work on token rings [11,12].

Additional Computational Methods
All software used in this work is freely available at http://

adenosine.chem.ou.edu/software.html. The completeness of the

Crumple algorithm was verified manually with a 14-nucleotide

RNA sequence that has 119 possible structures (See List S1 and

Supporting Information in reference [8]). The 14mer was

specifically designed to include an example of each possible case

for a chemically modified adenine. Concatenation of the 14mer to

make 28mers and 42mers creates test cases that include multi-

branch loops. The Crumple algorithm has been applied to or

tested on the following biological sequences: a section of the 59

untranslated region of the HIV-1 RNA [8], satellite tobacco

mosaic virus RNA [8], MS2 bacteriophage RNA [9], a section of

the 39untranslated region of Alfalfa Mosaic Virus RNA, 4 guide

RNA from Trypanosome brucei, and a bacterial noncoding RNA

MicA. In all cases, the minimum free energy structures predicted

by rnafold, mfold, or RNAStructure were present in the Crumple

output (Figure S1). The Crumple output was compared with the

output from the Vienna implementation of the Wuchty algorithm

[6,13]. For longer sequences, the free energy of the structures

generated by Crumple was computed and sorted and then

compared to the output for the free energy window computed

by the Wuchty algorithm. Crumple always computed at least the

same structures generated by the Vienna implementation of the

Wuchty algorithm and often more valid structures that were

eliminated by default settings in the Vienna program. Tools to

evaluate the differences between two RNA secondary structures

and the free energy of an RNA structure, the functions rna_dist

and rna_eval, respectively, were those available at http://www.tbi.

univie.ac.at/RNA/in the Vienna websuite [13,14]. The 2004

thermodynamic parameters from the Turner lab are used to

evaluate the free energy of an RNA secondary structure [15].

Computations and programming were done on an AMD Athlon

64 X2 6400+3.2 GHz CPU with 4 GB RAM. Computations in

parallel were done using OpenMPI 1.4 [16] on the Sooner

supercomputer, which is available through the OU Supercomput-

ing Center for Education and Research. The Sooner supercom-

puter trials were conducted on Intel Xeon E5405 2.0 GHz CPUs.

The communication between nodes via Infiniband uses QLogic

QLE7240 HCA cards and QLogic 9024 switches. The cluster runs

Red Hat Enterprise Linux 5.0 x86_64 (kernel 2.6.18). The

crumple program was compiled with gcc 4.1.2.

Results and Discussion

Figure 3 shows an example of the speed up for a Crumple

computation and demonstrates good performance for this

parallelization scheme. Speedup is the ratio of times for the serial

Figure 2. Ring Graph Parallelization Diagram for Crumple. Red Arrows indicate the direction of requests for work. Green arrows indicate the
flow of distributed work. One node is arbitrarily selected as the first and master node.
doi:10.1371/journal.pone.0052414.g002
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computation and the parallel computation. The speedup tests were

performed with no experimental constraints on a 48-nucleotide

guide RNA sequence from Trypanosome brucei that has a variable

number of U nucleotides at the 59 end [17]. The speedup is almost

perfectly linear until 32 processes in this example. The point at

which the graph of speedup shows nonlinearity will vary with the

sequence and sequence length. Longer sequences with more work

to be done will show more linear behavior for a greater number of

nodes. The nonlinear behavior reflects too many requests for work

for the given amount of work to be done. The actual time for the

computation was 47.5 hours in serial and 30.9 minutes for 512

nodes on the Sooner supercomputer. In the best case scenario,

Crumple completed computations for an unconstrained 60

nucleotide sequence with 1024 processes in the typical 48 h time

allotted on the Sooner supercomputer. The speedup, time, and

amount of work for a Crumple computation is sequence

dependent. For a problem with exponential complexity and

ideally linear speedup, doubling the number of processes

approximately allows the consideration of a sequence one

nucleotide longer in the same amount of time.

Table 2 summarizes Crumple computations for three biological

RNAs of different lengths and with different amounts of

experimental data defining the possible RNA conformations.

The number of possible structures explodes exponentially with the

sequence length [18]. For example in Table 2, the addition of 5

nucleotides increases the number of possible structures by 2 orders

of magnitude. A sequence of 72 nucleotides, such as MicA, a small

regulatory RNA in Eschericia coli [19], is still currently too long to

completely enumerate all possible sequences without filters in two

days time, which is the standard time period available on the

Sooner supercomputer. Given the exponential growth of comput-

ing speed and memory predicted by Moore’s Law, however, the

size of RNA folding problems that are reasonably computable will

also continue to grow. The computing resources are not a

fundamental limitation to the RNA folding problem. The ability to

effectively filter or sort the large output in meaningful ways is the

limiting condition. Constraining nucleotides to remain unpaired

effectively shortens the sequence length in the MicA example.

Thus filters with experimental data are the most effective

approach to the task of enumerating all possible structures for a

sequence. The computation is fast and efficient. Crumple

calculations incorporating experimental constraints complete in

less than a minute in serial on a standard PC computer.

The Wuchty algorithm implemented in the Vienna RNA

package [6,14] and RNAStructure [20] is the only other algorithm

that attempts to completely enumerate all possible pairings for an

RNA sequence. The implementation of the no lonely pairs filter in

the Vienna RNA package depends on the energy window and

energy penalties rather than preventing the formation of lonely

pairs (See Lists S1 and S2 for an example). The Vienna

implementation of the Wuchty algorithm also limits the maximum

pairing distance to 30 and the maximum energy window to

90 kcal/mol. The Vienna Wuchty program generates duplicate

structures as a result of the different ways to compute dangling

ends and multibranch loops. Because the Wuchty algorithm

considers energetics before forming a pair, the algorithm also runs

much more slowly than Crumple. In the cases of the AMV4 RNA

and gRNA 7-506 RNA computed in serial in Table 2, the Vienna

implementation of the Wuchty algorithm requires 2 min 33 s and

2 hours for the same computations on the same computer that

Crumple requires only 41 s and 1 h 17 min hours, respectively.

Thus, the Wuchty algorithm requires more time to compute fewer

structures.

Experimental Constraints Reduce the Conformational
Space for the Minimal Protein Binding Site of Alfalfa
Mosaic Virus RNA 4

The 39-nucleotide segment in the 39 untranslated region of

Alfalfa Mosaic Virus (AMV) RNA 4 contains conserved AUGC

repeats and the minimal coat protein binding site necessary for

infection [21–23]. The RNA secondary structure has been probed

chemically, enzymatically, and phylogenetically [22,23], and

cofolding of the RNA and protein creates additional RNA

pseudoknot interactions [21]. More than one possible secondary

structure satisfies all the chemical and enzymatic probing data in

several regions of the AMV4 RNA [23]. The pattern of chemical

and enzymatic probing changes in the presence or absence of

proteins [22]. Thus, AMV RNA provides interesting RNA folding

challenges because it includes repetitive sequences, pseudoknot

tertiary interactions, and significant energetically stabilizing RNA-

protein interactions. Traditional free energy minimization pro-

grams such as Vienna [14] or RNAStructure [15] predict the

hairpin loops correctly but also predict additional base pairs that

create bulges or multibranch loops in the lower stem helices. Free

energy minimization disfavors single-stranded regions of RNA

such as the nucleotides between hairpins in AMV RNA

(Figure 4B). Prediction of tertiary interactions such as pseudoknots

is computationally intensive [24–27]. No methods currently exist

to directly predict RNA-protein interactions. The possibility of

pseudoknot or RNA-protein interactions is one reason to include

energetically suboptimal structures in predictions and explore a

wide range of RNA conformational space. Using Crumple and

experimental constraints identifies a set of structures that includes

high energy structures with unpaired nucleotides that have the

potential for stabilizing pseudoknot and RNA-protein interactions.

Free energy minimization approaches have a tendency to

maximize and thus overpredict base pairing (Figure S1). The

complete set of possible structures enumerated by Crumple

includes structures with less than maximal pairing and thus

facilitates the evaluation of potential tertiary or quaternary pairing

interactions.

Table 3 shows an example of how each type of experimental

constraint contributes toward reducing the possible conformation-

al space of the AMV RNA 4 protein binding sequence. The effect

of each constraint is highly sequence dependent. Usually multiple

constraints from chemical or enzymatic probing are used to define

a secondary structure [28], but in this example, each constraint is

Figure 3. Parallelization Performance. Red squares are ideal
speedup. Blue diamonds are the values measured using the gA48
sequence with no constraints on the Sooner supercomputer. Speed up
is the ratio of real computation time in serial to real computation time
in parallel. Note that one unit of work is assigned to each core, thus one
node is equivalent to one core in this case.
doi:10.1371/journal.pone.0052414.g003
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introduced individually to demonstrate relative orders of impact

for different types of constraints. Chemical probes such as

dimethyl sulfate, kethoxal, or hydroxyl radicals modify solvent-

accessible nucleotides. The chemical probing constraints allow

chemical modification to occur in unpaired nucleotides, paired

nucleotides at the end of a helix, or paired nucleotides adjacent to

GU pairs [15]. In this example, the two chemically modified

nucleotides U872 and A873 are consistent with all possible

secondary structures and thus do not reduce the possible number

of structures. Single strand constraints from S1 enzymatic

digestion are more stringent and force the nucleotide to be

unpaired. V1 enzymes cleave nucleotides in double stranded-

RNA, and nucleotides hit by V1 are constrained to pair but the

identity of the partner nucleotide is unconstrained. Covariation

occurs when two nucleotides show compensatory changes that

maintain Watson-Crick pairing in nucleotide sequence alignments.

In a covarying pair, both nucleotides are constrained to pair with

each other. A single covarying pair constrains not only those two

nucleotides, but also constrains the nucleotides in between the

covarying pair to pair with each other if pseudoknot interactions

are not allowed. The minimum number and length of helices can

be determined from cryoelectron microscopy or crystallography

[8,29–31]. In this example, this constraint involves at least 12

nucleotides and thus has a larger effect on reducing the possible

conformational space. Constraining the minimum number of

helices also eliminates many partially unfolded structures. Con-

straints to pair do more to reduce conformational space than single

strand or chemical modification constraints in this example, which

may be the results of eliminating many partially unfolded

structures. All the constraints combined generate a set of 91

structures from over 50 million possible structures in this example.

Representative secondary structures from the set are shown in

Table 2. Examples of Crumple Computations for Biological RNAs.

RNA

Sequence
Length
(nucleotides) Filters

Number of
Computed
Structures
Without Filters

Wall Time for
Computation in
Seriala

WallTime for
Computation in
Parallelb

Number of
Computed
Structures With
All Filters

WallTime for
Computation with
All Filters in Seriala

AMV4 39 3 single strand 50,781,504 40.89 s 2.75 s 91 0.01 s

RNA 2 chemical modification

10 paired

1 covarying pair

2 helices of at least 3 nts.

No lonely pairs

Guide 44 6 single strand 5,370,612,993 1 h 17 m 5 s 46.2 s 53,009 7.08 s

RNA 11 chemical modification

gND7- 2 helices of at least 3 nts.

506 No lonely pairs

MicA 72 27 single strand - - .48 h 410,270,854 53 m 29 s

RNA 1 covarying pair

No lonely pairs

aWall time for computation in serial on a single AMD Athlon 64 X2 6400+ computer at 3.2 GHz with 4 GB RAM.
bWall time for parallel computations with 256 processes on the Sooner supercomputer (Intel Xeon E5405 2.0 GHz Linux MPI cluster).
doi:10.1371/journal.pone.0052414.t002

Figure 4. Alfalfa Mosaic Virus RNA 4 Protein Binding Site. A. Secondary structure with pseudoknots as seen in the crystal structure of the RNA-
protein complex [21]. B. Secondary structure without pseudoknot interactions as determined by chemical and enzymatic probing of the RNA in
isolation [22,23]. C. Alternative AMV secondary structure containing a multibranch loop that is also consistent with the set of constraints listed in
Table 3 legend. Secondary structures pictures were generated with RNA Pseudoviewer [47].
doi:10.1371/journal.pone.0052414.g004
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Figure 4. All 91 structures share the same two hairpin loops and

then the possible pairings in the stems and hairpin connections

vary with a maximum number of 8 differently paired nucleotides,

as calculated using the rna-distance tool in the Vienna package

[14]. Crumple accurately produces the minimum free energy

structures in the set of 91 structures. Computing the free energies

of 91 structures and then sorting based on free energy is faster and

more efficient than computing free energies at each step of the

complete enumeration of all possible folds. The advantage of

looking at the set of 91 structures is the identification of tertiary

interactions among less stable structures or the identification of

alternative structures.

Crumple Thoroughly Explores Alternative Structures for a
Metastable Guide RNA

Guide RNAs from Trypanosoma brucei pose unique RNA folding

challenges. Trypanosome guide RNA sequences have a strong bias

toward A and U and very few C nucleotides. Thus, the possible

secondary structures contain mainly AU and GU pairs [17]. GU

pairs show very idiosyncratic thermodynamic stabilities with non-

nearest neighbor effects, and thus vary widely depending on the

RNA sequence context [32–35]. Although proposed secondary

structures were initially evaluated as energetically favorable

(Figure 5A), the secondary structures would be unfavorable

according to current thermodynamic prediction rules [15].

Metastable conformations play a role in the biological function

of guide RNAs. Guide RNAs change conformation and partially

unfold when bound by proteins; this protein-assisted RNA

unfolding facilitates formation of the guide RNA-mRNA complex

[36,37]. Because this mechanism of RNA editing and U insertion

into the mRNA sequence is unique to pathogenic T. brucei, guide

RNAs are an attractive drug target.

Crumple predictions for the guide RNA segment used for the

protein-RNA complex crystal structure show many possible

structures that satisfy all the given constraints (Figure 5). Many

of these structures contain sequence motifs for which thermody-

namic parameters have not been measured and would be

predicted to be unfavorable with the current thermodynamic

prediction rules [15,32,35] that undergo continual evaluation and

improvement. However, in the case of T. brucei guide RNA, the

helix bound and stabilized by its protein partner is the helix

predicted to have an unfavorable free energy rather than the helix

predicted to have a favorable free energy. The lowest energy

predicted structures are not consistent with the chemical and

enzymatic probing data. Thus, currently predicted energetically

unfavorable structures are worth consideration. The thermody-

namic stabilities of GU pairs are an active area of research and are

continually updated. Crumple can generate structures without

reliance on these undetermined thermodynamic stabilities.

Note that double strand data from V1 enzyme was collected for

this RNA also [17]. The hits from V1 enzyme, however, are not

always consistent with the chemical probing data and apparently

also strongly hit the tail of single-stranded, stacked uridines on the

39 end of the guide RNAs. The strong propensity of V1 enzyme to

hit both double stranded and single stranded, stacked nucleotides

[38] in these conditions makes the data difficult to incorporate as a

constraint for structure prediction. An alternative explanation of

the apparent inconsistencies in the chemical and enzymatic data is

that the guide RNA may exist in an ensemble of states. The

complete enumeration of all possible structures with Crumple can

facilitate the evaluation of an ensemble of RNA structures and its

structural diversity.

Applications of Crumple to Biological RNA Folding
Problems

The advantages of using Crumple to generate all possible

secondary structures include fast and efficient computation, a

simple architecture that enables incorporation of experimental

filters, and the ability to identify structures that may not be

sampled by other methods. The disadvantages of this approach are

that the number of structures grows exponentially with the

number of nucleotides, many of the structures are very similar, and

many of the structures have so few pairs as to be useless for

practical biological problems. These disadvantages make the

application of experimental filters essential to apply the approach

to any biological problem. Thus, this method depends very much

on the ability to define scoring functions and filters that effectively

eliminate irrelevant structures and identify interesting structures.

The simple architecture of Crumple facilitates the incorporation of

diverse experimental constraints, and the design of the implemen-

tation explicitly considers future extensibility.

Programs such as BarMap [7] use the complete enumeration of

structures, such as the output from Wuchty in the Vienna RNA

Web Suite [14] or Crumple computations, to map possible kinetic

folding trajectories. The ability to compute the complete set of

possible structures with Crumple expands the potential applica-

tions of approaches such as Barmap to modeling RNA folding.

The output of Crumple can also be used with programs such as

Sliding Windows and Assembly [8,9] to explore possible confor-

mations of longer sequences, with local cotranscriptional folding.

Thus, Crumple offers a useful alternative to traditional RNA

folding methods.

The main utility of any RNA structure prediction or enumer-

ation program is to generate hypotheses about structure and

function in order to guide future experiments and further

understanding of RNA molecules. From the practical point of

view of an experimental biologist studying a new RNA, the

following guidelines for the application of Crumple may be useful.

Due to the large size of the output and the indiscriminate

approach to RNA folding, the Crumple algorithm is better used

after an initial traditional analysis of RNA secondary structure. A

Table 3. Experimental Constraints Reduce the Conformation
Space for Minimal Protein Binding Site of Alfalfa Mosaic Virus
RNA 4.

Constraints Number of Computed Structures

None 50,781,504

2 Solvent accessible nucleotides 50,781,504

1 Single stranded nucleotide 43,117,777

3 Single stranded nucleotide 24,164,642

1 Paired nucleotide 11,436,079

No loney pairs 7,842,584

1 Covarying pair 3,476,410

2 Helices of at least 3 pairs 50,888

10 Paired nucleotides 39,596

All combined constraints 91

Table 3: The sequence for the AMV binding site with numbering according to
(23) is 59843AUGCUCAUGCAAAACUGCAUGAAUGCCCCUAAGGGAUGC881. The
experimental constraints used are the following: nucleotides solvent accessible
to chemical modification U872, A873; 1 nucleotide single stranded A 856; 3
nucleotides single stranded A856, A855, A854; 1 nucleotide double stranded
A853; C869-G877 covary; 10 paired nucleotides A853, C852, G851, U850, A849,
C848, G859, C860, A861, U862.
doi:10.1371/journal.pone.0052414.t003
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typical analysis might begin with folding the RNA sequence using

minimum free energy methods, such as mfold [39], Unafold [40],

Vienna [14], and RNAstructure [20] as a good starting point.

Include as constraints all available experimental data, such as

chemical or enzymatic probing, multiple sequences from phylog-

eny, covariation data, and base pairing from compensating

mutations and functional analysis. If domains of longer RNA

sequences have been identified or there are reasons to consider

only local pairing, then fold individual domains or constrain the

maximum pairing distance. Compare the minimum free energy

structures from more than one prediction program. Analyze the

base pairing probabilities calculated from the McCaskill algorithm

[41], and observe the variation in the predicted suboptimal

structures. If the predicted minimum free energy structures vary

widely between different programs, then the prediction for this

sequence may be very sensitive to the subtle differences in the

implementation of the energy rules in different software programs.

Low base pairing probabilities indicate multiple possible energet-

ically stable structures for that region of the RNA. Keep in mind

that the Zuker-Steigler algorithm generates representative subop-

timal structureand will not combine two suboptimal structures

formed by independent folding domains [5]. Crumple may

provide additional insight into possible RNA structures if any of

the following characteristics result from an initial traditional

minimum free energy analysis:

1. the predicted minimum free energy structures differ signifi-

cantly between different software programs;

2. the base pairing probabilities are lower than 50% for one or

more regions of the RNA;

3. the predicted suboptimal structures vary significantly and have

similar free energies;

4. pieces of different suboptimal predicted structures together

would explain the data better than any single complete

predicted suboptimal structure.

Crumple may also be useful if there are experimental data or

hypotheses about function and mechanism that suggest the

following:

5. RNA-protein interactions are significant;

6. pseudoknots exist; or

7. kinetics determines the functional structure.

If pseudoknots may exist, then consider using software programs

that allow pseudoknots [24–27,42–46]. Before using the Crumple

tool, consider the length of the RNA and the available

experimental data to filter the output. For example, crumpling

one domain of an RNA structure with low predicted pairing

probabilities may be more useful than crumpling the entire RNA

sequence. The examples in Table 3 provide practical benchmarks

to guide decisions about using Crumple. The Crumple tool

provides a different view of the RNA folding landscape that can

help an experimental biologist identify possible structures that may

not be generated by traditional RNA structure prediction

programs based on free energy minimization.

Conclusions
Crumple provides a fast and efficient method to explore all

possible conformations of an RNA sequence when the assumptions

of free energy minimization may not hold true. Incorporating

Figure 5. Guide RNA Secondary Structures. A. Secondary structure proposed from chemical and enzymatic probing of RNA in vitro [17]. In the
protein-RNA crystal structure [36], only the first short hairpin is observed, and the second hairpin is unwound and only density for four nucleotides is
observed. The structure shown in A has a predicted free energy greater than 0 kcal/mol [15]. B. Lowest energy secondary structure consistent with
the given set of constraints. The predicted free energy is 21.6 kcal/mol. C. Alternative secondary structures that are consistent with the given set of
constraints and that are not sampled by RNAStructure [48] or Sfold [49]. Secondary structures pictures were generated with RNA Pseudoviewer [47].
Experimental constraints include the following: chemically modified nucleotides A12, A13, A19, A24, A25, A27, G18, G21, G35, G40, G44 and single
stranded nucleotides A12,A13,G18,U20,G40,G44.
doi:10.1371/journal.pone.0052414.g005
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experimental constraints reduces the possible conformational

space. Efficient parallel computing and filters from experimental

data make complete enumeration of pseudoknot-free RNA

structures a reasonable approach. This approach can facilitate

the identification of secondary structures that enable stabilizing

RNA tertiary and quaternary interactions and RNA-protein

interactions.
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Predictions for AMV, GDN-307, and MicA.
(TIF)
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